Lecture Notes on Pseudorandomness — Part I

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science
Rehovot, ISRAEL.
email: oded@wisdom.weizmann.ac.il

January 23, 2001

Abstract

A fresh view at the question of randomness was taken in the theory of computing: It has been
postulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri-
bution by any efficient procedure. This paradigm, originally associating efficient procedures with
polynomial-time algorithms, has been applied also with respect to a variety of other classes of
distinguishing procedures. We focus on pseudorandom generators; that is, deterministic programs
that stretch short (random) seeds into much longer pseudorandom sequences.

The current lecture series focuses on the case where the pseudorandom generator runs in
polynomial-time and withstands any polynomial-time distinguisher. In particular, the distinguisher
may be more complex (i.e., have a higher polynomial running time) than the generator. This frame-
work is natural in the context of designing general-purpose pseudorandom generators that can be
used in any efficient (i.e., polynomial-time) application. Furthermore, this framework is almost
mandatory in cryptographic applications, where the adversary is typically willing to invest more
effort than the legitimate users.

A companion lecture series (i.e., “Pseudorandomness — Part 2” by Luca Trevisan) focuses on
the case where the pseudorandom generator runs in exponential-time (w.r.t the seed length) and
withstands distinguisher of running time bounded by a specific polynomial (in the length of the
generator’s output). In particular, the generator may be more complex than the distinguisher.
As explained in the companion lecture series, this framework is natural in the context of de-
randomization (i.e., converting randomized algorithms to deterministic ones).

Contents

Preface

1 Computational Indistinguishability

1.1 Imntroduction.

1.2 The Notion of Pseudorandom Generators
1.3 The Definition of Computational Indistinguishability
1.4 Relation to Statistical Closeness,
1.5 Indistinguishability by Repeated Experiments

2 Pseudorandom Generators

2.1 Basic definition and initial discussiono Lo oL
2.2 Amplifying the stretch function Lo oo oL
2.3 How to Construct Pseudorandom Generators
2.3.1 The preferred presentation
2.3.2 An alternative presentation oL o Lo
2.3.3 A general condition for the existence of pseudorandom generators.

3 Pseudorandom Functions and

Concluding Remarks

3.1 Definition and Construction of Pseudorandom Functions
3.2 Applications of Pseudorandom Functions

3.2.1 Applications to Crypt
3.2.2 Other Applications .
3.3 Concluding Remarks

ographyo

3.3.1 The applicability of pseudorandom generators
3.3.2 The intellectual contents of pseudorandom generators

3.3.3 A General Paradigm
Appendix: Proof of Theorem 2.7

Bibliography

11
11
12
13
15
16
16

18
18
19
19
20
21
21
21
22

23

27

Preface

The heart of the theory of pseudorandomness is the suggestion to consider the class of distributions
that cannot be told apart from the uniform distribution by any efficient procedure. These distri-
butions are called pseudorandom, and can be generated deterministically from short random seeds
(which are much shorter than the length of the pseudorandom output). Specifically, the ability to
efficiently generate pseudorandom objects is closely related to computational difficulty.

In this lecture series, we consider a specific instantiation of the paradigm outlined by the above
paragraph, associating efficient computation with polynomial-time algorithms. We believe that
this instantiation (of the above paradigm) is the most natural one, but other instantiations are
important too (see remarks in Section 3.3.3). In particular, in the next lecture series, a different
instantiation of the above paradigm is considered.

Orientation Remarks

We consider finite objects, encoded by binary finite sequences called strings. When we talk of
distributions we mean discrete probability distributions having a finite support that is a set of
strings. Of special interest is the uniform distribution, that for a length parameter n (explicit or
implicit in the discussion), assigns each n-bit string = € {0,1}" equal probability (i.e., probability
27"). We will colloquially speak of “perfectly random strings” meaning strings selected according
to such a uniform distribution.

We associate efficient procedures with probabilistic polynomial-time algorithms. An algorithm
is called polynomial-time if there exists a polynomial p so that for any possible input x, the algorithm
runs in time bounded by p(|z|), where |z| denotes the length of the string . Thus, the running
time of such algorithm grows moderately as a function of the length of its input. A probabilistic
algorithm is one that can take random steps, where, without loss of generality, a random step
consists of selecting which of two predetermined steps to take next so that each possible step is
taken with probability 1/2. These choices are called the algorithm’s internal coin tosses, and we
consider the probability distribution of the output of the algorithm, where the probability space
is taken over these coin tosses. That is, if A; is such an algorithm and z € {0,1}*, then A;(z)
denotes the output distribution of A; on input z. An equivalent way of looking at a probabilistic
algorithm is to view its random steps as determined by a sequence of outcomes supplied from the
outside. In this case, we consider a two-input deterministic algorithm, where the first input is the
actual input and the second input represents the outcomes of a sequence of coin tosses, and refer
to the distribution induced on the output when fixing the first input and letting the second input
be random. That is, if Ay is such an algorithm and x € {0,1}*, then As(z,r) denotes the output
of Ay on actual input z and random input 7, and we consider the distribution of Ay(z,-) when the
second input is uniformly selected in {0,1}!, for some sufficiently large t.

Background material and further reading

We assume the reader is fairly comfortable with basic notions of the theory of computation (see,
e.g., [8, 32]) and elementary probability theory (see, e.g., [7]). Familiarity with some randomized
algorithms may be useful too (see, e.g., [27] or [10, Apdx. BJ).

The interested reader is directed to two texts by the author: Chapter 3 of [11], which is a
textbook devoted to the foundations of cryptography, provides a detailed treatment of the subject
matter of the current lecture series (including full proofs for results for which only proof sketches
appear below). On the other hand, Chapter 3 of [10] provides a much wider perspective on pseu-
dorandomness (but less details on the subject matter of the current lecture series). Other parts
of [10] survey related areas such as probabilistic proof systems, cryptography, and randomized
computation.

Lecture 1

Computational Indistinguishability

1.1 Introduction

The second half of this century has witnessed the development of three theories of randomness,
a notion which has been puzzling thinkers for ages. The first theory (cf. [5]), initiated by Shan-
non [31], is rooted in probability theory and is focused at distributions that are not perfectly
random. Shannon’s Information Theory characterizes perfect randomness as the extreme case in
which the information content is maximized (and there is no redundancy at all).! Thus, perfect
randomness is associated with a unique distribution — the uniform one. In particular, by definition,
one cannot generate such perfect random strings from shorter random strings.

The second theory (cf. [23, 26]), due to Solomonov [33], Kolmogorov [22] and Chaitin [4],
is rooted in computability theory and specifically in the notion of a universal language (equiv.,
universal machine or computing device). It measures the complexity of objects in terms of the
shortest program (for a fixed universal machine) that generates the object.? Like Shannon’s the-
ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.
Interestingly, in this approach one may say that a single object, rather than a distribution over ob-
jects, is perfectly random. Still, Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov
Complexity is uncomputable), and — by definition — one cannot generate strings of high Kolmogorov
Complexity from short (random) strings.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [19, 2, 35], is rooted in com-
plexity theory and is the focus of this lecture series. This approach is explicitly aimed at providing a
notion of perfect randomness that nevertheless allows to efficiently generate perfect random strings
from shorter random strings. The heart of this approach is the suggestion to view objects as equal
if they cannot be told apart by any efficient procedure. Consequently a distribution that cannot
be efficiently distinguished from the uniform distribution will be considered as being random (or
rather called pseudorandom). Thus, randomness is not an “inherent” property of objects (or dis-
tributions) but is rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

! In general, the amount of information in a distribution D is defined as —) D(x)log, D(z). Thus, the uniform
distribution over strings of length n has information measure n, and any other distribution over n-bit strings has
lower information measure. Also, for any function f : {0,1}" — {0,1}™ with n < m, the distribution obtained by
applying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower than
the length of the output.

2 For example, the string 1™ has Kolmogorov Complexity at most O(1) + log, n, by virtue of the program “print
n ones” (which has length dominated by the binary encoding of n). In contrast, a simple counting argument shows
that most n-bit strings have Kolmogorov Complexity at least n (since each program can produce only one string).

Alice and Bob play HEAD OR TAIL in one of the following four ways. In all of them
Alice flips a coin high in the air, and Bob is asked to guess its outcome before the coin
hits the floor. The alternative ways differ by the knowledge Bob has before making
his guess. In the first alternative, Bob has to announce his guess before Alice flips the
coin. Clearly, in this case Bob wins with probability 1/2. In the second alternative,
Bob has to announce his guess while the coin is spinning in the air. Although the
outcome is determined in principle by the motion of the coin, Bob does not have accurate
information on the motion and thus we believe that also in this case Bob wins with
probability 1/2. The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate information on
the coin’s motion as well as on the environment effecting the outcome. However, Bob
cannot process this information in time to improve his guess. In the fourth alternative,
Bob’s recording equipment is directly connected to a powerful computer programmed
to solve the motion equations and output a prediction. It is conceivable that in such a
case Bob can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and computing resources
at our disposal. Thus, a natural concept of pseudorandomness arises — a distribution is pseudo-
random if no efficient procedure can distinguish it from the uniform distribution, where efficient
procedures are associated with (probabilistic) polynomial-time algorithms.

1.2 The Notion of Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient program (or algorithm) that stretches
short random strings into long pseudorandom sequences. The latter sentence emphasizes three
fundamental aspects in the notion of a pseudorandom generator:

1. Efficiency: The generator has to be efficient. As we associate efficient computations with
polynomial-time ones, we postulate that the generator has to be implementable by a deter-
ministic polynomial-time algorithm.

This algorithm takes as input a string, called its seed. The seed captures a bounded amount
of randomness used by a device that “generates pseudorandom sequences.” The formulation
views any such device as counsisting of a deterministic procedure applied to a random seed.

2. Stretching: The generator is required to stretch its input seed to a longer output sequence.
Specifically, it stretches n-bit long seeds into ¢(n)-bit long outputs, where ¢(n) > n. The
function £ is called the stretching measure (or stretching function) of the generator.

3. Pseudorandomness: The generator’s output has to look random to any efficient observer. That
is, any efficient procedure should fail to distinguish the output of a generator (on a random
seed) from a truly random sequence of the same length. The formulation of the last sentence
refers to a general notion of computational indistinguishability, which is the heart of the entire
approach.

1.3 The Definition of Computational Indistinguishability

Intuitively, two objects are called computationally indistinguishable if no efficient procedure can
tell them apart. As usual in complexity theory, an elegant formulation requires asymptotic anal-
ysis (or rather a functional treatment of the running time of algorithms in terms of the length

of their input).® Thus, the objects in question are infinite sequences of distributions, where each
distribution has a finite support. Such a sequence will be called a distribution ensemble. Typically,
we consider distribution ensembles of the form {D,},cn, where for some function ¢ : N—N, the
support of each D,, is a subset of {0, 1}5(”). Furthermore, typically £ will be a positive polyno-
mial. For such D,,, we denote by e~D, the process of selecting e according to distribution D,.
Consequently, for a predicate P, we denote by Pr..p, [P(e)] the probability that P(e) holds when
e is distributed (or selected) according to D,,. Consequently, for a probabilistic algorithm A, we
denote by Pr..p, [A(e) = 1] the probability that A(e) = 1 holds when e is distributed (or selected)
according to D,.

Definition 1.1 (Computational Indistinguishability [19, 35]) Two probability ensembles, { X, }nen
and {Y, }nen, are called computationally indistinguishable if for any probabilistic polynomial-time al-
gorithm A, for any positive polynomial p, and for all sufficiently large n’s

| Provx, [A(@) =1] = Pryuy, [Aly) =1]| < ﬁ

The probability is taken over X,, (resp., Yy,) as well as over the coin tosses of algorithm A.

A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher)
to be probabilistic. This makes the requirement only stronger, and seems essential to several
important aspects of our approach. Secondly, we view events occuring with probability that is
upper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notion
of efficiency (i.e., polynomial-time computations): An event that occurs with negligible probability
(as a function of a parameter n), will also occur with negligible probability if the experiment is
repeated for poly(n)-many times.

1.4 Relation to Statistical Closeness

Computational indistinguishability is a (strict) coarsening of a traditional notion from probability

theory. We call two ensembles X o {Xn}neyand Y o {Y,, }nen, statistically close if their statistical
difference is negligible, where the statistical difference (also known as variation distance) of X and Y

is defined as the function

A(n) % % 3" [Pr(X, =a] - Pr[Y, =a] (1.1)

Clearly, if the ensembles X and Y are statistically close then they are also computationally
indistinguishable*. The converse, however, is not true. In particular, letting U,, denote the uniform
distribution over strings of length n, we have:

Proposition 1.2 ([35, 13]) There exist an ensemble X = {X,,},en so that X is NOT statistically

close to the uniform ensemble, U def {Un}nen, and yet X and U are computationally indistin-

guishable. Furthermore, X, assigns all its probability mass to at most 2"/2 strings (of length n).

3 We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop the
entire approach in terms of inputs of fixed lengths and an adequate notion of complexity of algorithms. However,
such an alternative treatment is more cumbersome.

* The proof of this claim is left as an exercise.

Although X and U are computationally indistinguishable, one can define a function f:{0,1}* —
{0,1} so that f has average 1 over X while having average almost 0 over U (e.g., f(z) =1 if and
only if Pr[X =z] > 0). Hence, X and U have different “profile” with respect to the function f, yet
f is (necessarily) impossible to compute in polynomial-time.

Proposition 1.2 presents a pair of ensembles that are computational indistinguishable although
they are statistically far apart. One of the two ensembles is not constructible in polynomial-time
(see Definition 1.4 below). Interestingly, a pair of polynomial-time constructible ensembles being
both computationally indistinguishable and having a noticeable statistical difference exists only if
pseudorandom generators exist (cf. [9]). Jumping ahead, we note that this necessary condition is
also sufficient. (The latter observation follows from the fact that pseudorandom generators give
rise to a polynomial-time constructible ensemble that is computationally indistinguishable from the
uniform ensemble and yet is statistically far from it.)?

Proof of Proposition 1.2: We claim that, for all sufficiently large n, there exist a random variable
X,,, distributed over some set of at most 2"/2 strings (each of length n), so that for every circuit,
C,, of size (i.e., number of gates) 2"/8 it holds that

|Pr[C, (Uy) =1] — Pr[Cp(X,)=1]] < 277/8 (1.2)

The proposition follows from this claim, since polynomial-time distinguishers (even probabilistic
ones) yield polynomial-size circuits with at least as big a distinguishing gap.

The above claim is proven using a probabilistic argument. That is, we actually show that most
distributions of a certain class “fool” all circuits of size 2"/8. Specifically, we show that if we select
uniformly a multi-set of 2*/2 strings in {0,1}", and let X,, be uniform over this multi-set then

Eq. (1.2) holds with overwhelmingly high probability (over the choices of the multi-set).

Let C,, be some fixed circuit with n inputs, and let p, def Pr[C,,(U,)=1]. We select, indepen-

dently and uniformly 2"/2 strings, denoted s1, ..., Sons2, in {0,1}". Define random variables ¢;’s so
that ¢; = Cy,(s;); i.e., these random variables depend on the random choices of the corresponding
s;’s. Using Chernoff Bound, we get that

9n/2

1 n —n n

P4%—W?ZQZZMIS%“n“mV<2M
=1

Since there are at most 22""* different circuits of size (number of gates) 2/8, it follows that there
exists a sequence of sq,..., Syn/2 € {0,1}", so that for every circuit C,, of size 2/8 it holds that

n/:
CXE Culsy)

Pr[C, (Uy) =1]

Fixing such a sequence of s;’s, and letting X,, be distributed uniformly over the elements in the
sequence, the claim follows. W

1.5 Indistinguishability by Repeated Experiments

By Definition 1.1, two ensembles are considered computationally indistinguishable if no efficient
procedure can tell them apart based on a single sample. We now show that, for “efficiently con-

% The reader may want to rigorously verify this claim after inspecting the definition of a pseudorandom generator
(i-e., Definition 2.1).

structible” ensembles, computational indistinguishability (based on a single sample) implies com-
putational indistinguishability based on multiple samples. We start by presenting definitions of
“indistinguishability by multiple samples” and “efficiently constructible ensembles”.

Definition 1.3 (indistinguishability by repeated sampling) Two ensembles, X def {Xn}nen

and Vv & {Y,}nen, are indistinguishable by polynomial-time sampling if for every probabilistic

polynomial-time algorithm, D, every two positive polynomials m(-) and p(-), and all sufficiently
large n’s
1
Pr [D(XV, ... Xy =1] — Pr DYV, ..., Y,y =1]| <« —
pr [)=1] - P [D(=1 <75
where Xg) through XT(Z"(”)) and Yn(l) through Yn(m(n)), are independent random variables with each
XT(J) identical to X,, and each YTEZ) identical to Y,,.

Definition 1.4 (efficiently constructible ensembles) An ensemble, X o { Xy b nen, is said to

be polynomial-time constructible if there exists a probabilistic polynomial time algorithm S so that
for every n, the random variables S(1™) and X,, are identically distributed.

Theorem 1.5 Let X & {Xn}nen and Y def {Yy }nen be two polynomial-time constructible ensem-

bles, and suppose that X and Y are computationally indistinguishable (as in Definition 1.1). Then
X and Y are indistinguishable by polynomial-time sampling (as in Definition 1.3).

An alternative formulation of Theorem 1.5 proceeds as follows. For every ensemble Z o {Zn}nen
and every polynomial m(-) define the m(-)-product of Z as the ensemble {(Zg), vy Zém(n)))}neN,

where the Z,(f)’s are independent copies of Z,,. Theorem 1.5 asserts that if the ensembles X and
Y are computationally indistinguishable, and each is polynomial-time constructible, then, for every
polynomial m(-), the m(-)-product of X and the m(-)-product of X are computationally indistin-
guishable.

The information theoretic analogue of the above theorem is quite obvious: if two ensembles are
statistically close then also their polynomial-products are statistically close®. The non-triviality
of the computational version (given in Theorem 1.5) is evident from the presence of an extra
condition; that is, that both ensembles are polynomial-time constructible. In contrast, we mention
that there exists pairs of ensembles that are computationally indistinguishable but their 2-products
are not computationally indistinguishable (since one of these ensembles is not polynomial-time
constructible) [16].

Proof of Theorem 1.5: The proof is by a “reducibility argument”. We show that the existence
of an efficient algorithm that distinguishes the ensembles X and Y based on several samples,
implies the existence of an efficient algorithm that distinguishes the ensembles X and Y based on
a single sample. The implication is proven using the following argument, which is called a “hybrid
argument”.

Suppose, to the contradiction, that there is a probabilistic polynomial-time algorithm D, and
polynomials m(-) and p(-), so that for infinitely many n’s it holds that

An) % ‘Pr [D(X,gl),...,X,gm>)=1]—Pr[D(Y,El),...,Yn(m>)=1” (1.3)
1
p(n)

5 The proof of this claim is left as an exercise.

where m & m(n), and the XT(Li)’s and Yn(i)’s are as in Definition 1.3. In the sequel, we will derive
a contradiction by presenting a probabilistic polynomial-time algorithm, D', that distinguishes the
ensembles X and Y (in the sense of Definition 1.1).

For every k, 0 < k < m, we define the hybrid random variable H¥ as a (m-long) sequence
consisting of k independent copies of X,, followed by m — k independent copies of Y,,. Namely,

Hy (X, XP, Y,y

where Xél) through X,(zk) and Yn(k+1) through Yn(m), are independent random variables with each
X identical to X,, and each v, identical to Y,,. Clearly, H]" = (X,(zl), ...,Xém)), whereas HY =
¥, Ly,

By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H? and H™). Since
the total number of hybrids is polynomial in n, a non-negligible gap between (the “accepting” prob-
ability of D on) the extreme hybrids translates into a non-negligible gap between (the “accepting”
probability of D on) a pair of neighboring hybrids. It follows that D, although not “designed to
work on general hybrids”, can distinguish a pair of neighboring hybrids. The punch-line is that,
algorithm D can be easily modified into an algorithm D’ that distinguishes X and Y. Details
follow.

We construct an algorithm D’ which uses algorithm D as a subroutine. On input « (supposedly
in the range of either X,, or Y},), algorithm D’ proceeds as follows. Algorithm D', first selects
k uniformly in the set {0,1,...,m — 1}. Using the efficient sampling algorithm for the ensemble
X, algorithm D' generates k independent samples of X,,. These samples are denoted z?,...,z*.
Likewise, using the efficient sampling algorithm for the ensemble Y, algorithm D’ generates m—k—1
independent samples of Y;,, denoted y**2,...,y™. Finally, algorithm D’ invokes algorithm D and
halts with output D(z!,..., 2% a,y*2, ... y™).

Clearly, D' can be implemented in probabilistic polynomial-time. The verification of the fol-
lowing two claims is left as an exercise (hint: use the first claim in proving the second).

Claim 1.5.1:

Pe[D/(X,)=1] — %mZ_IPr[D(Hﬁ“)zl]
and =
m—1
PrD/(Y,)=1] = ~ 3 Pe(D(HY)=1]
m 2o

Claim 1.5.2: For A(n) as in Eq. (1.3),

[Pr[D/(X,)=1] - Pr{D'(¥,) =1]| = 283

1
p(n)
polynomial-time algorithm D’ distinguishes X and Y in contradiction to the hypothesis of the

theorem. Hence, the theorem follows. [l

Since by our hypothesis A(n) > , for infinitely many n’s, it follows that the probabilistic

The hybrid technique — a digest: The hybrid technique constitutes a special type of a “re-
ducibility argument” in which the computational indistinguishability of complex ensembles is proven

using the computational indistinguishability of basic ensembles. The actual reduction is in the other
direction: efficiently distinguishing the basic ensembles is reduced to efficiently distinguishing the
complex ensembles, and hybrid distributions are used in the reduction in an essential way. The
following properties of the construction of the hybrids play an important role in the argument:

1. Extreme hybrids collide with the complex ensembles: this property is essential since what
we want to prove (i.e., indistinguishability of the complex ensembles) relates to the complex
ensembles.

2. Newghboring hybrids are easily related to the basic ensembles: this property is essential since
what we know (i.e., indistinguishability of the basic ensembles) relates to the basic ensembles.
We need to be able to translate our knowledge (i.e., computational indistinguishability) of
the basic ensembles to knowledge (i.e., computational indistinguishability) of any pair of
neighboring hybrids. Typically, it is required to efficiently transform strings in the range of
a basic distribution into strings in the range of a hybrid, so that the transformation maps
the first basic distribution to one hybrid and the second basic distribution to the neighboring
hybrid. (In the proof of Theorem 1.5, the hypothesis that both X and Y are polynomial-time
constructible is instrumental for such an efficient transformation.)

3. The number of hybrids is small (i.e., polynomial): this property is essential in order to deduce
the computational indistinguishability of extreme hybrids from the computational indistin-
guishability of each pair of neighboring hybrids. Typically, the provable “distinguishability
gap” is inversely proportional to the number of hybrids.

We remark that, in the course of an hybrid argument, a distinguishing algorithm referring to the
complex ensembles is being analyzed and even executed on arbitrary hybrids. The reader may be
annoyed of the fact that the algorithm “was not designed to work on such hybrids” (but rather
only on the extreme hybrids). However, an algorithm is an algorithm: once it exists we can apply
it to any input of our choice, and analyze its performance on arbitrary input distributions.

10

Lecture 2

Pseudorandom Generators

2.1 Basic definition and initial discussion

Following the discussion in the previous lecture, we now present the definition of pseudorandom
generators. Recall that a stretching function, £: N— N, satisfies £(n) > n for all n.

Definition 2.1 (Pseudorandom Generators [2, 35]) A deterministic polynomial-time algorithm
G is called o pseudorandom generator if there exists a stretching function, £: N— N, so that the
following two probability ensembles, denoted {Gy}nen and { Ry}, are computationally indistin-
guishable

1. Distribution G,, is defined as the output of G on a uniformly selected seed in {0,1}".

2. Distribution R, is defined as the uniform distribution on {0,1}4"),

That is, letting Uy, denote the uniform distribution over {0,1}™, we require that for any probabilistic
polynomial-time algorithm A, for any positive polynomial p, and for all sufficiently large n’s

1
| Pryou, [A(G(s)) = 1] = Prrwy,, [Alr) =1]| < el

Thus, pseudorandom generators are efficient (i.e., polynomial-time) deterministic programs that
expand short randomly selected seeds into longer pseudorandom bit sequences, where the latter
are defined as computationally indistinguishable from truly random sequences by efficient (i.e.,
polynomial-time) algorithms. It follows that any efficient randomized algorithm maintains its per-
formance when its internal coin tosses are substituted by a sequence generated by a pseudorandom
generator. That is,

Construction 2.2 (typical application of pseudorandom generators) Let A be a probabilis-
tic polynomial-time algorithm, and p(n) denote an upper bound on its randomness complezity. Let
A(z,7) denote the output of A on input = and coin tosses sequence r € {0,1}P0%1) . Let G be a pseu-
dorandom generator with stretching function {:N—N. Then Ag is a randomized algorithm that
on input =, proceeds as follows. It sets k = k(|x|) to be the smallest integer such that ((k) > p(|z]),
uniformly selects s € {0,1}*, and outputs A(x,r), where r is the p(|z|)-bit long prefiz of G(s).

It can be shown that it is infeasible to find long x’s on which the input-output behavior of Ag is
noticeably different from the one of A, although Ag may use much fewer coin tosses than A. That
is

11

Proposition 2.3 Let A and G be as above. For any algorithm D, let Ay p(x) denote the discrep-
ancy, as judged by D, in the behavior of A and Ag on input x. That is,

def
Aap(z) = |PrTNUp(n) [D(z, A(z,7)) =1] — PrSNUk(n) [D(z, Ag(z,s)) = 1]|
where the probabilities are taken over the Uy, s as well as over the coin tosses of D. Then for every
parr of probabilistic polynomaial-time algorithms, a finder F' and a distinguisher D, every positive
polynomial p and all sufficiently long n’s
Pr A p(FA™Y) >] <« L
r(AaD — —
’ p(n) p(n)

where |F(1™)| = n and the probability is taken over the coin tosses of F'.

In particular, if A solves a decision problem then we may define D(x, o) ot o; whereas if A solves
an NP-search problem then we may define D(z,y) def i y is a valid solution to instance z (and
D(z,y) L) otherwise). Proposition 2.3 is proven by showing that any triplet (A, F, D) violating
the claim can be converted into an algorithm D’ that distinguishes the output of G' from the uniform
distribution, in contradiction to the hypothesis.! Analogous arguments are applied whenever one
wishes to prove that an efficient randomized process (be it an algorithm as above or a multi-party
computation) preserves its behavior when one replaces true randomness by pseudorandomness
as defined above. Thus, given pseudorandom generators with large stretching function, one can
considerably reduce the randomness complexity in any efficient application.

2.2 Amplifying the stretch function

Pseudorandom generators as defined above are only required to stretch their input a bit; for ex-
ample, stretching n-bit long inputs to (n + 1)-bit long outputs will do. Clearly, generators of such
moderate stretch function are of little use in practice. In contrast, we want to have pseudoran-
dom generators with an arbitrary long stretch function. By the efficiency requirement, the stretch
function can be at most polynomial. It turns out that pseudorandom generators with the smallest
possible stretch function can be used to construct pseudorandom generators with any desirable
polynomial stretch function. (Thus, when talking about the existence of pseudorandom generators,
we may ignore the stretch function.)

Theorem 2.4 ([18]) Let G be a pseudorandom generator with stretch function {(n) = n+1, and ¢/
be any polynomially-bounded stretch function, that is polynomial-time computable. Let g1(x) denote
the |x|-bit long prefiz of G(z), and ga(z) denote the last bit of G(z) (i.e., G(x) = g1(x) g2(x)). Then

G,(S) déf 0102 " 'O’ZI(‘sD,

where xy = s, 0; = ga(wi—1) and z; = gi1(xi—1), fori=1,...,0'(|s])

is a pseudorandom generator with stretch function (.

! Specifically, ignoring its own input, algorithm D’ may first find an adequate A-input z by repeatedly invoking
F, and testing each candidate x by approximating A4 p(z) (using algorithms A, G and D). Next, using its own
input denoted o, algorithm D' invokes D on input (z, A(z,a)), thus distinguishing U,(,) from G(Us(,)). Filling-up
all details is left as an exercise for the reader.

12

Proof Sketch: The theorem is proven using the hybrid technique (see above): One considers distri-
butions H! (for i =0,...,¢'(n)) defined by UZ-(I)G'[(H)_i(,sz)), where Ui(l) and U? are independent
uniform distributions (over {0,1}% and {0,1}", respectively), and G;(x) denotes the j-bit long pre-
fix of G'(x). The extreme hybrids correspond to G'(U,) and Uy (,), whereas distinguishability of
neighboring hybrids can be worked into distinguishability of G(U,,) and U, 1. The heart of the
argument is the latter assertion, Which is justified below.

We observe that G’(s) = g2(s)Gj_1(g1(s)), for j > 1. Letting pi(z) (resp., pa(z)) denotes
the n-bit long prefix (resp., the last bit) of z € {0,1}"*!, we also have gi(s) = p1(G(s)) and
g2(s) = p2(G(s)). Thus, for i < '(n), we can write

1)

H = (U

D, Gy (UP)
D, g2(UD), Gy iy 1 (1 (UP)))

1P GUP)))

1)

U

Uz(l 7p2((U(z))) Gé’(n)
Uz(+17GZ’ (n)—(i+1) (U())
Uz(l) Ull : Gé’(n) i— 1(U(2”)))

U, p2(US): Gy s 1 (1 (UE))),

Hi+1

n

(
(
(
(
(
(

(k)

where the various U;™"’s are independent uniform distributions (over {0, 1}/). Suppose one could

(1)
n)—i—

the distinguisher, one could distinguish G(U,,) from U, ;. Specifically, on input o € {0,1}"*!, the
new distinguisher parses « as o, where |3| = n and o € {0, 1}, uniformly selects r € {0,1}!, and
invokes the given distinguisher on input TO-GIZ’(n)fifl(ﬁ)' The reader can verify that on input G(U,,)

distinguish HY from H:*!. Incorporating the generation of U, and the evaluation of G’W(| into

(resp., Un41) the new distinguisher invokes the given distinguisher on input H? (resp., H:t1). Thus,
the new distinguisher distinguishes G(U,,) from U, 1, in contradiction to the pseudorandomness of

G. N

2.3 How to Construct Pseudorandom Generators

The mere fact that we have defined something does not mean that it exist. Do pseudorandomness
generators exist? We do not know the answer to this question. But we do not know many other
things; we even do not know whether P is strictly contained in N'P. In fact, if pseudorandomness
generators exist then P is strictly contained in NP. Thus, one should not expect, at this stage of
history, to see an unconditional proof of the existence of pseudorandomness generators. Further-
more, the existence of pseudorandomness generators implies even stronger forms of computation
difficulty (than the assertion that NP contains problems that are not solvable in probabilistic
polynomial-time). Thus, the best we can hope for (now) are results that transform computation
difficulty into pseudorandomness generators. This is indeed the type of results that are known and
will be presented below.

The known constructions of pseudorandomness generators utilize computation difficulty, in the
form of one-way functions (defined below). Loosely speaking, a polynomial-time computable func-
tion is called one-way if any efficient algorithm can invert it only with negligible success probability.
For simplicity, we consider only length-preserving one-way functions.

13

Definition 2.5 (one-way function [6, 35]) A one-way function, f, is a polynomial-time com-
putable function such that for every probabilistic polynomial-time algorithm A, every positive poly-
nomial p(-), and all sufficiently large n’s

1

—1
Pr, v, [A(f(:v))Ef (f (“‘))] <)

where Uy, is the uniform distribution over {0,1}".

We stress that the inverting algorithm is not required to retrieve the “original” preimage z; re-
trieving any preimage of f(z) is considered a success. Still, if f is one-way then no probabilistic
polynomial-time algorithm may succeed with non-negligible probability. Popular candidates for
one-way functions are based on the conjectured intractability of integer factorization (cf. [28] for
state of the art), the discrete logarithm problem (cf. [29] analogously), and decoding of random
linear code [14].

The infeasibility of inverting f yields a weak notion of unpredictability: Let b;(x) denotes the
it" bit of x. Then, for every probabilistic polynomial-time algorithm A (and sufficiently large
n), it must be the case that Pr;,[A(¢, f(x)) # bi(x)] > 1/2n, where the probability is taken
uniformly over i € {1,...,n} and = € {0,1}".2 A stronger (and in fact strongest possible) notion of
unpredictability is that of a hard-core predicate. Loosely speaking, a polynomial-time computable
predicate b is called a hard-core of a function f if any efficient algorithm, given f(x), can guess
b(x) only with success probability that is negligible better than half.

Definition 2.6 (hard-core predicate [2]) A polynomial-time computable predicate b: {0,1}* —
{0,1} s called a hard-core of a function f if for every probabilistic polynomial-time algorithm A',
every positive polynomial p(-), and all sufficiently large n’s

1,1
2 p(n)

A predicate b may be a hard-core of f for the trivial reason that f(U,) contains no information on
b(U,,). Consider for example, the function f(o,z) = (1, f’(x)), and the predicate b(c, x) = o, where
o €{0,1} and = € {0,1}*. In contrast, we are interested in the case where the hard-core property
is due to computational reasons and not to information loss. In particular, a 1-1 function does not
loss any information, and so if it has a hard-core predicate then this must be due to computational
reasons. In fact, the reader may verify that if b is a hard-core of a 1-1 polynomial-time computable
function f then f must be one-way. It turns out that any one-way function can be slightly modified
so that it has a hard-core predicate.

Pre~u, [A'(f(2))=0b(x)] <

Theorem 2.7 (A generic hard-core [15]) Let f be an arbitrary one-way function, and let g be

def

defined by g(z,7) = (f(x),r), where |x|=|r|. Let b(x,r) denote the inner-product mod 2 of the
binary vectors x and r. Then the predicate b is a hard-core of the function g.

A proof of Theorem 2.7 is given in the appendix to this lecture series. We are now ready to present
constructions of pseudorandom generators.

2 Otherwise, algorithm A can be used to recover all the bits of = from f(z) (with success probability at least
1 —mn-(1/2n)). In contrast, some of these b;(z)’s may be easy to compute from f(z), and all b;(z)’s may be easy to
predict with probability 3/4. The proof of these claims is left as an exercise. (Hint: using any one-way function f’,
consider one-way functions such as f(z,y) = (z, f'(y)) and f(z,y) = (z', f'(z"),y), where =’ denotes some projection
of x specified by y and " denotes the rest of the bits of y.)

14

2.3.1 The preferred presentation

In view of Theorem 2.4, we may focus on constructing pseudorandom generators with stretch
function £(n) =n 4+ 1. Such a construction is presented next.

Proposition 2.8 (A simple construction of pseudorandom generators) Let b be a hard-core

predicate of a polynomial-time computable 1-1 function f. Then, G(s) = def

dom generator.

f(8)b(s) is a pseudoran-

Proof: Clearly the |s|-bit long prefix of G(s) is uniformly distributed (since f is 1-1 and onto
{0,1}1sl). Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s)o, where
o is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., that b(s) is
unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) from f(s)b(s),
where @ = 1 — o, and so yields an algorithm for predicting b(s) based on f(s).

Formally, given any algorithm (denoted D) that distinguishes {G(U,,)} and {U,+1}, we con-
struct a predictor (denoted A) of b(U,) based on f(U,). We assume, to the contradiction and
without loss of generality, that for some polynomial p and infinitely many n’s

1
Pr[D(f(Un)b(Un)) = 1] - Pr[D(Un+1) = 1] > M (2'1)

Since f is 1-1 and onto {0, 1}/, it follows that U,4; equals f(U,)b(U,) with probability one half
and equals f(U,)b(U,) otherwise, where b(x) Ly b(x). Thus, Eq. (2.1) yields

2
p(n)
Using D as a subroutine, we construct an algorithm A as follows. On input y = f(«), algorithm A
proceeds as follows:

(1) Select o uniformly in {0,1}.

(2) If D(yo) =1 then output o, otherwise output 1 — o.

Pr[D(f(Un)b(Un)) = 1] = Pr[D(f(Un)b(Un)) = 1] > (2.2)

Then, letting Uy be independent of U,, (where U represents the choice of o in Step (1) of algorithm
A), we have

Pr[A(f(Uy,))=0b(U,)]
= Pr[D(f(Un)U1) =1 & Uy =b(U,)]
+ Pr[D(f(U,)U1) =0& 1 —U;=b(U,)]
= Pr[D(f(Un)b(Un)) =1 & Uy =b(Uy)]
+ Pr[D(f(Un)b(Un)) = 0 & Uy =b(Uy,)]
n)b

(Up,
PD(F(UBUL)) = 1] + 5 - (1 = PD(F(UBT) = 1))

2
+ 5+ (PID(U(U) = 1] = PHD(fU)H(T) = 1))
1
p(n)
where the inequality is due to Eq. (2.2). But this contradicts the theorem’s hypothesis by which b
is a hard-core of f. W

l\JIr—\l\JIr—\wli—t

In a sense, the key point in the above proof is showing that the unpredictability of the output of
G implies its pseudorandomness. The fact that (next bit) unpredictability and pseudorandomness
are equivalent in general is proven explicitly in the alternative presentation below.

15

2.3.2 An alternative presentation

The above presentation is different but analogous to the original construction of pseudorandom
generators suggested by Blum and Micali [2]: Given an arbitrary stretch function £: N—N, a 1-1
one-way function f with a hard-core b, one defines

def
G(s) = b(wo)b(x1) - -+ b(@g(s))—1) 5
where 29 = s and z; = f(z;_1) for i = 1,...,£(|s|) — 1. The pseudorandomness of G is established
in two steps, using the notion of (next bit) unpredictability. An ensemble {Z, },cn is called unpre-
dictable if any probabilistic polynomial-time machine obtaining a prefix of Z,, fails to predict the
next bit of Z, with probability non-negligibly higher than 1/2.

Step 1 One first proves that the ensemble {G(U,,)} en, where U, is uniform over {0,1}", is (next-
bit) unpredictable (from right to left) [2].

Loosely speaking, if one can predict b(x;) from b(2it1) - b(we(s)—1) then one can predict
b(w;) given f(z;) (i.e., by computing w1, ..., Ty(|s)—1, and so obtaining b(z;11) - - - b(z(s|)))-
But this contradicts the hard-core hypothesis.

Step 2 Next, one uses Yao’s observation by which a (polynomial-time constructible) ensemble is
pseudorandom if and only if it is (next-bit) unpredictable (cf. [11, Sec. 3.3.5]).

Clearly, if one can predict the next bit in an ensemble then one can distinguish this ensemble
from the uniform ensemble (which is unpredictable regardless of computing power). However,
here we need the other direction, which is less obvious. Still, one can show that (next bit)
unpredictability implies indistinguishability from the uniform ensemble. Specifically, consider
the following “hybrid” distributions, where the i*" hybrid takes the first 7 bits from the
questionable ensemble and the rest from the uniform one. It can be shown that distinguishing
the extreme hybrids implies distinguishing some neighboring hybrids, which in turn implies
next-bit predictability (of the questionable ensemble).

2.3.3 A general condition for the existence of pseudorandom generators

Recall that given any one-way 1-1 function, we can easily construct a pseudorandom generator.
Actually, the 1-1 requirement may be dropped, but the currently known construction — for the
general case — is quite complex. Still we do have.

Theorem 2.9 (On the existence of pseudorandom generators [20]) Pseudorandom gener-
ators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of one-way functions,

consider a pseudorandom generator G with stretch function ¢(n) = 2n. For z,y € {0,1}", define

flx,y) def G(x), and so f is polynomial-time computable (and length-preserving). It must be that

f is one-way, or else one can distinguish G(U,,) from Uy, by trying to invert and checking the result:
inverting f on its range distribution refers to the distribution G (U,), whereas the probability that
Usy, has inverse under f is negligible. (Turning the above argument into a rigorous proof is left as
an exercise.)

The interesting direction is the construction of pseudorandom generators based on any one-way
function. In general (when f may not be 1-1) the ensemble f(U,) may not be pseudorandom, and
so the construction in Proposition 2.8 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be

16

used directly. One idea of [20] is to hash f(U,) to an almost uniform string of length related to its
entropy, using Universal Hash Functions [3]. (This is done after guaranteeing, that the logarithm of
the probability mass of a value of f(U,) is typically close to the entropy of f(U,).)> But “hashing
f(U,) down to length comparable to the entropy” means shrinking the length of the output to,
say, n' < n. This foils the entire point of stretching the n-bit seed. Thus, a second idea of [20] is
to compensate for the n — n’ loss by extracting these many bits from the seed U, itself. This is
done by hashing U,,, and the point is that the (n — n’ 4+ 1)-bit long hash value does not make the
inverting task any easier. Implementing these ideas turns out to be more difficult than it seems,
and indeed an alternative construction would be most appreciated.

3 Specifically, given an arbitrary one way function f’, one first constructs f by taking a “direct product” of

sufficiently many copies of f'. For example, for z1,...,z,2 € {0,1}", we let f(z1,...,,2) = f(z1), oy f(T02)-

17

Lecture 3

Pseudorandom Functions and
Concluding Remarks

3.1 Definition and Construction of Pseudorandom Functions

Pseudorandom generators allow to explicitly generate (in an efficient manner) large pseudorandom
objects using only a small amount of randomness. Pseudorandom functions (defined below) are even

more powerful: They allow to implicitly generate (in an efficient manner) huge pseudorandom
objects using the same small amount of randomness.

Consider a family of functions, each mapping poly(n)-bit long strings to poly(n)-bit long strings,
and being specified by an n-bit long string called an index. We shall consider such families coupled
with an efficient evaluation algorithm that, given the function’s index and an argument, outputs the
function’s value at this argument. Such an algorithm coupled with an index, provides an implicit
representation of a (relatively) huge object. We shall say that such a family is pseudorandom if
functions uniformly selected in it are indistinguishable from truly random functions by efficient
machines that may obtain the function values at arguments of their choice. (Such machines are
called oracle machines, and if M is such machine and f is a function, then M7 (x) denotes the
computation of M on input x when M’s queries are answered by the function f.)

Definition 3.1 (pseudorandom functions [12]) A pseudorandom function (ensemble), with length
parameters {p,lr : N—N, is a collection of functions F def {fe:{0,1}00sD - {0, 1}£R(|S‘)}se{0,1}*
satisfying
e (efficient evaluation): There exists an efficient (deterministic) algorithm that given a seed, s,
and an lp(|s])-bit argument, x, returns the {g(|s|)-bit long value fq(x).

(Thus, the seed s is an “effective description” of the function fs.)

e (pseudorandomness): For every probabilistic polynomial-time oracle machine, M, for every
positive polynomial p and all sufficiently large n’s
1
Priop, [M7(1") = 1] = Pryug, [MP(1") = 1] | < —
P, | | = Prpe,| I < oo

where F,, denotes the distribution on fs € F obtained by selecting s uniformly in {0,1}", and
R, denotes the uniform distribution over all functions mapping {0,1}0() to {0,1}r("),

18

Suppose, for simplicity, that /p(n) = n and fr(n) = 1. Then a function uniformly selected among
2" functions (of a pseudorandom ensemble) presents an input-output behavior that is indistin-
guishable in poly(n)-time from the one of a function selected at random among all the 22" Boolean
functions. Contrast this with the 2" pseudorandom sequences, produced by a pseudorandom gener-
ator, that are computationally indistinguishable from a sequence selected uniformly among all the
2Py (") many sequences. Still pseudorandom functions can be constructed from any pseudorandom
generator.

Theorem 3.2 (How to construct pseudorandom functions [12]) Let G be a pseudorandom
generator with stretching function £(n) = 2n. Let Go(s) (resp., G1(s)) denote the first (resp., last)
|s| bits in G(s), and
def
GU|S|'"0201 (s) = GU\S\ (- Goy(Goy(s)))

Then, the function ensemble {f,:{0,1}* — {0, 1}|5‘}SE{071}*, where fs(x) def G.(s), 1s pseudoran-

dom with length parameters {p(n) = (r(n) = n.

The above construction can be easily adapted to any (polynomially-bounded) length parameters

lp,lg:N—N.
Proof Sketch: The proof uses the hybrid technique: The i*" hybrid, H}

. n? N
consisting of 22" functions {0,1}" — {0,1}", each defined by a sequence of 2¢ (random) n-bit

strings, denoted (sa)aeqo,1}:- The value of such function at z = fa, with |a| = i, equals Gg(sq)-

is a function ensemble

The extreme hybrids correspond to our indistinguishability claim (i.e., H) = fy and H = R,,),
and neighboring hybrids correspond to our indistinguishability hypothesis (specifically, to the in-
distinguishability of G(U,,) and Uy, under multiple samples). [l

Summary: Pseudorandom functions can replace truly random functions in any efficient application
(e.g., most notably in cryptography). The advantage of such a replacement is that a pseudorandom
function can be easily specified and shared among parties, whereas a truly random function is
infeasible to specify and share. Specific examples where this issue is important are given next.

3.2 Applications of Pseudorandom Functions

3.2.1 Applications to Cryptography

Pseudorandom generators and functions are of key importance in Cryptography. Here we present
two central applications of pseudorandom functions to private-key cryptography, showing how to
establish private-key encryption and message authentication schemes.

Private-key encryption schemes. Loosely speaking, the goal of private-key encryption is to
provide private communication between mutually trustful parties that communicate over a public
channel that may be eavesdropped by an adversary. It is assumed that the parties have agreed on
a secret (random) key prior to their interaction, and that the adversary does not know this key.
Using this key and a corresponding encryption algorithm, one party may transform any plaintext
that it wishes to transmit into a ciphertexrt that is being sent over the public channel, and the other
party may retrieve the plaintest from the ciphertext by using the same key and a corresponding

19

decryption algorithm. 1t should be infeasible for the adversary, seeing only the ciphertexts sent over
the channel, to learn anything about the plaintexts (beyond what it knows a priori).!

Using pseudorandom functions, we implement private-key encryption as follows. The key, s,
shared by the communicating parties is a random n-bit string specifying a pseudorandom function
(as in Definition 3.1). The parties may send encrypted messages to one another by XORing the
message with the value of fs at a random point. That is, to encrypt a plaintext m € {0, 1}ZR(”),
the sender (using key s) uniformly selects r € {0,1}°(") and sends (r,m @ f,(r)) to the receiver.
The plaintext is recovered in the straightforward manner; that is, by using key s and the ciphertext
(r,9), the receiver recovers the plaintext y @ fs(r). Note that the security of this encryption
scheme relies on the fact that, for every computationally-feasible adversary (not only to adversary
strategies that were envisioned and tested), the values of the function fs on such 7’s look random.
We comment that this encryption scheme withstands an attack in which, prior to being presented
the challenge ciphertext, the adversary may ask the parties to encrypt (resp., decrypt) any plaintext
(resp., ciphertext) of its choice relative to the same key.?

Message authentication schemes. Loosely speaking, the goal of message authentication is to
provide reliable communication between mutually trustful parties that communicate over a public
channel that may be tampered by an adversary. Again, the parties share a secret (random) key
agreed upon prior to their interaction, and the adversary does not know this key. Using this
key and a corresponding tagging algorithm, one party may compute an authentication tag for the
message that it wishes to transmit and send this tag along with the message so that the other
party may verify that the message was indeed sent by the legitimate sender (by using the same key
and a corresponding verification algorithm). It should be infeasible for the adversary, seeing only
the ciphertexts sent over the channel, to produce a new message and a tag that will be accepted
by the legitimate parties. This should hold even in case the adversary can make the party tag
any message of its choice; even in such a case it should be infeasible for the adversary to form an
accepted authentication tag for any other message.

Using pseudorandom functions, we implement a message authentication scheme as follows.
Again the key, s, shared by the communicating parties is a random n-bit string specifying a pseu-
dorandom function. Authentication tags are produced and verified by applying the function f; to
the message. That is, to authenticate a message m € {0, 1}ZR(”), the sender computes and sends
along the tag fs(m). Verification of the pair (m,t), relative to the key s, is done by checking
whether t = fs(m).

3.2.2 Other Applications

We mention that pseudorandom functions have been used to derive negative results in computa-
tional learning theory (cf. [34]). In particular, any concept class that contains a family of pseu-
dorandom functions cannot be efficiently learnable even under the uniform distribution and with
the help of membership queries.> A different set of negative results refers to Natural Proofs [30].

! The precise definition of the privacy condition is based on the “simulation paradigm” (cf. [19, 11]). This is done
in a way analogous to the formulation of the zero-knowledge condition (cf. lecture notes on zero-knowledge proofs in
this book).

2 Resilience to an even stronger attack in which the adversary’s queries may depend on its challenge can be
obtained by using a message authentication scheme.

3 A concept class is a set of boolean functions. A learning algorithm is given oracle access to any function in
the class and is required to output a description of a function that is close to the target function (being queried),
where distance between functions is defined as the fraction of inputs on which they agree. Clearly, no efficient
algorithm given oracle access to a pseudorandom function can output a function that agrees with the target function

20

These are circuit lower bound proofs that proceed by identifying a “natural” superset of the set of
functions computed by low complexity circuits.* Such circuit lower bounds (i.e., Natural Proofs)
cannot exist for complexity classes containing a family of pseudorandom functions (see [30]).

3.3 Concluding Remarks

We start with a high-level discussion of the applicability of pseudorandom generators, and turn to
a “philosophical” discussion of the nature of pseudorandom generators. We conclude this lecture
series with comments regarding generalizations of the notion of pseudorandom generators (i.e.,
other instantiations of the main paradigm underlying this lecture series).

3.3.1 The applicability of pseudorandom generators

As discussed above, pseudorandom generators and functions are of key importance to Cryptography.
Here we wish to discuss the applicability of pseudorandom generators to algorithmic design at large.

Randomness is playing an increasingly important role in computation: It is frequently used in
the design of sequential, parallel and distributed algorithms, and is of course central to cryptogra-
phy. Whereas it is convenient to design such algorithms making free use of randomness, it is also
desirable to minimize the usage of randomness in real implementations (since generating perfectly
random bits via special hardware is quite expensive). Thus, pseudorandom generators (as defined
above) are a key ingredient in an “algorithmic tool-box” — they provide an automatic compiler of
programs written with free usage of randomness into programs that make an economical use of
randomness.

Indeed, “pseudo-random number generators” have appeared with the first computers. However,
typical implementations use generators that are not pseudorandom according to the above defini-
tion. Instead, at best, these generators are shown to pass SOME ad-hoc statistical test (cf. [21]).
We warn that the fact that a “pseudo-random number generator” passes some statistical tests,
does not mean that it will pass a new test and that it is good for a future (untested) application.
Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide general
results of the type stated above (i.e., of the form “for ALL practical purposes using the output of
the generator is as good as using truly unbiased coin tosses”). In contrast, the approach encom-
passed in Definition 2.1 aims at such generality, and in fact is tailored to obtain it: The notion
of computational indistinguishability, which underlines Definition 2.1, covers all possible efficient
applications postulating that for all of them pseudorandom sequences are as good as truly random
ones.

3.3.2 The intellectual contents of pseudorandom generators
We shortly discuss some intellectual aspects of pseudorandom generators as defined above.

Behavioristic versus Ontological. Our definition of pseudorandom generators is based on
the notion of computational indistinguishability. The behavioristic nature of the latter notion

on significantly more than half of the inputs.

* The natural superset should have small measure (within the set of all functions), and should have a low complexity
decision procedure. That is, given the truth-table of a function, the procedure should determine whether or not the
function belongs to the natural set. Note that the complexity of the decision procedure is viewed in terms of the
length of the truth-table of the function, which is exponential in the length of the input to the function. Currently
known circuit lower bounds tend to be natural with respect to very low complexity (of this decision procedure) [30].

21

is best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness.
Loosely speaking, a string is Kolmogorov-random if its length equals the length of the shortest
program producing it. This shortest program may be considered the “true explanation” to the
phenomenon described by the string. A Kolmogorov-random string is thus a string that does
not have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplest
explanation of a phenomenon may be viewed as an ontological approach. In contrast, considering
the effect of phenomena (on an observer), as underlying the definition of pseudorandomness, is a
behavioristic approach. Furthermore, there exist probability distributions that are not uniform (and
are not even statistically close to a uniform distribution) but nevertheless are indistinguishable from
a uniform distribution by any efficient procedure [35, 13]. Thus, distributions that are ontologically
very different, are considered equivalent by the behavioristic point of view taken in the definitions
above.

A relativistic view of randomness. Pseudorandomness is defined above in terms of its observer.
It is a distribution that cannot be told apart from a uniform distribution by any efficient (i.e.
polynomial-time) observer. However, pseudorandom sequences may be distinguished from random
ones by infinitely powerful computers (not at our disposal!). Specifically, an exponential-time
machine can easily distinguish the output of a pseudorandom generator from a uniformly selected
string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomness is
subjective to the abilities of the observer.

Randomness and Computational Difficulty. Pseudorandomness and computational difficulty
play dual roles: The definition of pseudorandomness relies on the fact that putting computational
restrictions on the observer gives rise to distributions that are not uniform and still cannot be
distinguished from uniform. Furthermore, the construction of pseudorandom generators rely on
conjectures regarding computational difficulty (i.e., the existence of one-way functions), and this
is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus, (non-
trivial) pseudorandomness and computational hardness can be converted back and forth.

3.3.3 A General Paradigm

Pseudorandomness as surveyed in this lecture series can be viewed as an important special case of
a general paradigm. A generic formulation of pseudorandom generators consists of specifying three
fundamental aspects — the stretching measure of the generators; the class of distinguishers that
the generators are supposed to fool (i.e., the algorithms with respect to which the computational
indistinguishability requirement should hold); and the resources that the generators are allowed to
use (i.e., their own computational complexity). In the above presentation we focused on polynomial-
time generators (thus having polynomial stretching measure) that fool any probabilistic polynomial-
time observers. A variety of other cases are of interest too, and we briefly discuss some of them.
For more details, see [10, Chap. 3].

Weaker notions of computational indistinguishability. Whenever the aim is to replace
random sequences utilized by an algorithm with pseudorandom ones, one may try to capitalize on
knowledge of the target algorithm. Above we have merely used the fact that the target algorithm
runs in polynomial-time. However, for example, if we know that the algorithm uses very little
work-space, then we may be able to do better. Similarly we may be able to do better if we know
that the analysis of the algorithm depends only on some specific properties of the random sequence
it uses (e.g., pairwise independence of its elements). In general, weaker notions of computational
indistinguishability such as fooling space-bounded algorithms, constant-depth circuits, and even

22

specific tests (e.g., testing pairwise independence of the sequence), arise naturally: Generators
producing sequences that fool such tests are useful in a variety of applications — if the application
utilizes randomness in a restricted way, then feeding it with sequences of low randomness-quality
may do. Needless to say, the author advocates a rigorous formulation of the characteristics of such
applications and rigorous constructions of generators that fool the type of tests that emerge.

Alternative notions of generator efficiency. The previous paragraph has focused on one as-
pect of the pseudorandomness question; that is, the resources or type of the observer (or potential
distinguisher). Another important question is whether such pseudorandom sequences can be gen-
erated from much shorter ones, and at what cost (or complexity). Above, we have required the
generation process to be at least as efficient as the efficiency limitations of the distinguisher.’ This
seems indeed “fair” and natural. Allowing the generator to be more complex (i.e., use more time or
space resources) than the distinguisher seems unfair, but still yields interesting consequences in the
context of trying to “de-randomize” randomized complexity classes. For example, one may consider
generators working in time exponential in the length of the seed. The benefit of this relaxation
is that constructing exponential-time generators may be easier than constructing polynomial-time
ones. In some cases we lose nothing by using such a relaxation (i.e., allowing exponential-time
generators). To see why, we consider a typical derandomization argument, proceeding in two steps:
First one replaces the true randomness of the algorithm by pseudorandom sequences generated
from much shorter seeds, and next one goes deterministically over all possible seeds and looks for
the most frequent behavior of the modified algorithm. In such a case the deterministic complexity
is anyhow exponential in the seed length. For further details, see the next lecture series.

®In fact, we have required the generator to be more efficient than the distinguisher: the former was required to
be a fixed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial running
time.

23

Appendix

Proof of the existence of a generic hard-core

Theorem 2.7, conjectured by Levin [24] and proven by Goldreich and Levin [15], relates two com-
putational tasks: The first task is inverting a function f; namely given y find an x so that f(z) = y.
The second task is predicting, with non-negligible advantage, the exclusive-or of a subset of the
bits of when ounly given f(z). More precisely, it has been proved that if f cannot be efficiently
inverted then given f(x) and r it is infeasible to predict the inner-product mod 2 of x and r (with
success probability better than the obvious).

The proof presented here is not the original one presented in [15] (see generalization in [17]),
but rather an alternative suggested by Charlie Rackoff. The alternative proof, inspired by [1], has
two main advantages over the original one: It is simpler to explain, and it leads to better security
(i.e., a more efficient reduction of inverting f to predicting the inner-product) [25].

Theorem 3.3 (Theorem 2.7 — restated): Let b(x,r) denote the inner-product mod 2 of the binary
vectors x and r. Suppose we have oracle access to a random process b, : {0,1}" — {0,1}, so that

1
PrrE{O,l}" [ba:(T) = b(l‘ﬂ“)] > P +€

where the probability is taken uniformly over the internal coin tosses of by and all possible choices
of r € {0,1}". Then there exists an algorithm that, in time polynomial in n/e and with probability
at least poly(e/n), outputs x.

Theorem 2.7 is derived from the above by using standard arguments. We prove this fact first.
Proposition 3.4 Theorem 3.3 implies Theorem 2.7.

Proof: We assume for contradiction the existence of an efficient algorithm predicting the inner-
product with advantage which is not negligible, and derive an algorithm that inverts f with related
(i.e., non-negligible) success probability. This contradicts the hypothesis that f is a one-way func-
tion. Thus, the proof uses a “reducibility argument” — that is, we reduce the task of inverting f to
the task of predicting b(z,r) from (f(x),r).

Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries to predict
the inner-product (mod 2) of z and r. Denote by eg(n) the (overall) advantage of algorithm G in
predicting b(x,r) from f(x) and r, where z and r are uniformly chosen in {0,1}". Namely,

() < PrG(f(X), Ra) = B(Xn, Ra)] — 5

where here and in the sequel X, and R,, denote two independent random variables, each uniformly
distributed over {0,1}". In the sequel we shorthand e by e.

24

e(n)

Our first observation is that, on at least an <5 fraction of the z’s of length n, algorithm G has

2
én)

an =5~ advantage in predicting b(z, R,) from f(z) and R,. Namely,

Claim: There exists a set S, C {0,1}" of cardinality at least @ - 2" such that for every xz €5, it
holds that

s(x) € Pr[G(f(x), Rp)=b(z, Ry)] > %Jr @

Here the probability is taken over all possible values of R,, and all internal coin tosses of algorithm
G, whereas z is fixed.

Proof: The observation follows by an averaging argument. Namely, write Exp(s(X,)) = 3 + €(n),
and apply Markov Inequality. O

Thus, we restrict our attention to x’s in S,. For each such z, the conditions of Theorem 3.3 hold,
and so within time poly(n/e(n)) and with probability at least 1/2 we retrieve a list of strings
containing z. Contradiction to the one-wayness of f follows, since the probability we invert f on

uniformly selected w is at least 1 - Prlz€S,] > 6(4”). [|

A motivating discussion

Let s(x) o Pr[b,(r) = b(x,r)], where r is uniformly distributed in {0, 1}/*l. Then, by the hypothesis
of Theorem 3.3, s(z) > % + €. Suppose, for a moment, that s(z) > %—l—e. In this case, retrieving
x by querying the oracle b, is quite easy. To retrieve the i*® bit of 2, denoted x;, we uniformly
select 7 € {0,1}", and obtain b,(r) and b, (r @ €*), where ¢’ is an n-dimensional binary vector with
1 in the ¢*® component and 0 in all the others, and v @ u denotes the addition mod 2 of the binary
vectors v and u. Clearly, if both b, (1) = b(x,7) and by(r ® ¢*) = b(z,r ® ') then

be(r) @ bo(r de) = b(m,r) ® bz, T @)

= b(z,e")

= 'CCZ'

The probability that both equalities hold (i.e., both b, (r) = b(x,r) and by(r @ €*) = b(x,r @ €')) is
at least 1 —2- (% —€) = % + 2¢. Hence, repeating the above procedure sufficiently many times and
ruling by majority we retrieve x; with very high probability. Similarly, we can retrieve all the bits
of z, and hence obtain x itself. However, the entire analysis was conducted under (the unjustifiable)
assumption that s(z) > 2+4¢, whereas we only know that s(z) > L+e.

The problem with the above procedure is that it doubles the original error probability of the
oracle b, (on random queries). Under the unrealistic assumption, that the b,’s error on such inputs
is significantly smaller than %, the “error-doubling” phenomenon raises no problems. However, in
general (and even in the special case where b,’s error is exactly %) the above procedure is unlikely
to yield x. Note that the error probability of b, can not be decreased by querying b, several
times on the same instance (e.g., b, may always answer correctly on three quarters of the inputs,
and always err on the remaining quarter). What is required is an alternative way of using by —
a way that does not double the original error probability of b,. The key idea is to generate the
r’s in a way that requires querying b, only once (e.g., on (z,7 @ €')) per each r (and %), instead
of twice. The good news are that the error probability is no longer doubled, since we will only
use b, to get an “estimate” of b(x,r @ e'). The bad news are that we still need to know b(z,r),
and it is not clear how we can know b(z,r) without querying b,. The answer is that we can guess
b(x,r) by ourselves. This is fine if we only need to guess b(x,r) for one r (or logarithmically in

25

|| many r’s), but the problem is that we need to know (and hence guess) b(x,) for polynomially
many 7’s. An obvious way of guessing these b(z,r)’s yields an exponentially vanishing success
probability. The solution is to generate these polynomially many 7’s so that, on one hand they are
“sufficiently random” whereas on the other hand we can guess all the b(x,r)’s with non-negligible
success probability. Specifically, generating the r’s in a particular pairwise independent manner will
satisfy both (seemingly contradictory) requirements. We stress that in case we are successful (in
our guesses for the b(x,r)’s), we can retrieve = with high probability. Hence, we retrieve z with
non-negligible probability.

A word about the way in which the pairwise independent r’s are generated (and the correspond-
ing b(z,7)’s are guessed) is indeed in place. To generate m = poly(n/e) many r’s, we uniformly (and

independently) select 1 logz(m + 1) strings in {0,1}". Let us denote these strings by s!, ..., s'.

We then guess b(z, s') through b(z,s'). Let us denote these guesses, which are uniformly (and
independently) chosen in {0,1}, by o' through o'. Hence, the probability that all our guesses for

the b(w, s')’s are correct is 27! = W The different r’s correspond to the different non-empty

subsets of {1,2,...,I}. We compute r/ = 69]67 sJ. The reader can easily verify that the r/’s are
pairwise independent and each is uniformly dlstrlbuted in {0,1}"™. The key observation is that

b(z,r7) = b(z @ @bacsﬂ

JjedJ JjedJ

Hence, our guesses for the b(z,77)’s are the corresponding Dics 07’s, and with non-negligible
probability all our guesses are correct.

Back to the formal argument

Following is a formal description of the recovering algorithm, denoted A. On input n and e (and
oracle access to bs), algorithm A sets l ot ﬂogz(n ¢ 241)]. Algorithm A uniformly and indepen-
dently select s',....s' € {0 1}", and o', ..., o' € {0, 1} It then computes, for every non-empty set
J C{1,2,... l} a strlng r — @]EJS and a bit p — @JEJU For every i€ {1,...,n} and every
non-empty J C {1,..,1}, algorithm A computes z/ < p’ © b,(r’ ® e’). Finally, algorithm A sets z;
to be the majority of the 2/ values, and outputs z = 21 - - - zn.6

Clearly, A makes n - 2! = n?/e? oracle calls to b,, and the same amount of other elementary
computations. Following is a detailed analysis of the success probability of algorithm A. We start
by showing that, in case all the o/’s are correct (i.e., equal the corresponding b(x,s?)’s), with
constant probability, z; = z; for all ¢ € {1,...,n}. This is proven by bounding from below the
probability that the majority of the z/’s equals ;.
Claim: For every 1<i<n,

1

; 1
Pr |[{J : b(z, 7") Db (r” ®€') = x;}| > 3 2 -1 > 1- ™

where /% Djcs sJ and the s/’s are independently and uniformly chosen in {0,1}".

Proof: For every J, define a 0-1 random variable CJ so that ¢’ equals 1 if and only if b(z, r’ Yb, (r/ @
e') = z;. The reader can easily verify that each r/ is uniformly distributed in {0,1}". Tt follows that

 An alternative implementation of the above ideas results in an alternative algorithm, denoted A'. Rather than
selecting at random a setting of o!,...,0' € {0, 1}, algorithm A’ tries all possible values for o, ..., o'. Tt outputs a list
of 2! candidates z’s, one per each of the possible settings of o, ..., ole {0,1}. It can be shown that, with probability
at least 3/4, the list output by A’ contains z.

26

each ¢’ equals 1 with probability %—i—e. We show that the ¢/’s are pairwise independent by showing
that the 7/’s are pairwise independent. For every J # K we have, without loss of generality, j € J
and k € K \ J. Hence, for every a, 3 € {0,1}", we have

Pr [TK=ﬂ|TJ=04] = Pr [3k=ﬂ| sjza]
= Pr [sk :ﬁ]
= Pr [TK_ }
and pairwise independence of the 7/’s follows. Let m el 1. Using Chebyshev’s Inequality, we
get
1
T<- < P (05 > -
r[;(_Qm] r ZC +e) >em
maXJ{Var(CJ)}
€2 (n/e?)
< 1
4dn

The claim follows. O

Recall that if o/ = b(z,s’), for all j’s, then p/ = b(x,r7) for all non-empty J’s. In this case z
output by algorithm A equals x, with probability at least 3/4. However, the first event happens
with probability 27! = / 3 1ndependently of the events analyzed in the Claim. Hence, algorithm

A recovers & with probability at least 3 7+ 5. Theorem 3.3 follows. W

27

Bibliography

1]

2]

3]

8]

[9]

[10]

[11]

[12]

[13]

W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts are
As Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages 194-209.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850-864, 1984. Preliminary
version in 238rd IEEE Symposium on Foundations of Computer Science, 1982.

L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System
Science, Vol. 18, 1979, pages 143-154.

G.J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journal of
the ACM, Vol. 13, pages 547-570, 1966.

T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New-York, 1991.

W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory,
IT-22 (Nov. 1976), pages 644-654.

W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley, New York,
1968.

M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

O. Goldreich. A Note on Computational Indistinguishability. Information Processing Letters,
Vol. 34, pages 277-281, May 1990.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

O. Goldreich. Foundations of Cryptography — Basic Tools. To be published in 2000/2001 by
Cambridge University Press. Preliminary versions and further information available from
http://www.wisdom.weizmann.ac.il/~oded/foc-book.html.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of
the ACM, Vol. 33, No. 4, pages 792-807, 1986.

O. Goldreich, and H. Krawczyk, On Sparse Pseudorandom Ensembles. Random Structures
and Algorithms, Vol. 3, No. 2, (1992), pages 163-174.

28

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom Generators.
SIAM Journal on Computing, Vol. 22-6, pages 1163-1175, 1993.

O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACM
Symposium on the Theory of Computing, pages 25-32, 1989.

O. Goldreich and B. Meyer. Computational Indistinguishability — Algorithms vs. Circuits.
Theoretical Computer Science, Vol. 191, pages 215-218, 1998.

O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the highly
noisy case. SIAM J. on Disc. Math., March 2000.

O. Goldreich and S. Micali. Increasing the Expansion of Pseudorandom Generators. Unpub-
lished manuscript, 1984.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Science, Vol. 28, No. 2, pages 270-299, 1984. Preliminary version in 14th ACM Symposium on
the Theory of Computing, 1982.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364-1396,
1999. Preliminary versions by Impagliazzo et. al. in 21st ACM Symposium on the Theory of
Computing (1989) and Hastad in 22nd ACM Symposium on the Theory of Computing (1990).

D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms). Addison-
Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).

A. Kolmogorov. Three Approaches to the Concept of “The Amount Of Information”. Probl. of
Inform. Transm., Vol. 1/1, 1965.

L.A. Levin. Randomness Conservation Inequalities: Information and Independence in Mathe-
matical Theories. Inform. and Control, Vol. 61, pages 15-37, 1984.

L.A. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, Vol. 7, pages
357-363, 1987.

L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3), pages 1102-1103,
1993.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer
Verlag, August 1993.

R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.

A.M. Odlyzko. The future of integer factorization. CryptoBytes (The technical
newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12, 1995. Available from
http://www.research.att.com/~amo

A.M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite Fields: Theory, Ap-
plications and Algorithms, G. L. Mullen and P. Shiue, eds., Amer. Math. Soc., Contemporary
Math. Vol. 168, pages 269-278, 1994. Available from http://www.research.att.com/~amo

29

[30] A.R. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Science,
Vol. 55 (1), pages 24-35, 1997.

[31] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Jour., Vol. 27, pages
623-656, 1948.

[32] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[33] R.J. Solomonoff. A Formal Theory of Inductive Inference. Inform. and Control, Vol. 7/1,
pages 1-22, 1964.

[34] L. Valiant. A theory of the learnable. Communications of the ACM, Vol. 27/11, pages 1134—
1142, 1984.

[35] A.C. Yao. Theory and Application of Trapdoor Functions. In 23%rd IEEE Symposium on
Foundations of Computer Science, pages 80-91, 1982.

30

