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AbstractA fresh view at the question of randomness was taken in the theory of computing: It has beenpostulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri-bution by any e�cient procedure. This paradigm, originally associating e�cient procedures withpolynomial-time algorithms, has been applied also with respect to a variety of other classes ofdistinguishing procedures. We focus on pseudorandom generators; that is, deterministic programsthat stretch short (random) seeds into much longer pseudorandom sequences.The current lecture series focuses on the case where the pseudorandom generator runs inpolynomial-time and withstands any polynomial-time distinguisher. In particular, the distinguishermay be more complex (i.e., have a higher polynomial running time) than the generator. This frame-work is natural in the context of designing general-purpose pseudorandom generators that can beused in any e�cient (i.e., polynomial-time) application. Furthermore, this framework is almostmandatory in cryptographic applications, where the adversary is typically willing to invest moree�ort than the legitimate users.A companion lecture series (i.e., \Pseudorandomness { Part 2" by Luca Trevisan) focuses onthe case where the pseudorandom generator runs in exponential-time (w.r.t the seed length) andwithstands distinguisher of running time bounded by a speci�c polynomial (in the length of thegenerator's output). In particular, the generator may be more complex than the distinguisher.As explained in the companion lecture series, this framework is natural in the context of de-randomization (i.e., converting randomized algorithms to deterministic ones).
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PrefaceThe heart of the theory of pseudorandomness is the suggestion to consider the class of distributionsthat cannot be told apart from the uniform distribution by any e�cient procedure. These distri-butions are called pseudorandom, and can be generated deterministically from short random seeds(which are much shorter than the length of the pseudorandom output). Speci�cally, the ability toe�ciently generate pseudorandom objects is closely related to computational di�culty.In this lecture series, we consider a speci�c instantiation of the paradigm outlined by the aboveparagraph, associating e�cient computation with polynomial-time algorithms. We believe thatthis instantiation (of the above paradigm) is the most natural one, but other instantiations areimportant too (see remarks in Section 3.3.3). In particular, in the next lecture series, a di�erentinstantiation of the above paradigm is considered.Orientation RemarksWe consider �nite objects, encoded by binary �nite sequences called strings. When we talk ofdistributions we mean discrete probability distributions having a �nite support that is a set ofstrings. Of special interest is the uniform distribution, that for a length parameter n (explicit orimplicit in the discussion), assigns each n-bit string x 2 f0; 1gn equal probability (i.e., probability2�n). We will colloquially speak of \perfectly random strings" meaning strings selected accordingto such a uniform distribution.We associate e�cient procedures with probabilistic polynomial-time algorithms. An algorithmis called polynomial-time if there exists a polynomial p so that for any possible input x, the algorithmruns in time bounded by p(jxj), where jxj denotes the length of the string x. Thus, the runningtime of such algorithm grows moderately as a function of the length of its input. A probabilisticalgorithm is one that can take random steps, where, without loss of generality, a random stepconsists of selecting which of two predetermined steps to take next so that each possible step istaken with probability 1=2. These choices are called the algorithm's internal coin tosses, and weconsider the probability distribution of the output of the algorithm, where the probability spaceis taken over these coin tosses. That is, if A1 is such an algorithm and x 2 f0; 1g�, then A1(x)denotes the output distribution of A1 on input x. An equivalent way of looking at a probabilisticalgorithm is to view its random steps as determined by a sequence of outcomes supplied from theoutside. In this case, we consider a two-input deterministic algorithm, where the �rst input is theactual input and the second input represents the outcomes of a sequence of coin tosses, and referto the distribution induced on the output when �xing the �rst input and letting the second inputbe random. That is, if A2 is such an algorithm and x 2 f0; 1g�, then A2(x; r) denotes the outputof A2 on actual input x and random input r, and we consider the distribution of A2(x; �) when thesecond input is uniformly selected in f0; 1gt, for some su�ciently large t.2



Background material and further readingWe assume the reader is fairly comfortable with basic notions of the theory of computation (see,e.g., [8, 32]) and elementary probability theory (see, e.g., [7]). Familiarity with some randomizedalgorithms may be useful too (see, e.g., [27] or [10, Apdx. B]).The interested reader is directed to two texts by the author: Chapter 3 of [11], which is atextbook devoted to the foundations of cryptography, provides a detailed treatment of the subjectmatter of the current lecture series (including full proofs for results for which only proof sketchesappear below). On the other hand, Chapter 3 of [10] provides a much wider perspective on pseu-dorandomness (but less details on the subject matter of the current lecture series). Other partsof [10] survey related areas such as probabilistic proof systems, cryptography, and randomizedcomputation.
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Lecture 1Computational Indistinguishability1.1 IntroductionThe second half of this century has witnessed the development of three theories of randomness,a notion which has been puzzling thinkers for ages. The �rst theory (cf. [5]), initiated by Shan-non [31], is rooted in probability theory and is focused at distributions that are not perfectlyrandom. Shannon's Information Theory characterizes perfect randomness as the extreme case inwhich the information content is maximized (and there is no redundancy at all).1 Thus, perfectrandomness is associated with a unique distribution { the uniform one. In particular, by de�nition,one cannot generate such perfect random strings from shorter random strings.The second theory (cf. [23, 26]), due to Solomonov [33], Kolmogorov [22] and Chaitin [4],is rooted in computability theory and speci�cally in the notion of a universal language (equiv.,universal machine or computing device). It measures the complexity of objects in terms of theshortest program (for a �xed universal machine) that generates the object.2 Like Shannon's the-ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.Interestingly, in this approach one may say that a single object, rather than a distribution over ob-jects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., KolmogorovComplexity is uncomputable), and { by de�nition { one cannot generate strings of high KolmogorovComplexity from short (random) strings.The third theory, initiated by Blum, Goldwasser, Micali and Yao [19, 2, 35], is rooted in com-plexity theory and is the focus of this lecture series. This approach is explicitly aimed at providing anotion of perfect randomness that nevertheless allows to e�ciently generate perfect random stringsfrom shorter random strings. The heart of this approach is the suggestion to view objects as equalif they cannot be told apart by any e�cient procedure. Consequently a distribution that cannotbe e�ciently distinguished from the uniform distribution will be considered as being random (orrather called pseudorandom). Thus, randomness is not an \inherent" property of objects (or dis-tributions) but is rather relative to an observer (and its computational abilities). To demonstratethis approach, let us consider the following mental experiment.1 In general, the amount of information in a distribution D is de�ned as �PxD(x) log2D(x). Thus, the uniformdistribution over strings of length n has information measure n, and any other distribution over n-bit strings haslower information measure. Also, for any function f : f0; 1gn ! f0; 1gm with n < m, the distribution obtained byapplying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower thanthe length of the output.2 For example, the string 1n has Kolmogorov Complexity at most O(1) + log2 n, by virtue of the program \printn ones" (which has length dominated by the binary encoding of n). In contrast, a simple counting argument showsthat most n-bit strings have Kolmogorov Complexity at least n (since each program can produce only one string).4



Alice and Bob play head or tail in one of the following four ways. In all of themAlice 
ips a coin high in the air, and Bob is asked to guess its outcome before the coinhits the 
oor. The alternative ways di�er by the knowledge Bob has before makinghis guess. In the �rst alternative, Bob has to announce his guess before Alice 
ips thecoin. Clearly, in this case Bob wins with probability 1=2. In the second alternative,Bob has to announce his guess while the coin is spinning in the air. Although theoutcome is determined in principle by the motion of the coin, Bob does not have accurateinformation on the motion and thus we believe that also in this case Bob wins withprobability 1=2. The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurate information onthe coin's motion as well as on the environment e�ecting the outcome. However, Bobcannot process this information in time to improve his guess. In the fourth alternative,Bob's recording equipment is directly connected to a powerful computer programmedto solve the motion equations and output a prediction. It is conceivable that in such acase Bob can improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information and computing resourcesat our disposal. Thus, a natural concept of pseudorandomness arises { a distribution is pseudo-random if no e�cient procedure can distinguish it from the uniform distribution, where e�cientprocedures are associated with (probabilistic) polynomial-time algorithms.1.2 The Notion of Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient program (or algorithm) that stretchesshort random strings into long pseudorandom sequences. The latter sentence emphasizes threefundamental aspects in the notion of a pseudorandom generator:1. E�ciency: The generator has to be e�cient. As we associate e�cient computations withpolynomial-time ones, we postulate that the generator has to be implementable by a deter-ministic polynomial-time algorithm.This algorithm takes as input a string, called its seed. The seed captures a bounded amountof randomness used by a device that \generates pseudorandom sequences." The formulationviews any such device as consisting of a deterministic procedure applied to a random seed.2. Stretching: The generator is required to stretch its input seed to a longer output sequence.Speci�cally, it stretches n-bit long seeds into `(n)-bit long outputs, where `(n) > n. Thefunction ` is called the stretching measure (or stretching function) of the generator.3. Pseudorandomness: The generator's output has to look random to any e�cient observer. Thatis, any e�cient procedure should fail to distinguish the output of a generator (on a randomseed) from a truly random sequence of the same length. The formulation of the last sentencerefers to a general notion of computational indistinguishability, which is the heart of the entireapproach.1.3 The De�nition of Computational IndistinguishabilityIntuitively, two objects are called computationally indistinguishable if no e�cient procedure cantell them apart. As usual in complexity theory, an elegant formulation requires asymptotic anal-ysis (or rather a functional treatment of the running time of algorithms in terms of the length5



of their input).3 Thus, the objects in question are in�nite sequences of distributions, where eachdistribution has a �nite support. Such a sequence will be called a distribution ensemble. Typically,we consider distribution ensembles of the form fDngn2N, where for some function ` : N!N , thesupport of each Dn is a subset of f0; 1g`(n). Furthermore, typically ` will be a positive polyno-mial. For such Dn, we denote by e�Dn the process of selecting e according to distribution Dn.Consequently, for a predicate P , we denote by Pre�Dn [P (e)] the probability that P (e) holds whene is distributed (or selected) according to Dn. Consequently, for a probabilistic algorithm A, wedenote by Pre�Dn [A(e) = 1] the probability that A(e) = 1 holds when e is distributed (or selected)according to Dn.De�nition 1.1 (Computational Indistinguishability [19, 35]) Two probability ensembles, fXngn2Nand fYngn2N, are called computationally indistinguishable if for any probabilistic polynomial-time al-gorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrx�Xn [A(x) = 1] � Pry�Yn [A(y) = 1] j < 1p(n)The probability is taken over Xn (resp., Yn) as well as over the coin tosses of algorithm A.A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher)to be probabilistic. This makes the requirement only stronger, and seems essential to severalimportant aspects of our approach. Secondly, we view events occuring with probability that isupper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notionof e�ciency (i.e., polynomial-time computations): An event that occurs with negligible probability(as a function of a parameter n), will also occur with negligible probability if the experiment isrepeated for poly(n)-many times.1.4 Relation to Statistical ClosenessComputational indistinguishability is a (strict) coarsening of a traditional notion from probabilitytheory. We call two ensemblesX def= fXngn2N and Y def= fYngn2N, statistically close if their statisticaldi�erence is negligible, where the statistical di�erence (also known as variation distance) of X and Yis de�ned as the function �(n) def= 12 �X� jPr[Xn=�]� Pr[Yn=�]j (1.1)Clearly, if the ensembles X and Y are statistically close then they are also computationallyindistinguishable4. The converse, however, is not true. In particular, letting Un denote the uniformdistribution over strings of length n, we have:Proposition 1.2 ([35, 13]) There exist an ensemble X = fXngn2N so that X is not statisticallyclose to the uniform ensemble, U def= fUngn2N, and yet X and U are computationally indistin-guishable. Furthermore, Xn assigns all its probability mass to at most 2n=2 strings (of length n).3 We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop theentire approach in terms of inputs of �xed lengths and an adequate notion of complexity of algorithms. However,such an alternative treatment is more cumbersome.4 The proof of this claim is left as an exercise. 6



Although X and U are computationally indistinguishable, one can de�ne a function f : f0; 1g�!f0; 1g so that f has average 1 over X while having average almost 0 over U (e.g., f(x) = 1 if andonly if Pr[X=x] > 0). Hence, X and U have di�erent \pro�le" with respect to the function f , yetf is (necessarily) impossible to compute in polynomial-time.Proposition 1.2 presents a pair of ensembles that are computational indistinguishable althoughthey are statistically far apart. One of the two ensembles is not constructible in polynomial-time(see De�nition 1.4 below). Interestingly, a pair of polynomial-time constructible ensembles beingboth computationally indistinguishable and having a noticeable statistical di�erence exists only ifpseudorandom generators exist (cf. [9]). Jumping ahead, we note that this necessary condition isalso su�cient. (The latter observation follows from the fact that pseudorandom generators giverise to a polynomial-time constructible ensemble that is computationally indistinguishable from theuniform ensemble and yet is statistically far from it.)5Proof of Proposition 1.2: We claim that, for all su�ciently large n, there exist a random variableXn, distributed over some set of at most 2n=2 strings (each of length n), so that for every circuit,Cn, of size (i.e., number of gates) 2n=8 it holds thatjPr[Cn(Un)=1]� Pr[Cn(Xn)=1]j < 2�n=8 (1.2)The proposition follows from this claim, since polynomial-time distinguishers (even probabilisticones) yield polynomial-size circuits with at least as big a distinguishing gap.The above claim is proven using a probabilistic argument. That is, we actually show that mostdistributions of a certain class \fool" all circuits of size 2n=8. Speci�cally, we show that if we selectuniformly a multi-set of 2n=2 strings in f0; 1gn, and let Xn be uniform over this multi-set thenEq. (1.2) holds with overwhelmingly high probability (over the choices of the multi-set).Let Cn be some �xed circuit with n inputs, and let pn def= Pr[Cn(Un)=1]. We select, indepen-dently and uniformly 2n=2 strings, denoted s1; :::; s2n=2 , in f0; 1gn. De�ne random variables �i's sothat �i = Cn(si); i.e., these random variables depend on the random choices of the correspondingsi's. Using Cherno� Bound, we get thatPr24������pn � 12n=2 � 2n=2Xi=1 �i������ � 2�n=835 � 2e�2�2n=2 �(2�n=8)2 < 2�2n=4Since there are at most 22n=4 di�erent circuits of size (number of gates) 2n=8, it follows that thereexists a sequence of s1; :::; s2n=2 2 f0; 1gn, so that for every circuit Cn of size 2n=8 it holds that�����Pr[Cn(Un)=1]� P2n=2i=1 Cn(si)2n=2 ����� < 2�n=8Fixing such a sequence of si's, and letting Xn be distributed uniformly over the elements in thesequence, the claim follows.1.5 Indistinguishability by Repeated ExperimentsBy De�nition 1.1, two ensembles are considered computationally indistinguishable if no e�cientprocedure can tell them apart based on a single sample. We now show that, for \e�ciently con-5 The reader may want to rigorously verify this claim after inspecting the de�nition of a pseudorandom generator(i.e., De�nition 2.1). 7



structible" ensembles, computational indistinguishability (based on a single sample) implies com-putational indistinguishability based on multiple samples. We start by presenting de�nitions of\indistinguishability by multiple samples" and \e�ciently constructible ensembles".De�nition 1.3 (indistinguishability by repeated sampling) Two ensembles, X def= fXngn2Nand Y def= fYngn2N, are indistinguishable by polynomial-time sampling if for every probabilisticpolynomial-time algorithm, D, every two positive polynomials m(�) and p(�), and all su�cientlylarge n's ���Pr hD(X(1)n ; :::;X(m(n))n )=1i� Pr hD(Y (1)n ; :::; Y (m(n))n )=1i��� < 1p(n)where X(1)n through X(m(n))n and Y (1)n through Y (m(n))n , are independent random variables with eachX(i)n identical to Xn and each Y (i)n identical to Yn.De�nition 1.4 (e�ciently constructible ensembles) An ensemble, X def= fXngn2N, is said tobe polynomial-time constructible if there exists a probabilistic polynomial time algorithm S so thatfor every n, the random variables S(1n) and Xn are identically distributed.Theorem 1.5 Let X def= fXngn2N and Y def= fYngn2N be two polynomial-time constructible ensem-bles, and suppose that X and Y are computationally indistinguishable (as in De�nition 1.1). ThenX and Y are indistinguishable by polynomial-time sampling (as in De�nition 1.3).An alternative formulation of Theorem 1.5 proceeds as follows. For every ensemble Z def= fZngn2Nand every polynomial m(�) de�ne the m(�)-product of Z as the ensemble f(Z(1)n ; :::; Z(m(n))n )gn2N,where the Z(i)n 's are independent copies of Zn. Theorem 1.5 asserts that if the ensembles X andY are computationally indistinguishable, and each is polynomial-time constructible, then, for everypolynomial m(�), the m(�)-product of X and the m(�)-product of X are computationally indistin-guishable.The information theoretic analogue of the above theorem is quite obvious: if two ensembles arestatistically close then also their polynomial-products are statistically close6. The non-trivialityof the computational version (given in Theorem 1.5) is evident from the presence of an extracondition; that is, that both ensembles are polynomial-time constructible. In contrast, we mentionthat there exists pairs of ensembles that are computationally indistinguishable but their 2-productsare not computationally indistinguishable (since one of these ensembles is not polynomial-timeconstructible) [16].Proof of Theorem 1.5: The proof is by a \reducibility argument". We show that the existenceof an e�cient algorithm that distinguishes the ensembles X and Y based on several samples,implies the existence of an e�cient algorithm that distinguishes the ensembles X and Y based ona single sample. The implication is proven using the following argument, which is called a \hybridargument".Suppose, to the contradiction, that there is a probabilistic polynomial-time algorithm D, andpolynomials m(�) and p(�), so that for in�nitely many n's it holds that�(n) def= ���Pr hD(X(1)n ; :::;X(m)n )=1i� Pr hD(Y (1)n ; :::; Y (m)n )=1i��� (1.3)> 1p(n)6 The proof of this claim is left as an exercise. 8



where m def= m(n), and the X(i)n 's and Y (i)n 's are as in De�nition 1.3. In the sequel, we will derivea contradiction by presenting a probabilistic polynomial-time algorithm, D0, that distinguishes theensembles X and Y (in the sense of De�nition 1.1).For every k, 0 � k � m, we de�ne the hybrid random variable Hkn as a (m-long) sequenceconsisting of k independent copies of Xn followed by m� k independent copies of Yn. Namely,Hkn def= (X(1)n ; :::;X(k)n ; Y (k+1)n ; :::; Y (m)n )where X(1)n through X(k)n and Y (k+1)n through Y (m)n , are independent random variables with eachX(i)n identical to Xn and each Y (i)n identical to Yn. Clearly, Hmn = (X(1)n ; :::;X(m)n ), whereas H0n =(Y (1)n ; :::; Y (m)n ).By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H0n and Hmn ). Sincethe total number of hybrids is polynomial in n, a non-negligible gap between (the \accepting" prob-ability of D on) the extreme hybrids translates into a non-negligible gap between (the \accepting"probability of D on) a pair of neighboring hybrids. It follows that D, although not \designed towork on general hybrids", can distinguish a pair of neighboring hybrids. The punch-line is that,algorithm D can be easily modi�ed into an algorithm D0 that distinguishes X and Y . Detailsfollow.We construct an algorithm D0 which uses algorithm D as a subroutine. On input � (supposedlyin the range of either Xn or Yn), algorithm D0 proceeds as follows. Algorithm D0, �rst selectsk uniformly in the set f0; 1; :::;m � 1g. Using the e�cient sampling algorithm for the ensembleX, algorithm D0 generates k independent samples of Xn. These samples are denoted x1; :::; xk.Likewise, using the e�cient sampling algorithm for the ensemble Y , algorithmD0 generatesm�k�1independent samples of Yn, denoted yk+2; :::; ym. Finally, algorithm D0 invokes algorithm D andhalts with output D(x1; :::; xk ; �; yk+2; :::; ym).Clearly, D0 can be implemented in probabilistic polynomial-time. The veri�cation of the fol-lowing two claims is left as an exercise (hint: use the �rst claim in proving the second).Claim 1.5.1: Pr[D0(Xn)=1] = 1m m�1Xk=0 Pr[D(Hk+1n )=1]and Pr[D0(Yn)=1] = 1m m�1Xk=0 Pr[D(Hkn)=1]Claim 1.5.2: For �(n) as in Eq. (1.3),jPr[D0(Xn)=1]� Pr[D0(Yn)=1]j = �(n)m(n)Since by our hypothesis �(n) > 1p(n) , for in�nitely many n's, it follows that the probabilisticpolynomial-time algorithm D0 distinguishes X and Y in contradiction to the hypothesis of thetheorem. Hence, the theorem follows.The hybrid technique { a digest: The hybrid technique constitutes a special type of a \re-ducibility argument" in which the computational indistinguishability of complex ensembles is proven9



using the computational indistinguishability of basic ensembles. The actual reduction is in the otherdirection: e�ciently distinguishing the basic ensembles is reduced to e�ciently distinguishing thecomplex ensembles, and hybrid distributions are used in the reduction in an essential way. Thefollowing properties of the construction of the hybrids play an important role in the argument:1. Extreme hybrids collide with the complex ensembles: this property is essential since whatwe want to prove (i.e., indistinguishability of the complex ensembles) relates to the complexensembles.2. Neighboring hybrids are easily related to the basic ensembles: this property is essential sincewhat we know (i.e., indistinguishability of the basic ensembles) relates to the basic ensembles.We need to be able to translate our knowledge (i.e., computational indistinguishability) ofthe basic ensembles to knowledge (i.e., computational indistinguishability) of any pair ofneighboring hybrids. Typically, it is required to e�ciently transform strings in the range ofa basic distribution into strings in the range of a hybrid, so that the transformation mapsthe �rst basic distribution to one hybrid and the second basic distribution to the neighboringhybrid. (In the proof of Theorem 1.5, the hypothesis that both X and Y are polynomial-timeconstructible is instrumental for such an e�cient transformation.)3. The number of hybrids is small (i.e., polynomial): this property is essential in order to deducethe computational indistinguishability of extreme hybrids from the computational indistin-guishability of each pair of neighboring hybrids. Typically, the provable \distinguishabilitygap" is inversely proportional to the number of hybrids.We remark that, in the course of an hybrid argument, a distinguishing algorithm referring to thecomplex ensembles is being analyzed and even executed on arbitrary hybrids. The reader may beannoyed of the fact that the algorithm \was not designed to work on such hybrids" (but ratheronly on the extreme hybrids). However, an algorithm is an algorithm: once it exists we can applyit to any input of our choice, and analyze its performance on arbitrary input distributions.
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Lecture 2Pseudorandom Generators2.1 Basic de�nition and initial discussionFollowing the discussion in the previous lecture, we now present the de�nition of pseudorandomgenerators. Recall that a stretching function, ` :N!N , satis�es `(n) > n for all n.De�nition 2.1 (Pseudorandom Generators [2, 35]) A deterministic polynomial-time algorithmG is called a pseudorandom generator if there exists a stretching function, ` : N!N , so that thefollowing two probability ensembles, denoted fGngn2N and fRngn2N, are computationally indistin-guishable1. Distribution Gn is de�ned as the output of G on a uniformly selected seed in f0; 1gn.2. Distribution Rn is de�ned as the uniform distribution on f0; 1g`(n).That is, letting Um denote the uniform distribution over f0; 1gm, we require that for any probabilisticpolynomial-time algorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrs�Un [A(G(s)) = 1] � Prr�U`(n) [A(r) = 1] j < 1p(n)Thus, pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs thatexpand short randomly selected seeds into longer pseudorandom bit sequences, where the latterare de�ned as computationally indistinguishable from truly random sequences by e�cient (i.e.,polynomial-time) algorithms. It follows that any e�cient randomized algorithm maintains its per-formance when its internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. That is,Construction 2.2 (typical application of pseudorandom generators) Let A be a probabilis-tic polynomial-time algorithm, and �(n) denote an upper bound on its randomness complexity. LetA(x; r) denote the output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj). Let G be a pseu-dorandom generator with stretching function ` : N!N . Then AG is a randomized algorithm thaton input x, proceeds as follows. It sets k = k(jxj) to be the smallest integer such that `(k) � �(jxj),uniformly selects s 2 f0; 1gk, and outputs A(x; r), where r is the �(jxj)-bit long pre�x of G(s).It can be shown that it is infeasible to �nd long x's on which the input-output behavior of AG isnoticeably di�erent from the one of A, although AG may use much fewer coin tosses than A. Thatis 11



Proposition 2.3 Let A and G be as above. For any algorithm D, let �A;D(x) denote the discrep-ancy, as judged by D, in the behavior of A and AG on input x. That is,�A;D(x) def= jPrr�U�(n) [D(x;A(x; r)) = 1] � Prs�Uk(n) [D(x;AG(x; s)) = 1] jwhere the probabilities are taken over the Um's as well as over the coin tosses of D. Then for everypair of probabilistic polynomial-time algorithms, a �nder F and a distinguisher D, every positivepolynomial p and all su�ciently long n'sPr ��A;D(F (1n)) > 1p(n)� < 1p(n)where jF (1n)j = n and the probability is taken over the coin tosses of F .In particular, if A solves a decision problem then we may de�ne D(x; �) def= �; whereas if A solvesan NP-search problem then we may de�ne D(x; y) def= 1 if y is a valid solution to instance x (andD(x; y) def= 0 otherwise). Proposition 2.3 is proven by showing that any triplet (A;F;D) violatingthe claim can be converted into an algorithmD0 that distinguishes the output of G from the uniformdistribution, in contradiction to the hypothesis.1 Analogous arguments are applied whenever onewishes to prove that an e�cient randomized process (be it an algorithm as above or a multi-partycomputation) preserves its behavior when one replaces true randomness by pseudorandomnessas de�ned above. Thus, given pseudorandom generators with large stretching function, one canconsiderably reduce the randomness complexity in any e�cient application.2.2 Amplifying the stretch functionPseudorandom generators as de�ned above are only required to stretch their input a bit; for ex-ample, stretching n-bit long inputs to (n+ 1)-bit long outputs will do. Clearly, generators of suchmoderate stretch function are of little use in practice. In contrast, we want to have pseudoran-dom generators with an arbitrary long stretch function. By the e�ciency requirement, the stretchfunction can be at most polynomial. It turns out that pseudorandom generators with the smallestpossible stretch function can be used to construct pseudorandom generators with any desirablepolynomial stretch function. (Thus, when talking about the existence of pseudorandom generators,we may ignore the stretch function.)Theorem 2.4 ([18]) Let G be a pseudorandom generator with stretch function `(n) = n+1, and `0be any polynomially-bounded stretch function, that is polynomial-time computable. Let g1(x) denotethe jxj-bit long pre�x of G(x), and g2(x) denote the last bit of G(x) (i.e., G(x) = g1(x) g2(x)). ThenG0(s) def= �1�2 � � � �`0(jsj) ;where x0 = s, �i = g2(xi�1) and xi = g1(xi�1), for i = 1; :::; `0(jsj)is a pseudorandom generator with stretch function `0.1 Speci�cally, ignoring its own input, algorithm D0 may �rst �nd an adequate A-input x by repeatedly invokingF , and testing each candidate x by approximating �A;D(x) (using algorithms A, G and D). Next, using its owninput denoted �, algorithm D0 invokes D on input (x;A(x;�)), thus distinguishing U�(n) from G(Uk(n)). Filling-upall details is left as an exercise for the reader. 12



Proof Sketch: The theorem is proven using the hybrid technique (see above): One considers distri-butions Hin (for i = 0; :::; `0(n)) de�ned by U (1)i G0̀ 0(n)�i(U (2)n ), where U (1)i and U (2)n are independentuniform distributions (over f0; 1gi and f0; 1gn, respectively), and G0j(x) denotes the j-bit long pre-�x of G0(x). The extreme hybrids correspond to G0(Un) and U`0(n), whereas distinguishability ofneighboring hybrids can be worked into distinguishability of G(Un) and Un+1. The heart of theargument is the latter assertion, which is justi�ed below.We observe that G0j(s) = g2(s)G0j�1(g1(s)), for j � 1. Letting p1(x) (resp., p2(x)) denotesthe n-bit long pre�x (resp., the last bit) of x 2 f0; 1gn+1, we also have g1(s) = p1(G(s)) andg2(s) = p2(G(s)). Thus, for i < `0(n), we can writeHin � (U (1)i ; G0̀ 0(n)�i((U (2)n )))� (U (1)i ; g2(U (2)n ); G0(`0(n)�i)�1(g1(U (2)n )))� (U (1)i ; p2(G(U (2)n )); G0̀ 0(n)�i�1(p1(G(U (2)n ))))Hi+1n � (U (1)i+1; G0̀ 0(n)�(i+1)(U (200)n ))� (U (10)i ; U (100)1 ; G0̀ 0(n)�i�1(U (200)n ))� (U (1)i ; p2(U (20)n+1); G0̀ 0(n)�i�1(p1(U (20)n+1))) ;where the various U (k)j 's are independent uniform distributions (over f0; 1gj). Suppose one coulddistinguishHin fromHi+1n . Incorporating the generation of U (1)i and the evaluation of G0̀ 0(n)�i�1 intothe distinguisher, one could distinguish G(Un) from Un+1. Speci�cally, on input � 2 f0; 1gn+1, thenew distinguisher parses � as ��, where j�j = n and � 2 f0; 1g, uniformly selects r 2 f0; 1gi, andinvokes the given distinguisher on input r�G0̀ 0(n)�i�1(�). The reader can verify that on input G(Un)(resp., Un+1) the new distinguisher invokes the given distinguisher on inputHin (resp., Hi+1n ). Thus,the new distinguisher distinguishes G(Un) from Un+1, in contradiction to the pseudorandomness ofG.2.3 How to Construct Pseudorandom GeneratorsThe mere fact that we have de�ned something does not mean that it exist. Do pseudorandomnessgenerators exist? We do not know the answer to this question. But we do not know many otherthings; we even do not know whether P is strictly contained in NP . In fact, if pseudorandomnessgenerators exist then P is strictly contained in NP . Thus, one should not expect, at this stage ofhistory, to see an unconditional proof of the existence of pseudorandomness generators. Further-more, the existence of pseudorandomness generators implies even stronger forms of computationdi�culty (than the assertion that NP contains problems that are not solvable in probabilisticpolynomial-time). Thus, the best we can hope for (now) are results that transform computationdi�culty into pseudorandomness generators. This is indeed the type of results that are known andwill be presented below.The known constructions of pseudorandomness generators utilize computation di�culty, in theform of one-way functions (de�ned below). Loosely speaking, a polynomial-time computable func-tion is called one-way if any e�cient algorithm can invert it only with negligible success probability.For simplicity, we consider only length-preserving one-way functions.13



De�nition 2.5 (one-way function [6, 35]) A one-way function, f , is a polynomial-time com-putable function such that for every probabilistic polynomial-time algorithm A, every positive poly-nomial p(�), and all su�ciently large n'sPrx�Un hA(f(x))2f�1(f(x))i < 1p(n)where Un is the uniform distribution over f0; 1gn.We stress that the inverting algorithm is not required to retrieve the \original" preimage x; re-trieving any preimage of f(x) is considered a success. Still, if f is one-way then no probabilisticpolynomial-time algorithm may succeed with non-negligible probability. Popular candidates forone-way functions are based on the conjectured intractability of integer factorization (cf. [28] forstate of the art), the discrete logarithm problem (cf. [29] analogously), and decoding of randomlinear code [14].The infeasibility of inverting f yields a weak notion of unpredictability: Let bi(x) denotes theith bit of x. Then, for every probabilistic polynomial-time algorithm A (and su�ciently largen), it must be the case that Pri;x[A(i; f(x)) 6= bi(x)] > 1=2n, where the probability is takenuniformly over i 2 f1; :::; ng and x 2 f0; 1gn.2 A stronger (and in fact strongest possible) notion ofunpredictability is that of a hard-core predicate. Loosely speaking, a polynomial-time computablepredicate b is called a hard-core of a function f if any e�cient algorithm, given f(x), can guessb(x) only with success probability that is negligible better than half.De�nition 2.6 (hard-core predicate [2]) A polynomial-time computable predicate b : f0; 1g� !f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPrx�Un [A0(f(x))=b(x)] < 12 + 1p(n)A predicate b may be a hard-core of f for the trivial reason that f(Un) contains no information onb(Un). Consider for example, the function f(�; x) = (1; f 0(x)), and the predicate b(�; x) = �, where� 2 f0; 1g and x 2 f0; 1g�. In contrast, we are interested in the case where the hard-core propertyis due to computational reasons and not to information loss. In particular, a 1-1 function does notloss any information, and so if it has a hard-core predicate then this must be due to computationalreasons. In fact, the reader may verify that if b is a hard-core of a 1-1 polynomial-time computablefunction f then f must be one-way. It turns out that any one-way function can be slightly modi�edso that it has a hard-core predicate.Theorem 2.7 (A generic hard-core [15]) Let f be an arbitrary one-way function, and let g bede�ned by g(x; r) def= (f(x); r), where jxj= jrj. Let b(x; r) denote the inner-product mod 2 of thebinary vectors x and r. Then the predicate b is a hard-core of the function g.A proof of Theorem 2.7 is given in the appendix to this lecture series. We are now ready to presentconstructions of pseudorandom generators.2 Otherwise, algorithm A can be used to recover all the bits of x from f(x) (with success probability at least1� n � (1=2n)). In contrast, some of these bi(x)'s may be easy to compute from f(x), and all bi(x)'s may be easy topredict with probability 3=4. The proof of these claims is left as an exercise. (Hint: using any one-way function f 0,consider one-way functions such as f(x; y) = (x; f 0(y)) and f(x; y) = (x0; f 0(x00); y), where x0 denotes some projectionof x speci�ed by y and x00 denotes the rest of the bits of y.)14



2.3.1 The preferred presentationIn view of Theorem 2.4, we may focus on constructing pseudorandom generators with stretchfunction `(n) = n+ 1. Such a construction is presented next.Proposition 2.8 (A simple construction of pseudorandom generators) Let b be a hard-corepredicate of a polynomial-time computable 1-1 function f . Then, G(s) def= f(s) b(s) is a pseudoran-dom generator.Proof: Clearly the jsj-bit long pre�x of G(s) is uniformly distributed (since f is 1-1 and ontof0; 1gjsj). Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s)�, where� is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., that b(s) isunpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) from f(s)b(s),where � = 1� �, and so yields an algorithm for predicting b(s) based on f(s).Formally, given any algorithm (denoted D) that distinguishes fG(Un)g and fUn+1g, we con-struct a predictor (denoted A) of b(Un) based on f(Un). We assume, to the contradiction andwithout loss of generality, that for some polynomial p and in�nitely many n'sPr[D(f(Un)b(Un)) = 1]� Pr[D(Un+1) = 1] > 1p(n) (2.1)Since f is 1-1 and onto f0; 1gjsj, it follows that Un+1 equals f(Un)b(Un) with probability one halfand equals f(Un)b(Un) otherwise, where b(x) def= 1� b(x). Thus, Eq. (2.1) yieldsPr[D(f(Un)b(Un)) = 1]� Pr[D(f(Un)b(Un)) = 1] > 2p(n) (2.2)Using D as a subroutine, we construct an algorithm A as follows. On input y = f(x), algorithm Aproceeds as follows:(1) Select � uniformly in f0; 1g.(2) If D(y�) = 1 then output �, otherwise output 1� �.Then, letting U1 be independent of Un (where U1 represents the choice of � in Step (1) of algorithmA), we have Pr[A(f(Un))=b(Un)]= Pr[D(f(Un)U1) = 1 & U1=b(Un)]+ Pr[D(f(Un)U1) = 0 & 1� U1=b(Un)]= Pr[D(f(Un)b(Un)) = 1 & U1=b(Un)]+ Pr[D(f(Un)b(Un)) = 0 & U1=b(Un)]= 12 � Pr[D(f(Un)b(Un)) = 1] + 12 � �1� Pr[D(f(Un)b(Un)) = 1]�= 12 + 12 � �Pr[D(f(Un)b(Un)) = 1]� Pr[D(f(Un)b(Un)) = 1]�> 12 + 1p(n)where the inequality is due to Eq. (2.2). But this contradicts the theorem's hypothesis by which bis a hard-core of f .In a sense, the key point in the above proof is showing that the unpredictability of the output ofG implies its pseudorandomness. The fact that (next bit) unpredictability and pseudorandomnessare equivalent in general is proven explicitly in the alternative presentation below.15



2.3.2 An alternative presentationThe above presentation is di�erent but analogous to the original construction of pseudorandomgenerators suggested by Blum and Micali [2]: Given an arbitrary stretch function ` :N!N , a 1-1one-way function f with a hard-core b, one de�nesG(s) def= b(x0)b(x1) � � � b(x`(jsj)�1) ;where x0 = s and xi = f(xi�1) for i = 1; :::; `(jsj) � 1. The pseudorandomness of G is establishedin two steps, using the notion of (next bit) unpredictability. An ensemble fZngn2N is called unpre-dictable if any probabilistic polynomial-time machine obtaining a pre�x of Zn fails to predict thenext bit of Zn with probability non-negligibly higher than 1=2.Step 1 One �rst proves that the ensemble fG(Un)gn2N, where Un is uniform over f0; 1gn, is (next-bit) unpredictable (from right to left) [2].Loosely speaking, if one can predict b(xi) from b(xi+1) � � � b(x`(jsj)�1) then one can predictb(xi) given f(xi) (i.e., by computing xi+1; :::; x`(jsj)�1, and so obtaining b(xi+1) � � � b(x`(jsj))).But this contradicts the hard-core hypothesis.Step 2 Next, one uses Yao's observation by which a (polynomial-time constructible) ensemble ispseudorandom if and only if it is (next-bit) unpredictable (cf. [11, Sec. 3.3.5]).Clearly, if one can predict the next bit in an ensemble then one can distinguish this ensemblefrom the uniform ensemble (which is unpredictable regardless of computing power). However,here we need the other direction, which is less obvious. Still, one can show that (next bit)unpredictability implies indistinguishability from the uniform ensemble. Speci�cally, considerthe following \hybrid" distributions, where the ith hybrid takes the �rst i bits from thequestionable ensemble and the rest from the uniform one. It can be shown that distinguishingthe extreme hybrids implies distinguishing some neighboring hybrids, which in turn impliesnext-bit predictability (of the questionable ensemble).2.3.3 A general condition for the existence of pseudorandom generatorsRecall that given any one-way 1-1 function, we can easily construct a pseudorandom generator.Actually, the 1-1 requirement may be dropped, but the currently known construction { for thegeneral case { is quite complex. Still we do have.Theorem 2.9 (On the existence of pseudorandom generators [20]) Pseudorandom gener-ators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence of one-way functions,consider a pseudorandom generator G with stretch function `(n) = 2n. For x; y 2 f0; 1gn, de�nef(x; y) def= G(x), and so f is polynomial-time computable (and length-preserving). It must be thatf is one-way, or else one can distinguish G(Un) from U2n by trying to invert and checking the result:inverting f on its range distribution refers to the distribution G(Un), whereas the probability thatU2n has inverse under f is negligible. (Turning the above argument into a rigorous proof is left asan exercise.)The interesting direction is the construction of pseudorandom generators based on any one-wayfunction. In general (when f may not be 1-1) the ensemble f(Un) may not be pseudorandom, andso the construction in Proposition 2.8 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be16



used directly. One idea of [20] is to hash f(Un) to an almost uniform string of length related to itsentropy, using Universal Hash Functions [3]. (This is done after guaranteeing, that the logarithm ofthe probability mass of a value of f(Un) is typically close to the entropy of f(Un).)3 But \hashingf(Un) down to length comparable to the entropy" means shrinking the length of the output to,say, n0 < n. This foils the entire point of stretching the n-bit seed. Thus, a second idea of [20] isto compensate for the n � n0 loss by extracting these many bits from the seed Un itself. This isdone by hashing Un, and the point is that the (n� n0 + 1)-bit long hash value does not make theinverting task any easier. Implementing these ideas turns out to be more di�cult than it seems,and indeed an alternative construction would be most appreciated.

3 Speci�cally, given an arbitrary one way function f 0, one �rst constructs f by taking a \direct product" ofsu�ciently many copies of f 0. For example, for x1; :::; xn2 2 f0; 1gn, we let f(x1; :::; xn2) def= f 0(x1); :::; f 0(xn2).17



Lecture 3Pseudorandom Functions andConcluding Remarks3.1 De�nition and Construction of Pseudorandom FunctionsPseudorandom generators allow to explicitly generate (in an e�cient manner) large pseudorandomobjects using only a small amount of randomness. Pseudorandom functions (de�ned below) are evenmore powerful: They allow to implicitly generate (in an e�cient manner) huge pseudorandomobjects using the same small amount of randomness.Consider a family of functions, each mapping poly(n)-bit long strings to poly(n)-bit long strings,and being speci�ed by an n-bit long string called an index. We shall consider such families coupledwith an e�cient evaluation algorithm that, given the function's index and an argument, outputs thefunction's value at this argument. Such an algorithm coupled with an index, provides an implicitrepresentation of a (relatively) huge object. We shall say that such a family is pseudorandom iffunctions uniformly selected in it are indistinguishable from truly random functions by e�cientmachines that may obtain the function values at arguments of their choice. (Such machines arecalled oracle machines, and if M is such machine and f is a function, then Mf (x) denotes thecomputation of M on input x when M 's queries are answered by the function f .)De�nition 3.1 (pseudorandom functions [12]) A pseudorandom function (ensemble), with lengthparameters `D; `R :N!N , is a collection of functions F def= ffs : f0; 1g`D(jsj)!f0; 1g`R(jsj)gs2f0;1g�satisfying� (e�cient evaluation): There exists an e�cient (deterministic) algorithm that given a seed, s,and an `D(jsj)-bit argument, x, returns the `R(jsj)-bit long value fs(x).(Thus, the seed s is an \e�ective description" of the function fs.)� (pseudorandomness): For every probabilistic polynomial-time oracle machine, M , for everypositive polynomial p and all su�ciently large n's���Prf�Fn [Mf (1n) = 1]� Pr��Rn [M�(1n) = 1] ��� < 1p(n)where Fn denotes the distribution on fs 2 F obtained by selecting s uniformly in f0; 1gn, andRn denotes the uniform distribution over all functions mapping f0; 1g`D(n) to f0; 1g`R(n).18



Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uniformly selected among2n functions (of a pseudorandom ensemble) presents an input-output behavior that is indistin-guishable in poly(n)-time from the one of a function selected at random among all the 22n Booleanfunctions. Contrast this with the 2n pseudorandom sequences, produced by a pseudorandom gener-ator, that are computationally indistinguishable from a sequence selected uniformly among all the2poly(n) many sequences. Still pseudorandom functions can be constructed from any pseudorandomgenerator.Theorem 3.2 (How to construct pseudorandom functions [12]) Let G be a pseudorandomgenerator with stretching function `(n) = 2n. Let G0(s) (resp., G1(s)) denote the �rst (resp., last)jsj bits in G(s), and G�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)Then, the function ensemble ffs : f0; 1gjsj!f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), is pseudoran-dom with length parameters `D(n) = `R(n) = n.The above construction can be easily adapted to any (polynomially-bounded) length parameters`D; `R :N!N .Proof Sketch: The proof uses the hybrid technique: The ith hybrid, Hin, is a function ensembleconsisting of 22i�n functions f0; 1gn ! f0; 1gn, each de�ned by a sequence of 2i (random) n-bitstrings, denoted hs�i�2f0;1gi . The value of such function at x = ��, with j�j = i, equals G�(s�).The extreme hybrids correspond to our indistinguishability claim (i.e., H0n � fUn and Hnn � Rn),and neighboring hybrids correspond to our indistinguishability hypothesis (speci�cally, to the in-distinguishability of G(Un) and U2n under multiple samples).Summary: Pseudorandom functions can replace truly random functions in any e�cient application(e.g., most notably in cryptography). The advantage of such a replacement is that a pseudorandomfunction can be easily speci�ed and shared among parties, whereas a truly random function isinfeasible to specify and share. Speci�c examples where this issue is important are given next.3.2 Applications of Pseudorandom Functions3.2.1 Applications to CryptographyPseudorandom generators and functions are of key importance in Cryptography. Here we presenttwo central applications of pseudorandom functions to private-key cryptography, showing how toestablish private-key encryption and message authentication schemes.Private-key encryption schemes. Loosely speaking, the goal of private-key encryption is toprovide private communication between mutually trustful parties that communicate over a publicchannel that may be eavesdropped by an adversary. It is assumed that the parties have agreed ona secret (random) key prior to their interaction, and that the adversary does not know this key.Using this key and a corresponding encryption algorithm, one party may transform any plaintextthat it wishes to transmit into a ciphertext that is being sent over the public channel, and the otherparty may retrieve the plaintext from the ciphertext by using the same key and a corresponding
19



decryption algorithm. It should be infeasible for the adversary, seeing only the ciphertexts sent overthe channel, to learn anything about the plaintexts (beyond what it knows a priori).1Using pseudorandom functions, we implement private-key encryption as follows. The key, s,shared by the communicating parties is a random n-bit string specifying a pseudorandom function(as in De�nition 3.1). The parties may send encrypted messages to one another by xoring themessage with the value of fs at a random point. That is, to encrypt a plaintext m 2 f0; 1g`R(n),the sender (using key s) uniformly selects r 2 f0; 1g`D(n), and sends (r;m � fs(r)) to the receiver.The plaintext is recovered in the straightforward manner; that is, by using key s and the ciphertext(r; y), the receiver recovers the plaintext y � fs(r). Note that the security of this encryptionscheme relies on the fact that, for every computationally-feasible adversary (not only to adversarystrategies that were envisioned and tested), the values of the function fs on such r's look random.We comment that this encryption scheme withstands an attack in which, prior to being presentedthe challenge ciphertext, the adversary may ask the parties to encrypt (resp., decrypt) any plaintext(resp., ciphertext) of its choice relative to the same key.2Message authentication schemes. Loosely speaking, the goal of message authentication is toprovide reliable communication between mutually trustful parties that communicate over a publicchannel that may be tampered by an adversary. Again, the parties share a secret (random) keyagreed upon prior to their interaction, and the adversary does not know this key. Using thiskey and a corresponding tagging algorithm, one party may compute an authentication tag for themessage that it wishes to transmit and send this tag along with the message so that the otherparty may verify that the message was indeed sent by the legitimate sender (by using the same keyand a corresponding veri�cation algorithm). It should be infeasible for the adversary, seeing onlythe ciphertexts sent over the channel, to produce a new message and a tag that will be acceptedby the legitimate parties. This should hold even in case the adversary can make the party tagany message of its choice; even in such a case it should be infeasible for the adversary to form anaccepted authentication tag for any other message.Using pseudorandom functions, we implement a message authentication scheme as follows.Again the key, s, shared by the communicating parties is a random n-bit string specifying a pseu-dorandom function. Authentication tags are produced and veri�ed by applying the function fs tothe message. That is, to authenticate a message m 2 f0; 1g`R(n), the sender computes and sendsalong the tag fs(m). Veri�cation of the pair (m; t), relative to the key s, is done by checkingwhether t = fs(m).3.2.2 Other ApplicationsWe mention that pseudorandom functions have been used to derive negative results in computa-tional learning theory (cf. [34]). In particular, any concept class that contains a family of pseu-dorandom functions cannot be e�ciently learnable even under the uniform distribution and withthe help of membership queries.3 A di�erent set of negative results refers to Natural Proofs [30].1 The precise de�nition of the privacy condition is based on the \simulation paradigm" (cf. [19, 11]). This is donein a way analogous to the formulation of the zero-knowledge condition (cf. lecture notes on zero-knowledge proofs inthis book).2 Resilience to an even stronger attack in which the adversary's queries may depend on its challenge can beobtained by using a message authentication scheme.3 A concept class is a set of boolean functions. A learning algorithm is given oracle access to any function inthe class and is required to output a description of a function that is close to the target function (being queried),where distance between functions is de�ned as the fraction of inputs on which they agree. Clearly, no e�cientalgorithm given oracle access to a pseudorandom function can output a function that agrees with the target function20



These are circuit lower bound proofs that proceed by identifying a \natural" superset of the set offunctions computed by low complexity circuits.4 Such circuit lower bounds (i.e., Natural Proofs)cannot exist for complexity classes containing a family of pseudorandom functions (see [30]).3.3 Concluding RemarksWe start with a high-level discussion of the applicability of pseudorandom generators, and turn toa \philosophical" discussion of the nature of pseudorandom generators. We conclude this lectureseries with comments regarding generalizations of the notion of pseudorandom generators (i.e.,other instantiations of the main paradigm underlying this lecture series).3.3.1 The applicability of pseudorandom generatorsAs discussed above, pseudorandom generators and functions are of key importance to Cryptography.Here we wish to discuss the applicability of pseudorandom generators to algorithmic design at large.Randomness is playing an increasingly important role in computation: It is frequently used inthe design of sequential, parallel and distributed algorithms, and is of course central to cryptogra-phy. Whereas it is convenient to design such algorithms making free use of randomness, it is alsodesirable to minimize the usage of randomness in real implementations (since generating perfectlyrandom bits via special hardware is quite expensive). Thus, pseudorandom generators (as de�nedabove) are a key ingredient in an \algorithmic tool-box" { they provide an automatic compiler ofprograms written with free usage of randomness into programs that make an economical use ofrandomness.Indeed, \pseudo-random number generators" have appeared with the �rst computers. However,typical implementations use generators that are not pseudorandom according to the above de�ni-tion. Instead, at best, these generators are shown to pass some ad-hoc statistical test (cf. [21]).We warn that the fact that a \pseudo-random number generator" passes some statistical tests,does not mean that it will pass a new test and that it is good for a future (untested) application.Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide generalresults of the type stated above (i.e., of the form \for all practical purposes using the output ofthe generator is as good as using truly unbiased coin tosses"). In contrast, the approach encom-passed in De�nition 2.1 aims at such generality, and in fact is tailored to obtain it: The notionof computational indistinguishability, which underlines De�nition 2.1, covers all possible e�cientapplications postulating that for all of them pseudorandom sequences are as good as truly randomones.3.3.2 The intellectual contents of pseudorandom generatorsWe shortly discuss some intellectual aspects of pseudorandom generators as de�ned above.Behavioristic versus Ontological. Our de�nition of pseudorandom generators is based onthe notion of computational indistinguishability. The behavioristic nature of the latter notionon signi�cantly more than half of the inputs.4 The natural superset should have small measure (within the set of all functions), and should have a low complexitydecision procedure. That is, given the truth-table of a function, the procedure should determine whether or not thefunction belongs to the natural set. Note that the complexity of the decision procedure is viewed in terms of thelength of the truth-table of the function, which is exponential in the length of the input to the function. Currentlyknown circuit lower bounds tend to be natural with respect to very low complexity (of this decision procedure) [30].21



is best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness.Loosely speaking, a string is Kolmogorov-random if its length equals the length of the shortestprogram producing it. This shortest program may be considered the \true explanation" to thephenomenon described by the string. A Kolmogorov-random string is thus a string that doesnot have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplestexplanation of a phenomenon may be viewed as an ontological approach. In contrast, consideringthe e�ect of phenomena (on an observer), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that are not uniform (andare not even statistically close to a uniform distribution) but nevertheless are indistinguishable froma uniform distribution by any e�cient procedure [35, 13]. Thus, distributions that are ontologicallyvery di�erent, are considered equivalent by the behavioristic point of view taken in the de�nitionsabove.A relativistic view of randomness. Pseudorandomness is de�ned above in terms of its observer.It is a distribution that cannot be told apart from a uniform distribution by any e�cient (i.e.polynomial-time) observer. However, pseudorandom sequences may be distinguished from randomones by in�nitely powerful computers (not at our disposal!). Speci�cally, an exponential-timemachine can easily distinguish the output of a pseudorandom generator from a uniformly selectedstring of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomness issubjective to the abilities of the observer.Randomness and Computational Di�culty. Pseudorandomness and computational di�cultyplay dual roles: The de�nition of pseudorandomness relies on the fact that putting computationalrestrictions on the observer gives rise to distributions that are not uniform and still cannot bedistinguished from uniform. Furthermore, the construction of pseudorandom generators rely onconjectures regarding computational di�culty (i.e., the existence of one-way functions), and thisis inevitable: given a pseudorandom generator, we can construct one-way functions. Thus, (non-trivial) pseudorandomness and computational hardness can be converted back and forth.3.3.3 A General ParadigmPseudorandomness as surveyed in this lecture series can be viewed as an important special case ofa general paradigm. A generic formulation of pseudorandom generators consists of specifying threefundamental aspects { the stretching measure of the generators; the class of distinguishers thatthe generators are supposed to fool (i.e., the algorithms with respect to which the computationalindistinguishability requirement should hold); and the resources that the generators are allowed touse (i.e., their own computational complexity). In the above presentation we focused on polynomial-time generators (thus having polynomial stretching measure) that fool any probabilistic polynomial-time observers. A variety of other cases are of interest too, and we brie
y discuss some of them.For more details, see [10, Chap. 3].Weaker notions of computational indistinguishability. Whenever the aim is to replacerandom sequences utilized by an algorithm with pseudorandom ones, one may try to capitalize onknowledge of the target algorithm. Above we have merely used the fact that the target algorithmruns in polynomial-time. However, for example, if we know that the algorithm uses very littlework-space, then we may be able to do better. Similarly we may be able to do better if we knowthat the analysis of the algorithm depends only on some speci�c properties of the random sequenceit uses (e.g., pairwise independence of its elements). In general, weaker notions of computationalindistinguishability such as fooling space-bounded algorithms, constant-depth circuits, and even22



speci�c tests (e.g., testing pairwise independence of the sequence), arise naturally: Generatorsproducing sequences that fool such tests are useful in a variety of applications { if the applicationutilizes randomness in a restricted way, then feeding it with sequences of low randomness-qualitymay do. Needless to say, the author advocates a rigorous formulation of the characteristics of suchapplications and rigorous constructions of generators that fool the type of tests that emerge.Alternative notions of generator e�ciency. The previous paragraph has focused on one as-pect of the pseudorandomness question; that is, the resources or type of the observer (or potentialdistinguisher). Another important question is whether such pseudorandom sequences can be gen-erated from much shorter ones, and at what cost (or complexity). Above, we have required thegeneration process to be at least as e�cient as the e�ciency limitations of the distinguisher.5 Thisseems indeed \fair" and natural. Allowing the generator to be more complex (i.e., use more time orspace resources) than the distinguisher seems unfair, but still yields interesting consequences in thecontext of trying to \de-randomize" randomized complexity classes. For example, one may considergenerators working in time exponential in the length of the seed. The bene�t of this relaxationis that constructing exponential-time generators may be easier than constructing polynomial-timeones. In some cases we lose nothing by using such a relaxation (i.e., allowing exponential-timegenerators). To see why, we consider a typical derandomization argument, proceeding in two steps:First one replaces the true randomness of the algorithm by pseudorandom sequences generatedfrom much shorter seeds, and next one goes deterministically over all possible seeds and looks forthe most frequent behavior of the modi�ed algorithm. In such a case the deterministic complexityis anyhow exponential in the seed length. For further details, see the next lecture series.

5In fact, we have required the generator to be more e�cient than the distinguisher: the former was required tobe a �xed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial runningtime. 23



AppendixProof of the existence of a generic hard-coreTheorem 2.7, conjectured by Levin [24] and proven by Goldreich and Levin [15], relates two com-putational tasks: The �rst task is inverting a function f ; namely given y �nd an x so that f(x) = y.The second task is predicting, with non-negligible advantage, the exclusive-or of a subset of thebits of x when only given f(x). More precisely, it has been proved that if f cannot be e�cientlyinverted then given f(x) and r it is infeasible to predict the inner-product mod 2 of x and r (withsuccess probability better than the obvious).The proof presented here is not the original one presented in [15] (see generalization in [17]),but rather an alternative suggested by Charlie Racko�. The alternative proof, inspired by [1], hastwo main advantages over the original one: It is simpler to explain, and it leads to better security(i.e., a more e�cient reduction of inverting f to predicting the inner-product) [25].Theorem 3.3 (Theorem 2.7 { restated): Let b(x; r) denote the inner-product mod 2 of the binaryvectors x and r. Suppose we have oracle access to a random process bx : f0; 1gn ! f0; 1g, so thatPrr2f0;1gn [bx(r) = b(x; r)] � 12 + �where the probability is taken uniformly over the internal coin tosses of bx and all possible choicesof r 2 f0; 1gn. Then there exists an algorithm that, in time polynomial in n=� and with probabilityat least poly(�=n), outputs x.Theorem 2.7 is derived from the above by using standard arguments. We prove this fact �rst.Proposition 3.4 Theorem 3.3 implies Theorem 2.7.Proof: We assume for contradiction the existence of an e�cient algorithm predicting the inner-product with advantage which is not negligible, and derive an algorithm that inverts f with related(i.e., non-negligible) success probability. This contradicts the hypothesis that f is a one-way func-tion. Thus, the proof uses a \reducibility argument" { that is, we reduce the task of inverting f tothe task of predicting b(x; r) from (f(x); r).Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries to predictthe inner-product (mod 2) of x and r. Denote by �G(n) the (overall) advantage of algorithm G inpredicting b(x; r) from f(x) and r, where x and r are uniformly chosen in f0; 1gn. Namely,�G(n) def= Pr [G(f(Xn); Rn) = b(Xn; Rn)]� 12where here and in the sequel Xn and Rn denote two independent random variables, each uniformlydistributed over f0; 1gn. In the sequel we shorthand �G by �.24



Our �rst observation is that, on at least an �(n)2 fraction of the x's of length n, algorithm G hasan �(n)2 advantage in predicting b(x;Rn) from f(x) and Rn. Namely,Claim: There exists a set Sn � f0; 1gn of cardinality at least �(n)2 � 2n such that for every x 2Sn, itholds that s(x) def= Pr[G(f(x); Rn)=b(x;Rn)] � 12 + �(n)2Here the probability is taken over all possible values of Rn and all internal coin tosses of algorithmG, whereas x is �xed.Proof: The observation follows by an averaging argument. Namely, write Exp(s(Xn)) = 12 + �(n),and apply Markov Inequality. 2Thus, we restrict our attention to x's in Sn. For each such x, the conditions of Theorem 3.3 hold,and so within time poly(n=�(n)) and with probability at least 1=2 we retrieve a list of stringscontaining x. Contradiction to the one-wayness of f follows, since the probability we invert f onuniformly selected x is at least 12 � Pr[x2Sn] � �(n)4 .A motivating discussionLet s(x) def= Pr[bx(r) = b(x; r)], where r is uniformly distributed in f0; 1gjxj. Then, by the hypothesisof Theorem 3.3, s(x) � 12 + �. Suppose, for a moment, that s(x) > 34+�. In this case, retrievingx by querying the oracle bx is quite easy. To retrieve the ith bit of x, denoted xi, we uniformlyselect r 2 f0; 1gn, and obtain bx(r) and bx(r� ei), where ei is an n-dimensional binary vector with1 in the ith component and 0 in all the others, and v� u denotes the addition mod 2 of the binaryvectors v and u. Clearly, if both bx(r) = b(x; r) and bx(r � ei) = b(x; r � ei) thenbx(r)� bx(r � ei) = b(x; r)� b(x; r � ei)= b(x; ei)= xiThe probability that both equalities hold (i.e., both bx(r) = b(x; r) and bx(r� ei) = b(x; r � ei)) isat least 1� 2 � (14 � �) = 12 + 2�. Hence, repeating the above procedure su�ciently many times andruling by majority we retrieve xi with very high probability. Similarly, we can retrieve all the bitsof x, and hence obtain x itself. However, the entire analysis was conducted under (the unjusti�able)assumption that s(x) > 34+�, whereas we only know that s(x) > 12+�.The problem with the above procedure is that it doubles the original error probability of theoracle bx (on random queries). Under the unrealistic assumption, that the bx's error on such inputsis signi�cantly smaller than 14 , the \error-doubling" phenomenon raises no problems. However, ingeneral (and even in the special case where bx's error is exactly 14) the above procedure is unlikelyto yield x. Note that the error probability of bx can not be decreased by querying bx severaltimes on the same instance (e.g., bx may always answer correctly on three quarters of the inputs,and always err on the remaining quarter). What is required is an alternative way of using bx {a way that does not double the original error probability of bx. The key idea is to generate ther's in a way that requires querying bx only once (e.g., on (x; r � ei)) per each r (and i), insteadof twice. The good news are that the error probability is no longer doubled, since we will onlyuse bx to get an \estimate" of b(x; r � ei). The bad news are that we still need to know b(x; r),and it is not clear how we can know b(x; r) without querying bx. The answer is that we can guessb(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for one r (or logarithmically in25



jxj many r's), but the problem is that we need to know (and hence guess) b(x; r) for polynomiallymany r's. An obvious way of guessing these b(x; r)'s yields an exponentially vanishing successprobability. The solution is to generate these polynomially many r's so that, on one hand they are\su�ciently random" whereas on the other hand we can guess all the b(x; r)'s with non-negligiblesuccess probability. Speci�cally, generating the r's in a particular pairwise independent manner willsatisfy both (seemingly contradictory) requirements. We stress that in case we are successful (inour guesses for the b(x; r)'s), we can retrieve x with high probability. Hence, we retrieve x withnon-negligible probability.A word about the way in which the pairwise independent r's are generated (and the correspond-ing b(x; r)'s are guessed) is indeed in place. To generatem = poly(n=�) many r's, we uniformly (andindependently) select l def= log2(m + 1) strings in f0; 1gn. Let us denote these strings by s1; :::; sl.We then guess b(x; s1) through b(x; sl). Let us denote these guesses, which are uniformly (andindependently) chosen in f0; 1g, by �1 through �l. Hence, the probability that all our guesses forthe b(x; si)'s are correct is 2�l = 1poly(n=�) . The di�erent r's correspond to the di�erent non-emptysubsets of f1; 2; :::; lg. We compute rJ def= Lj2J sj. The reader can easily verify that the rJ 's arepairwise independent and each is uniformly distributed in f0; 1gn. The key observation is thatb(x; rJ) = b(x;Mj2J sj) =Mj2J b(x; sj)Hence, our guesses for the b(x; rJ)'s are the corresponding Lj2J �j's, and with non-negligibleprobability all our guesses are correct.Back to the formal argumentFollowing is a formal description of the recovering algorithm, denoted A. On input n and � (andoracle access to bx), algorithm A sets l def= dlog2(n � ��2+1)e. Algorithm A uniformly and indepen-dently select s1; :::; sl 2 f0; 1gn, and �1; :::; �l 2 f0; 1g. It then computes, for every non-empty setJ � f1; 2; :::; lg, a string rJ  Lj2J sj and a bit �J  Lj2J �j . For every i2f1; :::; ng and everynon-empty J � f1; ::; lg, algorithm A computes zJi  �J � bx(rJ � ei). Finally, algorithm A sets zito be the majority of the zJi values, and outputs z = z1 � � � zn.6Clearly, A makes n � 2l = n2=�2 oracle calls to bx, and the same amount of other elementarycomputations. Following is a detailed analysis of the success probability of algorithm A. We startby showing that, in case all the �j's are correct (i.e., equal the corresponding b(x; sj)'s), withconstant probability, zi = xi for all i 2 f1; :::; ng. This is proven by bounding from below theprobability that the majority of the zJi 's equals xi.Claim: For every 1� i�n,Pr �jfJ : b(x; rJ)�bx(rJ � ei) = xigj > 12 � (2l � 1)� > 1� 14nwhere rJ def= Lj2J sj and the sj's are independently and uniformly chosen in f0; 1gn.Proof: For every J , de�ne a 0-1 random variable �J , so that �J equals 1 if and only if b(x; rJ)�bx(rJ�ei) = xi. The reader can easily verify that each rJ is uniformly distributed in f0; 1gn. It follows that6 An alternative implementation of the above ideas results in an alternative algorithm, denoted A0. Rather thanselecting at random a setting of �1; :::; �l 2 f0; 1g, algorithm A0 tries all possible values for �1; :::; �l. It outputs a listof 2l candidates z's, one per each of the possible settings of �1; :::; �l 2 f0; 1g. It can be shown that, with probabilityat least 3=4, the list output by A0 contains x. 26



each �J equals 1 with probability 12+�. We show that the �J 's are pairwise independent by showingthat the rJ 's are pairwise independent. For every J 6= K we have, without loss of generality, j 2 Jand k 2 K n J . Hence, for every �; � 2 f0; 1gn, we havePr hrK=� j rJ=�i = Pr hsk=� j sj=�i= Pr hsk=�i= Pr hrK=�iand pairwise independence of the rJ 's follows. Let m def= 2l � 1. Using Chebyshev's Inequality, weget Pr "XJ �J � 12 �m# � Pr"�����XJ �J � (0:5+�) �m����� � � �m#< maxJfVar(�J)g��2 � (n=�2)< 14nThe claim follows. 2Recall that if �j = b(x; sj), for all j's, then �J = b(x; rJ ) for all non-empty J 's. In this case zoutput by algorithm A equals x, with probability at least 3=4. However, the �rst event happenswith probability 2�l = 1n=�2 independently of the events analyzed in the Claim. Hence, algorithmA recovers x with probability at least 34 � �2n . Theorem 3.3 follows.
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