
ContentsPseudorandomness { Part II 1Introduction 1Lecture 1. Deterministic Simulation of Randomized Algorithms 31. Probabilistic Algorithms versus Deterministic Algorithms 32. De-randomization Under Complexity Assumptions 5Lecture 2. The Nisan-Wigderson Generator 91. Pseudorandom Generators 92. The two main theorems 103. Error-Correcting Codes and Worst-Case to Average-Case Reductions 114. The Nisan-Wigderson Construction 12Lecture 3. Analysis of the Nisan-Wigderson Generator 17Lecture 4. Randomness Extractors 211. Use of Weak Random Sources 212. Extractors 223. Applications 224. An Extractor from Nisan-Wigderson 23Bibliography 25

1

IAS/Park City Mathematics SeriesVolume 00, 0000
Pseudorandomness { Part IILuca TrevisanScribe: Kumar SaurabhIntroductionAbout this PartThis series of lectures shows how pseudorandom generators can be applied to thetask of deterministically (and e�ciently) simulating probabilistic algorithms, andto the task of converting biased distributions into almost uniform distributions.The applicability of pseudorandom generators to the deterministic simulationof probabilistic algorithms was already noticed by Yao [Yao82]. Recall that, inPart I, a pseudorandom generator was de�ned as a polynomial time procedurewhose output is indistinguishable from uniform by adversaries running in poly-nomial time (where the degree of the polynomial can be arbitrarily large). Asobserved by Nisan and Wigderson [NW94], this de�nition imposes requirementsthat are not necessary in derandomization applications. In fact, it is su�cient toconstruct generators that are secure against adversaries running in some speci�edpolynomial time (of �xed degree) and, more dramatically, it is admissible that thegenerator runs in time exponential in its input seed length. This relaxed require-ments liberated the construction of pseudorandom generators from the frameworkof one-way functions, and Nisan and Wigderson [NW94] were able to present aconstruction that gave very e�cient derandomization under complexity assumptionabout the class EXP of decision problems solvable in exponential time. A series ofsubsequent works, most notably [BFNW93, Imp95, IW97, IW98] showed howto use weaker complexity assumptions to achieve the same derandomization resultsof [NW94].The task of converting biased distributions into almost uniform distributionsis performed by procedures called randomness extractors [Zuc96, NZ96]. Wheninterpreted in the proper way, the pseudorandom generator construction of [NW94]can also be used to construct e�cient randomness extractors. This application hasbeen discovered only recently [Tre99], and it is the base of most of the best current1Computer Science Division, U.C. Berkeley.E-mail address: luca@eecs.berkeley.edu. c0000 American Mathematical Society1

2 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIextractor constructions, such as the ones in [RRV99] and [ISW00] (but not theone in [RSW00]).ConventionsIn the following lectures we will refer to \algorithms" and to their \running time"on particular inputs, without explicitly �xing a model of computation. This isdone intentionally, to point out the model-independence of most of the results.The reader can instantiate \algorithm" and \running time" using any model of hisor her choice that is polynomial-time equivalent to, say, single-tape deterministicTuring machines.We will also need, at some point, to use a \non-uniform" measure of complexity.Here, for concreteness, we will use Boolean circuits with gates having fan-in 2 andarbitrary fan-out (see, e.g., [Pap94] for a description of this model). We will needthe following facts about such circuits.� If a circuit has s gates, then it can be described using O(s log s) bits. Inparticular, there are 2O(s log s) circuits of size � s.� Every Boolean function on n inputs can be computed by a circuit of sizeO(2n). (In fact, a stronger result is known, but this will be enough for ourpurposes.)Further ReadingA general perspective on pseudorandomness, derandomization, and randomnessextraction is given by Goldreich in [Gol99, Chapter 3].The original paper by Nisan and Wigderson [NW94] is still one of the bestplaces to read about their construction; more detailed presentations will be foundin the upcoming journal versions of [Tre99, RRV99].Two alternative proofs of the major result of [IW97] appear in [STV99], ofwhich a journal version is also upcoming. The proofs in [STV99] are somewhatsimpler than the original one in [IW97].A survey paper by Nisan [Nis96] (see also [NTS98]) gives an excellent intro-duction to the problem of random extraction, to the applications of randomnessextractors, and to some techniques that are used to construct them. Probably[Tre99] and [RRV99] are the best places to read about the connection betweenpseudorandom generation and randomness extraction (Nisan's survey was writtenbefore the connection was discovered).An interesting development not covered in these notes is the use of the Nisan-Wigderson generator to de-randomize bounded-round interactive proofs. This di-rection has been explored in [AK97, KvM99], with surprising results.

LECTURE 1Deterministic Simulation of Randomized Algorithms1. Probabilistic Algorithms versus Deterministic AlgorithmsA probabilistic algorithm A(�; �) is an algorithm that takes two inputs x and r,where x is an instance of some problem that we want to solve, and r is the outputof a random source. A random source is an idealized device that outputs a sequenceof bits that are uniformly and independently distributed. For example the randomsource could be a device that tosses coins, observes the outcome, and outputs it. Aprobabilistic algorithm A is good if it is e�cient and if, say, for every x,Prr [A(x; r) = right answer for x] � 34We will typically restrict to the case where A solves a decision problem (e.g. ittests whether a given number is prime). In this case we say that a language L isin BPP if there is a polynomial time algorithm A(�; �) (polynomial in the length ofthe �rst input) such that for every xPrr [A(x; r) = �L(x)] � 34or, said, another way, x 2 L) Prr [A(x; r) = 1] � 34and x 62 L) Prr [A(x; r) = 1] � 14 :The choice of the constant 3=4 is clearly quite arbitrary. For any constant 1=2 <p < 1, if we had de�ned BPP by requiring the probabilistic algorithm to be correctwith probability st least p, we would have given an equivalent de�nition. In fact,for any polynomial p, it would have been equivalent to de�ne BPP by asking thealgorithm to be correct with probability at least 1=2 + 1=p(n), where n is the sizeof the input, and it would have also been equivalent if we had asked the algorithmto be correct with probability at least 1�1=2p(n). That is, for any two polynomialsp and q, if for a decision problem L we have a probabilistic polynomial time A thatsolves L on every input of length n with probability at least 1=2 + 1=p(n), then3

4 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIthere is another probabilistic algorithm A0, still running in polynomial time, thatsolves L on every input of length n with probability at least 1� 2�q(n).For quite a few interesting problems, the only known polynomial time algo-rithms are probabilistic. A well-known example is the problem of testing whethera given integer is a prime number or not (note that in this case the size of theinput is the number of digits of the integer). Another example is the problem ofextracting \square roots" modulo a prime, i.e. to �nd solutions, if they exist, toequations of the form x2 = a (mod p) where p and a are given, and p is prime.More generally, there are probabilistic polynomial time algorithms to �nd roots ofpolynomials modulo a prime. There is no known deterministic polynomial timealgorithm for any of the above problems.It is not clear whether the existence of such probabilistic algorithms suggeststhat probabilistic algorithms are inherently more powerful than deterministic ones,or that we have not been able yet to �nd the best possible deterministic algorithmsfor these problems. In general, it is quite an interesting question to determine whatis the relative power of probabilistic and deterministic computations. This questionis the main motivations for the results described in this Part.1.1. A trivial deterministic simulationLet A be a probabilistic algorithm that solves a decision problem L. On input x oflength n, say that A uses a random string r of length m = m(n) and runs in timeT = T (n) (note that m � T).It is easy to come up with a deterministic algorithm that solves L in time2m(n)T (n). On input x, compute A(x; r) for every r. The correct answer is the onethat comes up the majority of the times, so, in order to solve our problem, we justhave to keep track, during the computation of A(x; r) for every r, of the number ofstrings r for which A(x; r) = 1 and the number of strings r for which A(x; r) = 0.Notice that the running time of the simulation depends exponentially on thenumber of random bits used by A, but only polynomially on the running time of A.In particular, if A uses a logarithmic number of random bits, then the simulationis polynomial. However, typically, a probabilistic algorithm uses a linear, or more,number of random bits, and so this trivial simulation is exponential. As we will seein the next section, it is not easy to obtain more e�cient simulations.1.2. Exponential gaps between randomized and deterministic proceduresFor some computational problems (e.g. approximating the size of a convex body)there are probabilistic algorithms that work even if the object on which they operateis exponentially big and given as a black box; in some cases one can prove thatdeterministic algorithms cannot solve the same problem in the same setting, unlessthey use exponential time. Let us see a particularly clean (but more arti�cial)example of this situation.Suppose that there is some function f : f0; 1gn�f0; 1gn ! f0; 1g that is givenas an oracle; we want to devise an algorithm that on input x �nds an approximation(say, to within an additive factor 1=10) to the value Pry [f(x; y) = 1]. A probabilisticalgorithm would pick O(1) points y1; : : : ; yt at random, evaluate f(x; yi), and thenoutput the fraction of i such that f(x; yi) = 1. This will be an approximationto within 1=10 with good probability. However a deterministic subexponentialalgorithm, given x, can only look at a negligible fraction of the values f(x; y).

LECTURE 1. DETERMINISTIC SIMULATION OF RANDOMIZED ALGORITHMS 5Suppose that f is zero everywhere. Now consider the function g(x; y) that is equalto f on all the points that our algorithm queries, and is 1 elsewhere (note that, bythis de�nition, the queries of the algorithm on input x will be the same for f andg). If the algorithm takes sub-exponential time, g is almost everywhere one, yet thealgorithm will give the same answer as when accessing f , which is everywhere zero.If our algorithm makes less than 2n�1 oracle queries, it cannot solve the problemwith the required accuracy.2. De-randomization Under Complexity AssumptionsIt is still not known how to improve, in the general case, the deterministic simula-tion of Section 1.1, and the observation of Section 1.2 shows one of the di�cultiesin achieving an improvement. If we want to come up with a general way of trans-forming probabilistic procedures into deterministic sub-exponential procedures, thetransformation cannot be described and analyzed by modeling in a \black box" waythe probabilistic procedure.1 If we want to deterministically and sub-exponentiallysimulate BPP algorithms, we have to exploit the fact that a BPP algorithm A(�; �)is not an arbitrary function, but an e�ciently computable one, and this is di�cultbecause we still have a very poor understanding of the nature of e�cient computa-tions.The results described in these notes show that it is indeed possible to determin-istically simulate probabilistic algorithms in sub-exponential (or even polynomial)time, provided that certain complexity-theoretic assumptions are true. It is quiteusual in complexity theory that, using reductions, one can show that the answerto some open question is implied by (or even equivalent to) the answer to someother question, however the nature of the results of these notes is somewhat un-usual. Typically a reduction from a computational problem A to a problem Bshows that if B has an e�cient algorithm then A has also an e�cient algorithm,and, by counterpositive, if A is intractable then B is also intractable. In general,using reductions one shows that algorithmic assumptions imply algorithmic conse-quences, and intractability assumptions imply intractability consequences. In thesenotes we will see instead that the existence of e�cient derandomized algorithms isimplied by the intractability of some other problem, so that a hardness conditionimplies an algorithm consequence.In the next section we will introduce some notation about computational prob-lems and complexity measures, and then we will state some results about conditionalde-randomization.2.1. Formal De�nitions of Complexity Measures and Complexity ClassesFor a decision problem L and an integer n we denote by Ln the restriction of Lto inputs of length n. It will be convenient to think of Ln as a Boolean functionLn : f0; 1gn ! f0; 1g (with the convention that x 2 Ln if and only if Ln(x) = 1).1More precisely, it is impossible to have a sub-exponential time deterministic \universal deran-domization procedure" that given x and oracle access to an arbitrary function A(�; �) outputs 1when Prr [A(x; r) = 1] � 3=4 and outputs 0 when Prr [A(x; r) = 1] � 1=4. In fact, more generally, itis impossible to give sub-exponential time algorithms for all BPP problems by using \relativizing"techniques. It is beyond the scope of these notes to explain what this means, and why it is moregeneral. \Relativizations" are discussed in [Pap94], where it is possible to �nd pointers to therelevant literature.

6 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIFor a function f : f0; 1gn ! f0; 1g, consider the size of the smallest circuitthat solves f ; denote this number by CC(f). By de�nition, we have that if C is acircuit with n inputs of size less than CC(f) then there exists an x 2 f0; 1gn suchthat C(x) 6= f(x).Consider now, for every n, what is the minimum s such that there is a circuitC of size s such that Prx2f0;1gn[C(x) = f(x)] � 1=2 + 1=s; denote this number byH(f).Recall that DTIME(T (n)) is the class of decision problems that can be solvedby deterministic algorithms running in time at most T (n) on inputs of length n.We have the classes E = DTIME(2O(n)) and EXP = DTIME(2nO(1)).2.2. Hardness versus RandomnessFrom our previous arguments, we have BPP � EXP. Since there are settingswhere probabilistic procedures require exponential time to be simulated, one wouldconjecture that BPP 6� 2no(1) ; on the other hand, BPP seems to still represent a classof feasible computations, and it would be very surprising if BPP = EXP. As we willsee in a moment, something is wrong with the above intuition. Either BPP = EXP,which sounds really impossible, or else it must be the case that BPP has sub-exponential time deterministic algorithms (that will work well only on average, butthat would be quite remarkable enough).Theorem 1 ([IW98]). Suppose BPP 6= EXP; then for every BPP language L andevery " > 0 there is a deterministic algorithm A that works in time 2n" and, forin�nitely many n, solves L on a fraction 1� 1=n of the inputs of length n.This gives a non-trivial simulation of BPP under an uncontroversial assumption.We can also get an optimal simulation of BPP under an assumption that is muchstronger, but quite believable.Theorem 2 ([IW97]). Suppose there is a problem L in E and a �xed � > 0 suchthat, for all su�ciently large n, CC(Ln) � 2�n; then P = BPP.We will call the statement \there is a problem L in E and a �xed � > 0 suchthat, for all su�ciently large n, CC(Ln) � 2�n" the \IW assumption." Note thatif the IW assumption is true, then it is true in the case whereL = f(M;x; 1k) : machine M halts within 2k steps on input x gNotice also that L cannot be solved by algorithms running in time 2o(n), and so itwould be a little bit surprising if it could be solvable by circuits of size 2o(n), becauseit would mean that, for general exponential time computations, non-uniformity buysmore than a polynomial speed-up. In fact it would be very surprising if circuits ofsize 2:99n existed for L.The two theorems that we just stated are the extremes of a continuum of resultsshowing that by making assumptions on the hardness of problems in E and EXP itis possible to devise e�cient deterministic algorithms for all BPP problems. Thestronger the assumption, the more e�cient the simulation.Notice that the assumption in Theorem 2 is stronger than the assumptionin Theorem 1 in two ways, and that, similarly, the conclusion of Theorem 2 isstronger than the conclusion in Theorem 1 in two ways. On the one hand, the

LECTURE 1. DETERMINISTIC SIMULATION OF RANDOMIZED ALGORITHMS 7assumption in Theorem 2 refers to circuit size, that is, to a non-uniform measureof complexity, whereas the assumption in Theorem 1 uses a uniform measure ofcomplexity (running time of probabilistic algorithms). This di�erence accounts forthe fact that the conclusion of Theorem 2 gives an algorithm that works for allinputs, while the conclusion of Theorem 1 gives an algorithm that works only formost inputs. The other di�erence is that Theorem 2 assumes exponential hardness,while Theorem 2 assumes only super-polynomial hardness. This is reected in therunning time of the consequent deterministic simulations (respectively, polynomialand sub-exponential).When one makes the non-uniform assumption that there is a problem in E thatrequires circuits of size s(n), then the consequence is a deterministic simulation ofBPP in time roughly 2s�1(nO(1)) [ISW99]. So if one assumes that E requires super-polynomial circuits, BPP can be simulated in time 2no(1) , if one assumes that Erequires circuits of size 2
(n) then the simulation runs in time nO(1), if one assumesthat E requires circuits of size nlogn then the simulation runs in time 22O(plogn) , andso on. The result of [IW98] does not scale up so well when one is willing to makestronger uniform assumptions. In particular, the following is an open question.Conjecture 3. Suppose E 6� T�>0BPTIME(2�n); then for every BPP languageL there is a deterministic polynomial time algorithm A that, for in�nitely many n,solves L on a fraction 1� 1=n of the inputs of length n.

LECTURE 2The Nisan-Wigderson GeneratorIn this lecture we will review the notion of a pseudorandom generator, andwe will see that in order to prove Theorem 2 it is enough to prove that the IWassumption implies the existence of pseudorandom generators with certain param-eters. We will then state two results that, combined, give such an implication. Oneof these results is the Nisan-Wigderson pseudorandom generator construction. Wewill start developing some intuition about this construction, and we will analyze itin the next lecture.1. Pseudorandom GeneratorsWe say that a function G : f0; 1gt ! f0; 1gm is a (s; ")-pseudorandom generator iffor every circuit D of size � s we havejPrr [D(r) = 1]�Prz [D(G(z)) = 1]j � "Suppose that we have a probabilistic algorithm A such that for inputs x oflength n the computation A(x; �) can be performed by a circuit of size s(n); supposethat for every x we have Prr [A(x; r) = right answer] � 3=4, and suppose that wehave a (s; 1=8) pseudorandom generator G : f0; 1gt(n) ! f0; 1gm(n). Then we cande�ne a new probabilistic algorithm A0 such that A0(x; z) = A(x;G(z)). It is easyto observe that for every x we havePrz [A0(x; z) = right answer] � 5=8and that, using the trivial derandomization we can get a deterministic algorithmA00 that always works correctly and whose running time is 2t times the sum of therunning time of A plus the running time of G.If t is logarithmic in m and s, and if G is computable in poly(m; s) time, thenthe whole simulation runs in deterministic polynomial time. Notice also that ifwe have a (s; ")-pseudorandom generator G : f0; 1gt ! f0; 1gm, then for everym0 � m we also have, for a stronger reason, a (s; ") pseudorandom generatorG0 : f0; 1gt ! f0; 1gm0 (G0 just computes G and omits the last m�m0 bits of theoutput). So there will be no loss in generality if we consider only generators for thespecial case where, say, s = 2m. (This is not really necessary, but it will help reduce9

10 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIthe number of parameters in the statements of theorems.) We have the followingeasy theorem.Theorem 4. Suppose there is a family of generators Gm : f0; 1gO(logm) ! f0; 1gmthat are computable in poly(m) time and that are (2m; 1=8)-pseudorandom; thenP = BPP.Of course this is only a su�cient condition. There could be other approachesto proving (conditionally) P = BPP, without passing through the construction ofsuch strong generators. Unfortunately we hardly know of any other approach, andanyway the (arguably) most interesting results are proved using pseudorandomgenerators.12. The two main theorems2.1. The Nisan-Wigderson TheoremTheorem 5 (Special case of [NW94]). Suppose there is L 2 E and � > 0 suchthat, for all su�ciently large n, H(Ln) � 2�n; then there is a family of generatorsGm : f0; 1gO(logm) ! f0; 1gm that are computable in poly(m) time and that are(2m; 1=8)-pseudorandom (in particular, P = BPP).Notice the strength of the assumption. For almost every input length n, ourproblem has to be so hard that even circuits of size 2�n have to be unable to solvethe problem correctly on more than a fraction 1=2 + 2��n of the inputs. A circuitof size 1 can certainly solve the problem on a fraction at least 1/2 of the inputs(either by always outputting 0 or by always outputting 1). Furthermore, a circuitof size 2n always exist that solves the problem on every input. A circuit of size2�n can contain, for example, the right solution to our problem for every inputwhose �rst (1 � �)n bits are 0; the circuit can give the right answer on these 2�ninputs, and answer always 0 or always 1 (whichever is better) on the other inputs.This way the circuit is good on about a fraction 1=2 + 2�(1��)n of the inputs.So, in particular, for every problem, there is a circuit of size 2n=2 that solves theproblem on a fraction 1=2 + 2�n=2 of the inputs. It is somewhat more tricky toshow that there is in fact even a circuit of size 2(1=3+o(1))n that solves the problemon a fraction 1=2 + 2�(1=3+o(1))n of the inputs, and this is about best possible forgeneral problems [ACR97].2.2. Worst-case to Average-case ReductionTheorem 6 ([BFNW93, Imp95, IW97]). Suppose there is L 2 E and � > 0such that, for all su�ciently large n, CC(Ln) � 2�n; Then there is L0 2 E and�0 > 0 such that, for all su�ciently large n, H(L0n) � 2�0n.1Some exceptions are discussed below. Andreev et al. [ACR98] show that in order to deter-ministically simulate probabilistic algorithms it is enough to construct hitting set generators, aseemingly weaker primitive than a pseudorandom generator. The complicated proof of [ACR98]was simpli�ed in subsequent work [ACRT99, BF99, GW99]. Andreev et al. [ACR99] alsoshow how to construct hitting set generators, but only under very strong complexity assumptions.Miltersen and Vinodchandran [MV99] give a very elegant construction of hitting set generators,but it also requires a stronger hardness assumption than in [IW97]. On the other hand, [MV99]also gets a stronger conclusion, and, in particular, it is not known how to prove the main resultof [MV99] (about the \derandomization" of two-rounds interactive proofs) using pseudorandomgenerators.

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 11This is quite encouraging: the (believable) IW assumption implies the (a prioriless believable) NW assumption. Notice how Theorem 2 follows from Theorems 5and 6.3. Error-Correcting Codes and Worst-Case to Average-Case Re-ductionsThe purpose of this section is to give an overview of the proof of Theorem 6. Theproof will not be the one of [BFNW93, Imp95, IW97], but rather the one of[STV99], and it will rely on the notion of an error-correcting code.For two strings x; y 2 f0; 1gn, their Hamming distance is the number of placeswhere they di�er, i.e., the number of indices i such that xi 6= yj . In the following wewill consider the normalized Hamming distance (that we will just abbreviate with\distance"), de�ned as d(x; y) = Pri2f1;::: ;ng[xi 6= yi], that is, the Hamming distancedivided by n.Consider a mapping C : f0; 1gn ! f0; 1g�n; such a mapping is called an error-correcting code with minimum distance if for any distinct x; x0 2 f0; 1gn wehave d(C(x); C(x0)) � . The term \error-correcting" comes from the followingobservation: suppose that we transmit C(x) over a noisy channel, and that what isreceived at the other end of the channel is a string y such that d(C(x); y) < =2;then, at least in principle, it is still possible to reconstruct x from y, since, bytriangle inequality, x will be the only possible string such that d(C(x); y) < =2.Interestingly, for any < 1=2 there are polynomial-time computable codes withminimum distance , such that the decoding problem is also solvable in polynomialtime (in fact there are codes that are both encodable and decodable in linear time).Perhaps even more surprisingly, if we are interested in decoding only a small partof the message (in the extreme, only one bit), then there are codes with sub-linearprobabilistic decoding procedures.Theorem 7. For any �xed < 1=4 and for any su�ciently large n there is a codeC : f0; 1gn ! f0; 1g�n computable in poly(n) time (in particular, �n = poly(n)) anda poly logn time probabilistic algorithm A, such that for every x 2 f0; 1gn, for anyy 2 f0; 1g�n such that d(C(x); y) � , for any i 2 f1; : : : ; ng, we havePr[A(i; y) = xi] � 1� 1=4nwhere the probability is taken over the internal random choices of the algorithm.We leave as an exercise to prove the following consequence.Theorem 8. Suppose there is a problem L in E and a �xed � > 0 such that, for allsu�ciently large n, CC(Ln) � 2�n; Then there is a problem L0 in E and a �0 > 0such that for all circuits C of size � 2�0n we havePr[C(x) = Ln(x)] � :76Unfortunately the theorem cannot be extended to the case > 1=4. In order forthe decoding problem to even be well-de�ned, we would need codes with minimumdistance > 2 > 1=2, but such codes do not exist (except for �nitely many n).Suppose, for example, that we would like to deal with a channel that only guaranteesthat the received string is at distance at most 1=3 from the transmitted codeword.Suppose that we are using a code of minimum distance :49. When we receive astring y, we know for sure that the only possibly decodings come from the set

12 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIfx : d(C(x); y) < 1=3g. We cannot argue anymore that the set contains onlyone element, however it would be useful to argue that it contains few elements.(Algorithmically, it would be nice to be able to reconstruct such a set e�cientlygiven y.) The following theorem states that if the code has high minimum distance,then there is an upper bound on the number of codewords in such sets.Theorem 9. Let C : f0; 1gn ! f0; 1g�n be a code of minimum distance 1=2� �2.Then for every y 2 f0; 1g�n, there are at most 1=�2 elements x 2 f0; 1gn such thatd(C(x); y) � 1=2� �.So if we transmit C(x) and we receive a string y that agrees with y on only afraction 1=2+ � of the places, it is possible (at least in principle) to create a list ofonly 1=�2 possible decodings for y, and one of them is guaranteed to be x. Such acomputational task is called \list-decoding." There are error-correcting codes withpolynomial time encoding algorithms and polynomial time list decoding algorithms.It is also possible to come up with codes having sublinear time list decodingalgorithms, but even the statement of such a result is somewhat complicated. Fromthe existence of such codes one can derive 6.4. The Nisan-Wigderson ConstructionThe Nisan-Wigderson generator is based on the existence of a decision problem Lin E such that for almost every input length l we have H(Ll) � 2�l, yet there is auniform algorithm that solves Ll in 2O(l) time. Our goal is to use these assumptionson Ll to build a generator whose input seed is of length O(l), whose output is oflength 2�(l) and indistinguishable from uniform by adversaries of size 2�(l), andthe generator should be computable in time 2O(l).As we will see in a moment, it is not too hard to construct a generator thatmaps l bits into l + 1 bits, and whose running time and pseudorandomness are asrequired. Recall that in Part 1 we saw how to turn a pseudorandom generator thatstretches its input by one bit into a pseudorandom generator with a much longeroutput. Unfortunately, the same approach will not work in our case.2 We willthen present the Nisan-Wigderson construction, and defer its analysis to the nextlecture.4.1. Impredictability versus PseudorandomnessLet f : f0; 1gl ! f0; 1g be a function such that H(f) � s, and consider thepseudorandom generator G : f0; 1gl ! f0; 1gl+1 de�ned as G(x) = x � f(x), where`�' is used to denote concatenation. We want to argue that G is a (s � 3; 1=s)-pseudorandom generator.The argument works by contradiction, and consists in the proof of the followingresult.Lemma 10. Let f : f0; 1gl ! f0; 1g. Suppose that there is a circuit D of size ssuch that jPrx [D(x � f(x)) = 1]�Prx;b [D(x � b) = 1]j > "2The main di�erence with respect to the setting of Part 1 is that we allow the running time of thegenerator to be larger than the circuit size of the adversary. We will elaborate on the di�erencein Section 4.2.

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 13then there is a circuit A of size s+ 3 such thatPrx [A(x) = f(x)] > 12 + "Proof. First of all, we observe that there is a circuit D0 of size at most s+1 suchthat Prz [D0(x � f(x)) = 1]�Prx;b [D0(x � b) = 1] > "(1)This is because Expression (1) is satis�ed either by taking D = D0 or by takingD = :D0. A way to interpret Expression (1) is to observe that when the �rst l bitsof the input of D0() are a random string x, D0 is more likely to accept if the lastbit is f(x) than if the last bit is random (and, for a stronger reason, if the last bitis 1� f(x)). This observation suggests the following strategy in order to use D0 topredict f : given an input x, for which we want to compute f(x), we guess a valueb, and we compute D0(x; b). If D0(x; b) = 1, we take it as evidence that b was agood guess for f(x), and we output b. If D0(x; b) = 0, we take it as evidence thatb was the wrong guess, and we output 1� b. Let Ab be the procedure that we justdescribed. We claim that Prx;b [Ab(x) = f(x)] > 12 + "(2)The claim is proved by the following derivationPrx;b [Ab(x) = f(x)]= Prx;b [Ab(x) = f(x)jb = f(x)]Prx;b [b = f(x)]+Prx;b [Ab(x) = f(x)jb 6= f(x)]Prx;b [b 6= f(x)]= 12 Prx;b [Ab(x) = f(x)jb = f(x)] + 12 Prx;b [Ab(x) = f(x)jb 6= f(x)]= 12 Prx;b [D0(x; b) = 1jb = f(x)] + 12 Prx;b [D0(x; b) = 0jb 6= f(x)]= 12 + 12 Prx;b [D0(x; b) = 1jb = f(x)]� 12 Prx;b [D0(x; b) = 1jb 6= f(x)]= 12 +Prx;b [D0(x; b) = 1jb = f(x)]�12 �Prx;b [D0(x; b) = 1jb = f(x)] +Prx;b [D0(x; b) = 1jb 6= f(x)]�= 12 +Prx [D0(x; f(x)) = 1]�Prx;b [D0(x; b) = 1]> 12 + "From Expression (2) we can observe that there must be a b0 2 f0; 1g such thatPrx [Ab0(x) = f(x)] > 12 + "And Ab0 is computed by a circuit of size at most s + 3 because Ab0(x) = b0 �(:D0(x; b0)), which can be implemented with two more gates given a circuit forD0.

14 LUCA TREVISAN, PSEUDORANDOMNESS { PART II4.2. The Di�erence with the Blum-Micali-Yao SettingWe just saw how to construct a pseudorandom generator that maps l bits into l+1bits, given a function f : f0; 1gl ! f0; 1g of high hardness. The construction isreminiscent of the construction of a similar generator given a one-way permutationand a hard predicate. In fact, if f is hard, it can be seen as the \hard-core predicate"of the identity function, and, from this perspective, the construction of the previoussection is the same as the construction seen in Part 1. Of course the identityfunction is not a one-way permutation, and a function f of high hardness is notnecessarily a hard-core predicate. The di�erence is that a hard-core predicate B fora permutation � is such that B(x) is hard to compute given �(x), but it is easy tocompute given x. In our current scenario, f is just hard. This di�erence is reectedin the e�ciency of the generator construction. In the case of one-way permutationsand hard predicates, it is possible to have a (s; ") generator that is computable intime signi�cantly smaller than s. In our case, the running time of the generatorhas to be bigger than s.This di�erence is very important. In Part 1 we saw how to get a pseudorandomgenerator with large output length given a pseudorandom generator whose outputis only one bit longer than the input. The same construction fails in our setting.In fact, starting from a generator that maps x in x � f(x), the \bootstrap"construction of Part 1 would create a generator that maps x in f(x) �f(x) �f(x) � � � ,that is certainly distinguishable from uniform.The Nisan-Wigderson construction and its analysis are therefore quite di�erentfrom what we have seen in Part 1, however, at a higher level of abstraction, there aresimilarities. Starting from a permutation � and a hard-core predicate B, the gener-ator described in Part 1, on input x, would output B(x) �B(�(x)) �B(�(�(x))) � � � ,that is, it would evaluate the hard predicate on points obtained by repeatedly ap-plying � to x. In the Nisan-Wigderson generator, the output is also the evaluationof the hard function f on points generated using the input seed. The di�erence isin the generation of the points. In the Nisan-Wigderson generator, the process bywhich the seed is converted into a series of evaluation points for f uses `combina-torial designs," that we describe next.4.3. Combinatorial DesignsConsider a family (S1; : : : ; Sm) of subsets of an universe U . We say the family is a(l; �)-design if, for every i, jSij = l, and, for every i 6= j, jSi \ Sj j � �.Theorem 11. For every integer l, fraction > 0, there is an (l; logm) design(S1; : : : ; Sm) over the universe [t], where t = O(l=) and m = 2l; such a designcan be constructed in O(2ttm2) time.We will use the following notation: if z is a string in f0; 1gt and S � [t], then wedenote by zjS the string of length jSj obtained from z by selecting the bits indexedby S. For example if z = (0; 0; 1; 0; 1; 0) and S = f1; 2; 3; 5g then zjS = (0; 0; 1; 1).4.4. The Nisan-Wigderson GeneratorFor a Boolean function f : f0; 1gl ! f0; 1g, and a design S = (S1; : : : ; Sm) over [t],the Nisan-Wigderson generator is a function NWf;S : f0; 1gt ! f0; 1gm de�ned asfollows:

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 15NWf;S(z) = f(zjS1) � f(zjS2) � � � f(zjSm)

LECTURE 3Analysis of the Nisan-Wigderson GeneratorThis lecture is devoted to the proof of the following result.Lemma 12. Let f : f0; 1gl ! f0; 1g be a Boolean function and S = (S1; : : : ; Sm)be a (l; logm) design over [t]. Suppose D : f0; 1gm ! f0; 1g is such thatjPrr [D(r) = 1]�Prz [D(NWf;S(z)) = 1]j > " :Then there exists a circuit C of size O(m2) such thatjPrx [D(C(x)) = f(x)] � 1=2j � "mProof. The main idea is that if D distinguishes NWf;S(�) from the uniform distri-bution, then we can �nd a bit of the output of the generator where this distinctionis noticeable. On such a bit, D is distinguishing f(x) from a random bit, and sucha distinguisher can be turned into a predictor for f . In order to �nd the \right bit",we will use the hybrid argument. At this level of abstraction, the analysis is thesame as the analysis of the Blum-Micali-Yao generator, however, as the analysisunfolds, we will see major di�erences.Let us start with the hybrid argument. We de�nem+1 distributionsH0; : : : ; Hm;Hi is de�ned as follows: sample a string v = NWf;S(z) for a random z, and thensample a string r 2 f0; 1gm according to the uniform distribution, then concatenatethe �rst i bits of v with the last m � i bits of r. By de�nition, Hm is distributedas NWf;S(y) and H0 is the uniform distribution over f0; 1gm.Using the hypothesis of the Lemma, we know that there is a bit b0 2 f0; 1gsuch that Pry [D0(NWf;S(y)) = 1]�Prr [D0(r)] > "where D0(x) = b0 �D(x).We then observe that" � Prz [D0(NWf;S(z)) = 1]�Prr [D0(r)]= Pr[D0(Hm) = 1]�Pr[D0(H0) = 1]= mXi=1(Pr[D0(Hi) = 1]�Pr[D0(Hi�1) = 1])17

18 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIIn particular, there exists an index i such thatPr[D0(Hi) = 1]�Pr[D0(Hi�1) = 1] � "=m(3) Now, recall that Hi�1 = f(zjS1) � � � f(zjSi�1)riri+1 � rmand Hi = f(zjS1) � � � f(yjSi�1)f(yjSi)ri+1 � rm :We can assume without loss of generality (up to a renaming of the indices) thatSi = f1; : : : ; lg. Then we can see z 2 f0; 1gt as a pair (x; y) where x = zjSi 2f0; 1gl and y = zj[t]�Si 2 f0; 1gt�l. For every j < i and z = (x; y), let us de�nefj(x; y) = f(zjSj): note that fj(x; y) depends on jSi \ Sj j � logm bits of x and onl� jSi \ Sj j � l � logm bits of y. With this notation we havePrx;y;ri+1;::: ;rm[D0(f1(x; y); : : : ; fi�1(x; y); f(x); : : : ; rm) = 1]
� Prx;y;ri+1;::: ;rmD0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1] > "=mThat is, when D0 is given a string that contains fj(x; y) for j < i in the �rst i� 1entries, and random bits in the last m� i entries, then D0 is more likely to acceptthe string if it contains f(x) in the i-th entry than if it contains a random bit inthe i-th entry. This is good enough to (almost) get a predictor for f . Consider thefollowing algorithm:Algorithm AInput: x 2 f0; 1glPick random ri; : : : ; rm 2 f0; 1gPick random y 2 f0; 1gt�lCompute f1(x; y); : : : ; fi�1(x; y)If D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1 output riElse output 1� riLet us forget for a moment about the fact that the step of computing f1(x; y); : : : ; fi�1(x; y)looks very hard, and let us check that A is good predictor. Let us denote by

LECTURE 3. ANALYSIS OF THE NISAN-WIGDERSON GENERATOR 19A(x; y; r1; : : : ; rm) the output of A on input x and random choices y; r1; : : : ; rm.Prx;y;r[A(x; y; r) = f(x)]= Prx;y;r[A(x; y; r) = f(x)jri = f(x)] Prx;ri[ri = f(x)]+ Prx;y;r[A(x; y; r) = f(x)jri 6= f(x)]Prx;ri[ri 6= f(x)]= 12 Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) = ri]+12 Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 0jf(x) 6= ri]= 12 + 12 � Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) = b]� Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) 6= b]�= 12 + Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) = b]�12 � Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) = b]+ Prx;y;r[D0(f1(x; y); : : : ; fi�1(x; y); ri; : : : ; rm) = 1jf(x) 6= b]�= 12 +Pr[D0(Hi) = 1]�Pr[D0(Hi�1) = 1]� 12 + "mSo A is good, and it is worthwhile to see whether we can get an e�cient implemen-tation. We said we have Prx;y;ri;::: ;rm[A(x; y; r) = f(x)] � 12 + "mso there surely exist �xed values ci; : : : ; cm to give to ri; : : : ; rm, and a �xed valuew to give to y such thatPrx;r [A(x;w; ci; ci+1; : : : ; cm) = f(x)] � 12 + "mAt this point we are essentially done. Since w is �xed, now, in order to implementA, we only have to compute fj(x;w) given x. However, for each j, fj(x;w) is afunction that depends only on � logm bits of x, and so is computable by a circuitsof size O(m). Even composing i�1 < m such circuit, we still have that the sequencef1(x;w); : : : ; fi�1(x;w); ci; ci+1; : : : ; cm can be computed, given x, by a circuit Cof size O(m2). Finally, we notice that at this point A(x;w; c) is doing the following:output the xor between ci and the complement of D0(C(x)). Since ci is �xed, eitherA(x;w; c) always equals D(C(x)), or one is the complement of the other. In eithercase the Lemma follows.At this point it should not be too hard to derive Theorem 5.

LECTURE 4Randomness ExtractorsSee [Nis96, Gol99] to �nd references and proper credits about the material inthis section.1. Use of Weak Random SourcesSuppose that we have a probabilistic algorithm A(�; �) that on inputs of lengthn runs in time T (n) and uses m(n) random bits. Instead of a perfect source ofrandomness, we assume that we have a source that produces an output containingsome \impredictability," but that can still be very far from uniform. A very generalway of modeling this source is to assume that on input 1N it outputs a string inf0; 1gN , and that the output string has \some randomness" (a notion that we willformalize and quantify in a moment). Typically, a good way to quantify the amountof randomness, or impredictability, in a distribution, is to compute its (Shannon)entropy. For a random variable X whose range is f0; 1gN , its entropy is de�ned asH(X) =Pa2f0;1gN Pr[X = a] log(1=Pr[X = a]),Shannon entropy is a very good measure in cases where one is allowed to takemultiple samples from the distribution, but in our setting this is not the bestmeasure. Consider for example a distribution X such that X = (0; 0; � � � ; 0) withprobability 1�1=pN , and it is uniform with probability 1=pN . Then its Shannonentropy is about pN , which is quite high, yet it is almost always a useless stringof zeroes. It is a good intuition to think that the amount of randomness containedin the outcome a of a random variable X is log 1=Pr[X = a]. If X has Shannonentropy k, then on average, when we sample fromX we get a value of \randomness"k, however it can be the case that with very high probability we get almost zerorandomness, and with low probability we get high randomness. We would ratherhave a measure of randomness that guarantees to have almost always, or, evenbetter, always, high randomness. This motivates the de�nition of min-entropy: arandom variable X has min-entropy at least k if for every a in the range of X wehave Pr[X = a] � 1=2k. That is, the min-entropy of X is minaflog 1=Pr[X = a]g.De�nition 13. A random variable with range f0; 1gN having min-entropy at leastk will be called a (N; k)-source.Given one access to a (N; k) source, we would like to be able to simulate anyprobabilistic algorithm that uses m random bits, where m is close to k. If the21

22 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIsimulation is \black box" and takes time T , one can argue that m � k +O(log T).We will not de�ne formally what a black-box simulation is, but we will developsimulations that are black box, so it will come as no surprise that our simulationswill work only for m smaller than k, in fact only for m smaller than k1=3. (This ispartly due to oversimpli�cations in the analysis; one could get k:99 with almost thesame proof.)2. ExtractorsAn extractor is a function that transforms a (N; k) source into an almost uniformdistribution. The transformation is done by using a (typically very small) numberof additional random bits.Formally, we have the following de�nition.De�nition 14. For two random variables X and Y with range f0; 1gm, their vari-ational distance is de�ned as jjX � Y jj = maxS�f0;1gmfjPr[X 2 S]�Pr[Y 2 S]jg.We say that two random variables are "-close if their variational distance is at most".De�nition 15. A function Ext : f0; 1gN � f0; 1gt ! f0; 1gm is a (k; ") extractorif for any (N; k) source X we have that Ext(X;Ul) is "-close to uniform, where Ulis the uniform distribution over f0; 1gl.Equivalently, if Ext : f0; 1gN � f0; 1gt ! f0; 1gm is a (k; ") extractor, thenfor every distribution X ranging over f0; 1gN of min-entropy k, and for every S �f0; 1gm, we havej Pra2X;z2f0;1gt[Ext(a; z) 2 S]� Prr2f0;1gm[r 2 S]j � "3. ApplicationsSee [Nis96] for an extensive survey. Here we present only one application. Anothernotable application is the construction of expanders.Suppose that A(�; �) is a probabilistic algorithm that on an input of lengthn uses m(n) random bits, and suppose that for every x we have Prr [A(x; r) =right answer] � 3=4. Suppose Ext : f0; 1gN � f0; 1gt ! f0; 1gm is a (k; 1=4)-extractor.Consider the following algorithm A0: on input x 2 f0; 1gn and weakly randoma 2 f0; 1gN , A0 computes A(x;Ext(a; z)) for every z 2 f0; 1gt, and then it outputsthe answer that appears the majority of such 2t times. We want to argue thatA0 is correct with high probability if a is sampled from a weak random source ofentropy slightly higher than k. Let us �x the input x. Consider the set B of stringsa 2 f0; 1gN for which the algorithm A0 makes a mistake:B = fa : Prz2f0;1gt[A(x;Ext(a; z)) = right answer] < 1=2gConsider the random variable X that is uniformly distributed over B (clearly, Xhas min-entropy logB). Then we havePra2X;z2f0;1gt[A(x;Ext(a; z)) = right answer] < 1=2

LECTURE 4. RANDOMNESS EXTRACTORS 23and soj Pra2X;z2f0;1gt[A(x;Ext(a; z)) = right answer]�Prr [A(x; r) = right answer]j > 1=4and then it follows form the property of Ext that X must have min-entropy lessthan k, that is jBj � 2k.Let now X be a (N; k + 2)-source, and let us execute algorithm A0 using X .Then Pra2X;z2f0;1gt[A(x;Ext(a; z)) = right answer] = 1� Pra2X[a 2 B] � 3=4More generallyTheorem 16. Suppose A is a probabilistic algorithm running in time TA(n) andusing m(n) random bits on inputs of length n. Suppose we have for every m(n)a construction of a (k(n); 1=4)-extractor Extn : f0; 1gN � f0; 1gt(n) ! f0; 1gm(n)running in TE(n) time. Then A can be simulated in time 2t(TA + TE) using onesample from a (N; k + 2) source.4. An Extractor from Nisan-WigdersonThis is a simpli�ed presentation of results in [Tre99] (see also [RRV99, ISW00]).Let C : f0; 1gN ! f0; 1g �N be a polynomial time computable error-correctingcode such that any ball of radius at most 1=2� � contains at most 1=�2 codewords.Such a code exists with �n = poly(n; 1=�).For a string x 2 f0; 1g �N , let < x >: f0; 1glog �N ! f0; 1g be the function whosetruth table is x. Let l = log �N , and let S = (S1; : : : ; Sm) be a (l; logm) design over[t]. Then consider the procedure ExtNW : f0; 1gN � f0; 1gt ! f0; 1gm de�ned asExtNWC;S(x; z) = NW<C(x)>;S(z) :That is, ExtNW �rst encodes its �rst input using an error-correcting code, thenviews it as a function, and �nally applies the Nisan-Wigderson construction to sucha function, using the second input as a seed.Lemma 17. For su�ciently large m and for " > 2�m2 , ExtNWC;S is a (m3; 2")-extractor.Proof. Fix a random variable X of min-entropy m3 and a function D : f0; 1gm !f0; 1g; we will argue thatjPr[D(r) = 1]� Pra2X;z2f0;1gt[D(ExtNW (a; z)) = 1]j � 2"Let us call a value a bad if it happens thatjPr[D(r) = 1]� Prz2f0;1gt[D(ExtNW (a; z)) = 1]j > "and let us call B the set of bad a. When a is bad, it follows that there is a circuit Cof size O(m2) such that either D(C()) or its complement agrees with a on a fraction1=2 + "=m of its entries. Therefore, a is totally speci�ed by D, C, and 2 log(m=")additional bits (once we have D and C, we know that the encoding of a sits in agiven sphere of radius 1=2� "=m, together with at most other (m=")2 codewords).Therefore, for a �xed D, the size of B is upper bounded by the number of circuitsof size O(m2), that is 2O(m2 logm), times (m=")2, times 2. The total is 2O(m2 logm).

24 LUCA TREVISAN, PSEUDORANDOMNESS { PART IIThe probability that an element a taken from X belongs to B is therefore at most2�m3 � 2O(m2 logm) < " for su�ciently large m. We then havejPr[D(r) = 1]� Pra2X;z2f0;1gt[D(ExtNW (a; z)) = 1]j� Xa Pr[X = a] ����Pr[D(r) = 1]� Prz2f0;1gt[D(ExtNW (a; z)) = 1]����� Pr[X 2 B] + " � 2"Theorem 18. Fix a constant "; for every N and k = N
(1) there is a polynomial-time computable (k; ")-extractor Ext : f0; 1gN � f0; 1gt ! f0; 1gm where m = k1=3and t = O(logN).

BIBLIOGRAPHY[ACR97] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Optimal bounds forthe approximation of boolean functions and some applications. Theo-retical Computer Science, 180:243{268, 1997.[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general de-randomization method. Journal of the ACM, 45(1):179{213, 1998.[ACR99] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Worst-case hardnesssu�ces for derandomization: A new method for hardness vs randomnesstrade-o�s. Theoretical Computer Science, 221:3{18, 1999.[ACRT99] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weakrandom sources, hitting sets, and BPP simulations. SIAM Journalon Computing, 28(6):2103{2116, 1999. Preliminary version in Proc ofFOCS'97.[AK97] V. Arvind and J. K�obler. On resource-bounded measure and pseudo-randomness. In Proceedings of the 17th Conference on Foundations ofSoftware Technology and Theoretical Computer Science, pages 235{249.LNCS 1346, Springer-Verlag, 1997.[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in prob-abilistic computation. In STACS'99, pages 100{109, 1999.[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subex-ponential time simulations unless EXPTIME has publishable proofs.Computational Complexity, 3(4):307{318, 1993.[Gol99] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo-randomness. Springer-Verlag, 1999.[GW99] O. Goldreich and A. Wigderson. Improved derandomization of BPPusing a hitting set generator. In RANDOM'99, pages 131{137, 1999.[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. InProceedings of the 36th IEEE Symposium on Foundations of ComputerScience, pages 538{545, 1995.[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversionof hardness into pseudo-randomness. In Proceedings of the 40th IEEESymposium on Foundations of Computer Science, 1999.[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with optimal seed length. In Proceedings of the 32ndACM Symposium on Theory of Computing, pages 1{10, 2000.25

26 LUCA TREVISAN, PSEUDORANDOMNESS { PART II[IW97] R. Impagliazzo and A. Wigderson. P = BPP unless E has sub-exponential circuits. In Proceedings of the 29th ACM Symposium onTheory of Computing, pages 220{229, 1997.[IW98] R. Impagliazzo and A. Wigderson. Randomness versus time: De-randomization under a uniform assumption. In Proceedings of the 39thIEEE Symposium on Foundations of Computer Science, pages 734{743,1998.[KvM99] A. Klivans and D. van Milkebeek. Graph non-isomorphism has subex-ponential size proofs unless the polynomial hierarchy collapses. In Pro-ceedings of the 31st ACM Symposium on Theory of Computing, pages659{667, 1999.[MV99] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlingames using hitting sets. In Proceedings of the 40th IEEE Symposiumon Foundations of Computer Science, pages 71{80, 1999.[Nis96] N. Nisan. Extracting randomness: How and why. In Proceedings ofthe 11th IEEE Conference on Computational Complexity, pages 44{58,1996.[NTS98] N. Nisan and A. Ta-Shma. Extrating randomness : A survey and newconstructions. Journal of Computer and System Sciences, 1998. To ap-pear. Preliminary versions in [Nis96, TS96].[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Com-puter and System Sciences, 49:149{167, 1994. Preliminary version inProc. of FOCS'88.[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal ofComputer and System Sciences, 52(1):43{52, 1996. Preliminary versionin Proc. of STOC'93.[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomnessand reducing the error in Trevisan's extractors. In Proceedings of the31st ACM Symposium on Theory of Computing, pages 149{158, 1999.[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness byrepeated condensing. In Proceedings of the 41st IEEE Symposium onFoundations of Computer Science, 2000.[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators with-out the XOR lemma. In Proceedings of the 31st ACM Symposium onTheory of Computing, pages 537{546, 1999.[Tre99] L. Trevisan. Construction of extractors using pseudo-random genera-tors. In Proceedings of the 31st ACM Symposium on Theory of Com-puting, pages 141{148, 1999.[TS96] A. Ta-Shma. On extracting randomness from weak random sources.In Proceedings of the 28th ACM Symposium on Theory of Computing,pages 276{285, 1996.[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedingsof the 23th IEEE Symposium on Foundations of Computer Science,pages 80{91, 1982.[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source.Algorithmica, 16(4/5):367{391, 1996.

