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1 IntroductionAn old folklore rooted in Brassard's paper [7] states that \cryptography" cannot be based on NP-hard problems. However, what Brassard has actually showed [7, Thm. 2, Item (2)ii] can be statedas followsBrassard's Claim: Consider a public-key encryption scheme with a deterministic encryptionalgorithm, and suppose that the set of valid public-keys is in coNP. Then if retrieving the plaintextfrom the (ciphertext, public-key) pair is NP-Hard then NP = coNP.Our concern in this note is with the restricting preconditions of the above claim.1 Namely, theencryption algorithm is postulated to be deterministic and the set of valid public-keys for it formsa coNP-set. These preconditions are satis�ed in certain encryption schemes, and in particularin the schemes known at the time the claim was made (e.g., plain RSA), but are not satis�edin probabilistic encryption schemes such as the Goldwasser{Micali scheme [12] and the Blum{Goldwasser scheme [5] (as well as in the recent \lattice-based" schemes of [3, 11]). We mentionthat probabilistic encryption is essential to security as de�ned in [12].Thus, Brassard's Claim does not rule out the possibility of \basing cryptography" (or evenpublic-key encryption) on the assumption that P 6= NP (even if NP 6= coNP, as we do believe).Consequently, the following is an important open problem.Open Problem: Can one construct a secure encryption scheme based on the assumption thatP 6= NP?This question is experiencing a rebirth in light of recent attempts to proceed towards this goal.In a pioneering work [1], Ajtai has constructed a one-way function assuming that the ShortestVector Problem is hard to approximate to within a factor of nc (in worst case), where c > 11and n denotes the dimention.2 The fundamental aspect of Ajtai's work, is the reduction of a(non-parametrized) worst-case problem to an average-case one. Consequently, Ajtai and Dwork [3]proposed a public-key encryption scheme whose security is reduced to the Unique Shortest VectorProblem, where uniqueness is again upto a large polynomail in the dimention. Interestingly, thetrapdoor permutation suggested in [11] relies on the conjectured di�culty of the Closest VectorProblem. All these are relevant to the above open problem since the Closest Vector Problemis known to be NP-hard to approximate to within any constant factor and is quasi-NP-hard toapproximate to within a 2log0:999 n factor [4]. Furthermore, the Shortest Vector Problem has beenrecently shown by Ajtai [2] to be NP-Hard (under randomized reductions). Even more recently,Micciancio [14] has proven that it is NP-Hard (again under randomized reductions) to approximatethe Shortest Vector Problem to within any constant factor smaller than p2. The approximationfactors mentioned in the above two types of results are very far apart, and our own work [10] pointsout di�culties in trying to bridge the gap. Still, the above e�ords renew the interest in the OpenProblem (as a negative answer to the latter deems these e�orts to be futile).In this note we present some extensions of Brassard's Claim. On one hand, these extensions docover some probabilistic encryption public-key encryption schemes (such as the Goldwasser-Micalischeme [12] and the Blum{Goldwasser scheme [5]). But, on the other hand, these extensions fallvery short of providing an answer to the above Open Problem.1 In our discussion, we ignore the known fact that worst-case hardness of retrieving the plaintext is an inadequate(i.e., much too weak) notion of security of encryption schemes.2The constant has been recently reduced to c > 5 by Cai and Nerurkar [8].1



2 Background | Promise problems and smart reductionsA promise problem [9] is a pair of disjoint subsets of f0; 1g�. The �rst subset represents yes-instances,the second no-instances, and their union is called the promise. Thus, the standard decision problemfor a language L � f0; 1g� can be casted as a promise problem (L;L).To simplify the discussion we extend the de�nition of standard complexity classes to promiseproblem. For example, a promise problem � = (�yes;�no) is said to be in NP if there exists apolynomial-time recognizable (witness) relation R so that� For every x 2 �yes there exists a y 2 f0; 1g� such that (x; y) 2 R (and jyj = poly(jxj)).� For every x 2 �no and every y 2 f0; 1g�, (x; y) 62 R.As explained in [9] (see also [10]), the fact that a promise problem in NP \ coNP (resp., AM\coAM) is NP-hard via arbitrary Cook reductions does not seem to imply that NP = coNP (resp.,coNP � AM). However, such a conclusion does hold in case NP-hardness is proven by a restrictedtype of Cook-reductions, called smart reductions, de�ned by Grollmann and Selman.De�nition 1 (smart reduction [13]): A smart reduction of a promise problem A to a promiseproblem B is a polynomial-time (possibly randomized) Cook-reduction that on input which satis�esthe promise of A only makes queries which satisfy the promise of B. Otherwise the reduction iscalled non-smart.3We note that any many-to-one/Karp (possibly randomized) reduction is smart. On the otherhand, Even et. al. used a non-smart reduction when presenting an NP-hard promise problem inNP \ coNP (cf. [9, Thm. 4]). Their usage of a non-smart reduction seems essential in light of theresult of Grollmann and Selman proved [13, Thm. 2] reproduced next.Theorem 2 [13, Thm. 2]: Suppose that a NP-complete language has a deterministic smart reduc-tion to a promise problem in NP \ coNP. Then NP = coNP.Proof: Given any coNP-language L, we use the smart (deterministic) reduction to the promiseproblem � in order to construct an NP-proof system for L. The NP-witness corresponding to aninput x 2 L, is an augmented transcript of an accepting computation of the reduction (i.e., theoracle-machine). The transcript includes queries to the �-oracle and presumed answers of thisoracle, and is augmented by NP-witnesses to the correctness of the answers provided. These NP-witnesses exist for both yes and no-instances of �, since � 2 NP \ coNP . Here is where we usethe hypothesis that the reduction is smart { this hypothesis guarantees that all queries satisfy thepromise (and so have NP-witnesses).3 Extending Brassard's ClaimOur extension of Brassard's claim, allows a probabilistic encryption algorithm and make no re-quirement on the set of public-keys. We �rst assume that the encryption algorithm allows errorlessdecryption. Furthermore, the following proposition refers only to deterministic reductions (and canbe easily extended to randomized ones with the weaker conclusion of coNP � AM).3Unfortunately, the term \non-smart" is somewhat misleading { to be non-smart (in an essential way) and yetwork the reduction must be quite \clever". A term like \safe" or \honest" may have been more suitable than smart;however \honest" is taken and using \safe" may be confusing when talking about cryptography.2



Proposition 3 Let E be a (probabilistic) encryption algorithm for a public-key encryption scheme,and suppose that for every public-key, e, the set of possible encryptions of 0 is disjoint from the setof the possible encryptions of 1. Then NP = coNP if any of the following two holds:1. The following promise problem is NP-hard via smart reductions:The yes-instances are pairs (e; c) where c is in the support of Ee(0), and the no-instances are pairs (e; c) where c is in the support of Ee(1).where Ee(�) is a random variable representing the output of the encryption algorithm E whengiven the message � and using e as the encryption-key.2. The above promise problem is NP-Hard and the promise is in coNP (i.e., the set of pairs(e; c) where c is neither in the support of Ee(0) nor in the support of Ee(1) is in NP).The condition in Item 2 relaxes the condition in Brassard's Claim. The condition in Item 1 makesfurther relaxation but also imposes a (quite limiting) restriction on the reduction. The fact thatItem 2 implies NP = coNP is actually a special case of [9, Thm. 6]. (We stress again that noneof the items provides an adequate notion of security, as both refer to the worst-case complexity ofdistinguishing Ee(0) from Ee(1), rather to an average case complexity.)Proof: In Item 1 we follow the structure of the proof of Theorem 2. Relying on the hypothesisthat the reduction is smart and that the supports of Ee(0) and Ee(1) are disjoint, we can provethe validity of each oracle answer by supplying an NP-witness (i.e., the randomness used by theencryption algorithm). In Item 2 we use the hypothesis that the promise is in coNP in orderto single out queries which violate the promise and prove our claim by supplying an NP-witness.Finally, we note that all these NP-proofs can be concatenated into a single NP-proof and so L 2 NP(where L is an arbitrary coNP languages to which the reduction is applied).Next, we consider encryption schemes which may err. Namely, with some bounded probability avalid ciphertext could be generated which could be decrypted both as a 0 and as a 1. We assume,however, that the encryption scheme errs in a way that the receiver may detect that an error indecoding may occurred (i.e., that the received ciphertext is a valid encryption of two di�erentmessages).Proposition 4 Let E be a (probabilistic) encryption algorithm for a public-key encryption scheme.Then coNP � AM, if either of the following two conditions hold:1. The following problem is NP-hard via smart reductionsThe yes instances are pairs (e; c) where c is in the support of Ee(0) but not in thesupport of Ee(1), and the no instances are pairs (e; c) where c is in the support ofEe(1) but not in the support of Ee(0).2. The above promise problem is NP-Hard, and the set of pairs (e; c) where c is in the supportof either Ee(0) or Ee(1) (or both) is in coNP.Proof: We follow the structure of the proof of Theorem 3. Speci�cally, in Item 1 we are essentiallyin the same situation as in Item 1 of Theorem 3. For Item 2 we merely need to show that the set ofpairs violating the promise is in NP . But this is easy as this set is the union of two NP-sets: (1) theset of pairs being a valid encryption of both 0 and 1 (by supplying the coins used in encryption);and (2) the set of pairs not being a valid encryption of either bits (by hypothesis).3
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