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1 IntroductionThe introduction of the concept of a \proof of knowledge" is one of the many conceptual contribu-tions of the work of Goldwasser, Micali and Racko� [14]. This fundamental work, though containingintuition and clues towards a de�nition of the notion of a \proof of knowledge," does not provide aformal de�nition of it. Furthermore, in our opinion, the commonly cited formal de�nitions, namelythose of Feige, Fiat and Shamir [6] and Tompa and Woll [18], are not satisfactory, and, in particular,inadequate for some of the applications in which they have been used.The purpose of this paper is two-fold. First, we would like to describe whence stem the awsin the previous de�nitions and why these de�nitions do not su�ce for some applications. We thenpropose a de�nition which we feel remedies these defects and also has other advantages.We note that a de�nition which is much better than those of [6, 18] has appeared in the workof Feige and Shamir [7], but the community seems unaware of the fact that the de�nition in [7] isfundamentally di�erent from, and preferable to, the one in [6] (in particular, this fact is not statedin [7]). The de�nition we present di�ers in many ways from that of [7] which we feel still has someconceptual problems. Yet both have in common the attempt to capture provers who convince withprobabilities that are not non-negligible, thereby correctly addressing what we believe is one of themain aws in the de�nitions of [6, 18].Among the novel features of our new de�nition is that it allows us also to talk of the knowledgeof machines which operate in super-polynomial-time. But this (and other novel features) we willdiscuss later; let us begin with the basics.1.1 Basic approach in de�ning proofs of knowledgeIntuitively, a two-party protocol constitutes a \system for proofs of knowledge" if \whenever" oneparty (called the veri�er) is \convinced"1 then the other party (called the prover) indeed \knows"\something". The excessive use of quotation symbols in the condition of the above statement mayprovide some indication to the complexity of the notion. For simplicity, let us consider the specialcase in which the \object of knowledge" is a witness for membership of a common input in some pre-determined language in NP. For example, let us consider the case in which the \object of knowledge"is a satisfying assignment for a CNF formula (given as input to both parties). Hence, a two-partyprotocol constitutes a \system for proofs of knowledge of satisfying assignments" if \whenever"the veri�er is \convinced" then the prover indeed \knows" a satisfying assignment for the givenformula. The clue to a formalization of \proofs of knowledge" is an appropriate interpretation ofthe phrases \whenever" and \knows" which appear in the condition. The phrase \convinced" hasthe straightforward and standard interpretation of accepting (i.e., entering a speci�ed state in thecomputation).Following [14] the interpretation of the phrases \whenever" and \knows" is as follows. Supposefor simplicity that the veri�er is always convinced (i.e. after interaction with the prover the veri�eralways enters an accepting state). Saying that the prover \knows" a satisfying assignment meansthat it \can be modi�ed" so that it outputs a satisfying assignment. The notion of \possiblemodi�cations of machine M" is captured by e�cient algorithms that use M as an oracle. Hence,saying that the prover \knows" a satisfying assignment means that it is feasible to compute asatisfying assignment by using the prover as an oracle. Namely, there exists an e�cient algorithm,called the knowledge extractor, that on input a formula � and given oracle access to a good prover(i.e. a prover which always convince the veri�er on common input �) is able to output a satisfying1We have replaced the more intuitive but possibly misleading phrase \convinced that the prover knows something"by the neutral phrase \convinced". 3



assignment to �. Indeed, this is exactly the interpretation given in works as [18, 6]. The problemis to deal with the general case in which the prover may convince the veri�er with some probability� < 1. Again, for constant � there is no problem and it can be required that even in this case theknowledge extractor succeeds in outputting a satisfying assignment in expected polynomial-time(or alternatively output such an assignment in polynomial time with probability exponentially closeto 1). This interpretation is valid also if � is any non-negligible function of the length of the input� (a non-negligible function in n is a function which is asymptotically bounded from below by afunction of the form n�c, for some constant c). But what should be required if the prover doesnot convince the veri�er with non-negligible probability? Most previous formulations (e.g., [18, 6])require nothing, and hence are unsatisfactory both from a conceptual point of view and from apractical point of view (i.e., in view of many known applications). In particular, this inadequacyoften appears when \proofs of knowledge" are used as subprotocols inside larger protocols. Inother words, the inadequate formulations of \proofs of knowledge" drastically limit their modularapplication in the construction of cryptographic protocols.1.2 Provers which convince with probability that is not non-negligibleWe start with an abstract justi�cation of our claim that requiring nothing, in case the prover doesnot convince the veri�er with non-negligible probability, is wrong. We �rst uncover the reason ithas been believed that it is justi�ed to require nothing. It has been believed that events whichoccur with probability which is not non-negligible can be ignored, just as events which occur withnegligible probability can be ignored. However, a key observation, which has been overlooked bythis argument, is that a sequence of probabilities can be neither negligible (i.e., smaller that n�c forall c > 0 and all su�ciently large n's) nor non-negligible (i.e., bigger that n�c for some c > 0 and allsu�ciently large n). Hence, even if it were justi�ed to require nothing in case the prover convincesthe veri�er with negligible probability, it is unjusti�ed to require nothing in case the probability ofbeing convinced is just not non-negligible!To demonstrate what is wrong when we require nothing in case the prover does not convince theveri�er with a non-negligible probability, we consider the following possibility. Suppose that thereexist a prover and an in�nite sequence of CNF formulae, f�n : n2 Ng, such that the probabilitythat the prover convinces the veri�er on common input �n is n�k, where n is the length of �n andk is the number of literals in the longest clause of �n. Furthermore, suppose that, for every k > 0,there exists in�nitely many n's such that k is the number of literals in the longest clause of �n.An important observation is that the sequence of probabilities (de�ned by the above prover andformulae) is neither negligible (i.e., smaller that n�c for all c > 0 and all su�ciently large n's) nornon-negligible (i.e., bigger that n�c for some c > 0 and all su�ciently large n). Hence, previousde�nitions of \proof of knowledge" require nothing (or too little) with respect to the above prover.To appreciate the severity of the lack of requirement with respect to the above prover consider thefollowing application. Suppose that each �n has a unique satisfying assignment, and that a \proofof knowledge of a satisfying assignment" is used as a subprotocol inside a protocol in which Alicewill send Bob a satisfying assignment to �n if she is convinced by Bob that he already knows thisassignment. We would like to argue that in this application Alice yields no knowledge to Bob (i.e.,Alice is zero-knowledge). Using a reasonable de�nition of \proof of knowledge" one should be ableto prove such a statement (and indeed using our de�nition such a proof can be presented). Yet, thezero-knowledge property of Alice can not be demonstrated using previous formulations of \proofof knowledge."22Typically, the simulator for the zero-knowledge property uses the knowledge extractor (for the proof of knowledge)as a subroutine. However, previous formulations of \proof of knowledge" do not guarantee a knowledge extractor4



A more concrete and practical setting can help to further clarify our point. It has been suggestedto use a \proof of knowledge" as a subprotocol inside a multi-round encryption scheme secureagainst chosen ciphertext attack (cf. [8, Sec. 5] and [15, Sec. 5.4]). Namely, the decryption modulereturns a decryption of a chosen ciphertext only if \convinced" that the party asking for it already\knows it". (This is a special case of the application considered in the previous paragraph). Usingprevious formalizations of \proof of knowledge" it cannot be proved that the above \decryptionmodule" is zero-knowledge (i.e., yields no knowledge) under a chosen ciphertext attack. Yet, theabove decryption module is zero-knowledge and this zero-knowledge property (though not proven!)has been used to claim that the particular multi-round encryption scheme is secure against chosenmessage attack. We stress that the above mentioned encryption scheme is indeed secure undersuch attacks, it is just that its security has not been proven but rather \hand-waved", and thatthe essential aw in the hand-waving is the fact that it is based on an inadequate formalization ofproofs of knowledge.The above example is very typical. In many (yet not all) applications of \proofs of knowledge"one relies on their meaningfulness with respect to arbitrary behavior of the prover. Yet as pointedout above, previous formalizations of \proof of knowledge" are meaningful only in case the proverconvince the veri�er with non-negligible probability. One should not make the mistake of sayingthat events which happen with probability that is not non-negligible can be ignored, since suchprobabilities are not negligible! Put in other words, negligible is not the negation of non-negligible!To avoid confusion we stress that the de�nitions of [6] do su�ce for the applications in theirpaper. Problems (as illustrated above) have arisen when these same de�nitions have (later) beenused in other applications.1.3 A few words about the de�nition presented in this paperThe most important aspect in which our de�nition (as well as the one of [7]) deviates from theprevious ones is that there is no sharp distinction between provers based on whether they convincethe veri�er with non-negligible probability or not. In our case, the requirement is that the knowledgeextractor always succeeds and that the average number of steps it performs is inversely proportional(via a polynomial factor) to the probability that the prover convinces the veri�er.Over and above this change, we have taken the opportunity to correct what we feel are otherconceptual drawbacks of previous de�nitions (including [7]). Although these other changes areto some extent a matter of taste they are nonetheless important, and also enable us to obtainde�nitions that are more general than previous ones. As examples, a few such issues are discussedbelow; we refer the reader to x4 for more details as well as for a discussion of the many other pointsof di�erence.All previous de�nitions refer only to provers which can be implemented by probabilistic, poly-nomial time programs (with auxiliary input). In some works it is even claimed that it makes nosense to talk of the knowledge of computationally unrestricted machines. We strongly disagreewith such claims, and point out that previous de�nitions have considered only computationallyrestricted provers because of technical reasons. From a conceptual point of view it is desirableto have a \uniform" de�nition of proofs of knowledge which refers to all provers independently oftheir complexity, the probability they lead the veri�er to accept, and so on. In fact, our de�nitionhas this property. A consequence of this property is that our de�nition enables one to talk of the\knowledge" of super-polynomial-time machines. For example, we are able to say in what sense thewhich handles the entire sequence of formulae. On the other hand, one cannot ignore the case in which something issent by Alice since this case is not negligible. 5



interactive proofs introduced by Shamir [17], in order to demonstrate that IP=PSPACE, constitute\proofs of knowledge."Most proofs of knowledge (e.g., the proof of knowledge of an isomorphism used by [12] { seeAppendix E) are constructed by iterating some \atomic" protocol. Typically, these atomic protocolshave the property that one can easily lead the veri�er to accept with some constant probability(say, 1=2) even when having no \knowledge" whatsoever. Yet, these atomic protocols do provesome \knowledge" of the prover, in case it is able to convince the veri�er with higher probability.However, previous de�nitions of \proof of knowledge" were unable to capture this phenomenon;they were only able to say what it means for su�ciently (i.e. super-logarithmic) many iterationsof these \atomic" protocols to be \proofs of knowledge." This belies the basic intuition and alsoprecludes a modular approach to protocol design. We correct these weaknesses by showing how tomeasure the \knowledge error" of a proof, and then showing how composition reduces it.A special case of our de�nition is when the knowledge error is zero. This special case is importantis some applications. In particular, \proofs of knowledge with zero error" are important when usinga proof of knowledge inside a zero-knowledge protocol so that one party sends some information onlyif he is convinced that the other party already knows it. A typical example is the zero-knowledgeprotocol for graph non-isomorphism of [12] (cf. x7.1). We stress that none of the previous de�nitionscould handle \proofs of knowledge with zero error."1.4 OrganizationThe main conventions used throughout the paper appear in x2. The new de�nition (of a proof ofknowledge) appears in x3, and x4 contains a discussion of various aspects of this de�nition. Thismain part of the paper is augmented by Appendix A, in which previous de�nitions (of proofs ofknowledge) are reviewed, and by x7 in which examples of the applications of the new de�nition arepresented.The rest of the paper addresses issues which are related to the de�nition of a proof of knowledge:x5 addresses the e�ect of repeating a proof of knowledge, and x6 presents an equivalent formulationof our de�nition of a proof of knowledge.2 PreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. We say that R is polynomially bounded if thereexists a polynomial p such that jyj � p(jxj) for all (x; y) 2 R. We say that R is an NP relation ifit is polynomially bounded and, in addition, there exists a polynomial-time algorithm for decidingmembership in R.If R is a binary relation we let R(x) = fy : (x; y) 2 Rg and LR = fx : 9y such that (x; y) 2 Rg.If (x; y) 2 R then we call y a witness for x.The proof systems we de�ne are two-party protocols. We model the players in these protocolsnot (as is common) as interactive machines, but rather as what we will call \interactive functions."The idea is to separate the computational aspect of the player from its input/output behaviour.We feel that this eases and clari�es the presentation of the (later) de�nitions.De�nition 2.1 An interactive function A associates to each x 2 f0; 1g� (common input) and � 2f0; 1g� (pre�x of a conversation) a probability distribution on f0; 1g� which we denote by Ax[�]. Wedenote by Ax(�) an element chosen at random from this distribution.Intuitively, Ax(�) is A's next message when the pre�x of the conversation so far was � and thecommon input is x. 6



The two players in the protocols we will consider are called the prover and the veri�er. Both aremodeled as interactive functions. The interaction between prover P and veri�er V on a commoninput x consists of a sequence of \moves" in each of which one player sends a message to theother. The players alternate moves, and for simplicity we will assume the prover moves �rst andthe veri�er last. We denote by �i (resp. �i) the random variable which is the message sent by theprover (resp. veri�er) in his i-th move. We assume any pre�x of a conversation can be uniquelyparsed into its constituent messages. Then each message is speci�ed by the prescribed interactivefunction as a function of the common input and previous messages. More precisely,�i = Px(�1�1 : : :�i�1�i�1) (i = 1; 2; : : :)�i = Vx(�1�1 : : :�i�1�i�1ai) (i = 1; 2; : : :) :These random variables are de�ned over the probabilistic choices of both interactive functions.We will adopt the convention that there are special symbols which an interactive function mayoutput to indicate things like acceptance or rejection. We assume there exists a function tV (�) (thenumber of \rounds") such that the tV (x)-th move of the veri�er contains its verdict on acceptanceor rejection. (For simplicity we restrict the number of rounds to be a function of the veri�er and thecommon input, and do not allow it to depend on the prover. Yet this is without loss of generality).The transcript of the interaction, denoted trP;V (x), is the string valued random variable whichrecords the conversation up to the veri�er's verdict. That is, trP;V (x) = �1�1 : : :�tV (x)�tV (x). Notethat the transcript of the interaction between a prover P and veri�er V contains the sequence ofmessage exchanged during the interaction, but not information which is available only to one party,such as its \auxiliary input" or its \internal coin tosses," unless these were sent to the other party.Since we have assumed that the transcript contains the veri�er's verdict on whether to acceptor reject, we may, for each x, talk of the set of accepting transcripts, denoted ACCV (x), and the setof rejecting transcripts, denoted REJV (x). Thus the \probability that the veri�er accepts" is, byde�nition, Pr[trP;V (x)2ACCV (x)].We stress that the de�nition of an interactive function makes no reference to its computationalaspects. We may discuss the computational complexity of an interactive function in a natural way,namely by the complexity of a (probabilistic) Turing machine that computes it. In particular, wesay that an interactive function A is computable in probabilistic polynomial time if there existsa probabilistic Turing machine which on input x; � outputs an element distributed uniformly inAx[�], and runs in time polynomial in the length of x.For simplicity we will restrict the veri�er's program to be computable in probabilistic, polyno-mial time. (We stress that we do not restrict the computational power of the party playing the roleof the veri�er.) We will also restrict the number of rounds (associated to this veri�er program) tobe a polynomially bounded, polynomial time computable function.Sometimes we wish to discuss probabilistic, polynomial time players who receive an additional\auxiliary" input (such an input may be, for example, a witness for the membership of the commoninput in some predetermined NP language). We may capture such situations by thinking of theauxiliary input as being incorporated in the interactive function (i.e. the party's interaction oncommon input x and auxilary y is captured by an oracle indexed by both x and y).We will be interested in probabilistic machines which use interactive functions as oracles.De�nition 2.2 Let K(�) be a probabilistic oracle machine, and A an interactive function. ThenKAx(x) is a random variable describing the output of K with oracle Ax and input x, the probabilitybeing over the random choices of K and A.The meaning of having Ax as an oracle is that K may specify a string � and, in one (special) step,obtain a random element from Ax[�]. We count the steps needed to specify � (and read the output),7



but the oracle invocation is just one step. It is understood that an invocation of the oracle on astring � returns a random element of Ax[�], independently of any previous invocations of the oracleon other inputs.3We call a function f : N 7! R negligible if for all c > 0 and all su�ciently large n we havef(n) < n�c. We call a function f : N 7!R non-negligible if there exists c > 0 so that for all su�cientlylarge n we have f(n) � n�c. We call f : f0; 1g� 7!R negligible if the function n 7! maxx2f0;1gn f(x)is negligible, and non-negligible if the function n 7! minx2f0;1gn f(x) is non-negligible. As stressedabove, non-negligible is not the negation of negligible but rather a very strong negation of it (andthere exist functions which are neither negligible nor non-negligible).3 A De�nition of a Proof of KnowledgeLet R � f0; 1g��f0; 1g� be a binary relation. Our aim is to de�ne a \system of proofs of knowledgefor R." For simplicity, we restrict our attention to polynomially bounded relations (and, unlessotherwise stated, all relations in this paper are assumed to be such). Note that the most naturaland important class of proofs of knowledge, namely those of \knowledge of a witness for an NPstatement," correspond to the special case of NP relations.The heart of the proof system is the veri�er, which remains �xed for our entire discussion. This�xed veri�er may interact with arbitrary provers, and we will relate the behavior of the veri�er inthese interactions with assertions concerning knowledge of the corresponding provers.For the purpose of de�ning proofs of knowledge there is no need to restrict the veri�er compu-tationally, although in most applications one asks that it be probabilistic, polynomial time.We make no assumptions concerning the possible provers (in contrast to previous formaliza-tions). We don't even assume that they send messages that can be computed (say nothing aboute�ciently computed) from the information they receive (i.e., their initial input and in-coming mes-sages). That is, provers are arbitrary interactive functions.We wish to de�ne the \knowledge of P about x which may be deduced from the interaction ofP with V (on input x)". Clearly, this knowledge contains the transcript of the interaction. Yet, incase the interaction is accepting and this event is not incidental, one can say more on the knowledgeof P . Namely, the ability of P to \often" lead the veri�er to accept may say something about theknowledge of P . The crucial observation, originating in [14], is that the \knowledge of P about x(deduced by interaction)" can be captured by whatever can be e�ciently computed on input x andaccess to the oracle Px.The phrase \e�ciently computed on input x and access to an oracle Px" is made precise inthe de�nition of a \knowledge extractor." The straightforward approach is to require that theknowledge extractor is a probabilistic polynomial-time oracle machine. Indeed this is the approachtaken in some previous works (if one translates their ideas to this slightly di�erent setting). We willreplace the strict requirement that the knowledge extractor works in polynomial-time by a moreadaptive requirement which relates the running time of the knowledge extractor to the probabilitythat the veri�er is convinced. The advantages of this approach have already been discussed andwill be further discussed below.Let p(x) be the probability that prover P convinces veri�er V to accept on input x. In itssimplest form, the requirement we impose is that the extractor succeed in outputting a witness in(expected) time proportional to 1=p(x). In actuality, we will introduce a \knowledge error function"3 A stricter alternative is obtained by �xing the prover's sequence of coin tosses and treating it as auxiliary inputto the prover. Note that all known \proofs of knowledge" satisfy also this more strict requirement. The fact that thestrict requirement implies the main one can be shown by techniques similar to those used in Appendix C.8



�(�) and ask that the extractor succeed in outputting a witness in (expected) time proportional to1=(p(x)��(x)). Intuitively, �(x) is the probability that the veri�er might accept even if the proverdid not in fact \know" a witness. We note that in applications �(x) is small, and often it is zero(cf. x4.4 and x5). The precise de�nition follows.De�nition 3.1 (System of proofs of knowledge) Let R be a binary relation, and �: f0; 1g� ! [0; 1].Let V be an interactive function which is computable in probabilistic, polynomial time. We say thata V is a knowledge veri�er for the relation R with knowledge error � if the following two conditionshold.� Non-triviality: There exists an interactive function P � so that for all x 2 LR, all possible in-teractions of V with P � on common input x are accepting (i.e. Pr[trP� ;V (x)2 ACCV (x)] = 1).� Validity (with error �): There exists a constant c > 0 and a probabilistic oracle machine Ksuch that for every interactive function P and every x 2 LR, machine K satis�es the followingcondition:if p(x) def= Pr[trP;V (x) 2 ACCV (x)] > �(x) then, on input x and access to oracle Px,machine K outputs a string from the set R(x) within an expected number of stepsbounded by jxjcp(x)� �(x) :The oracle machine K is called a universal knowledge extractor, and � is called the knowledge errorfunction.The next section is devoted to remarks on various features of this de�nition.4 RemarksWe discuss various features of our de�nition, with particular regard to how it di�ers from previousde�nitions.4.1 Provers which convince with non-negligible probabilitySuppose the knowledge error is negligible. Clearly, if the veri�er accepts with non-negligible prob-ability then the knowledge extractor runs in average polynomial in jxj time. This conclusion yieldsessentially what [6, 18] have considered as su�cient. Yet, as we have argued, this conclusion byitself does not su�ce.4.2 The e�ciency of the provers and veri�erFor the purpose of de�ning proofs of knowledge, there is no need to restrict the prover to polynomial-time. This is a point on which we disagree with previous works which claimed that it makesno sense to talk of the knowledge of unrestricted machines. Our de�nition is presented withoutassuming anything about the power of the prover, and it is a corollary that machines with notime bounds may know facts which cannot be deduced in (say) double exponential time (and soon). In particular, as we will see (cf. x7.2), it is meaningful, under our de�nition, to say thatthe prover in Shamir's interactive proof system for a PSPACE-complete language \knows" anaccepting computation of a polynomial-space machine. One the other hand, provers which succeed9



in convincing a veri�er of their knowledge can be reasonably e�cient. For example, they may beimplemented by polynomial-time programs. Furthermore, all \reasonable" interactive proofs forlanguages in NP (and in particular the zero-knowledge ones [12]) can be convinced by probabilisticpolynomial-time provers which get an NP-witness as auxiliary input. (However, membership in anNP language can be proven via Shamir's result that IP = PSPACE. The corresponding prover isunlikely to be implementable in polynomial-time).Note that we do not ask that the veri�er be a probabilistic polynomial time interactive Turingmachine, but just that it be an interactive function computable by one. This distinction is con-ceptually useful when we consider applications such as the graph non-isomorphism protocol [12] inwhich the veri�er (of the proof of knowledge) is the prover of the graph non-isomorphism protocol,and thus not a probabilistic polynomial time interactive Turing machine. However, the part of thisprover's program which implements the veri�er (of the proof of knowledge) is indeed computablein probabilistic polynomial time.4.3 The knowledge extractorWhat should not be given to the knowledge extractor. We deviate from some previous works inthat we de�ne the knowledge of the prover only with respect to what is publicly available (i.e.,the common input x, access to an oracle for the prover, and possibly the transcript). Some otherworks de�ne the knowledge of the prover with respect to the auxiliary information available tothe prover as well as its sequence of coin tosses (which may4 not be known to the veri�er). Tojustify our choice we remind the reader that the de�nition of \proof of knowledge" is supposed tocapture the knowledge of the prover demonstrated by the interaction and not merely the knowledgeof the prover. Hence, there seems to be little motivation and/or justi�cation to talk about theknowledge of a machine with respect to something which is not known to the outside (i.e., veri�er).In particular, only the common input (of the interaction) should be given as input to the knowledgeextractor, and the auxiliary input or local coins of the prover should certainly not be given.One thing that the knowledge extractor can do. In all examples we are aware of, the knowledgeextractor proceeds by trying to �nd several (not more than polynomially many) related acceptingtranscripts. For example, the knowledge extractor presented in Appendix E tries to �nd a singleaccepting transcript in addition to the one given as input. Clearly such a knowledge extractorsucceeds within an average number of steps which is inversely proportional to the density of theaccepting transcripts (which is in other words the accepting probability). Note that if the proof ofknowledge is zero-knowledge then a single accepting transcript (and in particular the one given asinput) cannot su�ce.Universality of the knowledge extractor. In the above de�nition we require the existence of auniversal knowledge extractor which works for all possible interactive functions P . Switching thequanti�ers (i.e., requiring that for every interactive function P there exist a knowledge extractorKP ) would make little sense in practice since P in our conventions may depend on (non-uniform)auxiliary input of the \real" prover (cf. x2). However, the quanti�ers may be switched if oneconsiders only provers which are (uniform) interactive machines. For further discussion see theparenthetical subsection in [10, Sec. 4.1], which considers an analogous situation in the context ofzero-knowledge. We stress that also in case the quanti�ers are switched, the knowledge extractor(although it may depend on the prover) must be given oracle access to the prover. The reason4Using the term \may" is indeed an understatement! 10



being that the prover's program may be highly ine�cient (and therefore cannot be \incorporated"into the extractor).4.4 The knowledge error functionThe knowledge error function is a novelty of our de�nition.5 Let us see why it is important.Typically, \proofs of knowledge" are constructed by repeating an \atomic" protocol su�cientlymany times. An atomic protocol for graph isomorphism, for example, is the following (cf. [12]).Example. The input is a pair of (isomorphic) graphs G1 and G2. The prover generates a singlerandom isomorphic copy of G1 which we call H , and sends H to the veri�er. The latter respondswith a random query i 2 f1; 2g. The prover replies to i by presenting an isomorphism between Giand H . The veri�er accepts if the permutation supplied by the prover is indeed an isomorphismbetween Gi and H .Intuitively, this protocol does demonstrate some \knowledge" of an isomorphism between G1 andG2. Yet, previous de�nitions were unable to capture this fact; they were only able to show thatsu�ciently (i.e. super-logarithmic) many iterations of this protocol constituted a \proof of knowl-edge." This non-modular approach belies the basic intuition and is also not the natural approachto protocol design.The introduction of the knowledge error function remedies these defects. In particular, we areable to capture \atomic" proofs of knowledge of the above type. Indeed, under our de�nition,the above is a proof of knowledge with knowledge error 1=2. Furthermore, we are able to provecomposition theorems which show how to reduce the knowledge error (cf. x5) and thus constructproofs of knowledge in a modular fashion.Another motivation of the knowledge error function comes from cases where, for convenience,we have the veri�er accept with some (usually small) probability even if the evidence supplied bythe prover is not convincing. For example, we may do this to guarantee perfect completeness (i.e.,the prover's ability to alway convince the veri�er of valid statements). In such cases, the knowledgeerror can compensate for this small probability. The importance of this aspect of the knowledgeerror function, and the perfect completeness example, were pointed out to us by Feige (privatecommunication, June 1992).4.5 What about soundness?We note that our de�nition makes no requirement for the case x 62 LR. In particular, soundness (i.e.,a bound on the prover's ability to lead the veri�er to accept x 62 LR) is not required. Consequently,a knowledge veri�er for R does not necessarily de�ne an interactive proof of membership in LR.This is in contrast to previous de�nitions; they had the \validity" condition imply the soundnesscondition, so that the latter always held. We feel that our \decoupling" of soundness from validityis justi�ed both conceptually and in the light of certain applications. Let us see why.First, conceptually, it seems more natural to talk about extracting witnesses only when thesewitnesses exist. Furthermore, as long as one property is not known to imply the other it seemswrong to require the latter unless one really needs it.Second, there are some natural applications (e.g., \zero-knowledge based" identi�cation schemes)in which it is a-priori agreed that the protocol will be applied only to strings in some NP language(i.e., x 2 LR 2 NP). Such applications are better modeled by our de�nition than by previous ones.5 Although the ideas in [5] may be interpreted as pointing to a similar notion.11



To be concrete, consider the following identi�cation scheme based on the hardness of quadraticresiduosity.Example. A user A (Alice), who wishes to be able to securely remote-login to a mainframecomputer (which we denote by V because it plays the role of veri�er) chooses at random a pair oflarge primes and multiplies them to get a modulus NA. She also chooses YA 2 Z�NA at random,sets XA = Y 2A mod NA, and gives the pair (NA; XA) to V . All this is performed once in a life-time,when Alice is identi�ed by other means. Later, whenever Alice wishes to remote-login, she sends hername (A) to V , who responds by sending the pair (NA; XA). She now provides a (zero-knowledge)proof that she \knows" a square root of XA mod NA. Besides the fact that A can provide the proof(completeness) we require that if Bob (B 6= A) were to attempt to remote-login as A then he (B)would fail. The point to note in (the formalization of) the latter requirement is that the interactionof B with V takes place on an input (namely (NA; XA)) which is in the underlying languageLR (the relation R here is f ((N;X); Y ) : Y 2 � X (mod N) g and the underlying language isLR = f (N;X) : X is a square mod N g). So it su�ces to require that the interaction of B withV on inputs in this language \proves possession of a witness." What happens on interactions oninput not in the language is immaterial to the security of the identi�cation scheme. Thus therequirements for a secure (zero-knowledge based) identi�cation scheme are more faithfully modeledby our De�nition 3.1 than by previous de�nitions (which required that any proof of knowledge ofa relation R be an interactive proof of membership in LR).We stress that we are not, of course, saying that soundness is always redundant. Rather, the abovediscussion justi�es our choice not to make soundness a part of the de�nition of a proof of knowledge.In cases where soundness is necessary, it can be viewed as a separate, additional property that theknowledge veri�er must satisfy. Furthermore, it is possible that some applications call for otherkinds of conditions on x 62 LR. One possibility, which we call strong validity , is discussed inAppendix B.4.6 Relaxing the non-triviality requirementThe prover guaranteed by the non-triviality requirement must convince the veri�er in all interactionsof x 2 LR. This requirement, met in all known protocols, is not essential to the de�nition of aproof of knowledge. In general one may require that the existence of a prover that convinces theveri�er, on input x, with probability C(x). As far as polynomial-time (or even more powerful)veri�ers are concerned any choice of a polynomial-time constructible bound, C(�), which is bothnon-negligibly greater than �(�) and bounded above by 1�2�poly(�), is equivalent.6 In fact, followingthe ideas in [9], one can eliminate the error probability in the completeness condition altogetherand derive the de�nition as in the previous section. However, although the last transformation doespreserve validity, it does not necessarily preserve the complexity of the prover and its zero-knowledgeproperty.76When saying that these choices are equivalent, as long as the above requirements are satis�ed, we mean thatexistence of a veri�er which satis�es one permissible bound yields the existence of another veri�er which satis�esthe second bound. Furthermore, the complexity both of the veri�er and of the prover (meeting the completenesscondition) is preserved (and so are zero-knowledge properties).7In this context we note, however, that the zero-knowledge too may be preserved, as long as one is willing to makea complexity assumption, by further applying the transformation of [2].12



4.7 A word about computationally convincing proofs of knowledgeSome works (cf. [4, 5]) consider the situation in which the class of provers for which the protocolis supposed to be a \proof of knowledge" is restricted to the class of probabilistic, polynomialtime interactive Turing machines with auxiliary input.8 Typically, the protocols in question relyon the use of problems which are intractable for the prover(s). This is the case of computationallyconvincing (zero-knowledge) proofs, also known as arguments (cf. [3]).Our de�nitions may be adapted to cover such settings as well. We would restrict the class ofprovers for which validity is required to hold to the class of interactive functions computable inprobabilistic, polynomial time by interactive machines. We would, however, also relax slightly thevalidity requirement by asking that it only be true for su�ciently long inputs. More precisely,we would require that for each probabilistic, polynomial time computable interactive function P(prover) there exist a constant nP such that for each x 2 LR of length at least nP , machine Ksatis�es the following condition:if p(x) def= Pr[trP;V (x) 2 ACCV (x)] > �(x) then, on input x and access to oracle Px,machine K outputs a string from the set R(x) within an expected number of stepsbounded by jxjc=(p(x)� �(x)).In applications, �(x) could be set to 1=poly(x) for some speci�c poly(�). Alternatively, following[7], one can use �(�) as a shorthand for \smaller than any function of the form 1=poly(�)". However,a much better alternative is to set �(�) to be a speci�c negligible function (e.g., �(x) = 2� 5pjxj)related to a speci�c intractability assumption concerning the computational problem on which thescheme is based (e.g., DLP is intractable with respect to algorithms which run in time 2 5pn oninputs of length n).Some ideas on the subject of \computationally convincing proofs of knowledge" appear in thework of Brassard, Cr�epeau, Laplante and L�eger [5]. Although they do not present de�nitions, itwould appear these ideas bear many similarities to ours. We discuss their work in Appendix A.The fact that some variations are needed to treat the case of \computationally convincing proofsof knowledge" has been pointed out to us by Feige (private communication, June 1992).5 Reducing the knowledge error via repetitionsOne of the reasons to introduce the knowledge error function is the theorems established here. Weshow that the knowledge error may be reduced by composition.First we consider sequential composition. Here m = m(x) independent copies of the originalprotocol are executed on input x, and the veri�er accepts i� all copies are accepting (we stressthat by \independent" we mean that the veri�er acts in each of the copies independently of theothers; of course we don't assume this about prospective provers). If � was the knowledge error ofthe original protocol then the knowledge error the resulting protocol is essentially �m. The moreprecise statement follows.Notational convention: by poly(�) we mean any su�ciently large polynomial in the length of theinput (string).Required assumption: y 2 R(x) can be found (if such exists) in exponential-time (i.e., time 2poly(jxj)).Finally, we assume of course that m(x) � poly(jxj).8 For simplicity we ignore the auxiliary inputs in this discussion. They can be treated as outlined in x2.13



Theorem 5.1 Suppose that V is a knowledge veri�er for the relation R with error �(�). Let Vmdenote the program that, on input x, sequentially executes the program V , on input x, for m(x)times. Then Vm is a knowledge veri�er for the relation R with error �m(�) def= (1+1=poly(�))��(�)m(�).The proof is in Appendix C.1.With respect to error reduction via parallel repetitions we were only able to prove a statementconcerning a special class of knowledge veri�ers (which nonetheless contains all known veri�ers).For further discussion see Appendix C.2.Finally, we observe that tiny knowledge error can be eliminated.Proposition 5.2 Suppose that an element in R(x), if such exists, can be found in time at mostt(x), given only x as input. Suppose V is a knowledge veri�er for R with knowledge error smallerthan 12�t(x). Then, V is a knowledge veri�er for R with knowledge error 0.We omit the proof which uses methods similar to those used in Appendix B.The resulting formulation (namely, knowledge error 0) is often the simplest way of thinking aboutproofs of knowledge: we are saying that the knowledge extractor succeeds in time jxjc=p(x), wherep(x) is as in De�nition 3.1. Many proofs of knowledge (e.g., the one presented in Appendix E) areof this type.6 An equivalent formulation of validityFollowing is an equivalent formulation of the validity condition. The new formulation is inspired by(yet is quite di�erent in many respects from) the de�nition in [7]. Let p(x) be as in De�nition 3.1.Instead of asking that the knowledge veri�er always output y 2 R(x), we ask only that it outputy 2 R(x) with a probability bounded below by p(x)��(x), and otherwise output a special symbol,denoted ?, indicating \failure to �nd y 2 R(x)". However, whereas originally the extractor hadexpected time proportional to 1=(p(x)��(x)), we now give it only expected polynomial time. Moreprecisely, letting �: f0; 1g� 7! [0; 1], we have the following.� New validity (with error �): We say that the veri�er V satis�es new validity with error � if thereexists a probabilistic expected polynomial-time oracle machine K such that for every interactivefunction P and every x 2 LR it is the case that KPx(x) 2 R(x) [ f?g andPr[KPx(x) 2 R(x)] � Pr[trP;V (x)2ACCV (x)]� �(x) :Proposition 6.1 The new validity condition is equivalent to the one given in De�nition 3.1.Here we give the proof for the case �(x) = 0. The proof for the general case is more complex andis in Appendix D.Suppose, �rst, that K is a knowledge extractor satisfying the new de�nition. We construct aknowledge extractorK 0 that, on input x repeatedly invokesK (on x) until K(x) 6= ?. Clearly, K 0 al-ways outputs a string in R(x), halting in expected time poly(x)=Pr[K(x) 2 R(x)], which is boundedabove by poly(x)=Pr[trP;V (x)2ACCV (x)]. Hence, K 0 satis�es the condition in De�nition 3.1. Sup-pose, now, that K is a knowledge extractor satisfying De�nition 3.1. We construct a knowledgeextractor K 0 that, on input x �rst generates a random transcript (i.e., trP;V (x)) and activatesK(x) if this transcript is accepting (i.e., in ACCV (x)). Otherwise, K 0 halts immediately outputting?. One can easily verify that K0 runs in expected polynomial-time and outputs y 2 R(x) withprobability exactly Pr[trP;V (x)2ACCV (x)]. 14



7 ApplicationsOur formalization, as well as that of [7], do su�ce to prove the security of those schemes for en-cryption secure against chosen-cyphertext attack which rely on zero-knowledge proofs of knowledge(cf. x1.2). However, we prefer to describe here two applications to which our de�nition of \proof ofknowledge" can be applied, whereas all the previous formalizations fail. The �rst application is amodular description of the zero-knowledge proof for Graph Non-Isomorphism (of [12]) which usesa \proof of knowledge of an isomorphism" as a subprotocol. The second application is to Shamir'sinteractive proof for PSPACE.7.1 Zero-Knowledge proof of Graph Non-IsomorphismThe second author �rst realized the inadequacy of previous formulations of \proofs of knowledge"when Leonid Levin insisted that the zero-knowledge interactive proof for Graph Non-Isomorphism(of [12]) should be presented in a modular manner.9 As many people noticed, the intuition behindthis zero-knowledge proof is that the veri�er �rst proves to the prover that it \knows" an isomor-phism between one of the input graphs and the query graph that it presents to the prover.10 Ifthe prover is convinced then it answers the query by indicating to which of the two input graphsthe query graph is isomorphic. By doing so the prover yields no knowledge to the veri�er, sincethe veri�er \knows" to which of the two input graphs the query is isomorphic, yet the prover'sanswer supplies statistical evidence that the two input graphs are not isomorphic. This intuitiveidea, taken from the Quadratic Non-Residousity zero-knowledge proof of [14], has indeed guidedthe development of the zero-knowledge proof system for GNI, but plays no part in the formal de-scription and proof of correctness appearing in [12] (and [14]). Levin complained, rightfully, againstthis inelegant and non-modular approach. The second author's answer, at the time, was that anelegant proof which uses the subprotocol and its properties in a modular fashion is not possibledue to lack of appropriate de�nitions.11One de�nition that was lacking at the time was that of the information hiding property of thesubprotocol used to prove \possession of knowledge". Speci�cally, that subprotocol, which consistsof the parallel version of the zero-knowledge proof of Graph Isomorphism, is not known to bezero-knowledge (and in light of [11] it is unlikely that a proof that it is zero-knowledge can ever begiven). Nevertheless, this subprotocol is \witness indistinguishable" (in the sense de�ned latter byFeige and Shamir [7]) and this property su�ces to the soundness of the interactive proof of GNI.However this entire issue is irrelevant to the current paper.The other de�nition that was lacking at that time was an adequate de�nition of a proof ofknowledge. An adequate de�nition of a \proof of knowledge" is needed to ensure that if theGNI-prover is convinced that the GNI-veri�er \knows" an isomorphism between the query graphand one of the input graphs then indicating to which input graph the query graph is isomorphicyields no knowledge to the GNI-veri�er.12 To this end, the simulator (constructed to meet thezero-knowledge clause) uses the knowledge extractor guaranteed by the de�nition of a \proof ofknowledge". However, as pointed out above, previous de�nitions of \proof of knowledge" areuseless in the case the GNI-prover is not convinced with non-negligible probability. It follows that9For sake of self-containment, this protocol is presented in Appendix E10The prover in the zero-knowledge proof for GNI is the veri�er in a \proof of knowledge of an isomorphism betweentwo graphs"; whereas the veri�er in the zero-knowledge proof for GNI is the party claiming and proving knowledgeof an NP-witness for GI.11It should be stressed that a proof of correctness of (the zero-knowledge property of) the protocol of does appearin [12]. The criticism points to the fact that the proof of correctness in [12] does not reect the intuition just outlined.12The reader may �nd it useful at this point to consult Appendix E.15



the simulator will fail to construct the interactions in these cases which may occur with probabilitythat is neither non-negligible nor negligible (see x1.2). In particular, consider the situation wherefor every c > 0 there exists an in�nite sequence of inputs to the protocol such that on input oflength n the GNI-prover is convinced with probability n�c.On the other hand, one can show that the subprotocol \for proof of knowledge of isomorphism"(presented in [12] and Appendix E) constitutes a (sound) proof of knowledge, according to thede�nitions presented in x3. It follows that the running time of the knowledge extractor is inverselyproportional to the probability that the GNI-prover is convinced. Hence, the simulator for the GNI-protocol will run in expected polynomial-time and produce a perfect simulation of the interaction.Furthermore, it can be easily shown that the GNI-prover while playing the role of the GI-veri�erin the proof of knowledge yields no knowledge to the GNI-veri�er (since its messages are generatedin probabilistic polynomial-time from its inputs).7.2 What does the prover of a PSPACE language know?Using our de�nition, it is possible to say that the veri�er in Shamir's interactive proof for a PSPACE-complete language L is a knowledge veri�er for the relation RL consisting of pairs (x; c) where c isthe middle con�guration in the computation of a �xed machine accepting x 2L. Hence, one cansay that (in some meaningful sense) any prover which convinces this veri�er (with, say, probability1) on input x, does know an accepting computation on input x.Let us show how a knowledge extractor may �nd the middle con�guration. For the rest ofthis subsection, we assume that the reader is very familiar with the interactive proof for QBF aspresented in [17, Section 5]. The standard reduction of a PSPACE language to QBF associates themiddle con�guration in an accepting poly-space computation with the �rst block of t existentialquanti�ers in the formula. So in the rest of this subsection we will consider only the problem ofretrieving a sequence of truth-values so that assigning these values to the above mentioned variablesyields value true for the resulting formula.First, we consider a straightforward method for retrieving these t boolean values. This methoddoes work in case the prover convinces the veri�er with probability 1 (but will have to be modi�edto deal with arbitrary provers). First the knowledge extractor asks the oracle for the �rst messageof the prover which is a pair (N; v0), where N is a large prime and v0 is a non-zero residue modN (the value of the arithmetic expression mod N). Next, the knowledge extractor proceeds int rounds. In the ith round, the extractor feeds the oracle the sequence r1; :::; ri�1 2 ZN and getsthe polynomial, pi, which corresponds to the opening of the ith variable, when the previous i � 1variables are set to r1; :::; ri�1, respectively. The extractor then �nds a �i2f0; 1g so that pi(�i) isnot equal to zero modulo N (such �i must exist since P�2f0;1g pi(�)�vi�1 6�0 (mod N)). Roundi is completed by setting ri = �i and vi = pi(ri).In general the above method may fail as it relies too heavily on the answers of the prover onboolean ri's. An alternative approach is to select the ri's uniformly in ZN . The problem is that theresulting residual arithmetic expression no longer reects the truth value of the residual booleanformula. To solve the problem we need to �nd the polynomial resulting by setting the ri's to �i's byexamining the polynomials which result by random settings of the ri's. To see how this can be done,we need to take a closer look at the formula used by Shamir and its arithmetization. It can be seenthat the polynomial pi received from the prover in round i has coe�cients which are polynomialsin r1 through ri�1. Denote by ci;j(r1; :::; ri�1) the polynomial in r1 through ri�1 representing thejth coe�cient of pi. The ci;j's are polynomials each of total degree at most 2(i � 1) < 2t � 1,and we are interested in the values of ci;j(�1; :::; �i�1). Using the ideas of [1] these values can befound via \interpolation" at 2t uniformly selected (yet dependent) points. Finally, we note that16



the knowledge extractor can tell whether it is given the correct polynomial at a point by carryingon the rest of the interactive proof using the oracle to the function Px. Further details are omitted.AcknowledgementsThe second author thanks Leonid Levin for his interest in \proofs of knowledge" and his insis-tence that they have to be formalized in a su�ciently robust manner so that they can be used inapplications such as the Graph Non-Isomorphism protocol.We are grateful to Uri Feige for valuable criticisms of an earlier version of this paper. Speci�ccredit to Feige's suggestions is given in the relevant places of the current manuscript.
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A Previous De�nitions of Proofs of KnowledgeFor sake of self-containment we review below the de�nitions of \proof of knowledge" appearing inthe literature. In general there are two generally cited formulations appearing in [6] and in [18]. Inaddition, there is the better (but lesser known) formulation of Feige and Shamir [7]. Finally, thereis work on \computationally convincing proofs of knowledge" [4, 5].\Proof of Knowledge" according to Feige, Fiat and Shamir [6] The de�nition presentedin [6] refers only to parties which work in probabilistic polynomial-time, yet may have auxiliaryinput (which is not necessarily generated e�ciently). The knowledge extractor is given the prover'sprogram and auxiliary input and may run the prover's program as a subroutine (yet being chargedfor the time).13 The knowledge extractor is required to produce good output only for provers andinputs for which the prover has a non-negligible probability of convincing the veri�er on that input.Speci�cally, it is required thatfor every constant a > 0 there exists a probabilistic polynomial-time extractor Mso that for all constants b > 0, all provers P , and all su�ciently large x; r; k, ifPr[(P; V )(x; r; k) = ACC] > jxj�a then Pr[M(desc(P ); x; r; k) 2 R(x)] > 1 � jxj�b.(desc(P ) denotes the description of P ).The string k in the above de�nition denotes a-priori knowledge of P (given in the form of aux-iliary input) where r denotes the prover's sequence of coin tosses. The fact that k is given tothe knowledge extractor, though being indeed conceptually disturbing, can be justi�ed in severalapplications (and in particular those in [6]). We stress that the de�nition of [6] does not guaranteeone knowledge extractor which works regardless of the prover's success probability but rather asequence of extractors each relevant for a di�erent \measure" of non-negligence. As claimed in theour text this is conceptually unsatisfactory and inadequate for many applications in which a proofof knowledge is used as a subroutine. It should be said that \proofs of knowledge" are not used assubprotocols in [6], but rather as the \thing itself" (and hence our critic of their de�nition is onlyweakly relevant, if at all, to the results of that paper).\Proof of Knowledge" according to Tompa and Woll [18] The de�nition presented in [18]di�ers slightly from the one of [6]. It allows the veri�er to run for an arbitrary (not necessarilypolynomial) amount of time. The running time of the knowledge extractor is polynomial in thelength of the input and in the running time of the veri�er. As explained in x4.3, we don't believethat this choice is justi�ed. The knowledge extractor in the [18] de�nition is given as input theprover's view of the interaction with the veri�er, which contains among other things the prover'sauxiliary input (denoted k in the de�nition of [6] presented above). The requirement concerningthe output of the veri�er is that the event \on input x the veri�er is convinced yet the knowledgeextractor fails to �nd y2R(x)" happens very rarely (i.e. with probability smaller than � for some� < 1). The probability is taken over the random coin tosses of both parties (for any �xed inputx and �xed auxiliary input k). Clearly, this de�nition su�ers from all the disadvantages of thede�nition of [6] discussed above. Furthermore, if � is indeed �xed, as suggested by the de�nitionin [18], then protocols satisfying their de�nition are useless even in a stronger sense: the provermay convince the veri�er with probability �=2 and yet the knowledge extractor is required nothing.13The extractor may try to analyze the prover's program by other means but Feige, Fiat and Shamir claim thatthis does not make sense. In any case the knowledge extractors that they present only use the prover's program as a\black-box". 20



Tompa and Woll were indeed aware of this point and seem to suggest to eliminate the problemby applying the protocol iteratively su�ciently many times. This is indeed a good suggestion.However, several problems remain. First a conceptual problem: their Lemma 3 (hereafter referred toas the Composition Lemma) indeed o�ers a useful tool, but it does not provide a general satisfactoryde�nition of a \proof of knowledge". More annoying is the fact that the Composition Lemmaconstructs better protocols via sequential composition of worse ones. It is not clear (and furthermoreit seems unlikely) that a parallel composition will have the same a�ect. Finally, the CompositionLemma is applicable only to relations R which are in BPP.\Proof of Knowledge" according to Feige and Shamir [7] The de�nition presented in[7] looks similar to the one in [6], but in fact it is fundamentally di�erent. The critical point isthat the de�nition in [7] treats potential provers uniformly with respect to the probability theylead the veri�er to accept. In this sense, the de�nition in [7] is similar to our de�nition. Specif-ically, the knowledge extractor, denoted M , runs in expected polynomial-time (rather than instrict polynomial-time as in [6]) and outputs an element of R(x) with probability that is at mostnon-negligibly smaller than the probability that the veri�er accepts on input x. Speci�cally, it isrequired thatthere exists a probabilistic expected polynomial-time extractor M so that for all con-stants b > 0, all provers P , and all su�ciently large x; r; k,Pr[(P; V )(x; r; k)=ACC] > Pr[M(desc(P ); x; r; k)2R(x)]� jxj�bConsequently this de�nition does not su�er from the main criticism raised against the de�nitionof [6]. However, it still su�ers from the other problems such as the fact that k is given to M .Furthermore, it does not capture \knowledge" of super-polynomial-time provers.Work on \computationally convincing proofs of knowledge". Brassard, Cr�epeau, Laplanteand L�eger [5] study \computationally convincing proofs of knowledge" (the \validity" conditionrefers only to probabilistic, polynomial-time provers). They do not present formal de�nitions sowe found it di�cult to compare their work to ours, but the ideas appear to have some relation.They too propose an \adaptive" requirement linking the running time of the extractor to thesuccess of the prover. Speci�cally, they appear to consider a particular class of protocols, namelythose consisting of k rounds, each of which contains a \challenge" (from veri�er to prover) which theprover may correctly answer with probability 1=2 if he correctly \guesses" a coin toss of the veri�er.They require that the extractor succeed in time linear in 1=', where 2�k + ' is the \probability ofundetected cheating." The quantity in quotes was not de�ned precisely, particularly for the caseof the input being in the language, but if 2�k + ' is interpreted as the probability that the veri�eraccepts, then it is like our de�nition with the knowledge error set to 2�k.Brassard et. al. [5] also raise some criticisms of the de�nitions of [6, 18], but their criticism is theopposite of ours: whereas we suggest that the previous de�nitions are too weak (and propose astronger de�nition) they suggest that the previous de�nitions are already too strong.B Soundness and Strong ValidityFor completeness, we state here also the standard soundness condition (for interactive proof sys-tems). We remind the reader that we view soundness as an additional property that a knowledgeveri�er may (or may not) satisfy. 21



De�nition B.1 (Additional possible properties of a system of proofs of knowledge) Let R be a binaryrelation, and suppose that V is a knowledge veri�er for the relation R with knowledge error �. Wede�ne two additional properties that V may satisfy:� soundness: For every interactive function P , and for all x 62 LR, most of the possible interac-tions of V with P on common input x are rejecting (i.e., Pr[trP;V (x)2ACCV (x)] < 1=2).� strong validity (with error �): Let K be the universal knowledge extractor, and c > 0 be theconstant guaranteed by the validity condition of De�nition 3.1. Then, for every interactivefunction P and every x 62 LR, machine K satis�es the following condition:if p(x) def= Pr[trP;V (x)2ACCV (x)] > �(x) then, on input x and access to oracle Px,machine K outputs the special symbol ? within an expected number of steps boundedby jxjcp(x)� �(x)As usual, the completeness (or non-triviality) and soundness conditions merely state that there isa gap between the probability that a prover may convince the veri�er on x 2 LR (which by thecompleteness condition is exactly 1) and the probability that a prover may convince the veri�er onx 62LR (which by the soundness condition is at most 1=2). Validity (resp., strong validity) is a morere�ned condition regarding the behavior of arbitrary provers on x 2 LR (resp., arbitrary strings).Speci�cally, validity relates the probability that the prover convinces the veri�er on x 2 LR andthe average time it takes the knowledge extractor to �nd a y 2R(x) in the case x 2 LR. Strongvalidity is an analogous requirement regarding x 62 LR. Validity, soundness, and strong validity arenot always independent. Namely,Proposition B.2 Validity and soundness imply strong validity for NP relations.The proof that follows is for the case � = 0.Recall that an NP relation is a polynomially bounded relation R(�; �) which is decidable inpolynomial time. Suppose an NP relation R possesses a knowledge veri�er which (in addition)satis�es the soundness condition. Without loss of generality14, we may assume the error probabilityin the soundness condition is at most 2�p(n), where p(�) is a polynomial bounding the length ofwitnesses as a function of the length of the input. Let K be the universal knowledge extractor(satisfying the validity condition). Fix a deterministic procedure, with running-time 2p(n) �poly(n),for deciding LR (e.g., the one which scans through all possible witnesses for the given input).We construct a new knowledge extractor, denoted K 0, for the above proof of knowledge, sat-isfying also strong validity. On input x and oracle access to Px, machine K 0 runs in parallel theextractor K (with input x and oracle Px) and the decision procedure for LR, �xed above. SupposeK halts before the decision procedure terminates, and yields an output y. Machine K0 checkswhether R(x; y) is true (it can do this in polynomial time) and if so outputs y; otherwise it outputs?. On the other hand, suppose the decision procedure halts while K is still running. If the decisionis negative (x 62 LR) then K 0 outputs ?; else it continues to run K to whatever outcome this mightyield.We note that the running time of K 0 is (within a polynomial factor of) that of K when x 2 LR,and at most (within a polynomial factor of) 2p(jxj) otherwise. But in the latter case, the probabilityp(x) = Pr[trP;V (x) 2 ACCV (x)] is at most 2�p(jxj), so that the running time of K 0 is expected14The error probability in the soundness condition may be reduced, as usual, by repetitions.22



jxjO(1)=p(x) in both cases. The fact that K 0 is a knowledge extractor for R which satis�es (validityand) strong validity follows.Finally, we note that the above transformation preserves (upto polynomial factors) the runningtime of the knowledge veri�er, and, as long as we do the error-reduction in a suitable way (forexample, by serial composition), it also preserves zero-knowledge.C Reducing the Knowledge Error via RepetitionsWe prove the claims of x5. Let us �rst recall the notation and assumptions introduced there. Bypoly(�) we mean any su�ciently large polynomial in the length of the input (string). By assumptionthe messages of the veri�er can be computed in polynomial-time, and y 2 R(x) can be found (ifsuch exists) in exponential-time (i.e., time 2poly(x)). Consequently, failure of the knowledge extractoroccurring with exponentially small probability (i.e., probability 2�poly(x)) can be ignored. Finally,we assume of course that m(x) � poly(x).C.1 Reducing the Knowledge Error via Sequential CompositionSuppose that V is a knowledge veri�er with error �(�) for the relation R, and let K be a knowledgeextractor witnessing this fact. Let Vm denote the program that, on input x, sequentially executesthe program V , on input x, form(x) times. Theorem 5.1 asserts that Vm is a knowledge veri�er witherror �m(�) def= (1 + 1=poly(�)) � �(�)m(�) for the relation R. The theorem is proven by constructing aknowledge extractor, denoted Km, as described below.Suppose that Pm is a prover which, on input x, leads Vm to accept with probability pm(x) >�m(x). Loosely speaking, we observe that there exists an i, 0 � i � m(x) � 1, and a partialtranscript of i iterations so that, relative to this partial transcript, the i+1st iteration is acceptingwith probability at least m(x)ppm(x). The idea is to use the guaranteed knowledge extractor, K, onthe i+ 1st iteration of Vm, relative to an appropriate partial i-iteration transcript. Details follow.For simplicity, we assume here that all transcripts are equally likely. Let Ti denote the setof all possible partial transcripts of the �rst i iterations, and Ai � Ti denote the set of partial(i-iteration) transcripts in which all the i iterations are accepting. Let ai def= jAij=jTij (a0 def= 1). Forevery � 2Ai, let q(�) denote the accepting probability of the i+ 1st iteration relative to a partialtranscript �, and ci+1 denote the average of q(�) taken over all � 2 Ai.The following sequence of claims lead to the construction of the knowledge extractor Km.Claim 1: for every i, 0� i<m(x), it holds that ai+1 = ai � ci+1.Proof: Clearly, jAi+1j = X�2Ai jTi+1jjTij � q(�)= jTi+1j � jAijjTij � P�2Ai q(�)jAijand the claim follows. 2Claim 2: there exists an i, 0� i<m(x), such that1. ci+1 � m(x)ppm(x).2. ai � (ci+1 � �(x)) > pm(x)poly(x) . 23



Proof: By Claim 1, pm(x) = Qm(x)i=1 ci, and Part (1) follows. Using pm(x) > �m(x), we getci+1 � m(x)q1 + 1=poly(x) � �(x)= �1 + 1poly(x)� � �(x)and hence ci+1 � �(x) � ci+1=poly(x). Using ai � ci+1 � pm(x), Part (2) follows. 2Notation: Let i be as guaranteed by Claim 2, and denote �i+1 def= ci+1 � �(x). Let Ai;t denotethe set of partial transcripts in Ai containing only partial transcripts relative to which the i+ 1stiteration accepts with probability bounded below by �(x) + 2t�i+1=poly(x) and above by �(x) +2t+1�i+1=poly(x), where poly(�) is a speci�c polynomial which depends onm(�) and the time requiredto �nd y 2 R(x). Namely,Ai;t def= �� 2 Ai : �(x) + 2t � �i+1poly(x) � q(�) < �(x) + 2t+1 � �i+1poly(x) �Claim 3: Let i and Ai;t be as above. Then there exists an t, 1� t < poly(x), such that jAi;tj �2�t � jAij.Proof: Assume, on the contrary, that the current claim does not hold. Thenci+1 < �(x) + �i+1poly(x) +Xt�1 jAi;tjjAij � �2t+1 � �i+1poly(x)�< �(x) + �i+1poly(x) + poly(x)Xt=1 2�t � �2t+1 � �i+1poly(x)�< �(x) + �i+1= ci+1and contradiction follows. 2Claim 4: There exists an i, 0� i<m(x), and an j, 1�j<poly(x), such that at least a 2�j fractionof the � 2 Ti satisfy q(�) > �(x) + 2j � pm(x)poly(x)Proof: Let i as guaranteed by Claim 2. Rephrasing Claim 3, we get that there exists an t, 1� t<poly(x), such that at least a 2�t � ai fraction of the � 2 Ti satisfy q(�) > �(x) + 2t � �i+1=poly(x).Substituting j = t + log2(1=ai) and using Part (2) of Claim 2, the claim follows. 2Using Claim 4, we are now ready to present the knowledge extractor Km. Machine Km runs inparallel m(x)�poly(x) copies of the following procedure, each with a di�erent pair (i; j), 1� i�m(x)and 1� j � poly(x). By saying \run several copies in parallel" we mean execute these copies sothat t steps are executed in each copy before step t + 1 is executed in any other copy15.The copy running with the pair (i; j), generates M def= 2j � poly(x) random partial transcripts ofi-iterations, denoted 1; :::; M, and runs M copies of the knowledge extractor K in parallel, eachusing a corresponding partial transcript (k). The sub-procedure, indexed by the triple (i; j; k), uses15Actually, the condition can be related. For example, it su�ces to require that at least t steps are executed ineach copy before step 2 � t is executed in any other copy. 24



the partial transcript k to convert queries of the basic knowledge extractor (i.e., K) into queriesconcerning the i+ 1st iteration. Namely, when K is invoked it asks queries to an oracle describingthe messages of a prover interacting with V . However, Km has access to an oracle describing proverPm (which is supposedly interacting with Vm). Hence, Km needs to simulate an oracle describing abasic prover (interacting with V ), by using an oracle describing Pm. This is done by pre�xing eachquery of K with the i-iteration partial transcript k generated above.To analyze the performance of Km consider the copy of the procedure running with a pair(i; j) satisfying the conditions of Claim 4. If this is the case, then with very high probability(i.e., exponentially close to 1) at least one of the partial transcripts generated by this copy hasthe property that, relative to it, the i + 1st iteration accepts with probability at least �(x) +2jpm(x)=poly(x). It follows that the corresponding copy of the sub-procedure will halt, outputtingy 2 R(x), within poly(x)2j�pm(x) steps (on the average). Since the (i; j)th copy of the procedure consists of2j � poly(x) copies of the sub-procedure running in parallel, this copy of the procedure will halt inexpected time poly(x)pm(x) < poly(x)pm(x)��m(x) . The entire knowledge extractor consists of polynomially manycopies of the procedure, running in parallel, and hence it also runs in expected poly(x)pm(x)��m(x) time asrequired.Remark: We believe that Vm is a knowledge veri�er with error �(�)m(�) for the relation R (ratherthan just being a knowledge veri�er with error (1 + 1=poly(�)) � �(�)m(�) for this relation). Thedi�erence is of little practical importance, yet we consider the question to be of theoretical interest.C.2 Reducing the Knowledge Error via Parallel CompositionA fundamental problem with presenting a parallel analogue of the above argument is that we cannot�x a partial transcript for the other iterations while working with one selected iteration (which waspossible and crucial to the proof used in the sequential case). Furthermore, even analyzing thepro�le of accepting transcripts is more complex.As before, let pm(x) denote the accepting probability, here abbreviated by p(x), and let �(x) def=p(x) � �m(x). Consider a m(x)-dimensional table in which the dimensions correspond to them def= m(x) parallel executions, where the (r1; :::; rm)-entry in the table corresponds to the transcriptwhen the veri�er uses coin tosses r1 in the �rst execution, r2 in the second execution, and soon. Since a p(x) fraction of the entries are accepting transcripts, it follows that there exists adimension i so that at least a m(x)pp(x)� �(x)=2 fraction of the rows in the ith dimension containat least �(x)=2m(x) accepting entries. Furthermore, there exists a j, 0� j� log2(poly(x)=�m(x)),so that at least a 2j � m(x)pp(x)� �(x)=2 fraction of the rows in the ith dimension contain at leastp(x)��(x)=22jpoly(x)� m(x)pp(x)��(x)=2 accepting entries.Getting back to the problem of using the knowledge extractor K (of the basic veri�er V ), wenote that we need to simulate an oracle to K using an oracle describing Pm. The idea used in thesequential case is to augment all queries to the P -oracle by the same partial transcript. However,we can no longer guarantee high accepting probability for one execution relative to a �x transcriptof the other (parallel) executions.We can however treat the special case in which the basic knowledge extractor, K, operates bygenerating random transcripts and keeping a new transcript only if it satis�es some polynomial-time predicate with respect to the transcripts kept so far. Details omitted. We remark that theknown knowledge extractors do operate in such a manner.25



D Equivalence of Two Formulations of Validity with ErrorWe now prove the equivalence of the de�nitions of validity with error given in De�nition 3.1 andin x6, respectively. We assume that whenever Pr[trP;V (x)2ACCV (x)] > �(x), we have Pr[trP;V (x)2ACCV (x)] > �(x) + 2�poly(x) as well. Alternatively, we may assume that there exist an exponentialtime algorithm for solving the relation R (i.e., �nding y 2 R(x) if such exists within 2poly(x) steps).The proof extends the argument presented in x6, for the special case � = 0, yet in one direction anadditional idea is required.Let us start with the easy direction. Suppose that a veri�er V satis�es validity with knowledgeerror �(�) by the de�nition in x6. Let K be a knowledge extractor satisfying this de�nition. Weconstruct a knowledge extractor K 0 that, on input x repeatedly invokes K (on x) until K(x) 6= ?.Clearly, K 0 always outputs a string in R(x), halting in expected time poly(x)=Pr[K(x) 2 R(x)]which is bounded above by poly(x)=(Pr[trP�;V (x) 2 ACCV (x)] � �(x)). Hence, K 0 satis�es thecondition in De�nition 3.1.Suppose that a veri�er V satis�es validity with knowledge error �(�) by De�nition 3.1, andlet K be a knowledge extractor witnessing this fact. Let c > 0 be the constant satisfying thecondition on the running-time of K. Namely, that its expected running-time is bounded aboveby jxjc=(Pr[trP;V (x) 2 ACCV (x)] � �(x)). Assume, without loss of generality, that with very highprobability (i.e., exponentially close to 1) K halts within at most 2poly(x) steps16. We construct aknowledge extractor K 0 that, on input x runs K(x) with the following modi�cation. Machine K0proceeds in iterations, starting with i = 1, and terminating after at most poly(x) iterations. Initeration i, machine K 0 executes K(x) with time bound 2i � jxjc. If K halts with some output ythen K 0 outputs y and halts. Otherwise (i.e., K 0 does not halt within 2i � jxjc steps), machine K0halts with probability 12 with output ? and otherwise proceeds to iteration i + 1. We stress thatin all iterations, K uses the same internal coin tosses. In fact, we can record the con�guration atthe end of iteration i and consequently save half of the time spent in iteration i+ 1. Clearly, theexpected running-time of K0(x) is bounded above bypoly(x)Xi=1 12i�1 � (2i � jxjc) = poly(x)We now evaluate the probability that, on input x, machine K 0 outputs y 2 R(x). It is guaranteedthat, on input x, the extractor K outputs y 2 R(x) within T (x) � jxjc=(Pr[trP;V (x)2ACCV (x)]��(x)) steps on the average (and by hypothesis T (x) < 2poly(x)). Hence, with probability at least 12 ,on input x, machine K outputs y 2 R(x) within 2 � T (x) steps. The probability that K 0 conducts2�T (x) steps (i.e., K 0 reaches iteration log2(T (x)=jxjc)) is jxjc=T (x) � Pr[trP;V (x)2ACCV (x)]��(x).Hence, K 0 satis�es the condition in x6.E The Zero-Knowledge proof of Graph Non-IsomorphismFollowing is the basic ingredient of the zero-knowledge proof for Graph Non-Isomorphism (GNI)presented in [12].Common input: Two graphs G1 and G2 of n vertices each.Objective: In case the graphs are not isomorphic, supply (statistical) evidence to that a�ect.16This can be achieved by running the exponential time solver in parallel to K. Alternatively, assuming that ifPr[trP;V (x) 2 ACCV (x)] > �(x) then Pr[trP;V (x) 2 ACCV (x)] > �(x) + 2�poly(x), we can implement a probabilisticexponential-time solver using K. 26



Step V1: The GNI-veri�er selects uniformly i 2 f1; 2g, and a random isomorphic copy of Gi,hereafter denoted H and called the query, and sends H to the GNI-prover. Namely, H is obtainedby selecting a random permutation �, over the vertex-set, and letting the edge-set of H consist ofpairs (�(u); �(v)) for every pair (u; v) in the edge-set of Gi.Step VP: The GNI-veri�er \convinces" the GNI-prover that he (i.e., the GNI-veri�er) \knows"an isomorphism between H and one of the input graphs. To this end the two parties execute awitness indistinguishable proof of knowledge (with zero error) for graph isomorphism. (Such aprotocol is described below.) In that proof of knowledge the GNI-veri�er acts as the prover whilethe GNI-prover acts as the veri�er.Step P1: If the GNI-prover is convinced by the proof given at step VP, then he �nds j such thatH is isomorphic to Gj, and sends j to the GNI-veri�er. (If H is isomorphic to neither graphs or toboth the GNI-prover sets j = 1; this choice is arbitrary.)Step V2: If j (received in step P1) equals i (chosen in step V1) then the GNI-veri�er accepts, elsehe rejects.It is easy to see that if the input graphs are not isomorphic then there exists a GNI-prover whichalways convinces the GNI-veri�er. This meets the completeness condition of interactive proofs.To show that some sort of soundness is achieved we use the witness indistinguishability of thesubprotocol used in Step VP. Loosely speaking, it follows that no information about i is revealedto the GNI-prover and therefore if the input graphs are isomorphic then the GNI-veri�er rejectswith probability at least one half (no matter what the prover does).17The demonstration that the GNI-prover is zero-knowledge is the place where the notion of proofof knowledge plays a central role. As required by the zero-knowledge condition we have to construct,for every e�cient program playing the role of the GNI-veri�er, an e�cient simulator which outputs adistribution equal to that of the interaction of the veri�er program with the GNI-prover. Followingis a description of such a simulator. The simulator starts by invoking the veri�er's program andobtaining a query graph, H , and a transcript of the execution of step VP (this is obtained whenthe simulator plays the role of the GNI-prover which is the knowledge-veri�er in this subprotocol).If the transcript is not accepting then the simulator halts and outputs it (thus perfectly simulatingthe real interaction). However, if the transcript is accepting the simulator must proceed (otherwiseits output will not be correctly distributed). The simulator needs now to simulate step P1, but,unlike the real GNI-prover, the simulator does not \know" to which graph H is isomorphic. Thekey observation is that the simulator can obtain this information (i.e., the isomorphism) from theknowledge extractor guaranteed for the proof of knowledge (taking place in step VP), and oncethe isomorphism is found producing the rest of the interaction (i.e., the bit j) is obvious. Usingour de�nition (of proof of knowledge with zero error), the simulator can �nd the isomorphism inexpected poly(n)=p(G1; G2; H) time, where p(G1; G2; H) is the probability that the GNI-prover isconvinced by the proof of knowledge in step VP. Since this module in the simulator is invokedonly with probability p(G1; G2; H), the simulator runs in expected polynomial-time, and the zero-knowledge property follows. We stress that carrying out this plan is not possible when using anyof the previous de�nitions of \proof of knowledge".To complete the description of the above protocol we present a (witness indistinguishable) proofof knowledge of Graph Isomorphism. This proof of knowledge can be easily adapted to a proof ofknowledge of an isomorphism between the �rst input graph and one of the other two input graphs.17Reducing the cheating probability further can be done by iterating the above protocol either sequentially or inparallel. However, this is not our concern here. 27



Common input: Two graphs H and G of n vertices each.Objective: In case the graphs are isomorphic, the GI-prover has to \prove knowledge of  ", where is an isomorphism between H and G.Note: In our application the GNI-veri�er plays the role of the GI-prover, while the GNI-proverplays the role of the GI-veri�er.Notation: Let tdef= t(n)def= n2.Step p1: The GI-prover selects uniformly t random isomorphic copies of H , denoted K1; :::; Ktand called the mediators , and sends these graphs to the GI-veri�er. Namely, Ki is obtained byselecting a random permutation �i over the vertex-set, and letting the edge-set of Ki consist ofpairs (�i(u); �i(v)) for every pair (u; v) in the edge-set of H .Step v1: The GI-veri�er selects uniformly a subset S of f1; 2; :::; tg and sends S to the GI-prover.Step p2: For every i2S, the GI-prover sets ai = �i, where �i is the permutation selected in stepp1 to form Ki. For every i2 f1; :::; tg�S, the GI-prover sets ai = �i , where �i is as before,  is the isomorphism between G and H (known to the GI-prover), and � denotes composition ofpermutations (or isomorphisms). The GI-prover sends a1; a2; :::; at to the GI-veri�er.Step v2: The GI-veri�er checks if, for every i 2 S, the permutation ai (supplied in step p2) isindeed an isomorphism between the graphs H and Ki. In addition, the GI-veri�er checks if, forevery i2f1; 2; :::; tg�S, the permutation ai (supplied in step p2) is indeed an isomorphism betweenthe graphs G and Ki. If both conditions are satis�ed (i.e., all t permutations are indeed what theyare supposed to be) then the GI-veri�er accepts (i.e., is convinced that the GI-prover knows anisomorphism between G and H).One can show that the above GI-veri�er constitutes a knowledge-veri�er (with zero error) for GraphIsomorphism. This is done by considering all possible choices of S � f1; 2; :::; tg for a �xed set ofmediators K1; :::; Kt. Denote by s the number of subsets S for which the GI-veri�er accepts. Aknowledge extractor, given one accepting interaction (i.e., containing a good S) tries to �nd anotherone (i.e. a good subset di�erent from S). Having two good subsets clearly yields an isomorphismbetween G and H (i.e., using any index in the symmetric di�erence between the good subsets).Clearly, if s = 1 then there exists no good subset other than S. In this case the extractor �ndsan isomorphism by exhaustive search (which is always performed in parallel to the attempts of theextractor to �nd a di�erent good subset). The exhaustive search requires less than 2t steps, butdominates the total running time only in case s = 1 (in which case the accepting probability is1=2t). Yet, for any s > 1, the expected number of tries required to �nd a di�erent good subset is1(s� 1)=(2t � 1) < 2ts� 1 � 2 � 2ts(the last inequality follows from s � 2). Since s=2t is the probability that the GI-veri�er accepts,the extractor described above indeed runs in expected time inversely proportional to the acceptingprobability of the GI-veri�er. Our claim follows.
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