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1 IntrodutionSuppose that you want to run some experiments on random odes (i.e., subsets of f0; 1gn that ontainK = 2
(n) strings). You atually take it for granted that the random ode will have large (i.e., linear)distane, beause you are willing to disard the negligible probability that a random ode will not havea large distane. Suppose that you want to be able to keep suint representations of these huge odesand/or that you want to generate them using few random bits. A natural idea that omes to mind is usingpseudorandom funtions [20℄ in order to eÆiently generate and store representations of these odes; thatis, using the pseudorandom funtion f : [K℄ ! f0; 1gn, one an de�ne the ode Cf = ff(i) : i2 [K℄g, andeÆiently produe odewords of Cf . But do the odes generated this way have a large distane?The point is that having a large distane is a global property of the ode, whih in turn is a huge (i.e.,exp(n)-sized) objet. This global property annot be deided by looking at polynomially many (i.e., poly(n)-many) odewords, and so its violation annot be translated to a ontradition of the pseudorandomness ofthe funtion. Indeed, the substitution of a random funtion (or a random ode) by a pseudorandom one isnot guaranteed to preserve the global property. Spei�ally, all pseudorandom odes generated as suggestedabove may have small distane.1So, an we eÆiently generate random-looking odes of large distane? Spei�ally, an we provide aprobabilisti polynomial-time proedure that allows to sample odewords from a ode of large distane suhthat the sampled odewords look as if they were taken from a random ode (whih, in partiular, meansthat we do not generate linear odes). The answer is essentially positive: see Setion 4. However, this ismerely an example of the type of questions that we deal with. Another illustrative example is provided bythe question of whether it is feasible to generate a random-looking onneted graph of huge size? Again,the huge graph should look random and be onneted, and we annot obtain this by merely using a randomfuntion (see Example 3.5).The foregoing disussion alludes to the notion of a \truthful" implementation (of a given spei�ation),whih will be entral to this work. For example, if the spei�ation alls for (random) odes of large distanethen the implementation should provide suh odes and not arbitrary random-looking odes. However,even when disarding the question of truthfulness, a fundamental question arises: whih types of randomobjets an be eÆiently implemented in the sense that one annot distinguish the implementation from theorresponding spei�ation.We initiate a general study of the feasibility of implementing (huge) random objets. The pivots of thisstudy are the notions of a spei�ation and an implementation (see Setion 1.1), where an implementation isrelated to the spei�ation by appropriate measures of indistinguishability and truthfulness (see Setion 1.2).After establishing the basi formalism (in Setion 2), we explore several areas in whih the study of randomobjets ours naturally. These areas inlude graph theory, oding theory, and ryptography. The bulk ofthis work provides implementations of various natural random objets, whih were onsidered before in theseareas (e.g., the study of random graphs [8℄).1.1 Objets, spei�ations, and implementationsOur fous is on huge objets; that is, objets that are of size that is exponential in the running time of theappliations. Thus, these (possibly randomized) appliations may inspet only small portions of the objet(in eah randomized exeution). The objet may be viewed as a funtion (or an orale), and inspeting asmall portion of it is viewed as reeiving answers to a small number of adequate queries. For example, whenwe talk of huge dense graphs, we onsider adjaeny queries that are vertex-pairs with answers indiatingwhether or not the queried pair is onneted by an edge. When we talk of huge bounded-degree graphs, weonsider inidene queries that orrespond to verties with answers listing all the neighbors of the queriedvertex.1Indeed, for eah funtion fs taken from some pseudorandom ensemble ffs : [2jsj=10℄ ! f0; 1gjsjgs, it may holdthat the Hamming distane between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily on fs. Forexample, given a pseudorandom ensemble ffsg, onsider the ensemble ffs;ig suh that fs;i(i) = 0n, fs;i(i+1) = 0n�11and fs;i(x) = fs(x) for all other x's. 2



We are interested in lasses of objets (or objet types), whih an be viewed as lasses of funtions.(Indeed, we are not interested in the trivial ase of generi objets, whih is aptured by the lass of allfuntions.) For example, when we talk of simple undireted graphs in the adjaeny prediate representation,we only allow symmetri and non-reexive Boolean funtions. Similarly, when we talk of suh bounded-degreegraphs in the inident-lists representation, we restrit the lass of funtions in a less trivial manner (i.e., ushould appear in the neighbor-list of v i� v appears in the neighbor-list of u). More interestingly, we may talkof the lass of onneted (or Hamiltonian) graphs, in whih ase the lass of funtions is even more omplex.This formalism allows to talk about objets of ertain types (or of objets satisfying ertain properties). Inaddition, it aptures \omplex objets" that support \ompound queries" to more basi objets. Indeed,these omplex objets are de�ned in terms of the ompound queries that they support (akin to abstratdata types that are de�ned in terms of the supported queries) For example, we may onsider an objetthat answers queries regarding a global property of a Boolean funtion (e.g., the parity of all the funtion'svalues). The queries may also refer to a large number of values of the funtion (e.g., the parity of all valuesassigned to arguments in an interval that is spei�ed by the query).We study probability distributions over lasses of objets. Suh a distribution is alled a spei�ation.Formally, a spei�ation is presented by a omputationally-unbounded probabilisti Turing mahine, whereeah setting of the mahine's random-tape yields a huge objet. The latter objet is de�ned as the orre-sponding input-output relation, and so queries to the objet are assoiated with inputs to the mahine. Weonsider the distribution on funtions obtained by seleting the spei�ation's random-tape uniformly. Forexample, a random N -vertex Hamiltonian graph is spei�ed by a omputationally-unbounded probabilistimahine that uses its random-tape to determine suh a (random Hamiltonian) graph, and answers adjaenyqueries aordingly. Another spei�ation may require to answer, in addition to adjaeny queries regardinga uniformly seleted N -vertex graph, also more omplex queries suh as providing a lique of size log2N thatontains the queried vertex. We stress that the spei�ation is not required to be even remotely eÆient(but for sake of simpliity we assume that it is reursive).Our ultimate goal will be to provide a probabilisti polynomial-time mahine that implements the desiredspei�ation. That is, we onsider the probability distribution on funtions indued by �xing the random-tape of the latter mahine in all possible ways. Again, eah possible �xing of the random-tape yields afuntion orresponding to the input-output relation (of the mahine per this ontents of its random-tape).Thus, an implementation is a probabilisti mahine, just as the spei�ation, and it de�nes a distribution onfuntions in the same manner. The key di�erene is that the implementation is a probabilisti polynomial-time mahine, whereas the spei�ation is rather arbitrary (or merely reursive).1.2 Indistinguishability and TruthfulnessNeedless to say, the key question is how does the implementation relate to the desired spei�ation; that is,how \good" is the implementation. We onsider two aspets of this question. The �rst (and more standard)aspet is whether one an distinguish the implementation from the spei�ation when given orale aess toone of them. Variants inlude perfet indistinguishability, statistial-indistinguishability, and omputational-indistinguishability.We highlight a seond aspet regarding the quality of implementation: the truthfulness of the implemen-tation with respet to the spei�ation, where being truthful means that any possible funtion that appearswith non-zero probability in the implementation must also appear with non-zero probability in the spei�-ation. For example, if the spei�ation is of a random Hamiltonian graph then a truthful implementationmust always yield a Hamiltonian graph. Likewise, if the spei�ation is of a random non-Hamiltonian graphthen a truthful implementation must always yield a non-Hamiltonian graph. Indeed, these two examplesare fundamentally di�erent, beause with overwhelmingly high probability a random graph is Hamiltonian.(Thus, a relaxed notion of truthfulness is easy to obtain in the �rst ase but not in the seond ase.)2Indeed, our presentation highlights the notion of truthfulness, and we justify below the importanethat we attah to this notion. Nevertheless, we stress that our work also initiates the study of general2Here we refer to a relaxation of the notion of truthfulness that (only) requires that all but a negligible part ofthe probability mass of the implementation is assigned to funtions that appear with non-zero probability in thespei�ation. An implementation satisfying this relaxation will be alled alled almost-truthful.3



implementations, regardless of truthfulness. That is, we ask whih spei�ations have implementations(whih are indistinguishable from them). We also stress that some of our onstrutions are interestingregardless of their truthfulness.The meaning of truthfulness. Seeking a truthful implementation of random objets of a givenType T, means aiming at the generation of pseudorandom objets of Type T. That is, we want the generatedobjet to always be of Type T, but we are willing to settle for Type T objets that look as if they are trulyrandom Type T objets (although they are not). This means that we seek Type T objets that look likerandom Type T objets, rather than objets that look like random Type T objets although they are not ofType T at all. For example, a random funtion is not a truthful implementation of a random permutation,although the two look alike to anybody restrited to resoures that are polynomially related to the lengthof the inputs to the funtion. Beyond the intuitive oneptual appeal of truthfulness, there are importantpratial onsiderations.In general, when one deals (or experiments) with an objet that is supposed to be of Type T, one mayassume that this objet has all the properties enjoyed by all Type T objets. If this assumption does nothold (even if one annot detet this fat during initial experimentation) then an appliation that depends onthis assumption may fail. One reason for the failure of the appliation may be that it uses signi�antly moreresoures than those used in the initial experiments that failed to detet the problem. See further disussionbelow. Another issue is that the probability that the appliation fails may indeed be negligible (as is theprobability of deteting the failure in the initial experiments), but due to the importane of the appliationwe are unwilling to tolerate even a negligible probability of failure.Indeed, the fat that truthfulness is not reeted by omputational (or even statistial) indistinguisha-bility raises the question of motivation. The question is why should we are about a property that we annottest. The answer is that others may be able to test this property and/or to bene�t from its violation. Themost evident settings in whih this may our are multi-party settings onsisting of parties that have vastlydi�erent omputational abilities (e.g., as underlying zero-knowledge interative proof and perfetly bindingommitment shemes (f., [18, Chap. 4℄)). In suh settings the indistinguishability requirement may referto one (omputationally-bounded) party, whereas truthfulness is essential for preventing events that refer toations of the other party (whih is not omputationally-bounded). For example, a pseudorandom funtionis omputationally indistinguishable from a random permutation, but if we fae an opponent that is notomputationally bounded and an illegitimately bene�t from �nding an image that has multiple preimagesthen we should insist on using a truthful implementation of a random permutation. The same onsiderationsapply also if the opponent is omputationally bounded but has extra information regarding the pseudoran-dom funtion (e.g., the opponent may know the suint desryption of the funtion, hereafter alled itsseed). Note that in this example, omputational indistinguishability may refer to one party (who does notknow the funtion's seed), whereas truthfulness guarantees that the implemented funtion is a permutationand thus that the opponent (who may know the seed) annot �nd an image that has multiple preimages.Truthful implementations as an extension of omplexity theory. Speializing our notionof a truthful implementation to the ase of deterministi spei�ations yields the standard notion of eÆ-ient omputation; that is, a truthful implementation of a funtion f : f0; 1g� ! f0; 1g� is nothing but apolynomial-time algorithm for omputing f . Similarly, an almost-truthful implementation of f is a proba-bilisti polynomial-time algorithm for omputing f (with exponentially vanishing error probability). Thus,our notion of truthful implementations extends the standard study of polynomial-time omputations fromfuntions to probability distributions over funtions (i.e., spei�ations).1.3 OrganizationIn Setion 2, we present formal de�nitions of the notions disussed above as well as basi observationsregarding these notions. These are followed by a few known examples of non-trivial implementations ofvarious random objets (whih are retrospetively ast niely in our formulation). In Setion 3, we state afair number of new implementations of various random objets, while deferring the onstrutions (and proofs)to subsequent orresponding setions (i.e., Setions 4 through 9). These implementations demonstrate the4



appliability of our notions to various domains suh as funtions, graphs, and odes. Indeed, Setions 4through 9 are mutually independent and an be read in arbitrary order.We all the reader's attention to Setions 10 and 11, whih ontain onlusions and open problems(Setion 10) as well as a brief review of subsequent work (Setion 11).2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Spei�ally, feasible-sized objets have anexpliit desription of length poly(n), whereas huge objets have (expliit desription) size exponential in n.The latter are desribed by funtions from poly(n)-bit strings to poly(n)-bit strings. Whenever we talk ofeÆient proedures we mean algorithms running in poly(n)-time.2.1 Spei�ationA huge random objet is spei�ed by a omputationally-unbounded probabilisti Turing mahine. For a �xedontents of the random-tape, suh a mahine de�nes a (possibly partial) funtion on the set of all binarystrings. Suh a funtion is alled an instane of the spei�ation. We onsider the input-output relation ofthis mahine when the random-tape is uniformly distributed. Loosely speaking, this is the random objetspei�ed by the mahine.For sake of simpliity, we on�ne our attention to mahines that halt with probability 1 on every input.Furthermore, we will onsider the input-output relation of suh mahines only on inputs of some spei�edlength `, where ` is always polynomially related to the feasibility parameter n. Thus, for suh a probabilistimahine M and length parameter ` = `(n), with probability 1 over the hoie of the random-tape for M ,mahine M halts on every `(n)-bit long input.De�nition 2.1 (spei�ation): For a �xed funtion ` :N!N, the instane spei�ed by a probabilisti mahineM , random-tape ! and parameter n is the funtion Mn;! de�ned by letting Mn;!(x) be the output of M oninput x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random objet spei�ed by M and n isde�ned as Mn;! for a uniformly seleted ! 2 f0; 1g1.Note that, with probability 1 over the hoie of the random-tape, the random objet (spei�ed by M andn) depends only on a �nite pre�x of the random-tape. Let us larify our formalism by asting in it severalsimple examples, whih were onsidered before (f. [20, 34℄).Example 2.2 (a random funtion): A random funtion from n-bit strings to n-bit strings is spei�ed by themahine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns the idxn(x)-th n-bit blokof !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N ℄ an bespei�ed by uniformly seleting an integer i 2 [N !℄; that is, the mahine uses its random-tape to determinei 2 [N !℄, and uses the i-th permutation aording to some standard order. An alternative spei�ation, whihis easier to state (alas even more ineÆient), is obtained by a mahine that repeatedly inspet the N next n-bitstrings on its random-tape, until enountering a run of N di�erent values, using these as the permutation.Either way, one a permutation � over f0; 1gn is determined, the mahine answers the input x 2 f0; 1gnwith the output �(x).Example 2.4 (a random permutation oupled with its inverse): In ontinuation to Example 2.3, we mayonsider a mahine that selets � as before, and responds to input (�; x) with �(x) if � = 1 and with ��1(x)otherwise. That is, the objet spei�ed here provides aess to a random permutation as well as to its inverse.
5



2.2 ImplementationsDe�nition 2.1 plaes no restritions on the omplexity of the spei�ation. Our aim, however, is to implementsuh spei�ations eÆiently. We onsider several types of implementations, where in all ases we aimat eÆient implementations (i.e., mahines that respond to eah possible input within polynomial-time).Spei�ally, we onsider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time orale mahinehaving aess to a random orale or a standard probabilisti polynomial-time mahine (viewed as adeterministi mahine having aess to a �nite random-tape).2. The similarity of the implementation to the spei�ation; that is, the implementation may be per-fet, statistially indistinguishable or only omputationally indistinguishable from the spei�ation (byprobabilisti polynomial-time orale mahines that try to distinguish the implementation from thespei�ation by querying it at inputs of their hoie).Our real goal is to derive implementations by ordinary mahines (having as good a quality as possible).We thus view implementations by orale mahines having aess to a random orale merely as a leanabstration, whih is useful in many ases (as indiated by Theorem 2.9 below).De�nition 2.5 (implementation by orale mahines): For a �xed (length) funtion ` : N! N, a (deter-ministi) polynomial-time orale mahine M and orale f , the instane implemented by Mf and parametern is the funtion Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n) when using theorale f . The random objet implemented by M with parameter n is de�ned as Mf for a uniformly distributedf : f0; 1g� ! f0; 1g.In fat, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial in jxj. Similarly,an ordinary probabilisti polynomial-time (as in the following de�nition) only uses a poly(jxj)-bit longrandom-tape when invoked on input x. Thus, for feasibility parameter n, the mahine handles `(n)-bit longinputs using a random-tape of length �(n) = poly(`(n)) = poly(n), where (w.l.o.g.) � is 1-1.De�nition 2.6 (implementation by ordinary mahines): For �xed funtions `; � : N ! N, an ordinarypolynomial-time mahine M and a string r, the instane implemented by M and random-tape r is the funtionMr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) when using the random-taper. The random objet implemented by M with parameter n is de�ned as Mr for a uniformly distributedr 2 f0; 1g�(n).We stress that an instane of the implementation is fully determined by the mahineM and the random-taper (i.e., we disallow \implementations" that onstrut the objet on-the-y while depending on and keepingtrak of all previous queries and answers).3For a mahine M (either a spei�ation or an implementation) we identify the pair (M;n) with therandom objet spei�ed (or implemented) by mahine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the spei�ation): Let S be a spei�ationand I be an implementation, both with respet to the length funtion ` : N! N. We say that I perfetlyimplements S if, for every n, the random objet (I; n) is distributed identially to the random objet (S; n). Wesay that I losely-implements S if, for every orale mahine M that on input 1n makes at most polynomially-many queries, all of length `(n), the following di�erenejPr[M (I;n)(1n) = 1℄ � Pr[M (S;n)(1n) = 1℄j (1)is negligible4 as a funtion of n. We say that I pseudo-implements S if the expression in (1) is negligible forevery probabilisti polynomial-time orale mahine M that makes only queries of length equal to `(n).3We mention that suh \stateful implementations" were onsidered in the subsequent work of [7℄.4A funtion � : N! [0; 1℄ is alled negligible if for every positive polynomial p and all suÆiently large n's it holdsthat �(n) < 1=p(n). 6



We stress that the notion of a lose-implementation does not say that the objets (i.e., (I; n) and (S; n))are statistially lose; it merely says that they annot be distinguished by a (omputationally unbounded)mahine that asks polynomially many queries. Indeed, the notion of pseudo-implementation refers to thenotion of omputational indistinguishability (f. [24, 40℄) as applied to funtions (see [20℄). Clearly, anyperfet implementation is a lose-implementation, and any lose-implementation is a pseudo-implementation.Intuitively, the orale mahine M , whih is sometimes alled a (potential) distinguisher, represents a userthat employs (or experiments with) the implementation. It is required that suh a user annot distinguish theimplementation from the spei�ation, provided that the user is limited in its aess to the implementationor even in its omputational resoures (i.e., time).Indeed, it is trivial to perfetly implement a random funtion (i.e., the spei�ation given in Example 2.2)by using an orale mahine (with aess to a random orale). In ontrast, the main result of Goldreih,Goldwasser and Miali [20℄ an be ast by saying that there exist a pseudo-implementation of a randomfuntion by an ordinary mahine, provided that pseudorandom generators (or, equivalently, one-way fun-tion [6, 40, 25℄) do exist. In fat, under the same assumption, it is easy to show that every spei�ation havinga pseudo-implementation by an orale mahine also has a pseudo-implementation by an ordinary mahine.A stronger statement will be proven below (see Theorem 2.9).Truthful implementations. An important notion regarding (non-perfet) implementations refers tothe question of whether or not they satisfy properties that are enjoyed by the orresponding spei�ation.Put in other words, the question is whether eah instane of the implementation is also an instane of thespei�ation. Whenever this ondition holds, we all the implementation truthful. Indeed, every perfetimplementation is truthful, but this is not neessarily the ase for lose-implementations. For example, arandom funtion is a lose-implementation of a random permutation (beause it is unlikely to �nd a ollisionamong polynomially-many pre-images); however, a random funtion is not a truthful implementation of arandom permutation.De�nition 2.8 (truthful implementations): Let S be a spei�ation and I be an implementation. We saythat I is truthful to S if for every n the support of the random objet (I; n) is a subset of the support of therandom objet (S; n).Muh of this work is foused on truthful implementations. The following simple result is very useful inthe study of the latter. It asserts that we may fous on designing implementations by orale mahines(having aess to a random orale), and automatially obtain standard implementations (by ordinary prob-abilisti polynomial-time mahines). We omment that this result is typially applied to (truthful) lose-implementations by orale mahines, yielding (truthful) pseudo-implementations by ordinary mahines.Theorem 2.9 Suppose that one-way funtions exist. Then any spei�ation that has a pseudo-implementationby an orale mahine (having aess to a random orale) also has a pseudo-implementation by an ordinarymahine. Furthermore, if the former implementation is truthful then so is the latter.The suÆient ondition is also neessary, beause the existene of pseudorandom funtions (i.e., a pseudo-implementation of a random funtion by an ordinary mahine) implies the existene of one-way funtions.In view of Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do notare about truthfulness at all), we may fous on implementations by orale mahines.Proof: First we replae the random orale used by the former implementation by a pseudorandom orale(i.e., aby a pseudorandom funtion that is available by the results of [20, 25℄). Thus, no probabilistipolynomial-time distinguisher an detet the di�erene, exept with negligible probability. Furthermore, thesupport of the pseudorandom orale is a subset of the support of the random orale, and so the truthfulproperty is inherited by the latter implementation. Finally, we use an ordinary mahine to emulate theorale mahine that has aess to a pseudorandom orale; that is, the ordinary mahine selets a randomseed for the pseudorandom funtion and emulates the omputation of the original orale mahine with theorresponding orale. 7



Almost-Truthful implementations. Truthful implementations guarantee that eah instane of theimplementation is also an instane of the spei�ation (and is thus \onsistent with the spei�ation").A meaningful relaxation of this guarantee refers to the ase that almost all the probability mass of theimplementation is assigned to instanes that are onsistent with the spei�ation (i.e., are in the support ofthe latter). Spei�ally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a spei�ation and I be an implementation.We say that I is almost-truthful to S if the probability that (I; n) is not in the support of the random objet(S; n) is bounded by a negligible funtion in n.Interestingly, almost-truthfulness is not preserved by the onstrution used in the proof of Theorem 2.9. Infat, there exists spei�ations that have almost-truthful lose-implementations by orale mahines but notby ordinary mahines (see Theorem 2.11 below). Thus, when studying almost-truthful implementations,one needs to deal diretly with ordinary implementations (rather than fous on implementations by orale-mahines). Indeed, we will present a few examples of almost-truthful implementations that are not truthful.Theorem 2.11 There exists a spei�ation that has an almost-truthful lose-implementation by an oralemahine but has no almost-truthful implementation by an ordinary mahine.We stress that the theorem holds regardless of whether or not the latter (almost-truthful) implementationis indistinguishable from the spei�ation.Proof: Consider the spei�ation of a uniformly seleted funtion f : f0; 1gn ! f0; 1g having (time-modi�ed) Kolmogorov Complexity [32, Def. 7.5.1℄5 greater than 2n�1. That is, the spei�ation mahinesans its random-tape, looking for a blok of 2n bits of (time-modi�ed) Kolmogorov Complexity greaterthan 2n�1, and one found uses this blok as a truth-table of the desired Boolean funtion. Sine all buta negligible fration of the funtions have Kolmogorov Complexity greater than 2n�1, an almost-truthfullose-implementation by an orale mahine may just use a random funtion. On the other hand, anyimplementation by an ordinary mahine (of randomness omplexity �) indues a funtion f : f0; 1gn ! f0; 1gof (time-modi�ed) Kolmogorov Complexity at most (O(1) + �(n)) + log2(poly(n) � 2n) = poly(n). Thus, anysuh implementation yields a funtion that violates the spei�ation, and so annot even be \remotely"truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we fous on implementations by oralemahines. In these ases, we shorthand the phrase implementation by an orale mahine by the termimplementation. Using the notion of truthfulness, we an ast the non-trivial implementation of a randompermutation provided by Luby and Rako� [34℄ as follows.Theorem 2.12 [34℄: There exists a truthful lose-implementation of the spei�ation provided in Exam-ple 2.3. That is, there exists a truthful lose-implementation of the spei�ation that uniformly selets apermutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Reall that Example 2.3 has a trivial lose-implementation by a random funtion, but this trivial imple-mentation is not truthful. The point of Theorem 2.12 is that it provides a truthful lose-implementationof the spei�ation provided in Example 2.3. On the other hand, even when ignoring the issue of truthful-ness, it is non-trivial to provide a lose-implementation of Example 2.4 (i.e., a random permutation alongwith its inverse).6 However, Luby and Rako� [34℄ have also provided a truthful lose-implementation ofExample 2.4.5Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produe s. The time-modi�ed Kolmogorov Complexity of a string s is the minimum, taken over programs �that produe s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-modi�ed KolmogorovComplexity in order to allow for a reursive spei�ation.6A random funtion will fail here, beause the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image. 8



Theorem 2.13 [34℄: There exists a truthful lose-implementation of the spei�ation that uniformly seletsa permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g� f0; 1gn with the value ��(x).Another known result that has the avor of the questions that we explore was obtained by Naor andReingold [38℄. Loosely speaking, they provided a truthful lose-implementation of a permutation seleteduniformly among all permutations having a ertain yle-struture.Theorem 2.14 [38℄: For any N = 2n, t = poly(n), and C = f(i;mi) : i = 1; :::; tg suh that Pti=1mii =N , there exists a truthful lose-implementation of a uniformly distributed permutation that has mi ylesof size i, for i = 1; :::; t.7 Furthermore, the implementation instane that uses the permutation � an alsosupport queries of the form (x; j) to be answered by �j(x), for any x 2 f0; 1gn and any integer j (whih ispresented in binary).We stress that the latter queries are served in poly(n)-time also in the ase that j � poly(n).2.4 A few general observationsTheorem 2.11 asserts the existene of spei�ations that annot be implemented in an almost-truthful mannerby an ordinary mahine, regardless of the level of indistinguishability (of the implementation from thespei�ation). We an get negative results that refer also to implementations by orale mahines, regardlessof truthfulness, by requiring the implementation to be suÆiently indistinguishable (from the spei�ation).Spei�ally:Proposition 2.15 The following refers to implementations by orale mahines and disregard the issue oftruthfulness.1. There exist spei�ations that annot be losely-implemented.2. Assuming the existene of one-way funtions, there exist spei�ations that annot be pseudo-implemented.The hypothesis in Part 2 an be relaxed: It suÆes to assume the existene of NP-sets for whih it is feasibleto generate hard instanes. For details see Appendix D.Proof: Starting with Part 2, we note that the spei�ation may be a deterministi proess that invert aone-way funtion f (as in the hypothesis) at images of the user's hoie (i.e., the query x is answered bythe lexiographially �rst element in f�1(x)). Certainly, this spei�ation annot be pseudo-implemented,beause suh an implementation would yield an algorithm that violates the hypothesis (of Part 2).8 Wemay easily adapt this example suh that the spei�ation gives rise to a random objet. For example, thespei�ation may require that, given a pair of strings, one should use a random funtion to selet one of thesetwo strings, and answer with this string's inverse under the one-way funtion. A pseudo-implementation ofthis spei�ation an also be shown to ontradit the hypothesis. This establishes Part 2.Turning to Part 1, we onsider any �xed a funtion f that is omputable in exponential-time but annotbe inverted, exept for with negligible probability, by any polynomial-time mahine that uses a randomorale. Suh a funtion an be shown to exist by using a ounting argument. The spei�ation determinessuh a funtion, and inverts it at inputs of the user's hoie. Observe that a lose-implementation of suha funtion is required to suessfully invert the funtion at random images, whih is impossible (exeptfor negligible probability, beause the implementation is a polynomial-time mahine (whih uses a randomorale)).7Speial ases inlude involutions (i.e., permutations in whih all yles have length 2), and permutations onsistingof a single yle (of length N). These ases are ast by C = f(2; N=2)g and C = f(N; 1)g, respetively. Note that thisdesription presumes that C is �xed, whih may be the ase only when N = 2n is �xed. Thus, a proper formulationshould either postulate that C = C(N) is eÆiently omputable from N , or seek a \universal" objet that answersqueries in whih C is given as part of the query.8Consider the performane of the spei�ation (resp., implementation) when queried on a randomly generatedimage, and note that the orretness of the answer an be eÆiently veri�ed. Thus, sine the spei�ation alwaysinverts f on the given image, a pseudo-implementation must do the same (exept with negligible probability), yieldinga probabilisti polynomial-time algorithm that inverts f . 9



The randomness omplexity of implementations: Looking at the proof of Theorem 2.9, itis evident that as far as pseudo-implementations by ordinary mahines are onerned (and assuming theexistene of one-way funtions), randomness an be redued to any power of the feasibility parameter (i.e., ton� for every � > 0). The same holds with respet to truthful pseudo-implementations. On the other hand, theproof of Theorem 2.11 suggests that this ollapse in the randomness omplexity annot our with respetto almost-truthful implementations by ordinary mahines (regardless of the level of indistinguishability ofthe implementation from the spei�ation).Theorem 2.16 (a randomness hierarhy): For every polynomial �, there exists a spei�ation that has analmost-truthful lose-implementation by an ordinary mahine that uses a random-tape of length �(n), but hasno almost-truthful implementation by an ordinary mahine that uses a random-tape of length �(n)�!(logn).Proof: Let g(n) = !(logn). Consider the spei�ation that selets uniformly a string r 2 f0; 1g�(n) of(time-modi�ed) Kolmogorov Complexity at least �(n) � g(n), and responds to the query i 2 [2n℄ with the(1 + (i mod �(n)))-th bit of r. Sine all but an exp(�g(n)) = n�!(1) fration of the �(n)-bit long stringshave suh omplexity, this spei�ation is losely-implemented in an almost-truthful manner by a mahinethat uniformly selets r 2 f0; 1g�(n) (and responds as the spei�ation). However, any implementation thatuses a random-tape of length �0, yields a funtion that assigns the �rst �(n) arguments values that yield a�(n)-bit long string of (time-modi�ed) Kolmogorov Complexity at most (O(1) + �0(n)) + log2(poly(n)) =�0(n) + O(logn). Thus, for �0(n) = �(n) � 2g(n), the implementation annot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one an \omposeimplementations". That is, if we implement a random objet R1 by an orale mahine that uses orale allsto a random objet R2, whih in turn has an implementation by a mahine of type T, then we atually obtainan implementation of R1 by a mahine of type T. To state this result, we need to extend De�nition 2.5 suhthat it applies to orale mahines that use (or rather have aess to) arbitrary spei�ations (rather than arandom orale). Let us denote by (M (S;n); n) an implementation by the orale mahine M (and feasibilityparameter n) with orale aess to the spei�ation (S; n), where we assume for simpliity that S uses thesame feasibility parameter as M .Theorem 2.17 Let Q 2 fperfet; lose; pseudog. Suppose that the spei�ation (S1; n) an be Q-implementedby (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary mahine (resp., by an orale mahinewith a random orale). Then, (S1; n) has a Q-implementation by an ordinary mahine (resp., by an oralemahine with a random orale). Furthermore, if both the implementations in the hypothesis are truthful(resp., almost-truthful) then so is the implementation in the onlusion.Proof: The idea is to simply replae (S2; n) by its implementation, denoted (I2; n), and thus obtain animplementation (M (I2;n); n) of (S1; n). Next, by ombining the mahines M and I2, we obtain a mahineI of the same type as the type of mahine I2, and it holds that (I; n) yields a random objet that isdistributed identially to (M (I2;n); n). Thus, we obtain an implementation (I; n) of (S1; n), Indeed, (I; n)inherits the truthfulness (resp., almost-truthfulness) of the two given implementations (i.e., M (S2;�) and I2).Similarly, the analysis of the \quality" of the implementation (I; n) relies on the \quality" of the two givenimplementations. Details follow.If both M (I2;�) and I2 are perfet implementation of S1 and S2 respetively, then I is a perfet im-plementation of S1. If the former are only lose-implementations, then using the hypothesis that M ispolynomial-time it follows that M only makes polynomially many queries to its orale and thus invokingMa polynomial number of times results in a polynomial number of queries to its orale. Using the seond hy-pothesis (i.e., the \quality" of I2), it follows that M (I2;n) and M (S2;n) are indistinguishable by polynomiallymany queries. Using the �rst hypothesis (i.e., the \quality" of M (S2;n)), it follows that (I; n) � (M (I2;n); n)is a lose-implementation of (S1; n).Lastly, let us spell out the argument for the ase of pseudo-implementations, while using the termomputationally-indistinguishable as shorthand for indistinguishable by probabilisti polynomial-time orale10



mahines. The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are omputationally-indistinguishable,and the seond hypothesis asserts that (I2; n) and (S2; n) are omputationally-indistinguishable. Our goal isto prove that (M (I2;n); n) and (S1; n) are omputationally-indistinguishable, whih (by the �rst hypothesis)redues to proving that (M (I2;n); n) and (M (S2;n); n) are omputationally-indistinguishable. Now suppose,towards the ontradition, that some a probabilisti polynomial-time mahine D distinguishes (M (I2;n); n)from (M (S2;n); n). Then, ombining D and M , we obtain a mahine that distinguishes (I2; n) from (S2; n),whih ontradits the seond hypothesis. The key point is that the fat that M is probabilisti polynomial-time (beause it is an implementation mahine), and so the ombined distinguisher is also probabilistipolynomial-time (provided that so is D).2.5 Objets of feasible sizeIn ontrast to the rest of this work, in the urrent subsetion we (shortly) disuss the omplexity of generatingrandom objets of feasible size (rather than huge random objets). In other words, we are talking aboutimplementing a distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem anbe ast in our general formulation by onsidering spei�ations that ignore their input (i.e., have outputthat only depend on their random-tape). In other words, we may view objets of feasible size as onstantfuntions, and onsider a spei�ation of suh random objets as a distribution on onstant funtions. Thus,without loss of generality, the implementation may also ignore its input, and onsequently in this ase thereis no di�erene between an implementation by ordinary mahine and an implementation by orale mahinewith a random orale.We note that perfet implementations of suh distributions were onsidered before (e.g., in [1, 5, 17℄),and distributions for whih suh implementations exist are alled sampleable. In the urrent ontext, wherethe observer sees the entire objet, the distintion between perfet implementation and lose-implementationseems quite tehnial. What seems fundamentally di�erent is the study of pseudo-implementations.Theorem 2.18 There exist spei�ations of feasible-sized objets that have no lose-implementation, but dohave (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (f. [21℄) yields suh a spei�ation. Reall that a distributionis alled evasive if it is infeasible to generate an element in its support (exept with negligible probability),and is alled pseudorandom if it is omputationally indistinguishable from a uniform distribution on strings ofthe same length. It is known that evasive pseudorandom distributions do exist [21℄. Note that, by de�nition,an evasive distribution has no lose-implementation. On the other hand, any pseudorandom distribution anbe pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful with respet to the evasive pseudorandom distribution,beause even a \remotely-truthful" implementation would violate the evasiveness ondition. To allow alsothe presentation of a truthful implementation, we modify the spei�ation suh that with exponentially-smallprobability it produes some sampleable pseudorandom distribution, and otherwise it produes the evasivepseudorandom distribution. The desired truthful pseudo-implementation will always produe the formerdistribution (i.e., the sampleable pseudorandom distribution), and still the ombined distribution has nolose-implementation.The proof of Theorem 2.18 (or rather the existene of evasive distributions) also establishes the existeneof spei�ations (of feasible-sized objets) that have no truthful (and even no almost-truthful) implementa-tion, regardless of the level of indistinguishability from the spei�ation. Turning the table around, we askwhether there exist spei�ations of feasible-sized objets that have no pseudo-implementations, regardlessof the truthfulness ondition. A partial answer is provided by the following result, whih relies on a non-standard assumption. Spei�ally, we assume the existene of a ollision-resistant hash funtion; that is, alength-dereasing funtion h : f0; 1g� ! f0; 1g� suh that it is infeasible to form ollisions under h (i.e., it isinfeasible to �nd suÆiently long strings x 6= y suh that f(x) = f(y)).99We stress that the assumption used here (i.e., the existene of a single ollision-resistant hash funtion) seemssigni�antly stronger than the standard assumption that refers to the existene of an ensemble of ollision-resistantfuntions (f. [12℄ and [19, Def. 6.2.5℄). 11



Proposition 2.19 Assuming the existene of a ollision-resistant hash funtion, there exists a spei�ationof a random feasible-sized objet that has no pseudo-implementation.Proof: The hypothesis implies the existene of a ollision-resistant hash funtion h that shrinks its argumentby exatly one bit (i.e., jh(x)j = jxj � 1).10 Referring to this funtion h, onsider the non-empty set Sn def=f(x; y)2f0; 1gn+n : h(x)=h(y)g, and note that membership in [n2NSn is easy to deide, while [n2NSn isevasive. Consider the spei�ation that onsists of the uniform distribution over the set Sn, and note thatthis spei�ation annot be pseudo-implemented, beause the likely event in whih the implementation failsto hit Sn is easily detetable.Open Problem 2.20 (stronger versions of Proposition 2.19): Provide a spei�ation of a random feasible-sized objet that has no pseudo-implementation, while relying on some standard intratability assumption.Let us digress and onsider lose-implementations. For example, we note that Bah's elegant algorithm forgenerating random omposite numbers along with their fatorization [4℄ an be ast as a lose-implementationof the said distribution.11 We stress the highly non-trivial nature of the foregoing implementation (whilerealling that it seems infeasible to �nd the fatorization of a uniformly distributed omposite number). Amore elementary set of examples refers to the generation of integers (out of a huge domain) aording tovarious \nie" distributions (e.g., the binomial distribution of N trials).12 In fat, Knuth [29, Se. 3.4.1℄onsiders the generation of several suh distributions, and his treatment (of integer-valued distributions)an be easily adapted to �t our formalism. This diretion is further pursued in Appendix A. In general,reall that in the urrent ontext (where the observer sees the entire objet), a lose-implementation mustbe statistially lose to the spei�ation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any lose-implementation of a spei�ation of a feasible-sized objet is almost-truthfulto it.Multiple samples. Our general formulation an be used to speify an objet that whenever invokedreturns an independently drawn sample from the same distribution. Spei�ally, the spei�ation may be bya mahine that answers eah \sample-query" by using a distint portion of its random-tape (as oins usedto sample from the basi distribution). Using a pseudorandom funtion, we may pseudo-implement multiplesamples from any distribution for whih one an pseudo-implement a single sample. That is:Proposition 2.22 Suppose that one-way funtions exist, and let D = fDng be a probability ensemble suhthat eah Dn ranges over poly(n)-bit long strings. If D an be pseudo-implemented then so an the spei-�ation that answers eah query by an independently seleted sample of D. Furthermore, the latter imple-mentation is by an ordinary mahine and is truthful provided that the former implementation is truthful.Proof: Consider �rst an implementation by an orale mahine that merely uses the random funtion toassign eah query a random-tape to be used by the pseudo-implementation of (the single sample of thedistribution) D. Sine truthfulness and omputational-indistinguishability are preserved by multiple (inde-pendent) samples (f. [18, Se. 3.2.3℄ for the latter), we are done as far as implementations by orale mahinesare onerned. Using Theorem 2.9, the proposition follows.10Given an arbitrary funtion h0 as in the hypothesis, onsider the funtion h00 de�ned by h00(x) = h0(h0(x)). Then,h00 is ollision-resistant and jh00(x)j � jxj � 2. Now, onsider the funtion h de�ned by h(x) = h00(x)01jxj�jh00(x)j�2,and note that jh(x)j = jxj � 1 while h is also ollision-resistant.11We mention that Bah's motivation was to generate prime numbers P along with the fatorization of P � 1,in order to allow eÆient testing of whether a given number is a primitive element modulo P . Thus, one may saythat Bah's paper provides a lose-implementation (by an ordinary probabilisti polynomial-time mahine) of thespei�ation that selets at random an n-bit long prime P and answers the query g by 1 if and only if g is a primitiveelement modulo P . Note that the latter spei�ation refers to a huge random objet.12That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (beause we annot a�ord to ompute all pi's).12



3 Our Main ResultsWe obtain several new implementations of random objets. All our implementations are either truthful oralmost-truthful with respet to the orresponding spei�ations. We present the orresponding results intwo ategories referring to whether they yield truthful or only almost-truthful implementations.3.1 Truthful ImplementationsAll implementations stated in this setion are by (polynomial-time) orale mahines (whih use a randomorale). Corresponding pseudo-implementations by ordinary (probabilisti polynomial-time) mahines anbe derived using Theorem 2.9. Namely, assuming the existene of one-way funtions, eah of the spei�ationsonsidered below an be pseudo-implemented in a truthful manner by an ordinary probabilisti polynomial-time mahine.The basi tehnique underlying the following implementations is the embedding of additional struturethat enables to eÆiently answer the desired queries in a onsistent way or to fore a desired property.That is, this additional struture ensures truthfulness (with respet to the spei�ation). The additionalstruture may ause the implementation to have a distribution that di�ers from that of the spei�ation, butthis di�erene is infeasible to detet (via the polynomially-many queries). In fat, the additional struture istypially randomized in order to make it undetetable, but eah possible hoie of oins for this randomizationyields a \valid" struture (whih in turn ensures truthfulness rather than only almost-truthfulness).3.1.1 Supporting omplex queries regarding Boolean funtionsAs mentioned above, a random Boolean funtion is trivially implemented (in a perfet way) by an oralemahine. By this we mean that the spei�ation and the implementationmerely serve the standard evaluationqueries that refer to the values of a random funtion at various positions (i.e., query x is answered by thevalue of the funtion at x). Here we onsider spei�ations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random funtion): Suppose that, for a randomfuntion f : [2n℄! f0; 1g, we wish to be able to provide the parity of the values of f on any desired intervalof [2n℄. That is, we onsider a spei�ation de�ned by the mahine that, on input (i; j) where 1 � i � j � 2n,replies with the parity of the bits residing in loations i through j of its random-tape. (Indeed, this spei�ationrefers to the length funtion `(n) = 2n.)Clearly, the implementation annot a�ord to ompute the parity of the orresponding values in its randomorale. Still, in Setion 5 we present a perfet implementation of Example 3.1, as well as truthful lose-implementations of more general types of random objets (i.e., answering any symmetri \interval" query).Spei�ally, we prove:Theorem 3.2 (see Theorem 5.2)13: For every polynomial-time omputable funtion g, there exists a truthfullose-implementation of the following spei�ation of a random objet. The spei�ation mahine uses itsrandom-tape to de�ne a random funtion f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n byg(P��s�� f(s)).3.1.2 Supporting omplex queries regarding length-preserving funtionsIn Setion 9 we onsider spei�ations that, in addition to the standard evaluation queries, answer addi-tional queries regarding a random length-preserving funtion. Suh objets have potential appliations inomputational number theory, ryptography, and the analysis of algorithms (f. [15℄). Spei�ally, we prove:13We mention that a related result was disovered before us by Naor and Reingold; see disussion at the end ofSetion 5. We also mention that, indeed, the urrent formulation of Theorem 5.2 follows from the speial ase inwhih g is the identity funtion. 13



Theorem 3.3 (see Theorem 9.2)14: There exists a truthful lose-implementation of the following spei�a-tion. The speifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and, in addition to thestandard evaluation queries, answers the inverse-query y 2 f0; 1gn with the set f�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f (and witha speial symbol in ase no suh preimage exists). A di�erent type of queries is supported by the followingimplementation.Theorem 3.4 (see Theorem 9.1): There exists a truthful lose-implementation of the following spei�ation.The speifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and answers the query (x;m),where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., f iterated m times on x).This result is related to questions studied in [38, 39℄; for more details, see Setion 9.3.1.3 Random graphs of various typesRandom graphs have been extensively studied (f. [8℄), and in partiular are known to have various properties.But does it mean that we an provide truthful lose-implementations of uniformly distributed (huge) graphshaving any of these properties?Let us �rst onsider a spei�ation for a random N -vertex graph, where N = 2n. Indeed, suh arandom graph an be spei�ed by the mahine, whih viewing its random-tape ! as an N -by-N matrix(i.e., ! = (!i;j)i;j2[N ℄), answers the input (i; j) 2 [N ℄ � [N ℄ with the value !i;j if i < j, with the value!j;i if i > j. and with the value 0 otherwise (i.e., if i = j). Needless to say, this spei�ation an beperfetly implemented (by a mahine that uses its random orale in an analogous manner). But how aboutimplementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed onneted graphs): Suppose that we want to implement a uniformlydistributed onneted graph (i.e., a graph uniformly seleted among all onneted N-vertex graph). Anadequate spei�ation may san its random-tape, onsidering eah N2-bit long portion of it as a desriptionof a graph, and answer adjaeny-queries aording to the �rst portion that yields a onneted graph. Notethat the spei�ation works in time 
(N2), whereas an implementation needs to work in poly(logN)-time. Onthe other hand, reall that a random graph is onneted with overwhelmingly high probability. This suggeststo implement a random onneted graph by a random graph. Indeed, this yields a lose-implementation,but not a truthful one (beause oasionally, yet quite rarely, the implementation will yield an unonnetedgraph).15In Setion 6 we present truthful lose-implementations of Example 3.5 as well as of other (spei�ations of)uniformly distributed graphs having various additional properties. These are all speial ases of the followinggeneral result:Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a family ofstrongly-onstrutible sparse graphs. That is, for some negligible funtion � (and every N), there exists aperfet implementation of a (single) N-vertex graph with �(logN) �N2 edges that satis�es property �. Then,there exists a truthful lose-implementation of a uniformly distributed graph that satis�es property �.We stress that Theorem 6.2 applies also to properties that are not satis�ed (with high probability) by arandom graph (e.g., having a lique of size pN). The proof of Theorem 6.2 relies on the following lemma,whih may be of independent interest. Loosely speaking, the lemma asserts that if a monotone graphproperty � is satis�ed by some sparse graphs then a uniformly distributed graph having property � isindistinguishable from a truly random graph.14Note that in the spei�ation it may happen (with negligible probability) that jf�1(y)j > poly(jyj), but this willnever happen in the implementation.15Note that failing to obtain a truthful implementation (by an orale mahine) does not allow us to derive (viaTheorem 2.9) even an almost-truthful pseudo-implementation by an ordinary mahine.14



Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N-vertexgraph having � � �N2 � edges. Then, any mahine that makes at most q adjaeny queries to a graph, annotdistinguish a random N-vertex graph from a uniformly distributed N-vertex graph that satis�es �, exeptthan with probability O(q � p�) + q �N�(1�o(1)).3.1.4 Supporting omplex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in addition to thestandard adjaeny queries, also some omplex queries that are hard to answer by only making adjaenyqueries. For example suppose that on query a vertex v, we need to provide a lique of size log2N ontainingv. In Setion 7 we present a truthful lose-implementations of this spei�ation:Theorem 3.8 (see Theorem 7.2): There exists a truthful lose-implementation of the following spei�ation.The speifying mahine selets uniformly an N-vertex graph and, in addition to the standard adjaenyqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex lique that ontainsv (and a speial symbol if no suh lique exists).Another result of a similar avor refers to implementing a random graph while supporting additional queriesthat refer to a random Hamiltonian yle in that graph.Theorem 3.9 (see Theorem 7.3): There exists a truthful lose-implementation of the following spei�ation.The speifying mahine selets uniformly an N-vertex graph G, and in ase G is Hamiltonian it uniformlyselets a (direted) Hamiltonian yle in G, whih in turn de�nes a yli permutation � : [N ℄! [N ℄. Inaddition to the standard adjaeny queries, the spei�ation answers travel queries of the form (trav; v; t)by providing �t(v), and distane queries of the form (dist; v; w) by providing the smallest t � 0 suh thatw = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also reeived onsiderable attention. In Setion 8 we present truth-ful lose-implementations of random bounded-degree graphs G = ([N ℄; E), where the mahine speifyingthe graph answers the query v 2 [N ℄ with the list of neighbors of vertex v. We stress that even imple-menting this spei�ation is non-trivial if one insists on truthfully implementing simple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges). Furthermore, we present truthfullose-implementations of random bounded-degree graphs having additional properties suh as onnetivity,Hamiltoniity, having logarithmi girth, et. All these are speial ases of the following result:Theorem 3.10 (see Theorem 8.4:) Let d > 2 be �xed and � be a graph property that satis�es the followingtwo onditions:1. The probability that Property � is not satis�ed by a uniformly hosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-onstrutible d-regular N-vertex graphs having girth!(log logN).Then, there exists a truthful lose-implementation of a uniformly distributed d-regular N-vertex graph thatsatis�es property �.The proof relies on the following lemma, whih may be of independent interest. Loosely speaking, the lemmaasserts that a random isomorphi opy of a �xed d-regular graph of large girth is indistinguishable from atruly random d-regular graph.Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N ℄; E) be any d-regular N-vertex graph having girthg. Let G0 be obtained by randomly permuting the verties of G (and presenting the inidene lists in someanonial order). Then, any mahine M that queries the graph for the neighborhoods of q verties of itshoie, annot distinguish G0 from a random d-regular N-vertex (simple) graph, exept than with probabilityO(q2=(d�1)(g�1)=2). In the ase that d = 2 and q < g�1, the probability bound an be improved to O(q2=N).15



3.2 Almost-Truthful ImplementationsAll implementations stated in this setion are by ordinary (probabilisti polynomial-time) mahines. Allthese results assume the existene of one-way funtions.Again, the basi tehnique is to embed a desirable struture, but (in ontrast to Setion 3.1) here theembedded struture fores the desired property only with very high probability. Consequently, the resultingimplementation is only almost-truthful, whih is the reason that we have to diretly present implementationsby ordinary mahines.A spei� tehnique that we use is obtaining a funtion by taking a value-by-value ombination of apseudorandom funtion and a funtion of a desired ombinatorial struture. The ombination is done suhthat the ombined funtion inherits both the pseudorandomness of the �rst funtion and the ombinatorialstruture of the seond funtion (in analogy to a onstrution in [26℄). In some ases, the ombination is bya value-by-value XOR, but in others it is by a value-by-value OR with a seond funtion that is very sparse.3.2.1 Random odes of large distaneIn ontinuation to the disussion in the introdution, we prove:Theorem 3.12 (see Theorem 4.2): For Æ = 1=6 and � = 1=9, assuming the existene of one-way funtions,there exists an almost-truthful pseudo-implementation of the following spei�ation: The spei�ation ma-hine uses its random-tape to uniformly selet a ode C � f0; 1gn having ardinality K def= 2�n and distaneat least Æn, and answers the query i 2 [K℄ with the i-th element in C.We omment that the above desription atually spei�es (and implements) an enoding algorithm forthe orresponding ode. It would be very interesting if one an also implement a orresponding deodingalgorithm; see further disussion in Setion 4.3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following spei�ations, we provide almost-truthful ones.Theorem 3.13 (see Theorem 6.6): Let (N) = (2�o(1)) log2N be the largest integer i suh that the expetednumber of liques of size i in a random N-vertex graph is larger than one. Assuming the existene of one-wayfuntions, there exist almost-truthful pseudo-implementations of the following spei�ations:1. A random graph of Max-Clique (N)�1: The spei�ation uniformly selets an N-vertex graph havingmaximum lique size (N)� 1, and answers edge-queries aordingly.2. A random graph of Chromati Number (1� o(1)) �N=(N): The spei�ation uniformly selets an N-vertex graph having Chromati Number (1�log�1=32 N)�N=(N), and answers edge-queries aordingly.We mention that Theorem 6.7 provides an almost-truthful pseudo-implementation of a spei�ation thatrefers to a uniformly distributed graph that satis�es both the aforementioned properties as well as severalother famous properties that are satis�ed (w.h.p.) by random graphs. Thus, this implementation not onlylooks as a random graph but rather satis�es all these properties of a random graph (although determiningwhether a huge graph satis�es any of these properties is infeasible).One property of random graphs that was left out of Theorem 6.7 is having high (global) onnetivityproperty. That is, we seek an almost-truthful pseudo-implementation of a uniformly distributed graph havinga high global onnetivity property (i.e., eah pair of verties is onneted by many vertex-disjoint paths).Failing to provide suh an implementation, we provide instead an almost-truthful pseudo-implementation ofa random graph for whih almost all pairs of verties enjoy a high onnetivity property.
16



Theorem 3.14 (see Theorem 6.8): For every positive polynomial p, assuming the existene of one-wayfuntions, there exists an almost-truthful pseudo-implementation of the following spei�ation. The speifyingmahine selets a graph that is uniformly distributed among all N-vertex graphs for whih all but at mostan �(N) def= 1=p(log2N) fration of the vertex pairs are onneted by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered aordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is indepen-dent of p, whih is only used for de�ning the spei�ation. We note that a subsequent work by Alon and Nuss-boim [3℄ provides the implementation we failed to ahieve (i.e., an almost-truthful pseudo-implementationof a uniformly distributed graph having a high global onnetivity property).4 Implementing Random Codes of Large DistaneFor suÆiently small �; Æ > 0, we onsider odes having relative rate � and relative distane Æ; that is,we onsider subsets C � f0; 1gn suh that jCj = 2�n and every two distint odewords (i.e., �; � 2 C)disagree on at least Æn oordinates. Suh a ode is alled good. A random set of K def= 2�n strings of lengthn is good with overwhelmingly high probability. Thus, for a random funtion f : [K℄ ! f0; 1gn, settingC = ff(i) : i 2 [K℄g yields an almost-truthful lose-implementation of a random ode that is good, wherethe spei�ation is required to answer the query i with the i-th odeword (i.e., the i-th element in the ode).Reall that it is not lear what happens when we replae f by a pseudorandom funtion (i.e., it may be thease that the resulting ode has very small distane, althoughmost pairs of odewords are de�nitely far apart).Thus, in order to get an almost-truthful pseudo-implementation (by ordinary probabilisti polynomial-timemahines) we use a di�erent approah.Constrution 4.1 (implementing a good random ode): For k = �n, we selet a random k-by-n matrixM , and onsider the linear ode generated by M (i.e., the odewords are obtained by all possible linearombinations of the rows of M). Now, using a pseudorandom funtion fs : f0; 1gk ! f0; 1gn, where s 2f0; 1gn, we onsider the ode CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, our implementation uses therandom-tape (M; s), and provides the i-th odeword of the ode CM;s by returning fs(i)�iM , where i 2 [2k℄is viewed as a k-dimensional row vetor (or a k-bit long string).To see that Constrution 4.1 is a pseudo-implementation of a random ode, onsider what happens when thepseudorandom funtion is replaed by a truly random one (in whih ase we may ignore the nie properties ofthe random linear ode generated byM).16 Spei�ally, for any matrixM and any funtion f : [K℄! f0; 1gn,we onsider the ode CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any �xed hoie of M and a trulyrandom funtion � : [K℄ ! f0; 1gn, the ode C�M is a random ode. Thus, the pseudorandomness of thefuntion ensemble ffsgs2f0;1gn implies that, for a uniformly hosen s 2 f0; 1gn, the ode CM;s = CfsMis omputationally indistinguishable from a random ode. The reason being that ability to distinguishseleted odewords of CfsM (for a random s 2 f0; 1gn) from odewords of C�M (for a truly random funtion� : [K℄! f0; 1gn) yields ability to distinguish the orresponding fs from �.To see that Constrution 4.1 is almost-truthful to the good ode property, �x any (pseudorandom)funtion f and onsider the ode CM = ff(v)�vM : v 2 f0; 1gkg, when M is a random k-by-n matrix.Fixing any pair of distint strings v; w 2 f0; 1gk, we show that with probability at least 2�3k (over thepossible hoies of M), the odewords f(v)�vM and f(w)�wM are at distane at least Æn, and it followsthat with probability at least 1 � 2�k the ode CM has a distane at least Æn. Thus, for a random M ,we onsider the Hamming weight of (f(v)�vM)�(f(w)�wM), whih in turn equals the Hamming weightof r�uM , where r = f(v)�f(w) and u = v�w are �xed. The weight of r�uM behaves as a binomialdistribution (with suess probability 1/2), and thus the probability that the weight is less than Æn is upper-bounded by 2�(1�H2(Æ))�n, where H2 denotes the binary entropy funtion. So we need 1 �H2(Æ) � n > 3kto holds, and indeed it does hold for appropriate hoies of Æ and � (e.g, Æ = 1=6 and � = 1=9). Spei�ally,realling that k = �n, we need 1�H2(Æ) > 3� to hold. We get:16In partiular, note that the resulting ode is unlikely to be linear. Furthermore, any n�O(1) > k odewords arelikely to be linearly independent (both when we use a random funtion or a pseudorandom one).17



Theorem 4.2 For any Æ 2 (0; 1=2) and � 2 (0; 1�H2(Æ))=3, assuming the existene of one-way funtions,there exists an almost-truthful pseudo-implementation by an ordinary mahine of the following spei�ation:The spei�ation mahine uses its random-tape to uniformly selet a ode C � f0; 1gn having ardinalityK def= 2�n and distane at least Æn, and answers the query i 2 [K℄ with the i-th element in C.We omment that Constrution 4.1 atually implements an enoding algorithm for the orresponding ode,whih is atually what is required in the spei�ation. It would be very interesting if one ould also implementa orresponding deoding algorithm. Note that the real hallenge is to ahieve \deoding with errors" (i.e.,deode orrupted odewords rather than only deode unorrupted odewords).17 Spei�ally,Open Problem 4.3 (implementing enoding and deoding for a good random ode): Provide an almost-truthful pseudo-implementation, even by an orale mahine, to the following spei�ation. For some Æ 2(0; 1=2) and � 2 (0;
(1�H2(Æ))), the spei�ation mahine selets a ode C � f0; 1gn as in Theorem 4.2,and answers queries of two types:Enoding queries: For i 2 [K℄, the query (en; i) is answered with the i-th element in C.Deoding queries: For very w 2 f0; 1gn that is at distane at most Æn=3 from C, the query (de; w) isanswered by the index of the (unique) odeword that is losest to w.Indeed, we are interested in an implementation by an ordinary mahine, but as stated in Setion 10, it maymake sense to �rst onsider implementations by orale mahines. Furthermore, it would be nie to obtaintruthful implementations, rather than almost-truthful ones. In fat, it will even be interesting to have atruthful pseudo-implementation of the spei�ation stated in Theorem 4.2.5 Boolean Funtions and Interval-Sum QueriesIn this setion we show that the spei�ation of Example 3.1 an be perfetly implemented (by an oralemahine). Reall that we seek to implement aess to a random funtion f : f0; 1gn ! f0; 1g augmentedwith answers regarding the parity (or XOR) of the values of f on given intervals, where the intervalsare with respet to the standard lex-order of n-bit string. That is, the query q = (�; �) 2 f0; 1gn+n,where 0n � � � � � 1n, is to be answered by ���s��f(s). The spei�ation an answer this queryin the straightforward manner, but an implementation annot a�ord to do so (beause a straightforwardomputation may take 2n = 2jqj=2 steps). Thus, the implementation will do something ompletely di�erent.18We present an orale mahine that uses a random funtion f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0, we de�nef : f0; 1gn ! f0; 1g as follows. We onsider a binary tree of depth n and assoiate its ith level verties withstrings of length i suh that the vertex assoiated with the string s has a left (resp., right) hild assoiatedwith the string s0 (resp., s1). As a mental experiment, going from the root to the leaves, we label the tree'sverties as follows:1. We label the root (i.e., the level-zero vertex, whih is assoiated with �) by the value f 0(�).2. For i = 0; :::; n� 1, and eah internal vertex v at level i, we label its left hild by the value f 0(v0), andlabel its right hild by the XOR of the label of v and the value f 0(v0).(Thus, the label of v equals the XOR of the values of its hildren.)17Note that a simple modi�ation of Constrution 4.1 (e.g., replaing the i-th odeword, w, by the new odeword(i; w)), allows trivial deoding of unorrupted odewords.18The following implementation is not the simplest one possible, but we hose to present it beause it generalizesto yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A simpler implementation ofExample 3.1, whih does not seem to generalize to the ase of interval-sum (as in Theorem 5.2), was suggested tous by Phil Klein, Silvio Miali, and Dan Spielman. The idea is to redue the problem of Example 3.1 to the speialase where we only need to serve interval-queries for intervals starting at 0n; that is, we only need to serve (interval)queries of the form (0n; �). (Indeed, the answer to a query (�0; �0), where �0 6= 0n, an be obtained from the answersto the queries (0n; �00) and (0n; �0), where �00 is the string preeding �0. Next observe that the query (0n; �) an beserved by f 0(�), where f 0 : f0; 1gn ! f0; 1g is a random funtion (given as orale).18



3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf assoiated with �.By using indution on i = 0; :::; n, it an be shown that the level i verties are assigned uniformly andindependently distributed labels (whih do depend, of ourse, on the level i� 1 labels). Thus, f is a randomfuntion. Furthermore, the label of eah internal node v equals the XOR of the values of f on all leaves inthe subtree rooted at v.Note that the random funtion f 0 is used to diretly assign (random) labels to all the left-siblings. Theother labels (i.e., of right-siblings) are determined by XORing the labels of the parent and the left-sibling.Furthermore, the label of eah node in the tree is determined by XORing at most n+1 values of f 0 (residingin appropriate left-siblings). Spei�ally, the label of the vertex assoiated with �1 � � ��i is determined bythe f 0-values of the strings �; 0; �10; :::; �1 � � ��i�10. Atually, the label of the vertex assoiated with �1j ,where � 2 f�g[f0; 1gj�j�10 and j � 0, is determined by the f 0-values of j+1 verties (i.e., those assoiatedwith �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. More generally,we an obtain the label assigned to eah vertex by making at most n + 1 queries to f 0. It follows that wean obtain the value of ���s��f(s) by making O(n2) queries to f 0. Spei�ally, the desired value is theXOR of the leaves residing in at most 2n� 1 full binary sub-trees, and so we merely need to XOR the labelsassigned to the roots of these sub-trees. Atually, O(n) queries an be shown to suÆe, by taking advantageon the fat that we need not retrieve the labels assigned to O(n) arbitrary verties (but rather to vertiesthat orrespond to roots of sub-trees with onseutive leaves). We get:Theorem 5.1 There exists a perfet implementation (by an orale mahine) of the spei�ation of Exam-ple 3.1.The foregoing proedure an be generalize to handle queries regarding any (eÆiently omputable) symmetrifuntion of the values assigned by f to any given interval. In fat, it suÆes to answer queries regarding thesum of these values. We thus state the following result.Theorem 5.2 There exists a truthful lose-implementation (by an orale mahine) of the following spe-i�ation of a random objet. The spei�ation mahine uses its random-tape to de�ne a random funtionf : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the ase of Theorem 5.1, the implementation is not perfet, whih is the reason that weexpliitly mention that it is truthful.Proof: All that is needed in order to extend the \XOR onstrution" is to make sure that the label of eahvertex v equals the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rooted at v.In partiular, internal nodes should be assigned random labels aording to the binomial distribution, whihmakes the implementation more omplex (even for assigning labels to the root and more so for assigninglabels to left-siblings after their parents was assigned a label). Let us start with an overview:1. We label the root by a value generated aording to the binomial distribution; that is, the root (of thedepth-n binary tree) is assigned the value j with probability �Nj �=2N , where N def= 2n. This randomassignment will be implemented using the value f 0(�), where here f 0 is a random funtion rangingover poly(n)-bit long strings rather than over a single bit (i.e., f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).19



2. For i = 0; :::; n � 1, and eah internal vertex v at level i, we label its left hild as follows, by usingthe value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to selet a random pairof integers (l; r) suh that l + r = T and 0 � l; r � 2n�i�1. Suh a pair should be seleted withprobability that equals the probability that, onditioned on l+ r = T , the pair (l; r) is seleted when land r are distributed aording to the binomial distribution (of 2n�i�1 trials). That is, let M = 2n�ibe the number of leaves in the tree rooted at v. Then, for l+ r = T and 0 � l; r �M=2, the pair (l; r)should be seleted with probability �M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf assoiated with �.Of ourse, the above two types of sampling proedures have to be implemented in poly(n)-time, rather thanin poly(2n)-time (and poly(n2n�i)-time, respetively). These implementations annot be perfet (beausesome of the events our with probability 2�N = 2�2n), but it suÆes to provide implementations thatgenerates these samples with approximately the right distribution (e.g., with deviation at most 2�n or so).The details onerning these implementations are provided in an Appendix A.We stress that the sample (or label) generated for the (left sibling) vertex assoiated with � = �00 isprodued based on the randomness provided by f 0(�). However, the atual sample (or label) generatedfor this vertex depends also on the label assigned to its parent. (Indeed, this is di�erent from the aseof XOR.) Thus, to determine the label assigned to any vertex in the tree, we need to obtain the labelsof all its anestors (up-to the root). Spei�ally, let S1(N; �) denote the value sampled from the binomialdistribution (on N trials), when the sampling algorithm uses oins �; and let S2(M;T; �) denote the valueassigned to the left-hild, when its parent (whih is the root of a tree with M leaves) is assigned the valueT , and the sampling algorithm uses oins �. Then, the label of the vertex assoiated with � = �1 � � ��t,denoted label(�), is obtained by omputing the labels of all its anestors as follows. First, we omputelabel(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � ��i) by omputinglabel(�1 � � ��i�10) S2(2n�(i�1); label(�1 � � ��i�1); f 0(�1 � � ��i�10));and if neessary (i.e., �i = 1) by omputinglabel(�1 � � ��i�11) label(�1 � � ��i�1)� label(�1 � � ��i�10):That is, we �rst determine the label of the root (using the value of f 0 at �); and next, going along the pathfrom the root to �, we determine the label of eah vertex based on the label of its parent (and the value off 0 at the left-hild of this parent). Thus, the omputation of the label of �, only requires the value of f 0 onj�j + 1 strings. As in the ase of XOR, this allows to answer queries (regarding the sum of the f -values inintervals) based on the labels of O(n) internal nodes, where eah of these labels depend only on the value off 0 at O(n) points. (In fat, as in the ase of XOR, one may show that the values of these related internalnodes depend only on the value of f 0 at O(n) points.)Regarding the quality of the implementation, by the above desription it is lear that the label of eahinternal node equals the sum of the labels of its hildren, and thus the implementation is truthful. To analyzeits deviation from the spei�ation, we onsider the mental experiment in whih both sampling proeduresare implemented perfetly (rather than almost so), and show that in suh a ase the resulting implementationis perfet. Spei�ally, using indution on i = 0; :::; n, it an be shown that the level i verties are assignedlabels that are independently distributed, where eah label is distributed as the binomial distribution of2n�i trials. (Indeed, the labels assigned to the verties of level i do depend on the labels assigned in leveli � 1.) Thus, if the deviation of the atual sampling proedures is bounded by 2�n � �, then the atualimplementation is at statistial distane at most � from the spei�ation.19 The latter statement is atuallystronger than required for establishing the theorem.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-omputable) sym-metri funtion of the values assigned by a random funtion over any interval of [N ℄ � f0; 1gn. Two naturalextensions are suggested below.19We an a�ord to set � = exp(�poly(n)) < 1=poly(N), beause the running time of the atual sampling proeduresis poly-logarithmi in the desired deviation. 20



Open Problem 5.3 (non-symmetri queries): Provide a truthful lose-implementation to the followingspei�ation. The spei�ation mahine de�nes a random funtion f : f0; 1gn ! f0; 1g, and answers queriesof the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g is some simple funtion. For exam-ple, onsider g(�1; :::; �t) that returns the smallest i 2 [t℄ suh that �i � � ��i+b1+log2 t�1 = 11+blog2 t (and aspeial symbol if no suh i exists). More generally, onsider a spei�ation mahine that answers queries ofthe form (k; (�; �)) by returning smallest i 2 [t℄ suh that �i � � ��i+k�1 = 1k, where �j is the j-th element inthe sequene (f(�); :::; f(�)).Note that the latter spei�ation is interesting mostly for k 2 f!(logn); :::; n + !(logn)g. For k � ksm =O(logn) we may just make sure (in the implementation) that any onseutive interval of length 2ksmn2ontains a run of ksm ones.20 One this is done, queries (referring to k � ksm) may be served (by theimplementation) in a straightforward way (i.e., by sanning at most two suh onseutive intervals, whih inturn ontain 2ksm+1n2 = poly(n) values). Similarly, for k � klg = n + !(logn), we may just make sure (inthe implementation) that no pair of onseutive intervals, eah of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (beyond interval queries): Provide a truthful lose-implementation to the followingspei�ation. The spei�ation mahine de�nes a random funtion f : f0; 1gn ! f0; 1g, and answers queriesthat suintly desribe a set S, taken from a spei� lass of sets, with the value ��2Sf(�). In Example 3.1the lass of sets is all intervals of [N ℄ � f0; 1gn, represented by their pair of end-points. Another naturalase is the lass of sub-ubes of f0; 1gn; that is, a set S is spei�ed by an n-sequene over f0; 1; �g suh thatthe set spei�ed by the sequene (�1; :::; �n) ontains the n-bit long string �1 � � ��n if and only if �i = �i forevery �i 2 f0; 1g.In both ases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, a pseudo-implementationmay need to be \somewhat truthful" anyhow (i.e., if the implementation answers the ompound queries in anon-onsistent manner then it may be distinguished from the spei�ation beause a distinguisher may hekonsisteny). At least, a potential implementation seems to be in trouble if it \lies bluntly" (e.g., answerseah query by an independent random bit).An appliation to streaming algorithms: Motivated by a omputational problem regarding mas-sive data streams, Feigenbaum et. al. [14℄ onsidered the problem of onstruting a sequene of N randomvariables, X1; :::; XN , over f�1g suh that1. The sequene is \range-summable" in the sense that given t 2 [N ℄ the sumPti=1Xi an be omputedin poly(logN)-time.2. The random variables are almost 4-wise independent (in a ertain tehnial sense).Using the tehniques underlying Theorem 5.2, for any k � poly(logN) (and in partiular for k = 4), we anonstrut a sequene that satis�es the above properties. In fat, we get a sequene that is almost k-wiseindependent in a stronger sense than stated in [14℄ (i.e., we get a sequene that is statistially lose to beingk-wise independent).21 This is ahieved by using the onstrution presented in the proof of Theorem 5.2,exept that f 0 is a funtion seleted uniformly from a family of k � (n+1)-wise independent funtions ratherthan being a truly random funtion, where n = log2N (as above). Spei�ally, we use funtions that mapf0; 1gn+1 � [ni=0f0; 1gi to f0; 1gpoly(n) in a k �(n+1)-wise independent manner, and reall that suh funtionsan be spei�ed by poly(n) many bits and evaluated in poly(n)-time (sine k � poly(n)). In the analysis,we use the fat that the values assigned by f 0 to verties in eah of the (n+ 1) levels of the tree are k-wiseindependent. Thus, we an prove by indution on i = 0; :::; n, that every k verties at level i are assignedlabels aording to the orret distribution (up to a small deviation). Reall that, as stated in Footnote 19,we an obtain statistial deviation that is negligible in N (in this ase, with respet to a k-wise independentsequene).20That is, the random funtion f : [N ℄ ! f0; 1g is modi�ed suh that, for every j 2 [N=2ksmn2℄, the interval[(j�1)2ksmn2+1; :::; j2ksmn2℄ ontains a run of ksm ones. This modi�ation an be performed on-the-y by sanningthe relevant interval and setting to 1 a random blok of ksm loations if neessary. Note that, with overwhelminglyhigh probability, no interval is atually modi�ed.21This onstrution was atually disovered before us by Naor and Reingold (f. [16, Lem. 2℄); see further disussionat the end of this setion. 21



A historial note: As noted above, the ideas underlying the proof of Theorem 5.2 were disovered byMoni Naor and Omer Reingold (as early as in 1999). Atually, their onstrution was presented withinthe framework of limited independene (i.e., as in the former paragraph), rather than in the framework ofrandom funtions (used throughout this setion). In fat, Naor and Reingold ame-up with their onstrutionin response to a question raised by the authors of [14℄ (but their solution was not inorporated in [14℄). TheNaor{Reingold onstrution was used in the subsequent work of [16℄ (see [16, Lem. 2℄).6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You atually take it for granted thatthe random graph is going to be Hamiltonian, beause you are willing to disard the negligible probabilitythat a random graph is not Hamiltonian. Suppose that you want to be able to keep suint representationsof these graphs and/or that you want to generate them using few random bits. A natural idea that omes tomind is using pseudorandom funtions [20℄ in order to eÆiently generate and store representations of thesegraphs. But are the graphs generated this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, whih in turn is a huge (i.e.,exp(n)-sized) objet. This global property annot be deided by heking the adjaeny of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation annot be translated to a ontradition of thepseudorandomness of the funtion. Indeed, the substitution of a random funtion (or a random graph) by apseudorandom one is not guaranteed to preserve the global property. Spei�ally, it may be the ase thatall pseudorandom graphs are even disonneted.22 So, an we eÆiently generate huge Hamiltonian graphs?As we show below, the answer to this question is positive.In this setion we onsider the implementation of various types of huge random graphs. We stress thatwe refer to simple and labeled graphs; that is, we onsider graphs without self-loops or parallel edges, andwith labeled verties (i.e., the 3-vertex graph onsisting of the edge (1; 2) is di�erent from the 3-vertex graphonsisting of the edge (1; 3)). In this setion, implementing a graph means answering adjaeny queries; thatis, the answer to the query (u; v) should indiate whether or not u and v are adjaent in the graph. Reallthat the implementation ought to work in time that is poly-logarithmi in the size of the graph, and thusannot deide \global" properties of the graph. That is, we deal with graphs having N = 2n verties, andour proedures run in poly(n)-time.As in Setion 3, we present our results in two ategories referring to whether they yield truthful or onlyalmost-truthful implementations. In the ase of truthful implementations, we show lose-implementations by(polynomial-time) orale mahines (whih use a random orale), while bearing in mind that orrespondingpseudo-implementations by ordinary (probabilisti polynomial-time) mahines an be derived using The-orem 2.9. In ontrast, in the ase of almost-truthful implementations, we work diretly with ordinary(probabilisti polynomial-time) mahines.6.1 Truthful implementationsThe main result of this setion is Theorem 6.2, whih provide a wide family of monotone graph propertiessuh that there exists a truthful lose-implementation of a uniformly seleted graph having the orrespondingproperty. Before stating and proving this general result, we onsider some onrete speial ases.We �rst reall that a random graph (i.e., a uniformly distributed N -vertex graph) an be perfetlyimplemented via an orale mahine that, on input (u; v) 2 [N ℄� [N ℄ and aess to the orale f : [N ℄� [N ℄!f0; 1g, returns 0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed, we merely derive a symmetri andnon-reexive version of f .)Turning to a less trivial example, let us losely-implement a random Bipartite Graph with N vertieson eah side. This an be done by viewing the random orale as two funtions, f1 and f2, and answeringqueries as follows:22Indeed, for eah funtion fs taken from some pseudorandom ensemble ffs : [2n℄ � [2n℄ ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n℄, where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg onsider the ensemble ffs;vg suh that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s. 22



� The funtion f1 is used to losely-implement a random partition of [2N ℄ into two sets of equal size.Spei�ally, we use f1 to losely-implement a permutation � over [2N ℄, and let the �rst part beS def= fv : �(v) 2 [N ℄g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) if u < vand f2(v; u) otherwise.The above implementation an be adapted to losely-implement a random Bipartite Graph (see detailsin Appendix B). Viewed in di�erent terms, we have just disussed the implementation of random graphssatisfying ertain properties (e.g., being bipartite).We now turn to Example 3.5 (whih spei�es a uniformly distributed onneted graph). In ontinuationto the disussion in Setion 3, we now present a lose-implementation that is truthful:Constrution 6.1 (implementing a random onneted graph): Use the orale to losely-implement a ran-dom graph, represented by the symmetri and non-reexive random funtion g : [N ℄�[N ℄! f0; 1g, as well asa random permutation � over [N ℄, whih in turn is used to de�ne a Hamiltonian path �(1)! �(2)! � � � !�(N). Along with �, implement the inverse permutation ��1, where this is done by using Theorem 2.13.23Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is on the Hamiltonian path (i.e.,j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful with respet to a spei�ation in Example 3.5 (whih mandatesa onneted graph).24 The implementation is statistially-indistinguishable from the spei�ation, beausewhen making only poly(logN) queries it is unlikely to hit an edge of the added \Hamiltonian path" (de�nedby �). (A proof of the latter statement appears below.) A similar strategy an be used for any monotonegraph property that satis�es the following ondition:25(C) The property is satis�ed by a family of strongly-onstrutible sparse graphs. That is, for some negligiblefuntion � (and every N), there exists a perfet implementation of a (single) N -vertex graph with�(logN) �N2 edges that satis�es the property.We have:Theorem 6.2 (Constrution 6.1, generalized): Let � be a monotone graph property that satis�es Condi-tion C. Then, there exists a truthful lose-implementation (by an orale mahine) of a uniformly distributedgraph that satis�es property �.We omment that Condition C implies that a random N -vertex graph is statistially-indistinguishable froma random N -vertex graph having property �. This fat, whih may be of independent interest, is stated andproved �rst.Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N-vertex graph having � � �N2 �edges. Then, any mahine that makes at most q adjaeny queries to a graph, annot distinguish a randomN-vertex graph from a uniformly distributed N-vertex graph that satis�es �, exept than with probabilityO(q � p�) + q �N�(1�o(1)).Proof: As in [23, Se. 4℄, without loss of generality, we may on�ne ourselves to analyzing mahines thatinspet a random indued subgraph. That is, sine both graph lasses are losed under isomorphism, itsuÆes to onsider the statistial di�erene between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph indued by a uniformly seleted set of s def=q + 1 verties.23That is, we use a truthful lose-implementation of Example 2.4. In fat, we only need ��1, and so the truthfullose-implementation of Example 2.3 (as stated in Theorem 2.12) atually suÆes.24Indeed, Constrution 6.1 atually implements a (random) Hamiltonian graph (by virtue of the \fored Hamilto-nian path" de�ned by �).25Here C stands for \ondition". 23



2. The same vertex-indued subgraph (i.e., indued by a random set of s verties) of a uniformly dis-tributed N -vertex graph that satis�es property �.Clearly, distribution (1) is uniform over the set of s-vertex graphs, and so we have to show that approximatelythe same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be an N -vertex graph with Medges that satis�es property �. Consider the set of all graphs that an be obtained from G0 by adding T�M2edges. The number of these graphs is�T �MT�M2 � = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set ontains at least a 2�(M+O(1)+(log2 T )=2) = 2��0�T fration of all possible graphs, where�0 def= �+((log2 T )=2T ). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformly distributed overthe set of all graphs that satisfy property �. Then X has entropy at least T � �0T (i.e., H(X) � T � �0T ). Itfollows that 1T PTi=1H(XijXi�1 � � �X1) � 1��0, where the index i ranges over all unordered pairs of elementsof [N ℄. (Indeed, we assume some �xed order on these pairs.) Letting ej(S) denote the jth pair in the setf(u; v)2S�S : u < vg, we are interested in the expeted value ofP(s2)j=1H(Xej(S)jXej�1(S) � � �Xe1(S)), whereS is a uniformly seleted set of t verties. Clearly,H(Xej(S)jXej�1(S) � � �Xe1(S)) � H(Xej(S)jXej(S)�1 � � �X1)and so ES 264 (s2)Xj=1H(Xej(S)jXej�1(S) � � �Xe1(S))375 � �s2� � (1� �0)beause for a uniformly distributed j 2 [�s2�℄ it holds thatES;j �H(Xej(S)jXej(S)�1 � � �X1)� equalsEi [H(XijXi�1 � � �X1)℄,where i is uniformly distributed in [T ℄. Thus, for a random s-subset S, letting YS = (X(u;v))f(u;v)2S�S:u<vg,we have ES [YS ℄ � t � �00, where t def= �s2� and �00 def= t�0. It follows (see Appendix C) that the statisti-al di�erene of YS from the uniform distribution over f0; 1gt is at most O(p�00), whih in turn equalsO(qp�+ T�(1�o(1))). The lemma follows.Proof of Theorem 6.2: Let H = ([N ℄; E) be a graph satisfying Condition C. In partiular, given(u; v) 2 [N ℄ � [N ℄, we an deide whether or not (u; v) 2 E in polynomial-time. Then, using the graph Hinstead of the Hamiltonian path in Constrution 6.1, we implement a (random) graph satisfying property�. That is, we answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is an edge in (the\fored" opy of) H (i.e., (��1(u); ��1(v)) 2 E). Sine � is a monotone graph property, the instanes ofthe implementation always satisfy the property �, and thus the implementation is truthful. Furthermore,by Condition C and the fat that � is a lose-implementation of a random permutation, the probability thata mahine that queries the implementation for poly(logN) times hits an edge of H is negligible in logN .Thus, suh a mahine annot distinguish the implementation from a random graph. Using Lemma 6.3 (with� = �(logN) and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C inlude Connetivity, Hamiltoni-ity, k-Connetivity (for every �xed k)26, ontaining any �xed-size graph (e.g., ontaining a triangle or a4-lique or a K3:3 or a 5-yle), having a perfet mathing, having diameter at most 2, ontaining a lique ofsize at least log2N , et. All the foregoing properties are satis�ed, with overwhelmingly high probability, bya random graph. However, Theorem 6.2 an be applied also to (monotone) properties that are not satis�edby a random graph; a notable example is the property of ontaining a lique of size at least pN .26In fat, we may have k = k(N) = �(logN) �N for any negligible funtion �. The sparse graph may onsist of aomplete bipartite graph with k(N) verties on one side and N � k(N) � N verties on the other side.24



6.2 Almost-truthful implementationsHere we onsider almost-truthful implementations of spei�ations that refer to uniformly seleted graphsthat have various properties that are satis�ed by random graphs. (Needless to say, we will fous on propertiesthat are not overed by Theorem 6.2.)We start by noting that if we are willing to settle for almost-truthful implementations by orale mahinesthen all properties that hold (with suÆiently high probability) for random graphs an be handled easily.Spei�ally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in logN) fration ofthe N-vertex graphs. Then, there exists an almost-truthful lose-implementation (by an orale mahine) ofa uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (whih in turn is implemented via a random orale). Note,however, that it is not lear what happens if we replae the random graph by a pseudorandom one (f.Theorem 2.11). Furthermore, the proof of Theorem 2.11 an be extended to show that there exist graphproperties that are satis�ed by random graphs but do not have an almost-truthful implementation by anordinary mahine.27 In light of the above, we now fous on almost-truthful implementations by ordinarymahines. As we shall see, that the tehnique underlying Constrution 6.1 an be used also when thefollowing relaxed form of Condition (C) holds:(C') For some negligible funtion � (and every N), there exists an almost-truthful implementation (byordinary mahines) of a distribution over N -vertex graphs that satisfy the property and have at most�(logN) �N2 edges.Indeed, we may obtain a variant of Theorem 6.2 stating that, assuming the existene of one-way fun-tions, for every monotone graph property that satis�es Condition C', there exists an almost-truthful pseudo-implementation (by an ordinary mahine) of a uniformly distributed graph that satis�es property �. However,our main fous in the urrent subsetion will be on non-monotone graph properties (e.g., having a max-liqueof a ertain size), and in this ase we annot apply Lemma 6.3. Instead, we shall use the following observa-tion, whih refer to properties that are satis�ed by random graphs (e.g., having a max-lique of logarithmisize).Proposition 6.5 Let � be any graph property that is satis�ed by all but a negligible (in logN) fration of theN-vertex graphs. Let S be the spei�ation that uniformly selets an N-vertex graph that satis�es property� and answers edge-queries aordingly, and let I be any pseudo-implementation of a uniformly distributedN-vertex graph. Then I is a pseudo-implementation of S.Indeed, Proposition 6.5 holds beause the �rst hypothesis implies that S is omputationally indistinguishablefrom a truly random graph, whereas the seond hypothesis asserts that I is omputationally indistinguishablefrom a truly random graph.Max-lique and hromati number. We onsider the onstrution of pseudorandom graphs thatpreserve the max-lique and hromati number of random graphs.Theorem 6.6 Let (N) = (2� o(1)) log2N be the largest integer i suh that the expeted number of liquesof size i in a random N-vertex graph is larger than one. Assuming the existene of one-way funtions, thereexist almost-truthful pseudo-implementations, by ordinary mahines, of the following spei�ations:27The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the funtion (or graph). In order to obtaina graph property, we onsider the minimum value of the Kolmogorov Complexity of any isomorphi opy of the saidgraph, and onsider the set of graphs for whih this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property annot be satis�ed by an instane of animplementation via an ordinary mahine. Thus, any implementation (regardless of \quality") must be non-truthful(to the spei�ation) in a strong sense. 25



1. A random graph of Max-Clique (N)�1: The spei�ation uniformly selets an N-vertex graph havingmaximum lique size (N)� 1, and answers edge-queries aordingly.2. A random graph of Chromati Number (1� o(1)) �N=(N): The spei�ation uniformly selets an N-vertex graph having Chromati Number (1�log�1=32 N)�N=(N), and answers edge-queries aordingly.That is, we are required to implement random-looking graphs having ertain properties. Indeed, a randomN -vertex graph has the above two properties with probability at least 1�N�0:99 (f. [8℄). Thus, a randomgraph provides an almost-truthful lose-implementation (by an orale mahine) of a uniformly seletedgraph having eah of these properties, but it is not lear what happens when we replae the random oraleby a pseudorandom funtion. (In fat, one an easily onstrut pseudorandom funtions for whih thereplaement yields a graph with a huge lique or alternatively, with a very small hromati number.) Notethat Theorem 6.6 does not follow from Theorem 6.2, beause the properties at hand are not monotone.28Thus, a di�erent approah is needed.Proof: We start with Part 1. We de�ne the adjaeny funtion glique : [N ℄ � [N ℄ ! f0; 1g of agraph by XORing a pseudorandom funtion f with a k-wise independent funtion f 0 (i.e., glique(v; w) =f(v; w)�f 0(v; w)), where k def= 4n2 (and n = log2N).29 Reall that suh k-wise independent funtions anbe onstruted based on kn random bits. The resulting funtion glique is both k-wise independent andomputationally indistinguishable from a random graph (analogously to the onstrution in [26℄). In parti-ular, using the pseudorandomness of glique and the fat that a random graph violates the spei�ation withnegligible probability (in logN), it follows that glique pseudo-implements a uniformly distributed N -vertexgraph having max-lique (N)� 1. (Indeed, the foregoing argument relies on Proposition 6.5.)Next, we use the k-wise independene of glique in order to show that glique is almost-truthful. The keyobservation is that the Bollob�as{Erd�os analysis [9℄ of the size of the max-lique in a random graph onlyrefers to the expeted number of liques of size (N)� 2 and to the variane of this random variable. Thus,this analysis only depends on the randomness of edges within pairs of ((N) + 2)-subsets of verties; that is,a total of 2 � �(N)+22 � < ((N) + 2)2 = (4� o(1)) � n2 vertex-pairs. Hene, the analysis ontinues to hold forglique (whih is 4n2-independent), and so with overwhelming probability glique has max-lique size (N)�1.It follows that glique provides an almost-truthful pseudo-implementation of a random N -vertex graph withmax-lique size (N)� 1.We now turn to Part 2. We de�ne the adjaeny funtion golor : [N ℄ � [N ℄ ! f0; 1g of a graph bytaking the bit-wise onjuntion of the graph glique with a funtion h seleted uniformly in a set H (de�nedbelow); that is, golor(v; w) = 1 i� glique(v; w) = h(v; w) = 1. Intuitively, eah funtion h 2 H fores a overof [N ℄ by N=(N) independent sets, eah of size (N), and so the hromati number of golor is at mostN=(N). On the other hand, by symmetry (of edges and non-edges), the graph glique doesn't only exhibitlique-number (N)� 1 (whih is irrelevant in this part) but also has independene-number (N)� 1 (withoverwhelming probability). We will use the latter fat to show that, sine eah h 2 H only has independentsets of size (N), taking the onjuntion with glique is unlikely to reate an independent set of size (N)+2.Thus, the hromati number of golor is at least N=((N) + 1). Details follow.Eah funtion h 2 H partitions [N ℄ into �(N) def= dN=(N)e fored independent sets, where eah set(exept the last) is of size (N). We de�ne h(v; w) = 1 if and only if v and w belong to di�erent sets; Thus,suh h auses eah of these vertex-sets to be an independent set in golor. The funtions in H di�er only inthe partitions that they use. It turns out that it suÆes to use \suÆiently random" partitions. Spei�ally,we use H = fhrgr2R, where R = fr 2 [N ℄ : gd(r;N) = 1g, and onsider for eah shift r 2 R the partitioninto fored independent sets (S(1)r ; :::; S(�(N))r ), where S(i)r = f(i � (N) + j) � r mod N : j = 1; :::; (N)g fori < �(N) (and S(�(N))r ontains the N � (�(N) � 1) � (N) remaining verties). Note that the onditiongd(r;N) = 1 ensures that this is indeed a proper partition of the vertex-set [N ℄. Thus, hr(v; w) = 1 if28For the oloring property, Condition C does not hold either.29As in other plaes, we atually mean symmetri and non-reexive funtions that are obtained from the values ofthe basi funtions at values (u; v) suh that u < v. 26



and only if v and w do not reside in the same fored independent set S(i)r (i.e., hr(v; w) = 0 implies thatjv � wj � jr (mod N) for some j 2 f1; :::; ((N)� 1)g).To establish the pseudorandomness of the implementation, we �rst note that golor is omputationallyindistinguishable from glique (and onsequently golor retains glique's indistinguishability from a randomgraph). Indeed, it an be shown that no eÆient observer is likely to make a query (v; w) that is a�eted byhr, beause hr(v; w) = 0 yields at most 2((N) � 1) = �(logN) andidates for r, whih in turn is seleteduniformly in the set R, where jRj = N
(1). In addition, a random graph has only a negligible probability(in logN) of having hromati number di�erent from (1 � log�1=32 N) � N=(N). Combining all this withProposition 6.5 implies the pseudorandomness of the implementation (w.r.t the spei�ation).We now turn to the almost-truthfulness requirement. First note that the hromati number of golor isat most �(N), beause its vertex-set is overed by �(N) independent sets. On the other hand, we will showthat with overwhelming probability, the graph golor does not ontain an independent set of size (N) + 2.Thus, the hromati number of golor is at least N=((N) + 1) > (1 � (2=(N)) � �(N), and so golor is analmost-truthful pseudo-implementation of the desired spei�ation, and the entire theorem follows. Thus,it is left to show that the independene-number of golor is at most (N) + 1. The argument proeeds asfollows. We �x any h = hr 2 H (so the fored independent sets S(j)r are �xed) and show that deleting edgesas instruted by a k-wise independent funtion (i.e., by glique) is unlikely to indue a (N) + 2 independentset. Note that the various andidate independent sets di�er with respet to their intersetion with thefored independent sets S(j)r , and the analysis has to take this into aount. For example, if the andidateindependent set does not ontain two verties of the same set S(j)r , whih is indeed the typial ase, thenthe analysis of glique suÆes. At the other extreme, there is the ase that the andidate independent setontains all verties of some set S(j)r . In this ase, we only have either 2(N) or 2(N)+1 random events (i.e.,regarding edges between S(j)r and the other two verties), but the number of possibilities that orrespondto this ase is smaller than N3, and so the total probability for the orresponding bad event is less thanN3 � 2�2(N) = N�1+o(1). The full analysis, given in Appendix C, onsists of a rather straightforward andtedious ase analysis.Combining properties of random graphs. So far, we onsidered several prominent propertiesthat are satis�ed (w.h.p.) by random graphs, and provided pseudo-implementations of uniformly distributedgraphs that satisfy eah of these properties separately. Next, we disuss a onstrution of pseudorandomgraphs that simultaneously satisfy all those properties of random graphs.Theorem 6.7 Let (N) = (2 � o(1)) log2N be as in Theorem 6.6. Assuming the existene of one-wayfuntions, there exists an almost-truthful pseudo-implementation, by an ordinary mahine, of the spei�ationthat uniformly selets an N-vertex graph that satis�es the following four properties:1. Being Hamiltonian.2. Having Clique Number (N)� 1.3. Having Independene Number (N)� 1.4. Having Chromati Number (1� log�1=32 N) �N=(N).The spei�ation answers edge-queries aordingly.Reall that being Hamiltonian implies being onneted as well has ontaining a Perfet Mathing.Proof: Consider the following implementation that merely adds a (arefully hosen) random lookingHamiltonian yle gHam to the pseudorandom graph golor that was de�ned in the proof of Theorem 6.6.That is, we de�ne our adjaeny funtion gombine : [N ℄� [N ℄! f0; 1g of a graph as the bit-wise disjuntionof golor with the adjaeny funtion gHam (spei�ed below); i.e., gombine(v; w) = 1 if and only if eithergolor(v; w) = 1 or gHam(v; w) = 1. Towards de�ning gHam, reall that in golor the verties are overed with�(N) def= dN=(N)e disjoint independent sets fS(i)r g�(N)i=1 , where eah set (exept the last) is of size (N) and27



where the sets are de�ned using a random shift r uniformly hosen in R = fr0 2 [N ℄ : gd(r0; N) = 1g. Wenow de�ne gHam suh that gHam does not violate any of the fored independent sets of golor, and onse-quently the �(N) upper-bound on the hromati number of golor is retained by gombine. Spei�ally, wede�ne gHam using the same random shift r that is used to de�ne the fored independent sets S(i)r : usingan arbitrary integer d 2 [(N); N � (N)℄ that satis�es gd(d;N) = 1, we set gHamr (v; w) = 1 if and only ifw = (v � dr) mod N .We �rst establish the pseudorandomness of the implementation. We note that gombine is omputationallyindistinguishable from golor, beause no eÆient observer is likely to make a query (v; w) that is a�etedby gHamr . Indeed, r is seleted uniformly in the set R of size jRj = N
(1), while gHamr (v; w) = 1 impliesonly two andidates for r (a single andidate for eah of the possible ases of either (w = v + dr) mod N or(w = v � dr) mod N). Consequently, the omputational indistinguishability of golor from a random graph(whih was established during the proof of Theorem 6.6) is preserved by gombine. We next reall (f. [8℄)that, only with negligible probability (in logN), a random graph fails to exhibit properties 1{4 listed above.Hene, the pseudorandomness of the implementation (w.r.t the spei�ation) follows from Proposition 6.5.We now turn to establish the almost-truthfulness laim. Regarding Hamiltoniity, note that our sele-tion of r and d (whih satis�es gd(r;N) = 1 = gd(d;N)) guarantees that the graph gHamr is indeed anHamiltonian yle (beause dr; 2dr; 3dr; :::; Ndr are all distint modulo N). It follows that gombine is alwaysHamiltonian.We now handle the independene number and hromati number. Clearly, sine gombine is obtained byadding edges to golor, the former retains golor's properties of almost surely having independene numberat most (N) + 1 and hromati number at least N=((N) + 1). In addition, by the de�nition of the foredindependent sets S(i)r , an arbitrary pair of verties (v; w) belongs to the same S(i)r only if w = (v�jr) mod Nwhere j 2 f1; :::; (N) � 1g. On the other hand, gHamr (v; w) = 1 implies that w = (v + dr) mod N orw = (v � dr) mod N where (N) � d � N � (N). Sine gd(r;N) = 1 the above implies that the edges ofthe Hamiltonian yle gHam never violate any of the fored independent sets of golor. Thus, as the foredindependent sets are of size (N), and sine these sets fore a over of [N ℄ with dN=(N)e independent sets, itfollows that gombine ahieves independene number at least (N) and hromati number at most dN=(N)e(just as golor does).The last property to onsider is the lique number; that is, we now show that gombine has lique number(N) � 1 (almost surely). The argument is based on the fat (taken from the proof of Theorem 6.6) thatglique has lique number (N) � 1 almost surely. Indeed, let  = (N). As golor is obtained by omittingedges from glique and gombine is (later) obtained by adding edges to golor, it suÆes to establish a  � 1lower bound on the lique number of golor and a  + 1 upper bound on the lique number of gombine. Tothis end we �x (again) the random shift r (whih spei�es both the fored independent sets of golor as wellas the Hamiltonian yle gHam), and establish the desired bounds when the probabilities are taken only overthe k-wise independent graph glique.Towards proving the lower bound (on the lique number of golor), let Xlique and Xolor denote therandom variables that ount the number of (�1)-liques in glique and in golor, respetively. By Chebyshev'sinequality the probability of having no ( � 1)-liques in golor is upper bounded by var(Xolor)(E(Xolor))2 . Sine it isknown (see [9℄) that var(Xlique)(E(Xlique))2 is negligibly small (in logN), it suÆes to show thatvar(Xolor)(E(Xolor))2 = O� var(Xlique)(E(Xlique))2� : (2)We �rst argue that var(Xolor) � var(Xlique). Let T denote the olletion of all subsets of verties ofardinality  � 1, and let Tolor � T denote only those subsets that ontain at most one vertex from eahfored independent set; that is, T ontains exatly all \potential liques" of glique, while Tolor ontains onlythe \potential liques" of golor). For eah T 2 T, let XliqueT and XolorT denote the random variables thatindiate whether T indues a lique in glique and in golor, respetively. Sine, for any T; T 0 2 Tolor, it holdsthat T indues a lique in glique if and only if it indues a lique in golor, we get var(XliqueT ) = var(XolorT )
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and ov(XliqueT ; XliqueT 0 ) = ov(XolorT ; XolorT 0 ). Sine all the terms in the expansionvar(Xolor) = XT2Tolor var(XolorT ) + XT 6=T 02Tolor ov(XolorT ; XolorT 0 );also appear in the expansion of var(Xlique), and as all terms in in the expansion of var(Xlique) are non-negative, we get var(Xolor) � var(Xlique).Next we show that E(Xolor) = (1 � o(1)) � E(Xlique). First note that E(Xlique) = � N�1� � 2�(�12 ).On the other hand, the number of potential (� 1)-liques in golor is lower-bounded by L def= �bN �1� � �1,beause there are bN  fored independent sets S(i) of size , and a potential lique an be spei�ed by �rsthoosing � 1 of these sets S(i), and then hoosing a single vertex from eah set. Next note that all relevantedges are determined only by the 4n2-wise independent graph glique, and so E(Xolor) � L � 2�(�12 ). SineL = �bN �1��1 = (1 � o(1)) � � N�1�, we get E(Xolor) � (1 � o(1)) � � N�1� � 2�(�12 ), whih in turn equals(1� o(1)) � E(Xlique). Having established Eq. (2), we onlude that (with very high probability) the � 1lower bound on the lique number of golor holds.Our �nal task is to establish a +1 upper bound on the lique number of gombine; that is, to show thatfor 0 def= (N)+2, with high probability gombine ontains no 0-liques. Let's �rst onsider golor. Reall thatby [9℄, glique has a negligible probability (in logN) of having a 0-lique. As golor is obtained by omittingedges from glique the same holds for golor as well. Consequently, as gombine is obtained by adding a singleHamiltonian yle gHam to golor, it suÆes to give a negligible upper-bound only on the probability thatgombine ontains a 0-lique that intersets gHam (in at least one edge). This is done by showing that theexpeted number of the latter liques is negligible (in logN).30We use the following terminology. Given a vertex-set V of size 0 (i.e., a potential lique), we saythat a vertex w 2 V is a follower-vertex if its predeessor in gHam is in V (i.e., if w � dr mod N is infv mod N : v 2 V g). Let Vk denote the olletion of all vertex-sets V of size 0 that have exatly k follower-verties. We now bound Ek, the expeted number of liques indued by vertex-sets V 2 Vk. For V 2 Vk,the number of edges of gHam that have both endpoints in V is k. Sine the rest of the edges of V are deidedby the 4n2-wise independent graph glique, the probability that V indues a ( � 1)-lique in gombine is atmost 2�(02 )+k. Next observe that jVkj � � N0�k� � (0 � 1)k, beause a set V 2 Vk is de�ned by the hoie of0 � k non-follower and k (suessive) hoies of followers (where the ith follower is seleted as following oneof the 0 � k + (i� 1) � 0 � 1 verties seleted so far). ThusEk � � N0 � k� � (0 � 1)k � 2�(02 )+k = �N0� � (N�1+o(1))k � 2�(02 ) � �N0� � 2�(02 );where the latter expression is upper-bound by N�
(1) (see [9℄, while realling that 0 = (N) + 2). If followsthat P0�1k=1 Ek is negligible (in logN). This establishes the upper-bound on the lique-number of gombine,whih ompletes the proof of the entire theorem.High onnetivity. One property of random graphs that was left out of Theorem 6.7 is having high(global) onnetivity property: Indeed, in a random N -vertex graph, every pair of verties is onnetedby at least (1 � o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) onnetivity property.Unfortunately, at the time this researh was onduted, we did not know how to do this.31 A seond bestthing may be to provide an almost-truthful pseudo-implementation of a random graph for whih almost allpairs of verties enjoy this \high onnetivity" property.30Reall that we �xed the random shift r (whih spei�es both the fored independent sets of golor as well asthe enfored Hamiltonian path gHamr ), and so probabilities are taken only over the k-wise independent hoies of theedges of glique.31We mention that subsequent work by Alon and Nussboim [3℄ has provided the implementation we failed to ahieve(i.e., an almost-truthful pseudo-implementation of a uniformly distributed graph having a high global onnetivityproperty). 29



Theorem 6.8 For every positive polynomial p, assuming the existene of one-way funtions, there exists analmost-truthful pseudo-implementation by an ordinary mahine of the following spei�ation. The speifyingmahine selets a graph that is uniformly distributed among all N-vertex graphs for whih all but at mostan �(N) def= 1=p(log2N) fration of the vertex pairs are onneted by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered aordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is inde-pendent of p, whih is only needed for the de�nition of the spei�ation. In fat, in ontrast to all otherimplementations presented in this work, the implementation used in the proof of Theorem 6.8 is the straight-forward one: It uses a pseudorandom funtion to de�ne a graph in the obvious manner. The rux of the proofis in showing that this implementation is omputationally-indistinguishable from the foregoing spei�ation.Proof: We use a pseudorandom funtion to de�ne a graphG = ([N ℄; E) in the straightforwardmanner, andanswer adjaeny queries aordingly. This yields a pseudo-implementation of a truly random graph, whihin turn has the strong onnetivity property (with overwhelmingly high probability). Fixing a polynomialp and � def= �(N) def= 1=p(log2N), we prove that this implementation is almost-truthful to the orrespondingspei�ation. That is, we show that, with overwhelmingly high probability, all but at most an � fration ofthe vertex pairs are onneted via (1 � �) � N=2 vertex-disjoint paths. We will show that if this is not thease, then we an distinguish a random graph (or funtion) from a pseudorandom one.Suppose towards the ontradition that, with non-negligible probability, a pseudorandom graph violatesthe desired property. Fixing suh a graph, G = ([N ℄; E), our hypothesis means that at least an � frationof the vertex-pairs are onneted (in G) by fewer than (1� �) �N=2 vertex-disjoint paths. Consider suh ageneri pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n�G(v), and S2 def= �G(v) n�G(u),where �G(w) def= fx2 [N ℄ : (w; x)2Eg. Note that if G were a random graph then we would expet to havejS0j � jS1j � jS2j � N=4. Furthermore, we would expet to see a large (i.e., size � N=4) mathing in theindued bipartite graph B = ((S1; S2); E \ (S1�S2)); that is, the bipartite graph having S1 on one side andS2 on the other. So, the intuitive idea is to test that both these onditions are satis�ed in the pseudorandomgraph. If they do then u and v are \suÆiently onneted". Thus, the hypothesis that an � fration of thevertex-pairs are no \suÆiently onneted" implies a distinguisher (by seleting vertex-pairs at random andtesting the above two properties). The problem with the foregoing outline is that it is not lear how toeÆiently test that the aforementioned bipartite graph B has a suÆiently large mathing.To allow an eÆient test (and thus an eÆient distinguisher), we onsider a more stringent ondition(whih would still hold in a truly random graph). We onsider a �xed partition of [N ℄ into T def= N=mparts, (P1; :::; PT ), suh that jPij = m = poly(n=�), where n = log2N . (For example, we may use Pi =f(i� 1)m+ j : j = 1; :::;mg.) If G were a random graph then, with overwhelmingly high probability (i.e., atleast 1� exp(�m1=O(1)) > 1� exp(�n2)), we would have jS0 \ Pij = (m=4)�m2=3 for all the i's. Similarlyfor S1 and S2. Furthermore, with probability at least 1� exp(�n2), eah of the bipartite graphs Bi induedby (Pi\S1; Pi\S2) would have a mathing of size at least (m=4)�m2=3. The key point is that we an a�ordto test the size of the maximum mathing in suh a bipartite graph, beause it has 2m = poly(n) verties.Let us wrap-up things. If a pseudorandom graph does not have the desired property then at least �fration of its vertex-pairs are onneted by less than (1 � �)N=2 vertex-disjoint paths. Thus, samplingO(1=�) vertex-pairs, we hit suh a pair with onstant probability. For suh a vertex-pair, we onsider thesets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It must be the ase that either �=2fration of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2 fration of the bipartite subgraphs(i.e., Bi's) indued by the pairs (S1;i; S2;i) have no mathing of size (1�(�=2)) �(m=4), beause otherwise thisvertex-pair is suÆiently onneted merely by virtue of these S0;i's and the large mathings in the Bi's.32We use m > (8=�)3 so to guarantee that (m=4)�m2=3 > (1� (�=2))(m=4), whih implies that (for at least an�=2 fration of the i's) some quantity (i.e., either jS0;ij or the maximum mathing in Bi) is stritly larger ina random graph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we delare the graph to be32That is, we get at least ((1 � (�=2)) � T ) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum mathings in the various Bi's.30



random if all the orresponding S0;i's have size at least (m=4)�m2=3 and if all the orresponding bipartitegraphs Bi's have a maximummathing of size at least (m=4)�m2=3. Thus, we distinguish a random funtionfrom a pseudorandom funtion, in ontradition to the de�nition of the latter. The theorem follows.Maximum Mathing in most indued bipartite graphs: The proof of Theorem 6.8 an beadapted to prove the following:Theorem 6.9 For every positive polynomial p, assuming the existene of one-way funtions, there existsan almost-truthful pseudo-implementation by an ordinary mahine of a uniformly seleted N-vertex graphthat satis�es the following property: For all but at most an �(N) def= 1=p(log2N) fration of the disjointset-pairs (L;R) � [N ℄ � [N ℄ it holds that the bipartite graph indued by (L;R) has a mathing of size(1� �(N)) �min(jLj; jRj).As in Theorem 6.8, the implementation is straightforward, and the issue is analyzing it.Proof: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so we fous on these pairs.It an still be shown that in a random graph, with overwhelmingly high probability, all the orrespondingbipartite graphs (indued by pairs (L;R) as above) have a suÆiently large mathing. However, this willnot hold if we only onsider mathings that onform with the small bipartite graphs Bi's, where the Bi's areas in the proof of Theorem 6.8. Still, with overwhelmingly high probability, almost all the bipartite graphsindued by pairs (L;R) as above will have a suÆiently large mathing that does onform with the smallbipartite graphs Bi's. Thus, for � = �(N), the distinguisher just selets O(1=�) di�erent i's, and for eahsuh i tests the size of the maximal mathing for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not selet suh huge sets, but rather selets their projetion on Pi. That is, for eah suh i (and eahattempt), the distinguisher selets a random pair of disjoint sets (Li; Ri) � Pi � Pi.Digest: An interesting aspet regarding the proofs of Theorems 6.8 and 6.9 is that in these ases, withoverwhelmingly high probability, a random objet in the spei�ation (S; n) has stronger properties thatthose of arbitrary objets in (S; n). This fat makes it easier to distinguish a random objet in (S; n) froman objet not in (S; n) (than to distinguish an arbitrary objet in (S; n) from an objet not in (S; n)). Forexample, with overwhelmingly high probability, a random graph has larger onnetivity than required inTheorem 6.8 and this onnetivity is ahieved via very short paths (rather than arbitrary ones). This fatenables to distinguish (S; n) from an implementation that laks suÆiently large onnetivity.A di�erent perspetive: The proofs of Theorems 6.8 and 6.9 atually establish that, for the or-responding spei�ations, the almost-truthfulness of an implementation follows from its omputational in-distinguishability (w.r.t the spei�ation).33 An interesting researh projet is to haraterize the lass ofspei�ations for whih the foregoing impliation holds; that is, haraterize the lass of spei�ations thatsatisfy Condition 1 in the following Theorem 6.10. Clearly, any pseudo-implementation of suh a spei�-ation is almost-truthful, and Theorem 6.10 just asserts that having a pseudo-implementation by an oralemahine suÆes (provided one-way funtions exist):Theorem 6.10 Suppose that S is a spei�ation for whih the following two onditions hold.1. Every pseudo-implementation of S is almost-truthful to S. In fat, it suÆes that this ondition holdswith respet to implementations by an ordinary probabilisti polynomial-time mahines.2. S has an almost-truthful pseudo-implementation by an orale mahine that has aess to a randomorale.33That is, these proofs establish the �rst ondition in the following Theorem 6.10, whereas the seond ondition isestablished by the straightforward onstrution of a random graph.31



Then, assuming the existene of one-way funtion, S has an almost-truthful pseudo-implementation by anordinary probabilisti polynomial-time mahine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementation derivedfrom I by replaing the random orale with a pseudorandom funtion. Then, I 0 is a pseudo-implementationof S. Using Condition 1, it follows that I 0 is almost-truthful to S.7 Supporting Complex Queries regarding Random GraphsIn this setion we provide truthful implementations of random graph while supporting omplex queries, inaddition to the standard adjaeny queries. Spei�ally, we onsider three types of omplex but naturalqueries (see Proposition 7.1, and Theorems 7.2 and 7.3, respetively). The graph model is as in Setion 6,and as in Setion 6.1 we present our (truthful) implementations in terms of orale mahines. Let us startwith a simple example.Proposition 7.1 (distane queries and shortest path queries): There exists a truthful lose-implementationby an orale mahine of the following spei�ation. The speifying mahine selets uniformly an N-vertexgraph and answers distane queries regarding any pair of verties. Furthermore, there exists a truthful lose-implementation of the related spei�ation that returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C (e.g., by anN -vertex star). Thus, using Theorem 6.2, we obtain a lose-implementation of a random graph, while ourimplementation always produes a graph having diameter at most 2 (or rather exatly 2). Now, we answerthe query (u; v) by 1 if the edge (u; v) is in the graph, and by 2 otherwise. For the furthermore-part, weadd pN suh stars, and serve queries regarding paths of length 2 by using the enter of one of these stars(whih is seleted by applying an independent random funtion to the query pair).The foregoing example is not very impressive beause the user ould have served the distane-queriesin the same way (by only using adjaeny queries to the standard implementation of a random graph).(A random shortest path ould have also been found by using the standard implementation.) The onlyadvantage of Proposition 7.1 is that it provides a truthful implementation of the distane-queries (ratherthan merely an almost-truthful one obtained via the trivial implementation). A more impressive examplefollows.Serving log-sized lique queries. Reall that a random N -vertex graph is likely to have many(log2N)-vertex liques that inlude eah of the verties of the graph, whereas it seems hard to �nd suhliques (where in hard we mean unlikely to ahieve in time poly(logN), and not merely in time poly(N)).Below we provide an implementation of a servie that answers queries of the form v 2 [N ℄ with a log-sizedlique ontaining the vertex v.Theorem 7.2 There exists a truthful lose-implementation of the following spei�ation. The speifyingmahine selets uniformly an N-vertex graph and, in addition to the standard adjaeny queries, answers(Log-Clique) queries of the form v by providing a random dlog2Ne-vertex lique that ontains v (and a speialsymbol if no suh lique exists).Proof: Let ` = dlog2Ne � 1 and onsider a simple partition of [N ℄ to T = dN=`e subsets, S1; :::; ST , suhthat jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i� 1)`+ j : j = 1; :::; `g). Use the orale to losely-implementa random graph, G0 = ([N ℄; E0), as well as a random onto funtion34 f : [N ℄! [T ℄ and a random invertiblepermutation � : [N ℄! [N ℄ (as in Theorem 2.13). The graph we implement will onsist of the union of G0with N liques, where the i-th lique resides on the vertex set fig [ f�(j) : j 2 Sf(i)g. The Log-Cliquequeries are served in the obvious manner; that is, query v is answered with fvg[ f�(u) : u 2 Sf(v)g. Indeed,34Suh a funtion an be obtained by ombining the identity funtion over [T ℄ with a random funtion f 0 :fT + 1; :::; Ng! [T ℄, and randomly permuting the domain of the resulting funtion.32



for simpliity, we ignore the unlikely ase that v 2 f�(u) : u 2 Sf(v)g; this an be redeemed by modifyingthe implementation as disussed at the end of the proof.Implementing the adjaeny queries is slightly more triky. The query (u; v) is answered by 1 if and onlyif either (u; v) 2 E or u and v reside in one of the N 's liques we added. The latter ase may happen if andonly if one of the following subases holds:1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or ��1(v) 2Sf(u). Eah of these onditions is easy to hek by invoking f and ��1.2. There exists an x suh that u; v 2 f�(w) : w 2 Sf(x)g, whih means that ��1(u); ��1(v) 2 Sf(x).Equivalently, realling that f is onto, we may hek whether there exists a y suh that ��1(u); ��1(v) 2Sy, whih in turn is easy to determine using the simple struture of the sets Sy's (i.e., we merely testwhether or not d��1(u)=`e = d��1(v)=`e).Thus, our implementation is truthful to the spei�ation. To see that it is a lose-implementation of thespei�ation, observe �rst that it is unlikely that two di�erent Log-Clique queries are \served" by the samelique (beause this means forming a ollision under f). Conditioned on this rare event not ourring, theLog-Clique queries are served by disjoint random liques, whih is what would essentially happen in a randomgraph (provided that at most poly(logN) queries are made). Finally, it is unlikely that the answers to theadjaeny queries that are not determined by prior Log-Clique queries be a�eted by the sparse sub-graph(of N small liques) that we inserted under a random permutation.Finally, we address the problem ignored above (i.e., the rare ase when the query v is in the orrespondingset f�(u) : u 2 Sf(v)g). We modify the foregoing implementation by setting ` = dlog2Ne (rather than` = dlog2Ne � 1), and using orresponding sets of size `. Note that, under this modi�ation, for mostverties v, the set fvg[f�(u) : u 2 Sf(v)g has size `+1 (whereas for few verties v this set has size `). Thus,in the modi�ed implementation, a query v is answered with a random `-subset of fvg [ f�(u) : u 2 Sf(v)gthat ontains v (i.e., we use another random funtion g : [N ℄ ! [`℄ that indiates whih element of f�(u) :u 2 Sf(v)g to drop in the ase that v 62 f�(u) : u 2 Sf(v)g). The theorem follows.Another example: queries regarding a �xed Hamiltonian yle. We onsider the imple-mentation of a random graph along with answering queries regarding a �xed random Hamiltonian yle init, where suh a yle exists with overwhelmingly high probability. Spei�ally, we onsider queries of theform what is the distane between two verties on the yle.Theorem 7.3 There exists a truthful lose-implementation of the following spei�ation. The speifyingmahine selets uniformly an N-vertex Hamiltonian graph G, and uniformly selets a (direted) Hamiltonianyle in G, whih in turn de�nes a yli permutation � : [N ℄! [N ℄. In addition to the standard adjaenyqueries, the spei�ation answers travel queries of the form (trav; v; t) by providing �t(v), and distanequeries of the form (dist; v; w) by providing the smallest t � 0 suh that w = �t(v).We stress that the implementation must answer eah possible query in time polynomial in the vertex name(whih may be logarithmi in the distane t).Proof: It will be onvenient to use the vertex set V = f0; 1; :::; N�1g (instead of [N ℄). We use the randomorale to losely-implement a random graph G0 = (V;E0) as well as a random permutation � : V !V alongwith its inverse. We de�ne a graph G = (V;E) by E def= E0 [ C, where C = f(�(i); �(i + 1 mod N)) : i2V g, and use C to answer the speial (Hamiltonian) queries. That is, we answer the query (trav; v; t) by�(��1(v)+ t mod N), and the query (dist; v; w) by ��1(w)���1(v) mod N . The standard adjaeny query(u; v) is answered by 1 if and only if either (u; v) 2 E or ��1(u) � ��1(v)�1 (mod N). (Indeed, the aboveonstrution is reminisent of the \fast-forward" onstrution of [38℄ (stated in Theorem 2.14).)To see that the above truthful implementation is statistially-indistinguishable from the spei�ation,we use the following three observations: 33



1. If a (labeled) graph appears in the spei�ation (resp., in the implementation) then all is (labeled)isomorphi opies appear in it. Consequently, for any �xed Hamiltonian yle, the set of Hamiltoniangraphs in whih this yle has been seleted in the spei�ation (resp., in the implementation) isisomorphi to the set of Hamiltonian graphs in whih any other �xed Hamiltonian yle has beenseleted. Thus, we may onsider the onditional distribution indued on the spei�ation (resp., onthe implementation) by �xing any suh Hamiltonian yle.2. Conditioned on any �xed Hamiltonian yle being seleted in the implementation, the rest of the graphseleted by the implementation is truly random.3. Conditioned on any �xed Hamiltonian yle being seleted in the spei�ation, the rest of the graphseleted by the spei�ation is indistinguishable from a random graph. The proof of this assertion issimilar to the proof of Lemma 6.3. The key point is proving that, onditioned on a spei� Hamiltonianyle being seleted, the (rest of the) graph seleted by the spei�ation has suÆiently high entropy.Note that here we refer to the entropy of the remaining �N2 ��N edges, and that the vertex pairs arenot all idential but rather fall into ategories depending on their distane as measured on the seletedHamiltonian yle. We need to show that a random vertex-pair in eah of these ategories has asuÆiently high (onditional) entropy. Thus, this observation requires a areful proof to be presentednext.Indeed, the foregoing disussion suggests that we may give the entire Hamiltonian yle to the mahinethat inspets the rest of the graph (in an attempt to distinguish the implementation from the spei�ation).Thus, we assume, without loss of generality, that this mahine makes no adjaeny queries regarding edgesthat partiipate in the yle. The �rst observation says that we may onsider any �xed yle, and theseond observation says that a mahine that inspets the rest of the implementation (i.e., the graph that isonstruted by the implementation) sees truly random edges. The third observation, proved below, assertsthat making a few queries to the rest of the onditional spae of the spei�ation, yields answers that alsolook random.We onsider the onditional distribution of the rest of the graph seleted by the spei�ation, given thata spei� Hamiltonian yle was seleted. (Indeed, we ignore the negligible (in N) probability that the graphseleted by the spei�ation is not Hamiltonian.) Essentially, the argument proeeds as follows. First, wenote that (by Bayes' Law) the onditional probability that a spei� graph is seleted is inversely proportionalto the number of Hamiltonian yles in that graph. Next, using known results on the onentration of thelatter number in random graphs (see, e.g., [28, Thm. 4℄), we infer that in all but an N�2 fration of theN -vertex graphs the number of Hamiltonian yles is at least an exp(�2(lnN)1=2) > N�1 fration of itsexpeted number. Thus, we onlude that the onditional entropy of the seleted graph (onditioned on theseleted yle) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph seleted by the spei�ation, and Y (G) denote theHamiltonian yle seleted (by the spei�ation) given that the graphG was seleted. Let #HC(G) denote thenumber of Hamiltonian yles in the graph G, where yli shifts and transpositions of yles are ountedas if they were di�erent yles (and so the number of Hamiltonian yles in an N -lique is N !). Thus,E(#HC(X)) = 2�N � (N !). An N -vertex graph G is alled good if #HC(G) > 2�N � ((N � 1)!), and G denotesthe set of good N -vertex graphs. For a Hamiltonian yle C, we denote by G(C) the set of graphs in G thatontain the yle C. Then, it holds thatH(X jY (X) = C) � XG2G(C)Pr[X = GjY (X) = C℄ � log2(1=Pr[X = GjY (X) = C℄)� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C℄)g= (1�N�2) � minG2G(C)8<: log2(Pr[Y (X) = C℄)� log2(Pr[Y (X) = CjX = G℄)� log2(Pr[X = G℄) 9=;= (1�N�2) � minG2G(C)�log2(1=N !) + log2(#HC(G)) +�N2��34



Using the fat that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � ((N � 1)!)), whihin turn equals log2(N !)�N � log2N . We thus get,H(X jY (X) = C) > (1�N�2) ���N2��N � log2N� (3)Reall that the ondition Y (X) = C determines N vertex-pairs in X , and so the entropy of the remainingT 0 = �N2 ��N pairs is at least T 0�log2N . Partitioning these (undetermined) pairs aording to their distanesin C, we onlude that the entropy of the N=2 pairs in eah suh distane-lass is at least (N=2) � log2N .(Indeed, the distane lass of undetermined pairs do not ontain distane 1 (or N � 1), whih orrespond tothe fored yle-edges.) We stress that our analysis holds even if the mahine inspeting the graph is given theHamiltonian yle for free. This mahine may selet the indued subgraph that it wants to inspet, but thisseletion is determined up to a shifting of all verties (i.e., a rotation of the yle). This randomization suÆesfor onluding that the expeted entropy of the inspeted subgraph (whih may not inlude yle edges) is atleast (1�((2 log2N)=N))��t2�, where t is the number of verties in the subgraph. As in the proof of Lemma 6.3,this implies that the inspeted subgraph is at distane at most O(q((log2N)=N) � �t2�) < t � N�(1�o(1))=2from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this setion we onsider huge bounded-degree simple graphs, where the verties are labeled (and there areno self-loops or parallel edges). We onsider spei�ations of various distributions over suh graphs, wherein all ases the speifying mahine responds to neighborhood queries (i.e., the queries orrespond to vertiesand the answer to query v is the list of all verties that are adjaent to vertex v).The �rst issue that arises is whether we an implement a random bounded-degree graph or alternativelya random regular graph. Things would have been quite simple if we were allowing also non-simple graphs(i.e., having self-loops and parallel edges). For example, a random d-regular N -vertex non-simple graph anbe implemented by pairing at random the dN possible \ports" of the N verties. We an avoid self-loops(but not parallel edges) by generating the graph as a union of d perfet mathings of the elements in [N ℄. Inboth ases, we would get a lose-implementation of a random d-regularN -vertex (simple) graph, but paralleledges will still appear with onstant probability (and thus this implementation is not truthful w.r.t simplegraphs). In order to obtain a random simple d-regular N -vertex graph, we need to take an alternative route.The key observation underlying this alternative is aptured by the following lemma:Lemma 8.1 For d > 2, let G = ([N ℄; E) be any d-regular N-vertex graph having girth g. Let G0 be obtainedby randomly permuting the verties of G (and presenting the inidene lists in some anonial order). Then,any mahine M that queries the graph for the neighborhoods of q verties of its hoie, annot distinguishG0 from a random d-regular N-vertex (simple) graph, exept than with probability O(q2=(d � 1)(g�1)=2). Inthe ase d = 2 and q < g � 1, the probability bound an be improved to O(q2=N).Reall that the girth of a graph G is the length of the shortest simple yle in G, and that (d�1)(g�2)=2 < Nalways holds (for a d-regular N -vertex graph of girth g).35 Note that Lemma 8.1 is quite tight: For example,in the ase d = 2, for g � pN , the N -vertex graph G may onsist of a olletion of g-yles, and taking awalk of length g in G0 (by making g � 1 queries) will always detet a yle G0, whih allows to distinguishG0 from a random 2-regular N -vertex (in whih the expeted length of a yle going through any vertex is
(N)). In the ase d � 3, the graph G may onsist of onneted omponents, eah of size (d�1)g � N , andtaking a random walk of length (d�1)g=2 in G0 is likely to visit some vertex twie, whih allows to distinguishG0 from a random d-regular N -vertex (in whih this event may our only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.35The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by onsidering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existene of d-regular N -vertex graphs of girth logd�1N was shown(non-onstrutively) in [13℄. 35



Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N ℄; E) be any d-regular N-vertex graphhaving girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any mahine M that queries the graphfor the neighborhoods of poly(logN) verties of its hoie, annot distinguish G0 from a random d-regularN-vertex (simple) graph, exept than with negligible in logN probability. The laim holds also in the asethat d = 2 and g(N) = (logN)!(1).For d > 2 the girth an be at most logarithmi, and expliit onstrutions with logarithmi girth are known forall d � 3 and a dense set of N 's (whih is typially related to the set of prime numbers; see, e.g., [35, 27, 33℄).For d = 2, we may just take the N -yle or any N -vertex graph onsisting of a olletion of suÆiently largeyles.Proof of Lemma 8.1: We bound the distinguishing gap of an orale mahine (whih queries either arandom d-regular N -vertex graph or the random graph G0) as a funtion of the number of queries it makes.Reall that G0 is a random isomorphi opy of G, whereas a random d-regularN -vertex graph may be viewedas a random isomorphi opy of another random d-regular N -vertex graph. Thus, intuitively, the spei�labels of queried verties and the spei� labels of the orresponding answers are totally irrelevant: the onlything that matters is whether or not two labels are equal.36 Equality (between labels) an our in two ases.The uninteresting ase is when the mahine queries a vertex u that is a neighbor of a previously-queriedvertex v and the answer ontains (of ourse) the label of vertex v. (This is uninteresting beause the mahine,having queried v before, already knows that v is a neighbor of u.) The interesting ase is that the mahinequeries a vertex and the answer ontains the label of a vertex v that was not queried before but has alreadyappeared in the answer to a di�erent query. An important observation is that, as long as no interestingevent ours, the mahine annot distinguish the two distributions (beause in both ases it knows the samesubgraph, whih is a forest). Thus, the analysis amounts to bounding the probability that an interestingevent ours, when we make q queries.Let us onsider �rst what happens when we query a random d-regular N -vertex (simple) graph. Wemay think of an imaginary proess that onstruts the graph on-the-y suh that the neighbors of vertexv are seleted only in response to the query v (f, e.g., the proof of [22, Thm. 7.1℄). This seletion is doneat random aording to the onditional distribution that is onsistent with the partial graph determinedso far. It is easy to see that the probability that an interesting event ours in the i-th query is at most(i� 1)d=(dN � (i� 1)d), and so the probability for suh an event ourring in q queries is at most q2=N .The more hallenging part is to analysis what happens when we query the graph G. (Reall that wehave already redued the analysis to a model in whih we ignore the spei� labels, but rather only omparethem, and analogously we annot query a spei� new vertex but rather only query either a random newvertex or a vertex that has appeared in some answer.)37 To illustrate the issues at hand, onsider �rst thease that d = 2 (where G onsists of a set of yles, eah of length at least g). In this ase, we have the optionof either to proeed along a path that is part of a yle (i.e., query for the neighbors of the an end-pointof a urrently known path) or to query for a random new vertex. Assuming that we make less than g � 1queries, we an never ause an interesting event by going along a path (beause an interesting event mayour in this ase only if we go around the entire yle, whih requires at least g�1 queries). The only otherpossibility to enounter an interesting event is by having two paths (possibly eah of length 1) ollide. Butthe probability for suh an event is bounded by q2=N , where q is the number of queries that we make.3836Essentially, the mahine annot determine whih vertex it queries; all that it atually deides is whether to querya spei� vertex that has appeared in previous answers or to query a new vertex (whih may be viewed as randomlyseleted). (Formally, a spei� new label indiated by the querying mahine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the verties given as answer do not matter, all that matters is whetheror not these verties have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew verties supplied in the answer are assigned, by the random permutation, new random labels.)37Thus, we may onsider querying G itself (rather than querying G0).38Using a union bound over all query pairs, we bound the probability that the ith query ollides with the j-thquery. Eah of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (whih was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N ℄), and the probability that they are neighbors is at most 1=(N � q).36



We now turn to the more interesting ase of d > 2. As in ase d = 2, taking a walk of length g � 2from any vertex will not yield anything useful. However, in this ase, we may a�ord to take longer walks(beause q may be muh larger than g). Still, we will prove that, in this ase, with probability at least1� q2 � (d�1)�(g�3)=2, the unovered subgraph is a forest. The proof relies both on the girth lower-bound ofG and on a suÆiently-good rapid-mixing property (whih follows from the girth lower-bound). We boundthe probability that a yle is losed in the urrent forest by the probability that two verties in the forestare onneted by a non-tree edge, where the probability is taken over the possible random verties returnedin response to a new-vertex request and over the random order in whih neighbors of a query-vertex areprovided. Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is seleted at random among the unqueried verties appearing in that answer.39Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we bound the probabilitythat either two ends of a disovered path (in one tree) or two verties in di�erent urrent trees are onnetedby an edge. (In both ases, these verties are atually leaves.)We onsider eah of these two ases separately: In the latter ase (i.e., leaves in di�erent trees), the twoverties (whih are not onneted in the urrently unovered subgraph) are uniformly distributed in G, andthus the probability that they are onneted is essentially d=N . The situation here is essentially as analyzedin the ase d = 2: we have two paths, eah initiated at a random (new at the time) vertex, leading to theleaves in question, and thus the latter are almost uniformly and independently distributed.Turning to the former ase (i.e., endpoints of a path in a tree), we use the girth hypothesis to infer thatthis path must have length at least g � 1 (or else its endpoint are de�nitely not onneted). However, themahine that disovered this path atually took a random walk (possibly to two diretions) starting fromone vertex, beause we may assume that this is the �rst time in whih two verties in the urrent forestare onneted by a urrent non-tree edge. We also use the hypothesis that our exploration of the path (i.e.,queries regarding verties that appeared in previous answers) is atually random (i.e., we e�etively extendthe urrent end-point of the path by a uniformly seleted neighbor of that end-point). Now, the end-point ofsuh a path annot hit any spei� vertex with probability greater than � def= (d� 1)�(g�1)=2, beause after(g� 1)=2 steps the end-point must be uniformly distributed over the (d� 1)(g�1)=2 leaves of the tree rootedat the start vertex (and the max-norm of a distribution annot inrease by additional random steps). Fixingthe losest (to the start vertex) end-point, it follows that the probability that the other end-point hits theneighbor-set of the �rst end-point is at most d � � = O((d� 1)�(g�1)=2). To summarize, the probability thatan interesting event ours while making q queries is O(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn bak to the initial prob-lem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every onstant d > 2, there exist truthful lose-implementations of the following twospei�ations:1. A random graph of maximum degree d: For size parameter N , the spei�ation selets uniformly agraph G among the set of N-vertex simple graphs having maximum degree d. On query v 2 [N ℄, themahine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the spei�ation selets uniformly a graph G amongthe set of N-vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we an implement arandom isomorphi opy of a d-regular N -vertex graph of suÆiently large girth. This requires an expliit39That is, the orrespondene between the new plae-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the interation with the graph suh that at eah point only theinternal nodes of the urrently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typially initiating a new tree in the forest) or for a randomleaf of a spei� internal vertex (whih typially extends the orresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 37



onstrution of the latter graph as well as a lose-implementation of a random permutation and its inverse(as provided by Theorem 2.13). Spei�ally, let GN be the �xed graph, and � the random relabeling ofits verties. We answer query v, by �rst determining the preimage of v in GN (i.e., ��1(v)), next �nd itsneighbors (using the expliitness of the onstrution of GN ), and �nally return their images under �. Indeed,this proess depends on the ability to provide expliit onstrutions of adequate d-regular N -vertex graphs(i.e., GN 's). This is trivial in the ase d = 2 (e.g., by the N -yle). For other values of d � 3, adequateonstrutions an be obtained from [35, 27, 33, 30℄ (possibly by dropping several (easily identi�ed) perfetmathings from the graph). These onstrution apply for a dense set of N 's (whih are typially of the formp(p� 1)2 for any prime p), but we an obtain other sizes by ombining many suh graphs (note that we arenot even required to give a onneted graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximum degree d have (1�o(1)) �dN=2 edges.Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fration of the graphs have(dN=2)� T �D edges. Thus, a random N -vertex graph of degree bound d is statistially-indistinguishablefrom a random d-regular graph with N verties, beause the former may be viewed as resulting from omittinga small number (i.e., T +D = O(pN)) of edges from a random d-regular graph with N verties.A general result: The proof of Proposition 8.3 atually yields a truthful lose-implementation of severalother spei�ations. Consider, for example, the generation of random onneted d-regular graphs, for d � 3.Sine the expliit onstrutions of d-regular graphs are onneted (and their modi�ations an easily madeonneted), applying Corollary 8.2 will do. (Indeed, we also use the fat that, with overwhelmingly highprobability, a random d-regular graph is onneted.) More generally, we have:Theorem 8.4 Let d � 2 be �xed and � be a graph property that satis�es the following two onditions:1. The probability that Property � is not satis�ed by a uniformly hosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-onstrutible d-regular N-vertex graphs having girth!(log logN) if d > 2 and girth (logN)!(1) if d = 2.Then, there exists a truthful lose-implementation (by an orale mahine) of a uniformly distributed d-regularN-vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It suÆes to require that a random d-regular graph and arandom d-regular graph having Property � are statistially-indistinguishable (by a mahine that makes poly-logarithmiallymany queries). In partiular, a random 2-regular graph and a uniformly distributed onneted2-regular graph are statistially-indistinguishable, and thus we an provide a truthful lose-implementationof the latter spei�ation. We mention that Theorem 8.4 yields truthful lose-implementations to randomd-regular graphs that are required to be Hamiltonian, Bipartite, have logarithmi girth, et.9 Complex Queries regarding Length-Preserving FuntionsIn this setion we onsider spei�ations that refer to a generi random funtion, but support omplexqueries regarding suh funtions. That is, we onsider answer various queries regarding a random funtionf : f0; 1gn ! f0; 1gn, in addition to the standard evaluation queries. The �rst type of omplex queries thatwe handle are iterated-evaluation queries, where the number of iterations may be super-polynomial in thelength of the input (and thus annot be implemented in a straightforward manner).Theorem 9.1 (iterated-evaluation queries to a random mapping): For every positive polynomial p, thereexists a truthful lose-implementation of the following spei�ation. The speifying mahine, uniformly seletsa funtion f : f0; 1gn ! f0; 1gn, and answers queries of the form (x;m), where x 2 f0; 1gn and m 2 [2p(n)℄,with the value fm(x) (i.e., f iterated m times on x).38



Proof: It will be onvenient to assoiate f0; 1gn with f0; 1; :::; N�1g, whereN = 2n. As a warm-up, onsideran implementation by a random N -yle; that is, using a random 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn,de�ne f(x) = �(��1(x)+1 mod N), and answer the query (x;m) by fm(x) = �(��1(x)+m mod N). (Indeed,this onstrution is reminisent of the \fast-forward" onstrution of [38℄ (stated in Theorem 2.14).) Theonly thing that goes wrong with this onstrution is that we know the yle length of f (i.e., it is always N),and thus an distinguish f from a random funtion by any query of the form (�; N). Thus, we modify theonstrution so to obtain a funtion f with unknown yle lengths. A simple way of doing this is to use twoyles, while randomly seleting the length of the �rst yle. That is, selet M uniformly in [N ℄, and letf(x) def= 8<: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)We ould have tried to selet f suh that its yle struture is distributed as in ase of a random funtion,but we did not bother to do so. Nevertheless, we prove that any mahine that makes q queries annotdistinguish f from a random funtion with probability better than poly(n) � q2=2
(n). Atually, in order tofailitate the analysis, we selet M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the foregoing (truthful) implementation is statistially-indistinguishable from thespei�ation. As in the proof of Lemma 8.1, we may disregard the atual values of queries and answers (inthe querying proess), and merely refer to whether these values are equal or not. We also assume, withoutloss of generality, that the querying mahine makes no redundant queries (e.g., if the mahine \knows" thaty = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), whih would have been answeredby z = fk+`(x)). Thus, at any point in time, the querying mahine knows of a few hains, eah havingthe form (x; fk1(x); fk2(x); :::; fkt (x)), for some known x 2 f0; 1gn and k1 < k2 < � � � < kt. Typially, theelements in eah hain are distint, and no element appears in two hains. In fat, as long as this typialase holds, there is no di�erene between querying the spei�ation versus querying the implementation.Thus, we have to upper bound the probability that an untypial event ours (i.e., a query is answered byan element that already appears on one of the hains, although the query was not redundant).Let us �rst onsider the ase that f is onstruted as in the implementation. For the i-th non-redundantquery, denoted (x; k), we onsider three ases:Case 1: x does not reside on any hain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i� 1)), beause x is uniformly distributed among the N � (i� 1) unknown elements. (Sinef is 1-1, it follows that fk(x) is uniformly distributed over a set of N � (i� 1) elements.)Case 2: x resides on one hain and fk(x) hits another hain. We show that the probability to hit an elementof another hain (whih must belong to the same yle) is (i � 1)=(N 0 � (i � 1)2), where N 0 � N=3is the number of verties on the yle (on whih x reside). The reason is that hains residing on thesame yle may be thought of as having a random relative shift (whih must be suh that avoids anyollisions of the up-to i�1 known verties). For i <pN=2, we obtain a probability bound of i=
(N).Case 3: x resides on some hain and fk(x) hits the same hain. Without loss of generality, suppose that fk(x) =x. For this to happen, the length N 0 of the yle (on whih x reside) must divide k. We upper-boundthe probability that all prime fators of N 0 are prime fators of k.Reall that N 0 is uniformly seleted in [(N=3); (2N=3)℄, and let P = Pk denote the set of primefators of k. Note that for some onstant , it holds that jP j < n�1, beause by the hypothesisk 2 [2poly(n)℄. We upper-bound the number of integers in [N ℄ that have all prime fators in P byupper-bounding, for every t 2 [n℄, the produt of the number of integers in [2t℄ with all prime fatorsin P 0 def= fp 2 P : p < ng and the number of (n� t)-bit integers with all prime fators in P 00 def= P nP 0.For t > n= logn, the size of the �rst set an be upper-bounded by the number of n-smooth numbersin [2t℄, whih in turn is upper-bounded by 2t�(t=)+o(t) = 2(1�(1=))�t+o(t).40 The size of the seond set40An integer is alled y-smooth if all its prime fators are smaller that y. The fration of y-smooth integers in [x℄ isupper-bounded by u�u+o(u), where u = (log x)=(log y); see, [10℄. Thus, in ase t > n= log n, the fration of n-smoothintegers in [2t℄ is upper-bounded by 2�(1�o(1))�(t=( log2 n))�log2 t = 2�(1�o(1))t=.39



is upper-bounded by jP 00j(n�t)=( logn) < 2(1�(1=))�(n�t), where the inequality uses jP 00j < n�1. Thus,we upper-bound the probability that an uniformly hosen integer in [(N=3); (2N=3)℄ has all primefators in P by n= log nXt=1 1 � 2�(1=)�(n�t) + nXt=(n= logn)+1 2�(1=)�t+o(t) � 2�(1=)�(n�t)= n= lognXt=1 2�(1=)�(n�t) + nXt=(n= logn)+1 2�(1=)�n+o(t)= 2�(n=)+o(n)Hene, the probability of a ollision in the urrent ase is upper-bounded by N�1=(+1).We onlude the probability that we form a ollision in q queries (to the implementation) is at mostO(q2=N)+q �N�1=(+1) < q2 �N�
(1).We now turn to the ase that f is a random funtion (as in the spei�ation). Suppose that we makethe non-redundant query (x; k). We wish to upper-bound the probability that fk(x) = y, for some �xed y(whih is on one of the hains). It is well-known that the expeted number of anestors of y under a randomf is �(pN); see, e.g., Theorem 33 in [8, Ch. XIV℄. Thus, Prf [j [i�1 f�i(y)j > N3=4℄ = O(N�1=4), and itfollows that Prf [fk(x) = y℄ < N�1=4+O(N�1=4), for any �xed (x; k) and y. (Indeed, it seems that this is agross over-estimate, but it suÆes for our purposes.) It follows that the probability that we form a ollisionin q queries to the spei�ation is at most O(q2=N1=4).Comment: The proof of Theorem 9.1 an be easily adapted so to provide a truthful lose-implementationof a random permutation with iterated-evaluation and iterated-inverse queries. That is, we refer to a spe-ifying mahine that uniformly selets a permutation f : f0; 1gn ! f0; 1gn, and answers queries of the form(x;m), where x 2 f0; 1gn and m 2 [�2poly(n)℄, with the value fm(x). The implementation is exatly the oneused in the foregoing proof of Theorem 9.1, and thus we should only analyze the a probability of ollisionwhen making (non-redundant) queries to a random permutation �. For any �xed (x; k) and y, the probabilitythat �k(x) = y equals the probability that x and y resides on the same yle of the permutation � and thattheir distane on this yle equals k mod `, where ` is the length of this yle. In the ase that x 6= y, the saidevent ours with probability at most (N � 1)�1, beause we may think of �rst seleting a yle-struture(and later embedding x and y on it). In the other ase (i.e., x = y), we note that the probability that�k(x) = x equals the probability that ` divides k, whereas ` is distributed uniformly over [N ℄ (i.e., for everyi 2 [N ℄, the probability that ` = i equals 1=N). We mention that an alternative implementation of a randompermutation supporting iterated-evaluation (and iterated-inverse) queries was suggested independently byTsaban [39℄. Interestingly, his implementation works by seleting a yle struture with distribution thatis statistially-lose to that in a random permutation (and using a set of yles of orresponding lengths,rather than always using two yles as we do).Preimage queries to a random mapping: We turn bak to random length preserving funtions.Suh a random funtion f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set of preimages of anelement under the funtion is well-de�ned (i.e., f�1(y) = fx : f(x) = yg). Indeed, this set may be empty,be a singleton or ontain more than one preimage. Furthermore, with overwhelmingly high probability, allthese sets are of size at most n. The orresponding \inverse" queries are thus natural to onsider.Theorem 9.2 There exists a truthful lose-implementation of the following spei�ation. The speifyingmahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and, in addition to the standard evaluationqueries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statistially-indistinguishable from the spei�-ation, but is \lose to being so" and does present our main idea. For ` = O(logn) (to be determined), we40



onsider an implementation that uses the orale in order to de�ne two permutations �1 and �2 over f0; 1gn(along with their inverses) as well as a random funtion g : f0; 1gn ! f0; 1g`. It is instrutive to note thatg indues a olletion of random independent funtions g� : f0; 1g` ! f0; 1g` suh that g�(�) = g(��), andthat eah g� indues a random funtion on the orresponding set S� def= f�� : � 2 f0; 1g`g (i.e., mapping ��to �g�(�)). Letting prefi(z) (resp., su�i(z)) denote the i-bit long pre�x of z (resp., suÆx of z), we de�nef(x) = �2 �prefn�`(�1(x))gprefn�`(�1(x))(su�`(�1(x)))� (4)= �2 �prefn�`(�1(x))g(�1(x))� :That is, the value of f(x) is obtained by �rst routing x to a random value v  �1(x), whih is viewed asa pair (�; �) = (prefn�`(v); su�`(v)), next omputing the value w � (�; g�(�)), and �nally routing w to arandom �2(w). Indeed, the funtions g� indues ollisions within the strutured sets S�, and so the resultingfuntion f is unlikely to be 1-1.The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2). Theinverse-query y is answered by �rst omputing �� = ��12 (y), where j�j = n � `, then omputing R�(�) def=f�0 : g(��0) = �g via exhaustive searh, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, thekey point is that, sine ` = O(logn), we an a�ord to determine the set R�(�) by going over all possible�0 2 f0; 1g` and inluding �0 if and only if g(��0) = �. The random permutation �1 (resp., �2) guaranteesthat it is unlikely to make two evaluation queries (resp., inverse-queries) that are served via the same setS� (i.e., have the same (n� `)-bit long pre�x under the relevant permutation). It is also unlikely to have anon-obvious \interation" between these two types of queries (where an obvious interation is obtained byasking for a preimage of an answer to an evaluation query or vie versa). Thus, the answers to the evaluationqueries look random, and the answers to the inverse-queries are almost independent random subsets withsizes that orresponds to the statistis of the ollision of 2` elements (i.e., 2` balls thrown at random to 2`ells).The only thing that is wrong with the foregoing implementation is that the sizes of the preimage-setsorrespond to the ollision pattern of 2` balls thrown at random to 2` ells, rather than to that of the ollisionpattern of 2n balls thrown at random to 2n ells. Let pi(m) denote the expeted fration of ells that ontaini balls, when we throw at random m balls into m ells. Then, p0(m) � 1=e, for all suÆiently large m,whereas pi(m) � e�1i! � iYj=1�1� j � 2m� 1� (5)We fous on i � n (beause for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignore the(negligible in n) dependene of pi(2n) on 2n, but not the (notieable) dependene of pi(2`) on 2` = poly(n).Spei�ally, we have: i pi(2n) pi(n + 1) � (Qij=1(1� (j � 2)n�)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�)) � (e�1=(i!))1 e�1 (1 + n�) � e�12 e�1=2 (1 + n�) � e�1=23 e�1=6 � (1� n�2) � e�1=64 e�1=24 � (1� 1:5n�) � e�1=24i � 4 e�1=(i!) (1��(i2n�)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (when omparedto the spei�ation), whereas the larger sets are under-represented. In all ases, the deviation is by a fatorrelated to 1� (1=poly(n)), whih annot be tolerated in a lose-implementation. Thus, all that is required isto modify the funtion g suh that it is slightly more probable to form larger ollisions (inside the sets S�'s).We stress that we an easily ompute all the relevant quantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n),and so obtaining a lose-implementation is merely a question of details, whih are shortly outlined next.Let us just sketh one possible approah. For N def= 2n and t def= 2`, we have N=t sets S�'s that areeah partitioned at random by the g�'s to subsets (whih orrespond to the sets of ��'s that are mapped41



to the same image under g�). Now, for a random olletion of g�'s, the number of i-subsets divided by Nis pi def= pi(t) rather than qi def= pi(N) as desired. Reall that jpi � qij � pi=(t � 1) for all i � 1, and notethat Pi pii = 1 = Pi qii. Indeed, it is instrutive to onsider the frational mass of elements that residesin i-subsets; that is, let p0i = pii and q0i = qii. We need to move a frational mass of about 1=(t � 1)eelements from singleton subsets (resp., two-element subsets) to the larger subsets. With overwhelminglyhigh probability, eah S� ontains more than n singleton subsets (resp., n=2 two-element subsets). We aregoing to use only these subsets towards the orretion of the distribution of mass; this is more than enough,beause we need to reloate only a frational mass of 1=(t � 1)e from eah type of subsets (i.e., less thanone element per a set S�, whih in turn has ardinality t). In partiular, we move a frational mass ofp01 � q01 = p02 � q02 from singleton (resp., two-element) subsets into larger subsets. Spei�ally, for eah i � 3,we move a frational mass of (q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residingin two-element subsets into i-subsets.41 This (equal ontribution ondition) will automatially guaranteethat the mass in the remaining singleton and two-element subsets is as desired. We stress that there is noneed to make the \mass distribution orretion proess" be \niely distributed" among the various sets S�'s,beause its a�et is anyhow hidden by the appliation of the random permutation �2. The only thing weneed is to perform this orretion proedure eÆiently (i.e., for every � we should eÆiently deide how tomodify g�), and this is indeed doable.10 Conlusions and Open ProblemsThe questions that underlie our work refer to the existene of good implementations of various spei�ationsof random objets. At the very least, we require the implementations to be omputationally-indistinguishablefrom the orresponding spei�ations.42 That is, we are interested in pseudo-implementations. Our ultimategoal is to obtain suh implementations via ordinary (probabilisti polynomial-time) mahines, and so we ask:Q1: Whih spei�ations have truthful pseudo-implementations (by ordinary mahines)?Q2: Whih spei�ations have almost-truthful pseudo-implementations (by ordinary mahines)?Q3: Whih spei�ations have pseudo-implementations at all (again, by ordinary mahines)?In view of Theorem 2.9, as far as Questions Q1 and Q3 are onerned, we may as well onsider implemen-tations by orale mahines (having aess to a random orale). Indeed, the key observation that started usgoing was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Whih spei�ations have truthful lose-implementations by orale mahines (havingaess to a random orale)?Q3r (Q3 revised): Whih spei�ations have lose-implementations by suh orale mahines?We remark that even in the ase of Question Q2, it may make sense to study �rst the existene of imple-mentations by orale mahines, bearing in mind that the latter annot provide a onlusive positive answer(as shown in Theorem 2.11).In this work, we have initiated a omprehensive study of the above questions. In partiular, we provideda fair number of non-trivial implementations of various spei�ations relating to the domains of randomfuntions, random graphs and random odes. The hallenge of haraterizing the lass of spei�ations thathave good implementations (e.g., Questions Q1r and Q3r) remains wide open. A good start may be toanswer suh questions when restrited to interesting lasses of spei�ations (e.g., the lass of spei�ationsof random graphs having ertain type of properties).41For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a orresponding 3-subset, where we do three merges of the latter type per eah merge of the former type.Similarly, for eah i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of eah type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally reated 2j-subsets and 3-subsets (where additional 2-subsets are reated by either using a 2-subset ormerging two singletons, in equal proportions).42Without suh a quali�ation, the question of implementation is either meaningless (i.e., every spei�ation has a\bad" implementation) or misses the point of generating random objets.42



Limited-independene implementations. Our de�nition of pseudo-implementation is based on thenotion of omputational indistinguishability (f. [24, 40, 20℄) as a de�nition of similarity among objets. Adi�erent notion of similarity underlies the onstrution of sample spaes having limited-independene prop-erties (see, e.g., [2, 11℄). For example, we say that an implementation is k-wise lose to a given spei�ationif the distribution of the answers to any k �xed queries to the implementation is statistially lose to thedistribution of these answers in the spei�ation. The study of Question Q1r is also relevant to the on-strution of truthful k-wise lose implementations, for any k = poly(n). In partiular, one an show thatany spei�ation that has a truthful lose-implementation by an orale mahine, has a truthful k-wise loseimplementation by an ordinary probabilisti polynomial-time mahine.43 A onrete example appears at theend of Setion 5. Further study of this diretion is reported in Setion 11.11 Subsequent WorkIn this setion, we briey review some subsequent work that is losely related to the study initiated here.Limited-independene implementations of random graphs. In ontinuation of the last para-graph of Setion 10, we �rst mention that Alon and Nussboim [3℄ proved that a host of graph propertiesthat are satis�ed by truly random graphs are also satis�ed by poly(n)-independent random graphs (i.e.,the amount of independene is polylogarithmi in the size of the graph). These graph properties inludeall properties onsidered in our work and atually extend beyond them (e.g., optimal onnetivity andjumbledness44, whih is the traditional graph theoreti notion of resemblane to a random graph). Theresults of [3℄ imply almost-truthful poly(n)-lose implementations (by ordinary mahines) of a spei�ationthat answers adjaeny queries aording to a uniformly distributed graph that satis�es the orrespondinggraph properties. Furthermore, assuming the existene of one-way funtions, they obtain almost-truthfulpseudo-implementations (by ordinary mahines) of random graph satisfying these properties, by XORingthe foregoing poly(n)-lose implementation with a pseudo-implementation (whih may not be truthful evenin a weak sense).We mention that the work of Alon and Nussboim [3℄ atually fouses on the general random graph modelG(N; p), where eah edge in an N -vertex graph is taken with probability p = p(N) independently of all otherhoies (f., the model of Erd�os-R�enyi as in, e.g., [8℄). For any value of p (suh that p(N) = 
((logN)=N)),they show that poly(n)-wise independent distributions preserve the most studied graph properties of therandom graph model G(N; p). This an be viewed as an almost-truthful \implementation of the randomgraph model G(N; p)" for any p, where the spei�ation refers to answering adjaeny queries. Indeed, forsmall values of p (i.e., p(N)� 1=poly(logN)), a lose-implementationmay return zero on all queries, but suhan implementation will not satisfy the various graph properties studied in [3℄. Thus, the notion of an almost-truthful implementation distinguishes the implementations provided in [3℄ from trivial implementations,whereas the standard notions of indistinguishability (as in De�nition 2.7) fails to do so.Implementations of the random graph model were also studied by Naor et al. [37℄, who lassify graphproperties aording to the quanti�er depth of the formulas that speify eah property. Preserving high-depthproperties of random graphs is introdued as an alternative measure of the quality of the implementation.Naor et al. [37℄ provide tight positive and negative results regarding the maximal D suh that for everydepth-D property � it is possible to losely-implement a uniformly distributed graph having property �.These results are inomparable with ours, sine they deal with di�erent graph properties.Implementations of sparse random graphs. Our study of the implementation of random bounded-degree graphs was extended by Naor and Nussboim [36℄ who onsidered random graphs of polylogarithmidegree that support neighborhood queries. Clearly, eÆiently answering neighborhood queries (whih areanswered by the list of all neighbors of the given vertex) mandates a degree bound of poly(n) = poly(logN).43The laim follows by ombining an implementation (by an orale mahine) that makes at most t queries to itsrandom orale with a sample spae of k � t-wise independent funtions.44Loosely speaking, jumbledness means that all vertex-sets U ontain 12 � �jUj2 ���(pN jU j) edges.43



Atually, the study in [36℄ refers to the aforementioned Erd�os-R�enyi model of random graphs G(N; p) forsuÆiently low p = p(N); that is, p(N) � poly(logN)=N .Stateful Implementations. Addressing Open Problem 5.4, Bogdanov and Wee [7℄ introdued thenotion of stateful implementation, whih (in ontrast to De�nition 2.6)45 allows the implementing mahineto maintain a state. That is, suh a relaxed notion of an implementation may onstrut the objet on-the-yin respond to the queries posed (and while keeping trak of all previous queries and answers). Bogdanov andWee presented a stateful implementation of the \sub-ube spei�ation" desribed in Open Problem 5.4, butthe problem of providing a stateless implementation remains open.AknowledgmentsThe �rst two authors wish to thank Silvio Miali for disussions that took plae more than two deades ago.The main part of Theorem 2.9 was essentially observed in these disussions. These disussions reahed adead-end beause the notion of a spei�ation was missing; thus, it was not understood that the interestingquestion is whih spei�ations an be implemented at all (i.e., even by an orale mahine having aess toa random funtion).We are grateful to Noga Alon for very helpful disussions regarding random graphs and expliit onstru-tions of bounded-degree graphs of logarithmi girth. We also thank Avi Wigderson for a helpful disussionregarding the proof of Lemma 6.3. Finally, thanks to Moni Naor for alling our attention to [14℄, and toOmer Reingold and S. Muthu for alling our attention to [16, Lem. 2℄.We are grateful to one of the reviewers of this paper for an unsually kind, supportive, and useful report.

45Reall that De�nition 2.6 requires that eah instane of the implementation be fully determined by the mahineM and the random-tape r. Similarly, De�nition 2.5 requires that eah instane of the implementation be fullydetermined by the mahine M and the random orale f .44
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Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on eÆient proedures for generating elements from a �nite setaording to two probability distributions. In both ases, we need proedures that work in time thatis poly-logarithmi (rather than polynomial) in the size of the set (and the reiproal of the desiredapproximation parameter). In both ases, we have lose expressions (whih an be evaluated inpoly-logarithmi time) for the probability mass that is to be assigned to eah element. Thus, inboth ases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our fous is on generating good approximations of these distributions in time that ispoly-logarithmi in the size of the set.Indeed, the problem onsidered in this appendix is a speial ase of our general framework. Weare given a spei�ation of a distribution (i.e., eah query should be answered by a sample drawnindependently from that distribution), and we wish to losely-implement it (i.e., answer eah queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst onsider the generation of elements aording to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An eÆient proedure for thispurpose is desribed in Knuth [29, Se. 3.4.1℄. In fat, Knuth desribes a more general proedurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his desription is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's desription proeeds in two steps:1. In Setion 3.4.1.F, it is shown how to redue the generation of the binomial distribution bN;pto the generation of some beta distributions, whih are ontinuous distributions over [0; 1℄ thatdepends on two parameters a and b.46 The redution involves taking log2N samples fromertain beta distributions, where the parameters of these distributions are easily determinedas a funtion of N . The samples of the beta distributions are proessed in a simple mannerinvolving only omparisons and basi arithmeti operations (subtration and division).2. In Setion 3.4.1.E, it is shown how to generate any beta distribution. The generator takes aonstant number of samples from the ontinuous uniform distribution over [0; 1℄, and produesthe desired sample with onstant probability (otherwise, the proess is repeated). The samplesof the uniform distributions are proessed in a simple manner involving only omparisons andvarious arithmeti and trigonometri operations (inluding omputing funtions as log andtan).The above is desribed in terms of real arithmeti and sampling uniformly in [0; 1℄, and providesa perfet implementation. The question is what happens when we replae the samples with onestaken from the set f�; 2�; :::; b1=� � �g, and replae the real arithmetis with approximations up toa fator of 1� �.46A beta distribution with (natural) parameters a and b is de�ned in terms of the aumulative distribution funtionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform ontinuous distribution is a speial ase (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly hosen samples in [0; 1℄ has value at most r.47



Let us �rst onsider the e�et of replaing the uniform ontinuous distribution U(r) = r bythe ontinuous step-distribution S�(r) def= br=� � �, where we may assume that 1=� is an integer.Sine the variation distane between U and S� is O(�), the same holds for any funtion appliedto a onstant number of samples taken from these distribution. Thus, the implementation of thebeta distributions via the step-distribution S� will deviate by only O(�), and using the latter togenerate the binomial distribution bN;p only yields a deviation of O(� logN). Finally, using theaverage numerial stability of all funtions employed47 we onlude that an implementation byO(log(1=�)) bits of preision will only introdue a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) suh that l + r = T and 0 � l; r � S, where T � 2S.Spei�ally, we need to produe suh a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to selet l elements from one set of size S and r elements from another suh set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we selet the \omplementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (6)We wish to produe a sample with deviation at most � from the orret distribution and areallowed time poly(k), where k def= log(S=�). In ase T � k, we perform this task in the straightfor-ward manner; that it, ompute all the T + 1 probabilities pr, and selet r aordingly. Otherwise(i.e., T > k), we rely on the fat that pr is upper-bounded by twie the binomial distribution of Ttries (i.e., qr = �Tr�=2T ). This leads to the following sampling proess:1. Selet r aording to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fat A.1 below) that pr � 2qr always holds. Thus, in eah iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that eah iteration of the above proedure produes an output with probability 1=2, andby trunating the proedure after k iterations (and produing arbitrary output in suh a ase) theoutput distribution is statistially lose to the desired one.Fat A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The ases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T ). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T ) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �47Eah of these funtions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese funtions on arguments taken from either the uniform distribution or the result of prior funtions on thatdistribution. In partiular, exept for what happens in an �-neighborhood of some problemati points, all funtionsan be well-approximated when their argument is given with O(log(1=�)) bits of preision. Furthermore, the funtionslog and tan are only evaluated at the uniform distribution (or simple funtions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all ases, the problemati neighborhoods are onlyassigned small probability mass (e.g., � in the former ase and O(p�) in the latter).48



= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T ))�1=2 � 2H2(�)�(2S�T )(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T )where � def= (2S � T )=S � 1 and H2 is the binary entropy funtion. For � 2 [(1=3); (2=3)℄, we anupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T ) � 2�
(2S�T ) = O(2�
(S)+log S), whihvanishes to zero with k (beause S � T > k).48A.3 A general tool for sampling strange distributionsIn ontinuation to Appendix A.2, we state a useful lemma (whih was impliitly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 an be redued to sampling from a related probability distribution fqigNi=1,whih is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following onditions:1. There exists a polynomial-time algorithm that given i 2 [N ℄ outputs approximations of pi andqi up to �N�2.2. Generating an index i aording to the distribution fqigNi=1 is losely-implementable (up tonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time reognizable set S � [N ℄ suh that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p suh that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i aording to the distribution fpigNi=1 is losely-implementable.Proof: Without loss of generality, S may exlude all i's suh that pi < N�2. For simpliity, weassume below that given i we an exatly ompute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling proedure proeeds in iterations, where in eahiteration i is seleted aording to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we proeed to the next iteration.) Observe that, onditioned on produing anoutput, the output of eah iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,eah iteration produes output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produe output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1� �) �pi=�, where � def= Pj2S pj . Setting � to be negligible in logN , the lemma follows.A typial appliation of Lemma A.2 is to the ase that for eah i 2 [N ℄ the value of pi an beapproximated by one out of m = poly(logN) predetermined pj's. Spei�ally:48In fat, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 49



Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N ℄ be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an eÆientlyonstrutible sequene of integers 1 = i1 < i2 < � � � < im = N suh that for every j 2 [m � 1℄and i 2 [ij ; ij+1℄ \ S it holds that pij=t < pi < t � pij . Then generating an index i aording to thedistribution fpigNi=1 is losely-implementable.Proof: For every j 2 [m� 1℄ and i 2 [ij ; ij+1℄ \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Sine these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the orollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the desription in Setion 6, we present a lose-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to selet the proportion of the sizes of the two parts,while notiing that di�erent proportions give rise to di�erent number of graphs. Seondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to swithing the two parts) only if it isonneted. However, sine all but a negligible fration of the bipartite graphs are onneted, wemay ignore the seond issue, and fous on the �rst one. (Indeed, the rest of the disussion is slightlyimpreise beause the seond issue is ignored.)For i 2 [�N ℄, the number of 2N -vertex bipartite graphs with N + i verties on the �rst part is 2NN + i! � 2(N+i)�(N�i) �  2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., up to a onstant fator) for jij = pN .Thus, all but a negligible fration of the 2N -vertex bipartite graphs have N � log2N verties oneah part. That is, we may fous on O(logN) values of i. Indeed, for eah i 2 [� log2N ℄, weompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj . Next, we selet i withprobability pi, and onstrut a random 2N -vertex bipartite graph with N + i verties on the �rstpart as follows:� As in Setion 6, we use the funtion f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i℄g, and �S(i) def= 1 if and only if i 2 S.� As in Setion 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and aording to the valueof f2 otherwise.Appendix C: Various CalulationsCalulations for the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fat:Fat C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj� �. Then X is at statistial distane at most O(p�) from the uniform distribution over D.50



Proof: Suppose that X is at statistial distane Æ from the uniform distribution over D. Then,there exists a S � D suh that jPr[X 2 S℄� (jSj=jDj)j = Æ, and assume without loss of generalitythat jSj � jDj=2. Note that either for eah e 2 S it holds that Pr[X = e℄ � 1=jDj or for eahe 2 S it holds that Pr[X = e℄ � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�erene (i.e., smallest jPr[X = e℄� (1=jDj)j), we obtain a set S0 of size jDj=2 suh thatjPr[X 2 S0℄� (jS0j=jDj)j � Æ=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0℄) +Pr[X 2 S0℄ �H(XjX 2 S0) +Pr[X 2 D n S0℄ �H(XjX 2 D n S0)= H2 �12 + Æ2�+ log2(jDj=2)= 1� 
(Æ2) + log2(jDj=2)We get that H(X) � log2 jDj�  � Æ2, for some universal  > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � �  � Æ2, and Æ � p�= follows.Calulations for the proof of Theorem 6.6In order to omplete the proof of Part 2 of Theorem 6.6, we prove the following laim.Claim C.2 Let (N) = (2 � o(1)) log2N be as in Theorem 6.6, and let T def= dN=(N)e. Considerany �xed partition (S(1); :::; S(T )) of [N ℄ suh that jS(i)j = (N), for every i < T , and jS(T )j � (N).Consider a graph seleted as follows:� Eah S(i) is an independent set.� For k = 2�(N)+22 �, the edges between verties residing in di�erent S(i)'s are determined by ak-wise independent sequene of unbiased bits.Then, with probability at least 1� (N��(1)), the graph has no independent set of size (N) + 2.Applying Claim C.2 to any partition (S(1)r ; :::; S(T )r ) �xed at the end of the proof of Theorem 6.6,it follows that the graph golor ontains no independent set of size (N) + 2. Part 2 of Theorem 6.6follows.Proof: We will show that the expeted number E of independent sets of size (N) + 2 is N�
(1),and the laim will follow. Denoting  def= (N) and 0 def= + 2, we onsider an arbitrary vertex-setV of size 0 (so V is a potential independent-set). The analysis bounds the ontribution of variousvertex-sets V (to the entire expetation E) aording to the sizes of the intersetions V TS(j).We shall use the following notation. For any V as above, we let n(V ) denote the number ofnon-empty intersetions V TS(j), and let s(V ) denote the size of the largest intersetion. Next, letAs denote the olletion of all vertex-sets V for whih s(V ) = s, and let Bn denote the olletionof those vertex-sets V for whih n(V ) = n. Finally, let pV denote the probability that V induesan independent-set, and let Ps def= maxV 2AsfpV g and Qn def= maxV 2BnfpV g. The following fatssummarize a few useful upper-bounds.Fat C.2.1 For any 1 � s �  and any 1 � n � 0 it holds that:1. jAsj � dN e�s�� N0�s� = N (2 log2N)�s+o(logN).51



2. jBnj � �dN en ��+1n�1�0 = Nn+o(logN).Fat C.2.2 For any 1 � s �  and any 3 � n � 0 we have1. Ps � 2�(0�s)�s.2. Ps � N�(0�s)+o(logN).3. Qn � 2�(+22 )+(�n+32 ).4. Qn � N�n(2� n2 log2N )+o(logN).(Proving Fats C.2.1 and C.2.2 is deferred to the end of this subsetion.) The desired upper-boundon the expeted number E of independent-sets is established via a ase analysis where we separatelyhandle the ontribution of various vertex-sets V to the expetation E, aording to the values ofs(V ) and n(V ). For the rest of the analysis, we �x an arbitrary onstant � 2 (0; 1=6).Case 1 { Large maximal intersetion: s � (32 +�) log2N . By the �rst items in Fats C.2.1 and C.2.2we take Es def= [dN e�s�� N0�s�℄2�s[0�s℄ as an upper-bound on the expeted number of independent-sets that are indued by sets V with s(V ) = s. We laim that for large values of s, Es ismaximized when s is maximal, namely, when s = . Indeed,Es+1Es = � (� s)(s+ 1) � (0 � s)(N � + s� 1)� � 22s2�(+1)� "No(1)No(1) � No(1)N1�o(1) # � 22( 32+�) log2N2(�2+o(1)) log2N= hN�1�o(1)iN3+2�N�2+o(1) = N2��o(1) � 1;where the �rst inequality uses the fat that s is large. Thus for suÆiently largeN the maximalterm is E = hdN e � � N0��i 2�[0�℄ < [N �N2℄2�2([2�o(1)℄ log2N) = N�1+o(1). Consequently, asthere are only �(logN) possible values of s, the expeted number of independent-sets withlarge s is bounded by N��(1).Case 2 { Large number of intersetions: n � (1 + �) log2N . Analogously to ase 1, we ombine theseond item in Fat C.2.1 with the third item in Fat C.2.2 to dedue that �En def= h�dN en ��+1n�1�0i�2�(+22 )+(�n+32 ) upper-bounds the expeted number of independent-sets that are indued bysets V with n(V ) = n � 3. We show that for large values of n, �En is maximized when n ismaximal, namely, when n = 0. Indeed,�En+1�En = "dN e � nn+ 1 � � n+ 2n # � 2n2�(+2)� "N1�o(1)No(1) � No(1)No(1) # � 2(1+�) log2N2[�2+o(1)℄ log2N= hN1�o(1)i �N (1+�)N�2+o(1) = N��o(1) � 1:52



Thus for suÆiently large N the maximal term is �E0 . To bound �E0 we use the notation	 def= �N0�2�(+22 ) and note that�E0 =  dN e0 !02�(+22 )= 24 N0!�1 dN e0 !35 0 �  N0!2�(+22 )= 240�1Yi=0 dN e � iN � i 35 0 �	= � [1� o(1)℄0 � 0 �	� [1 + o(1)℄ �N�1+o(1) = N��(1);where the last inequality uses the fat that 	 � N�1+o(1) (taken, again from [9℄). Thus, asthere are only �(logN) possible values of n, the expeted number of independent-sets withlarge n is bounded by N��(1).Case 3 { Medium number of intersetions: �log2N � n � (1 + �) log2N . We shall atually estab-lish the laim for � log2N � n � (2 ��) log2N . By the seond item in Fat C.2.1 and thelast item in Fat C.2.2 the expeted number of independent-sets that are indued by sets Vwith n(V ) = n � 3 is bounded byNn+o(logN)N�n(2� n2 log2N )+o(logN)� Nn(�1+ (2��) log2N2 log2N )+o(logN)= N��n2 +o(logN) = N��(logN);where the �rst inequality employs the fat that n is medium and the �nal equality usesn = �(logN). Therefore, as there are only �(logN) possible values of n, the expetednumber of independent-sets with medium n is bounded by N��(logN).Case 4 { Small intersetions and a small number of intersetions: n � �log2N and s � (32 +�) log2N .We shall atually establish the laim for n � (12 � 2�) log2N (and s � (32 +�) log2N). Fixany n and s as above and let Es;n denote the expeted number of independent-sets that areindued by vertex-sets V 2 AsTBn. By the seond items in Fats C.2.1 and C.2.2 we getEs;n � Nn+o(logN)N�[0�s℄+o(logN)� N ( 12�2�) log2N+o(logN)N�[2�( 32+�)℄ log2N+o(logN)= N�[�+o(1)℄ log2N = N��(logN);where the seond inequality uses the fat that s and n are both small. Thus, as there areonly �(log2N) possible pairs (s; n), the expeted number of independent-sets with small sand small n is bounded by N��(logN).These four ases handle all possible pairs (s; n), so a N�
(1) bound on the expeted numberof independent-sets is ahieved, and the urrent laim (i.e., Claim C.2) follows one Fats C.2.1and C.2.2 are proved. 53



Proving Fat C.2.1. To derive the upper bounds on jAsj we hoose a vertex-set V 2 As as follows.There are dN e possible hoies for the fored independent set S(j) that ahieves the maximalintersetion with V . Then, there are at most �s� hoies for the verties of V TS(j). Finally, thereare less than � N0�s� possible hoies for the verties of V nS(j). Thus jAsj � dN e�s�� N0�s�. The jAsj �N [2 log2N�s℄+o(logN) bound follows from the above by observing that �s� < 2 = 2[2�o(1)℄ log2N =No(logN), and that � N0�s� < N 0�s = N [2�o(1)℄ log2N�s.To prove the upper bounds on jBnj we hoose a vertex-set V 2 Bn as follows. There arepreisely �dN en � possible hoies for the fored independent sets S(i1); :::; S(in) that interset V .One these sets S(ij) are �xed, there are exatly �+1n�1� possible hoies for the ardinalities r1 def=jV TS(i1)j; � � � ; rn def= jV TS(in)j. Finally, given these ardinalities, there are no more thanQni=1 �r�i <Qni=1 ri = 0 hoies for the verties themselves. This implies that jBnj � �dN en ��+1n�1�0 . ThejBnj � Nn+o(logN) bound is derived by observing that �dN en � < Nn, and that �+1n�1�0 < ( +1)n�1+0 = �(logN)�(logN) = N�(log logN).Proving Fat C.2.2. Fix an arbitrary vertex-set V 2 AsTBn and onsider the set I(V ) of internalrandom edges of V ; that is, I(V ) def= ffv; wg : 9i 6= j s.t. v2V \ S(i) ^w2V \ S(j)g. By the k-wiseindependene of our graph, the probability that V indues an independent-set equals 2�jI(V )j. Notethat even by onsidering only the edges that onnet the largest intersetion, V TS(j), to V n S(j)we get jI(V )j � s � (0 � s), and Item 1 follows. For Item 2, note that sine s(V ) = s, then eah ofthe 0 verties v 2 V ontributes at least (0 � s) edges to I(V ). As eah edge is ounted twie, weget jI(V )j � 12 � (0 � s)0, so Ps � 2� 12 �(0�s)�(2�o(1)) log2N . Item 2 follows.For Items 3{4 we will demonstrate that for any �xed n � 3, the maximal probability Qn isahieved by a vertex-set V where all non-empty intersetions V TS(j) are of size 1, exept the largestintersetion. Indeed, assume w.l.o.g. that V has dereasing intersetion's sizes r1 � � � � � rn > 0.Now assume that r2 � 2. Sine n � 3 and Pni=1 ri =  + 2, then r1 + 1 � . Thus thereexists another vertex-set V 0 with intersetions of sizes r1 + 1; r2 � 1; r3; � � � ; rn. It's readily veri�edthe the probability that V 0 indues an independent-set is at least twie the probability that Vdoes. Therefore the maximal probability Qn is ahieved when r2 < 2 so r2 = � � � = rn = 1 andr1 = + 3� n. Then jI(V )j = �+22 �� �r12 � = �+22 �� ��n+32 � and Item 3 follows. Item 4 is derivedfrom Item 3 sine + 22 !�  � n+ 32 ! = n�� n2�+ 12(5n� 2� 4)= n log2N �[2� o(1)℄ � n2 log2N �+ 12(5n� 2� 4)= n log2N �2� n2 log2N �� o(log2N):This establishes Fat C.2.2.Having established Fats C.2.1 and C.2.2, the entire laim (i.e., Claim C.2) follows.
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Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existene of one-way funtions, or equiv-alently the ability to generate hard-instanes (to NP-problems) along with orresponding solutions(f. [18, Se 2.1℄). A seemingly weaker ondition, whih is in the spirit of Levin's theory of average-ase omplexity [31℄ (see also [5℄), is the ability to generate hard-instanes to NP-problems. Speif-ially:De�nition D.1 (generating hard instanes): A probabilisti polynomial-time algorithm G is alleda generator of hard instanes for a set S if for every probabilisti polynomial-time algorithm A theprobability that A orretly deides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p suh that for all suÆiently large n's it holds thatPrx G(1n)[A(x) = �S(x)℄ < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instanes be generated with \notieable" probability. Notethat the existene of one-way funtions (even weak ones) implies the ability to generate hard in-stanes to NP-problems. The onverse is not known to hold. Thus, the following result strengthensPart 2 of Proposition 2.15.Proposition D.2 Assuming the existene of generators of hard instanes for NP-problems, thereexist spei�ations that annot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instanes, let R be the orrespondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespei�ation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspeial symbol otherwise. We will show that this spei�ation annot be pseudo-implemented.Let I be an arbitrary implementation of the above spei�ation, and onsider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (whih is polynomial-time deidable). When this distinguisher queries the spei�ation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L℄. Assume, towards the ontradition,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible funtion. In suh a ase we obtain a probabilisti polynomial-time algorithm thatviolates the hypothesis that G generates hard instanes: Spei�ally, onsider an algorithm A suhthat A(x) answers 1 if and only if (x; I(x)) 2 R, and note that A is always orret when it outputs 1.Thus,Prx G(1n)[A(x) = �L(x)℄ = Pr[x2L ^ A(x)=1℄ +Pr[x =2L℄ �Pr[A(x)=0jx =2L℄= Pr[x2L ^ (x; I(x))2R℄ + (1� �) �Pr[(x; I(x)) =2Rjx =2L℄� (�� �(n)) + (1� �) � 1 = 1� �(n)(whih violates the hypothesis). We onlude that the implementation I annot be omputationallyindistinguishable from the spei�ation, and the proposition follows.
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