
Adaptively Secure Multi-party ComputationRan Canetti� Uri Feigey Oded Goldreichy Moni NaoryzTR-682 (LCS/MIT), February 1996AbstractA fundamental problem in designing secure multi-party protocols is how to deal with adaptive ad-versaries (i.e., adversaries that may choose the corrupted parties during the course of the computation),in a setting where the channels are insecure and secure communication is achieved by cryptographicprimitives based on the computational limitations of the adversary.It turns out that the power of an adaptive adversary is greatly a�ected by the amount of informationgathered upon the corruption of a party. This amount of information models the extent to whichuncorrupted parties are trusted to carry out instructions that cannot be externally veri�ed, such aserasing records of past con�gurations. It has been shown that if the parties are trusted to erase suchrecords, then adaptively secure computation can be carried out using known primitives. However, thistotal trust in parties may be unrealistic in many scenarios. An important question, open since 1986, iswhether adaptively secure multi-party computation can be carried out in the \insecure channel" setting,even if no party is thoroughly trusted.Our main result is an a�rmative resolution of this question for the case where even uncorruptedparties may deviate from the protocol by keeping record of all past con�gurations. We �rst propose anovel property of encryption protocols and show that if an encryption protocol enjoying this propertyis used, instead of a standard encryption scheme, then known constructions become adaptively secure.Next we construct, based on the standard RSA assumption, an encryption protocol that enjoys thisproperty.We also consider parties that, even when uncorrupted, may internally deviate from their protocolsin arbitrary ways, as long as no external test can detect faulty behavior. We show that in this case nonon-trivial protocol can be proven adaptively secure using black-box simulation. This holds even if thecommunication channels are totally secure.
�TOC/CIS groups, LCS, MIT. canetti@theory.lcs.mit.edu.yDepartment of ComputerScience and Applied Math,Weizmann Institute of Science, Rehovot, Israel. ffeige,oded,naorg@wisdom.weizmann.ac.il.zIncumbent of the Morris and Rose Goldman Career Development Chair. Research supported by grants from the IsraelScience Foundation administered by the Israeli Academy of Sciences and by the US-Israel Binational Science Foundation.0

1 IntroductionConsider a set of parties who do not trust each other, nor the channels by which they communicate. Still,the parties wish to correctly compute some common function of their local inputs, while keeping their localdata as private as possible. This, in a nutshell, is the problem of secure multi-party computation. Theparties' distrust in each other and in the network is usually modeled via an adversary that corrupts someof the parties. Once a party is corrupted it follows the instructions of the adversary. In particular, all theinformation known to this party becomes known to the adversary.An important parameter, which is the focus of this work, is the way in which the corrupted partiesare chosen. In the case of non-adaptive adversaries, the set of corrupted parties is arbitrary, but �xedbefore the computation starts. (Still, the uncorrupted parties do not know the identities of the corruptedparties.) A more general case is where the adversary chooses to corrupt parties during the course of thecomputation, based on the information gathered so far. We call such adversaries adaptive.The di�erence between adaptive and non-adaptive adversaries may be best demonstrated via an exam-ple. Consider the following secret sharing protocol, run in the presence of an adversary that may corruptt = O(n) out of the n parties: A dealer D chooses at random a small set S of m = pt parties, and sharesits secret among these parties using an m-out-of-m sharing scheme. In addition D publicizes the set S.Intuitively, this scheme lacks in security since S is public and jSj � t. Indeed, an adaptive adversary caneasily �nd D's secret, without corrupting D, by corrupting the parties in S. However, any non-adaptiveadversary that does not corrupt D learns D's secret only if S happens to be identical to the pre-de�ned setof corrupted parties. This happens only with exponentially small probability. Consequently, this protocolis secure in the presence of non-adaptive adversaries.Protocols for securely computing any function, in several computation models, have been known for awhile: Goldreich, Micali and Wigderson have shown how to securely compute any function in the compu-tational setting [GMW]. (In the computational setting all the communication between the parties is seenby the adversary. All parties, as well as the adversary, are restricted to probabilistic polynomial time).Ben-Or, Goldwasser and Wigderson, and independently Chaum, Crepeau and Damgard, have shown howto securely compute any function in the secure channels setting [BGW, CCD]. (In the secure channelssetting the adversary cannot eavesdrop on the communication between uncorrupted parties, and is allowedunlimited computational power.) These constructions can be shown secure in the presence of non-adaptiveadversaries. In contrary to folklore beliefs, problems are encountered when attempting to prove adaptivesecurity of protocols, even in the secure channels setting. Additional problems are encountered in thecomputational setting. Demonstrating, clarifying, and (partially) solving these problems is the focus ofthis work.We �rst pose the following question: To what extent can uncorrupted parties be trusted to carry outinstructions that cannot be externally veri�ed, such as erasing local data, or making random choices? Thisquestion is intimately related to the power of an adaptive adversary, in both of the above settings, sincethe adversary may gather additional information when corrupting parties that have locally deviated fromthe protocol (say, by not erasing data that is supposed to be erased). If uncorrupted parties are trusted tocarry out even unveri�able instructions such as erasing local data then adaptively secure computation canbe carried out using known primitives [F, BH]. However, this trust may be unrealistic in many scenarios.We thus consider parties that, even when uncorrupted, internally deviate slightly from their protocols. Wecall such parties semi-honest. Several degrees of internal deviation from the protocol are examined withthe main focus on parties which follow their protocol with the exception that they keep record of the entirecomputation. We seek protocols that are secure even if the uncorrupted parties are semi-honest ratherthan honest. 1

We discuss the problems encountered in the secure channels setting, and state the amount of internaldeviation from the protocol under which adaptively secure protocols are known to exist. (In particular,under these conditions the [BGW, CCD] protocols can be proven adaptively secure.)Finally we concentrate on the computational setting, and on semi-honest parties that follow theirprotocols with the exception that no internal data is ever erased. Is adaptively secure computation possiblein this scenario? This question has remained open since the result of [GMW] (even for the case in whichthe adversary only gathers information from corrupted parties and does not make them deviate any furtherfrom the protocol).We answer this question in the a�rmative. The problems encountered, and our solution, are presentedvia the following transformation. It is a folklore belief that any secure protocol in the secure channels settingcan be transformed into a secure protocol in the computational setting, by encrypting each message usinga standard semantically secure encryption scheme. This belief can indeed be turned into a proof, providedthat only non-adaptive adversaries are considered. Trying to prove this belief in the presence of adaptiveadversaries encounters major di�culties. We show how these di�culties are overcome if a novel encryptionprotocol is used, instead of standard encryption. We call such encryption protocols non-committing.(Standard encryption schemes are not non-committing.)Non-committing encryption can be roughly described as follows. Traditional encryption schemes havethe extra property that the ciphertext may serve as a commitment of the sender to the encrypted data. Thatis, suppose that after seeing the ciphertext, a third party requests the sender to reveal the encrypted data,and show how it was encrypted and decrypted. Using traditional encryption schemes it may be infeasible(or even impossible) for the sender to demonstrate that the encrypted data was any di�erent than what wasindeed transmitted. (In fact, many times encryption is explicitly or implicitly used for commitment.) In anon-committing encryption scheme the ciphertext cannot be used to commit the sender (or the receiver)to the transmitted data. That is, a non-committing encryption protocol allows a simulator to generatedummy ciphertexts that look like genuine ones, and can be later \opened" as encryptions of either 1 or 0,at wish. We note that communication over absolutely secure channels is trivially non-committing, sincethe third party sees no \ciphertext".We present several constructions of non-committing encryption protocols. All constructions consist ofa `key distribution' stage which is independent of the transmitted data, followed by a single message sentfrom the sender to the receiver. In our most general construction, based on a primitive called common-domain trapdoor system, the key distribution stage requires participation of all parties (and is valid as longas at least one party remains uncorrupted). We also present two alternative constructions, based on theRSA and the Di�e-Hellman assumptions respectively, where the key distribution stage consists of onemessage sent from the receiver to the sender.Related work. Independently of our work, Beaver has investigated the problem of converting, in thecomputational setting, protocols which are adaptively secure against eavesdropping adversaries into proto-cols adaptively secure against Byzantine adversaries [Be2]. No protocols adaptively secure against eaves-dropping adversaries were known prior to our work, nor are such protocols suggested in [Be2]. We believethat the problem of adaptive security retains its di�culty even if only eavesdropping adversaries are con-sidered. Following our work, and motivated by the \Incoercible Voting" Problem, Canetti et. al. [CDNO]introduced a stronger type of non-committing encryption protocol as well as an implementation of it basedon any trapdoor permutation.Organization. The rest of this paper is organized as follows. In Section 2 we discuss the problem ofadaptive security and our solution to it in more detail. We keep the presentation informal throughout this2

section. Precise de�nitions are given in Section 3. Our constructions for the non-erasing and honest-lookingcases are presented in Sections 4 and 5, respectively.2 Semi-honesty and adaptive securityIn this section we discuss the problem of adaptive security and our solution to it in more detail. We keep thepresentation informal throughout this section. Precise de�nitions are given in Section 3. In Subsection 2.1we discuss the question of what can be expected from an honest party, and present several notions of semi-honest parties. In Subsection 2.2 we describe the problems encountered when trying to prove adaptivesecurity of protocols in the secure channels setting, and state existing solutions. In Subsection 2.3 wepresent the additional problems encountered when trying to prove adaptive security of protocols in thecomputational setting, and sketch our solution.2.1 Semi-honest partiesThe problem of adaptively secure computation is intimately related to the following question: To whatextent can uncorrupted parties be trusted to carry out instructions that cannot be externally veri�ed,such as erasing local data, or using randomness as instructed? Honest parties internally deviate fromtheir protocol in many real-life scenarios, such as users that keep record of their passwords, stock-marketbrokers that keep records of their clients' orders, operating systems that \free" old memory instead oferasing it or take periodic snapshots of the memory (for error recovery purposes), and computers thatuse pseudorandom generators as their source of randomness instead of truly random bits. Consider forexample a protocol in which party A is instructed to choose a random string r for party B, hand r to B,and then to erase r from its own memory. Can B be certain that A no longer knows r? Furthermore, canA now convince a third party (or an adversary that later decides to corrupt A) that he no longer knows r?To address this issue we introduce the notion of a semi-honest party. Such a party \appears as honest"(i.e., seems to be following its protocol) from the point of view of an outside observer; however, internally itmay somewhat deviate from the protocol. For instance, a semi-honest party may fail to erase some internaldata, or use randomness not as instructed. (However, semi-honest parties do not collaborate.) We wish tohave protocols that are secure even when parties are not thoroughly trusted, or in other words when theuncorrupted parties are semi-honest rather than honest. We say that a protocol �0 is a semi-honest protocolfor a protocol � if a party running �0 \appears as" an honest party running �. We want the requirementsfrom � to be satis�ed even if the uncorrupted parties are running any semi-honest protocol for �. (In thesequel we use the terms `semi-honest parties' and `semi-honest protocols' interchangeably.)The di�erence between computations in the presence of totally honest parties and computations in thepresence of semi-honest parties becomes evident in the presence of adaptive adversaries. Consider a partyjust corrupted by the adversary, during the course of the computation. If the party is totally honest, thenthe adversary will see exactly the data speci�ed in the protocol (in particular, any data that was supposedto be erased will not be seen). If the party is semi-honest then the adversary may see a great deal of otherdata, such as all the past random choices of the party and all the messages the party ever received andsent. Therefore, the adversary may be much more powerful in the presence of semi-honest parties. Weelaborate on this crucial point in the sequel.We distinguish three types of semi-honest behavior. The slightest deviation from the protocol is consid-ered to be refraining from erasing data. We call such parties honest-but-non-erasing, or in short non-erasing.Non-erasing behavior is a very simple deviation from the protocol, that is very hard to prevent. Even ifthe protocol is somehow protected against modi�cations, it is always possible to add an external device3

that copies all memory locations accessed by the protocol to a \safe" memory. This way a record of theentire execution is kept. Such an external device requires no understanding of the internal structure or ofthe behavior of the protocol. Furthermore, failure to erase data may occur even without intention of thehonest party (e.g., the operating system examples above).A more severe deviation by a semi-honest party consists of executing some arbitrary protocol other thanthe speci�ed one, with the restriction that no external test can distinguish between such a behavior anda truly honest behavior. We call parties that deviate in this way honest-looking. Honest-looking partiesrepresent \sophisticated" parties that internally deviate from the protocol in an arbitrary way, but arenot willing to take any chance that they will ever be uncovered (say, by an unexpected audit). Note thathonest-looking parties can do other \harmful" things, on top of not erasing data. For instance, assumethat some one-way permutation f : D 1-17! D is known to all parties. When instructed to choose a value runiformly in D, an honest-looking party can instead choose s uniformly in D and let r = f(s). Thus, theparty cannot be trusted to not know f�1(r). (Other, more `disturbing' deviations from the protocols arepossible, we elaborate in the sequel.)An even more permissive approach allows a semi-honest party to deviate arbitrarily from the protocol,as long as its behavior appears honest to all other parties executing the protocol. Other external tests, notspeci�ed in the protocol, may be able to detect such a party as cheating. We call such semi-honest partiesweakly-honest.The focus of our work is mainly on adaptive security in the presence of non-erasing parties (see Sec-tion 4). This coincides with the common interpretation of the problem of adaptive security. To the bestof our knowledge, honest-looking and weakly-honest parties were not considered before.2.2 Adaptive security in the secure channels settingAlthough the emphasis of this paper is on the computational setting, we �rst present the state of knowledge,and sketch the problems involved, in the secure channels setting. We believe that understanding adaptivelysecure computation in the computational setting is easier when the secure channels setting is considered�rst.The state-of-the-art with respect to adaptive computation in the secure channels setting can be brie
ysummarized as follows. Adaptively secure protocols for computing any function exist in the presenceof non-erasing parties (e.g., [BGW, CCD]). However, in contrast with popular belief, not every non-adaptively secure protocol is also adaptively secure in the presence of non-erasing parties. Furthermore,current techniques are insu�cient for proving adaptive security of any protocol for computing a non-trivialfunction in the presence of honest-looking parties.In order to present the extra di�culty in constructing adaptively secure protocols, we roughly sketchthe standard de�nition of secure multi-party computation. (Full de�nitions appear in Section 3.) Ourpresentation follows [MR, Be1, GwL, C], while incorporating the notion of semi-honest parties in thede�nition. The de�nition follows the same outline in the secure channels setting and in the computationalsettings.Background: How is security de�ned. First an ideal model for secure multi-party computation isformulated. A computation in this ideal model captures \the highest level of security we can expect from amulti-party computation". Next we require that executing a secure protocol � for evaluating some functionf of the parties' inputs in the actual real-life setting is \equivalent" to evaluating f in the ideal model,where the meaning of this \equivalence" is explained below.A computation in the ideal model proceeds as follows. First an ideal-model-adversary chooses to corrupt4

a set of parties (either adaptively or non-adaptively), learns their input, and possibly modi�es it. Nextall parties hand their (possibly modi�ed) inputs to an incorruptible trusted party. The trusted party thencomputes the expected output (i.e., the function value) and hands it back to all parties. At this stagean adaptive adversary can choose to corrupt more parties. Finally, the uncorrupted parties output thevalue received from the trusted party whereas the corrupted parties output some arbitrary function of theinformation gathered during this computation.In the real-life model there exists no trusted party and the parties must interact with one another usingsome protocol in order to compute any \non-trivial" function. We say that the execution of a protocol �for evaluating f is \equivalent" to evaluating f in the ideal model, if for any adversary A in the real-lifemodel, there exists an ideal-model-adversary S that has the same e�ect on the computation as A, eventhough S operates in the ideal model. That is, on any input, the outputs of the parties after running � inthe real-life model in the presence of A should be distributed equally to the outputs of parties evaluatingf in the ideal model in the presence of S. Furthermore, this condition should hold for any semi-honestprotocol �0 for � (according to either of the above notions of semi-honesty).We require that the complexity of S be comparable to (i.e., polynomial in) the complexity of A. Thisrequirement can be motivated as follows. Machine S represents \what could have been learned in the idealmodel". Thus, security of a protocol can be interpreted as the following statement: \whatever A can learnin the real-life model, could have been learned in the ideal model within comparable complexity". A muchweaker (and arguably unsatisfactory) notion of security emerges if the complexity of S does not dependon that of A. (This holds even in the non-adaptive case.)1Problems with proving adaptive security. A standard construction of an ideal-model-adversary, S,operates via black-box interaction with the real-life adversary A. More speci�cally, let �0 be a semi-honestprotocol for �. S runs the black-box representing A on a simulated interaction with a set of partiesrunning �0. S corrupts (in the ideal model) the same parties that A corrupts in the simulated interaction,and outputs whatever A outputs. From the point of view of A, the interaction simulated by S should bedistributed identically to an authentic interaction with parties running �0. It is crucial that S be able to runa successful simulation based only on the information available to it in the ideal model, and in particularwithout knowing the inputs of uncorrupted parties. We restrict our presentation to this methodology ofproving security of protocols, where S is restricted to probabilistic polynomial time. We remark that noother proof method is known in this context. In the sequel we often call the ideal-model-adversary S asimulator.Following the above methodology, the simulator that we construct has to generate simulated messagesfrom the uncorrupted parties to the corrupted parties. In the non-adaptive case the set of corrupted partiesis �xed and known to the simulator. Thus the simulator can corrupt these parties, in the ideal model, beforethe simulation starts. In the adaptive case the corrupted parties are chosen by the simulated adversaryA as the computation unfolds. Here the simulator corrupts a party, in the ideal model, only when thesimulated adversary decides on corrupting that party. Thus the following extra problem is encountered.Consider a currently uncorrupted party P . Since S does not know the input of P , it may not know which1We illustrate this distinction via the following example. Let f(x;y) = g(x � y) where g is a one-way permutation and� denotes bitwise exclusive or. Assume that parties A and B have inputs x and y respectively, and consider the followingprotocol for computing f : Party A announces x, party B announces y, and both parties compute f(x;y). Our intuition is thatthis protocol is insecure against adversaries that may corrupt one party (say B): it \gives away for free" both x and y, whereascomputing x given y and f(x;y), may take the adversary a large amount of time. Indeed, if the ideal-model adversary S islimited to probabilistic polynomial time (and one-way permutations exist), then this protocol is insecure against adversariesthat corrupt one party. However, under the model allowing S unlimited computational power regardless of A's complexity,this protocol is considered secure since S can invert g. 5

messages should be sent by P to the corrupted parties. Still, S has to generate some dummy messages to besent by the simulated P to corrupted parties. When the simulated adversary A later corrupts P it expectsto see P 's internal data. The simulator should now be able to present internal data for P that is consistentwith P 's newly-learned input and with the messages previously sent by P , according to the particular semi-honest protocol �0 run by P . It turns out that this can be done for the [BGW] protocols for computingany function in the presence of non-erasing parties. Thus, the [BGW] protocols are adaptively securein the presence of non-erasing parties. Recall, however, that not every protocol which is secure againstnon-adaptive adversaries is also secure against adaptive adversaries (see example in the third paragraph ofthe Introduction).In face of honest-looking parties. Further problems are encountered when honest-looking parties areallowed, as demonstrated by the following example. Consider a protocol � that instructs each party, onprivate input �, to just publicize a uniformly and independently Chosen value r in some domain D andterminate. � looks \harmless" in the sense that no information on the inputs leaks out. However, considerthe following honest-looking variant of �. Let f0; f1 be a claw-free pair of permutations over D. Then,on input � 2 f0; 1g, an honest-looking party can `commit' to its input by publicizing f�(r) instead ofpublicizing r. If this honest-looking variant of � is shown secure via an e�cient black-box simulation asdescribed above, then the constructed simulator can be used to �nd claws between f0 and f1. Similarhonest-looking variants can be constructed for the [BGW, CCD] protocols. Consequently, if claw-free pairsof permutations exist then adaptive security of the [BGW, CCD] protocols, in the presence of honest-looking parties, cannot be proven via black-box simulation. In fact, such honest-looking variants can beconstructed for any \non-trivial" protocol, with similar e�ects.2.3 Adaptive security in the computational settingWe sketch the extra di�culty encountered in constructing adaptively secure protocols in the computationalsetting, and outline our solution for non-erasing parties. Consider the following folklore methodologyfor constructing secure protocols in the computational setting. Start with an adaptively secure protocol �resilient against non-erasing parties in the secure channels setting, and construct a protocol ~� by encryptingeach message using a standard encryption scheme. We investigate the security of ~� in the computationalsetting.Proving that ~� is non-adaptively secure. We �rst sketch how ~� can be shown non-adaptively securein the computational setting, assuming that � is non-adaptively secure in the secure channels setting. LetS be the ideal-model-adversary (simulator) associated with � in the secure channels setting. (We assumethat S operates via \black-box simulation" of the real-life adversary A as described above.) We wish toconstruct, in the computational setting, a simulator ~S for ~�. The simulator ~S operates just like S, withtwo exceptions. First, In the computational setting the real-life adversary expects the messages sent tocorrupted parties to be encrypted. Next, the real-life adversary expects to see the ciphertexts sent betweenuncorrupted parties. (In the secure channels setting the adversary does not see the communication betweenuncorrupted parties.) ~S will imitate this situation as follows. First each message sent to a corrupted partywill be appropriately encrypted. Next, the simulated uncorrupted parties will exchange dummy ciphertexts.(These dummy ciphertexts can be generated as, say, encryptions of the value `0'.) The validity of simulator~S can be shown to follow, in a straightforward way, from the validity of S and the security of the encryptionscheme in use. 6

Problems with proving adaptive security. When adaptive adversaries are considered, the construc-tion of a simulator ~S in the computational setting encounters the following additional problem. Consideran uncorrupted party P . Since ~S does not know the input of P , it does not know which messages shouldbe sent by P to other uncorrupted parties.2 Still, ~S has to generate dummy ciphertexts to be sent bythe simulated P to uncorrupted parties. These dummy ciphertexts are seen by the adaptive adversary.When the adversary later corrupts the simulated P , it expects to see all of P 's internal data, as speci�edby the semi-honest protocol �0. Certainly, this data may include the cleartexts of all the ciphertexts sentand received by P in the past, including the random bits used for encryption and decryption, respectively.Thus, it may be the case that some speci�c dummy ciphertext c was generated as an encryption of `0', andthe simulated P now needs to \convince" the adversary that c is in fact an encryption of `1' (or vice versa).This task is impossible if a standard encryption scheme (i.e., an encryption scheme where no ciphertextcan be a legal encryption of both `1' and `0') is used.We remark that Feldman, and independently Beaver and Haber, have suggested to solve this problemas follows [F, BH]. Instruct each party to erase (say, at the end of each round) all the information involvedwith encrypting and decrypting of messages. If the parties indeed erase this data, then the adversary will nolonger see, upon corrupting a party, how past messages were encrypted and decrypted. Thus the problemof convincing the adversary in the authenticity of past ciphertexts no longer exists. Consequently, such\erasing" protocols can be shown adaptively secure in the computational setting. However, this approachis clearly not valid in the presence of semi-honest parties. In particular, it is not known whether the [F, BH]protocols (or any other previous protocols) are secure in the presence of non-erasing parties.Sketch of our solution. We solve this problem by constructing an encryption scheme that serves as analternative to standard encryption schemes, and enjoys an additional property roughly described as follows.One can e�ciently generate dummy ciphertexts that can later be \opened" as encryptions of either `0'or `1', at wish. (Here the word `ciphertext' is used to denote all the information seen by the adversaryduring the execution of the protocol.) These dummy ciphertexts are di�erent and yet computationallyindistinguishable from the valid encryptions of `0' (or `1') produced in a real communication. We call suchencryption protocols non-committing.3Let E (0) (resp., E (1)) denote the distribution of encryptions of the value 0 (resp., 1) in a public-keyencryption scheme. For simplicity, suppose that each of these distributions is generated by applying ane�cient deterministic algorithm, denoted A(0) (resp., A(1)), to a uniformly selected n-bit string.4 In atraditional encryption scheme (with no decryption errors) the supports of E (0) and E (1) are disjoint (andE (0), E (1) are computationally indistinguishable). In a non-committing encryption scheme, the supportsof E (0) and E (1) are not disjoint but the probability that an encryption (of either `0' or `1') resides intheir intersection, denoted I , is negligible. Thus, decryption errors occur only with negligible probability.However, the simulator can e�ciently generate a distribution Eamb which assumes values in I so that thisdistribution is computationally indistinguishable from both E (0) and E (1). 5 Furthermore, each \ambiguousciphertext" c 2 I is generated together with two random looking n-bit strings, denoted r0 and r1, so thatA(0)(r0) = A(1)(r1) = c. That is, the string r0 (resp., r1) may serve as a witness to the claim that c is an2 There is also the easier problem of generating the messages sent by P to corrupted parties. This was the problem discussedin the previous subsection. However, our hypothesis that S is a simulator for the secure channel model means that S is ableto generate these cleartext messages. Thus, all that ~S needs to do is encrypt the messages it has obtained from S.3 This \non-committing property" is reminiscent of the \Chameleon blobs" of [BCC]. The latter are commitment schemeswhere the recipient of a commitment c can generate by himself de-commitments of c to both 0 and 1, whereas the sender is\e�ectively committed" to a speci�c bit value.4 Each of these algorithms is also given an n-bit encryption key.5Consequently, it must be that E(0) and E(1) are computationally indistinguishable. Thus, a non-committing encryptionscheme is also a secure encryption scheme in the traditional sense.7

encryption of `0' (resp., `1'). See Section 3.4 for a de�nition of non-committing encryption protocols.Using a non-committing encryption protocol, we resolve the simulation problems which were describedabove. Firstly, when transforming � into ~�, we replace every bit transmission of � by an invocation ofthe non-committing encryption protocol. This allows us to generate dummy ciphertexts for messages sentbetween uncorrupted parties so that at a later stage we can substantiate for each such ciphertext both theclaim that it is an encryption of `0' and the claim that it is an encryption of `1'. We stress that althoughdummy ciphertexts appear with negligible probability in a real execution, they are computationally in-distinguishable from a uniformly generated encryption of either `0' or `1'. Thus, using a non-committingencryption protocol we construct adaptively secure protocols for computing any (recursive) function in thecomputational model in the presence of non-erasing parties. Finally, we construct a non-committing en-cryption protocol based on a primitive called common-domain trapdoor systems (see De�nition 4.3). Wealso describe two implementations based on the RSA and Di�e-Hellman assumptions respectively. Thus,we getTheorem 2.1 If common-domain trapdoor systems exist, then there exist secure protocols for computingany (recursive) function in the computational setting, in the presence of non-erasing parties and adaptiveadversaries that corrupt less than a third of the parties.We remark that, using standard constructions (e.g., [RB]), our protocols can be modi�ed to withstandadversaries that corrupt less than half of the parties.Dealing with honest-looking parties. In Section 5, we sketch a solution for the case of honest-lookingparties, assuming, in addition to the above, also the existence of a \trusted dealer" at a pre-computationstage. We stress that this result does not hold if an initial (trusted) set-up is not allowed.3 De�nitionsIn Section 3.1 we de�ne semi-honest protocols (with respect to the three variants discussed in Section 2.1).This notion underlies all our subsequent de�nitions. In Sections 3.2 and 3.3 we de�ne adaptively securemulti-party computation in the secure channels and the computational settings, respectively. Although thefocus of this work is the computational setting, we state this de�nition also in the secure channels setting.This will enable us to discuss our results as a general transformation from adaptively secure protocols in thesecure channels setting into adaptively secure protocols in the computational setting, without getting intodetails of speci�c protocols. In Section 3.4 we de�ne our main tool, non-committing encryption protocols.Throughout Section 3 we assume that the reader has acquired the intuition provided in Section 2.Let us �rst recall the standard de�nition of computational indistinguishability of distributions.De�nition 3.1 Let A = fAxgx2f0;1g� and B = fBxgx2f0;1g� be two ensembles of probability distributions.We say that A and B are computationally indistinguishable if for every positive polynomial p, for everyprobabilistic polynomial-time algorithm D and for all su�ciently long x's,jProb(D(Ax) = 1)� Prob(D(Bx) = 1)j < 1p(jxj) :We colloquially say that \Ax and Bx are computationally indistinguishable", or \Ax c� Bx".8

3.1 Semi-honest protocolsWe de�ne semi-honest parties (or, equivalently, semi-honest protocols) for the three alternative notionsof semi-honesty discussed in Section 2.1. First we de�ne honest-but-non-erasing (or in short non-erasing)protocols. Informally, a protocol �0 is non-erasing for a protocol �, if �0 is identical to � with the exceptionthat �0 may omit instructions to erase data. Actually, it su�ces to consider a non-erasing protocol whichkeeps a record of the entire history of the computation.De�nition 3.2 Let � and �0 be n-party protocols. We say that �0 is a non-erasing protocol for � if �0 isidentical to � with the exception that, in addition to the instructions of �, protocol �0 copies the contentsof each memory location accessed by � to a special record tape (inaccessible by �).Next we de�ne honest-looking protocols. Informally, a party is honest-looking if its behavior is indistin-guishable from the behavior of an honest party by any external test. (Internally the party may arbitrarilydeviate from the protocol.) More formally, let com�(~x;~r) denote the communication among n parties run-ning � on input ~x and random input ~r (xi and ri for party Pi). Let com�(~x) denote the random variabledescribing com�(~x;~r) when ~r is uniformly chosen. For n-party protocols � and � and an index i 2 [n], let�=(i;�) denote the protocol where party Pi executes � and all the other parties execute �.De�nition 3.3 Let � and �0 be n-party protocols. We say that �0 is a perfectly honest-looking protocol for� if for any input ~x, for any n-party \test" protocol �, and for any index i 2 [n], we havecom�=(i;�)(~x) d= com�=(i;�0)(~x)(where d= stands for \identically distributed"). If the test protocol � is restricted to probabilistic polynomialtime, and com�=(i;�)(~x) c� com�=(i;�0)(~x), then we say that �0 is a computationally honest-looking protocolfor �.Here the \test" protocol � represents a collaboration of all parties in order to test whether Pi is honest.Next we de�ne weakly-honest protocols. Here we require that De�nition 3.3 is satis�ed only with respectto the original protocol �, rather than with respect to any test protocol �.De�nition 3.4 Let � and �0 be n-party protocols. We say that �0 is a perfectly weakly-honest protocol for� if for any input ~x and for any index i 2 [n], we havecom�(~x) d= com�=(i;�0)(~x)If � is restricted to probabilistic polynomial time, and if com�(~x) c� com�=(i;�0)(~x), then we say that �0 isa computationally weakly-honest protocol for �.3.2 Adaptive security in the secure channels settingWe de�ne adaptively secure multi-party computation in the secure channels setting. That is, we considera synchronous network where every two parties are connected via a secure communication link (i.e., theadversary does not see, nor alter, messages sent between uncorrupted parties). The adversary is computa-tionally unlimited.We use the standard methodology presented in Section 2.2. That is, the execution of a protocol forcomputing some function is compared to evaluating the function in an ideal model, where a trusted partyis used. We substantiate the de�nition in three steps. First, we give an exact de�nition of this idealmodel. Next, we formulate our (high level) notion of `real-life' protocol execution. Finally, we describeand formalize the method of comparing computations.9

The computation in the ideal model, in the presence of an ideal-model-adversary S, proceeds as fol-lows. The parties have inputs ~x = x1 : : : xn 2 Dn (party Pi has input xi) and wish to compute f(x1; : : : ; xn),where f is a predetermined function.6 The adversary S has no initial input, and is parameterized by t, themaximum number of parties it may corrupt.First corruption stage: First, S proceeds in up to t iterations. In each iteration S may decide to corruptsome party, based on S's random input and the information gathered so far. Once a party is corruptedits internal data (that is, its input) becomes known to S. A corrupted party remains corrupted forthe rest of the computation. Let B denote the set of corrupted parties at the end of this stage.Input substitution stage: S may alter the inputs of the corrupted parties; however, this is done withoutany knowledge of the inputs of the good parties. Let ~b be the jBj-vector of the altered inputs of thecorrupted parties, and let ~y be the n-vector constructed from the input ~x by substituting the entriesof the corrupted parties by the corresponding entries in ~b.Computation stage: The parties hand ~y to the trusted party (party Pi hands yi), and receive f(~y) fromthe trusted party.7Second corruption stage: Now that the output of the computation is known, S proceeds in anothersequence of up to t� jBj iterations, where in each iteration S may decide to corrupt some additionalparty, based on S's random input and the information gathered so far (this information now includesthe value received from the trusted party by parties in B). We stress that S may corrupt at most tparties in the entire computation.Output stage: The uncorrupted parties output f(~y), and the corrupted parties output some arbitraryfunction, computed by the adversary, of the information gathered by the adversary (i.e., ~b and f(~y)).We let the n-vector idealf;S (~x) = idealf;S(~x)1 : : : idealf;S(~x)n denote the outputs of the parties oninput ~x, trusted party for computing f , and adversary S (party Pi outputs idealf;S(~x)i).For the bene�t of formalistic readers we further formalize the above discussion (in De�nitions 3.5 through3.7). Other readers are advised to skip a page up to the paragraph discussing the computation in thereal-life setting.First, we need two technical notations.� For a vector ~x = x1 : : : xn and a set B � [n], let ~xB denote the vector ~x, projected on the indices inB.� For an n-vector ~x = x1 : : :xn, a set B � [n], and a jBj-vector ~b = b1 : : : bjBj, let ~x=(B;~b) denotethe vector constructed from vector ~x by substituting the entries whose indices are in B by thecorresponding entries from ~b.De�nition 3.5 Let D be the domain of possible inputs of the parties, and let R be the domain of possiblerandom inputs. A t-limited ideal-model-adversary is a quadruple S = (t; b; h; O), where:� t is the maximum number of corrupted parties.6 A more general formulation allows di�erent parties to compute a di�erent functions of the input. Speci�cally, in this casethe range of f is a n-fold Cartesian product and the interpretation is that the ith party should get the ith component of f(~x).7 In the case where each party computes a di�erent function of the inputs, as discussed in the previous footnote, the trustedparty will hand each party its speci�ed output. 10

� b : [n]��D��R ! [n][f?g is the selection function for corrupting parties (the value ? is interpretedas \no more parties to corrupt at this stage")� h : [n]� �D� �R! D� is the input substitution function� O : D� �R! f0; 1g� is an output function for the bad parties.The set of corrupted parties is now de�ned as follows.De�nition 3.6 Let D be the domain of possible inputs of the parties, and let S = (t; b; h; O) be a t-limitedideal-model-adversary. Let ~x 2 Dn be an input vector, and let r 2 R be a random input for S. The ith setof faulty parties in the ideal model B(i)(~x; r), is de�ned as follows.� B(0)(~x; r) = �� Let bi 4= b(B(i)(~x; r); ~xB(i)(~x;r); r). For 0 � i < t, and as long as bi 6=?, letB(i+1)(~x; r) 4= B(i)(~x; r) [fbig� Let i� be the minimum between t and the �rst i such that bi =?. Let bfi 4= b(B(i)(~x; r); ~xB(i)(~x;r); f(~y); r),where ~y is the substituted input vector for the trusted party. That is, ~y 4= ~x=(B(i�)(~x;r);h(B(i�)(~x;r);~xB(i�)(~x;r);r)).For i� � i < t, let B(i+1)(~x; r) 4= B(i)(~x; r) [bfi :In De�nition 3.7 we use B(i) instead of B(i)(~x; r).De�nition 3.7 Let f : Dn ! D0 for some sets D;D0 be the computed function, and let ~x 2 Dn be aninput vector. The output of computing function f in the ideal model with adversary S = (t; b; h; O), on input~x and random input r, is an n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S(~x)n of random variables,satisfying for every 1 � i � n:idealf;S(~x)i = (f(~y) if i =2 B(t)O(~xB(t) ; f(~y); r) if i 2 B(t)where B(t) is the tth set of faulty parties, r is the random input of S, and ~y = ~x=(B(t);h(B(t);~xB(t) ;r)) is thesubstituted input vector for the trusted party.Computation in the real-life setting. Next we describe the execution of a protocol � in the real-life scenario. The parties engage in a synchronous computation in the secure channels setting, runninga semi-honest protocol �0 for � (according to any one of the notions of semi-honesty de�ned above). Acomputationally unbounded t-limited real-life adversary may choose to corrupt parties at any point duringthe computation, based on the information known to the previously corrupted parties, and as long as atmost t parties are corrupted altogether. Once a party is corrupted the current contents of its memory(as determined by the semi-honest protocol �0) becomes available to the adversary. From this point on,the corrupted party follows the instructions of the adversary. Once the computation is completed, eachuncorrupted party outputs whatever it has computed to be the function value. Without loss of generality,we use the convention by which the corrupted parties output their entire view on the computation. Theview consists of all the information gathered by the adversary during the computation. Speci�cally, the11

view includes the inputs and random inputs of the corrupted parties and all the communication seen bythe corrupted parties.We use the following notation. Let view�;A(~x;~r) denote the view of the adversary A when interactingwith parties running protocol � on input ~x and random input ~r (xi and ri for party Pi), as describedabove. Let exec�;A(~x;~r)i denote the output of party Pi after running protocol � on input ~x = x1 : : : xnand random input ~r = r1 : : :rn, and with a real life adversary A. (By the above convention, we haveexec�;A(~x;~r)i = view�;A(~x;~r) for corrupted parties Pi.) Let exec�;A(~x)i denote the random variabledescribing exec�;A(~x;~r)i where ~r is uniformly chosen. Let exec�;A(~x) = exec�;A(~x)1 : : :exec�;A(~x)n.Comparing computations. Finally we require that executing a secure protocol � for evaluating afunction f be equivalent to evaluating f in the ideal model, in the following sense.De�nition 3.8 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honestbehavior (i.e., as in any of the De�nitions 3.2 through 3.4). We say that � t-securely computes f in thesecure channels setting, in the presence of T -semi-honest parties and adaptive adversaries, if for any T -semi-honest protocol �0 for � and for any t-limited real-life (adaptive) adversary A, there exists a t-limitedideal-model-adversary S, such that the complexity of S is polynomial in the complexity of A, and for everyinput vector ~x we have idealf;S(~x) d= exec�0 ;A(~x)Remark: De�nition 3.8 is stated for a single value of n. In order to discuss asymptotic complexity (in n),we assume that the function f , the protocol �, the simulator S and the adversary A are Turing machinesthat have n, the number of parties, as part of their inputs.Black-box simulation. In the sequel we use a more restricted notion of equivalence of computations,where the ideal-model adversary is limited to black-box simulation of the real-life setting. That is, forany semi-honest protocol �0 for � there should exist a ideal-model adversary S with oracle (or black-box)access to a real-life adversary. This black-box represents the input-output relations of the real-life adversarydescribed above. For concreteness, we present the following description of the \mechanics" of this black-box, representing a real-life adversary. The black-box has a random tape, where the black-box expects to�nd its random input, and an input-output tape. Once a special start input is given on the input-outputtape, the interaction on this tape proceeds in iterations, as follows. Initially, no party is corrupted. Ineach iteration l, �rst the black-box expects to receive the information gathered in the lth round. (In thesecure channels setting this information consists of the messages sent by the uncorrupted parties to thecorrupted parties.) Next black-box outputs the messages to be sent by the corrupted parties in the lthround. Next, the black-box may issue several `corrupt Pi' requests. Such a request should be answeredby the internal data of Pi, according to protocol �0. Also, from this point on Pi is corrupted. At the end ofthe interaction, the output of the real-life adversary is de�ned as the contents of the random tape succeededby the history of the contents of the input-output tape during the entire interaction. We let SA denotethe ideal-model adversary S with black-box access to a real-life adversary A.The simulator is restricted to probabilistic polynomial time (where each invocation of the black-box iscounted as one operation).8 Furthermore, we limit the operation of the simulator as follows. We requirethat the startmessage is sent only once, and that no party is corrupted in the ideal model unless a requestto corrupt this party is issued by the black-box.8For simplicity, we assume that the computed function is polynomially computable. Alternatively, the simulator is poly-nomial in the complexity of the function. 12

If De�nition 3.8 is satis�ed by an ideal-model adversary limited to black-box simulation as describedabove, then we say that � t-securely computes f in a simulatable way. In this case we call the ideal-modeladversary a black-box simulator, or in short a simulator.We remark that the only purpose of the technical restrictions imposed on the operation of the simulatoris to facilitate proving composition theorems (such as Theorem 4.2). We stress that the security of knownprotocols (e.g., [BGW]) can be shown via simulators that obey these restrictions.3.3 Adaptive security in the computational settingWe now turn to de�ne adaptively secure multi-party computation in the computational setting. Herethe communication links between parties are insecure; that is, all messages sent on all links are seenby the adversary.9 All parties, as well as the adversary, are restricted to probabilistic polynomial time.Furthermore, we introduce a security parameter, determining `how close' a real-life computation is to acomputation in the ideal model. All parties are polynomial also in the security parameter. For simplicityof presentation, we identify the security parameter and the length of the inputs with the number of parties,denoted n.The framework of de�ning adaptively secure multi-party computation in this setting is the same as inthe secure channels setting (Section 3.2). That is, we compare the real life computation with a computationin the same ideal model. Since the real-life adversary is restricted to probabilistic polynomial time, so is theideal-model adversary. The execution of a protocol � in the real-life scenario (of the computational setting),as well as the notation exec�;A(~x), are the same as in the secure channels setting, with the exception thatthe real-life adversary sees all the communication between the uncorrupted parties. Needless to say thatthe ideal model is the same in both settings.We de�ne equivalence of a real-life computation to an ideal-model computation in the same way,with the exception that here we only require that the corresponding distributions are computationallyindistinguishable. Black-box simulation is de�ned as in the secure channels setting, with the exceptionthat the information gathered by the adversary in each round includes the communication between allparties.De�nition 3.9 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honestbehavior (i.e., as in any of the De�nitions 3.2 through 3.4). We say that � t-securely computes f in thecomputational setting, in the presence of T -semi-honest parties and adaptive adversaries, if for any T -semi-honest protocol �0 for � and for any t-limited real-life (adaptive) adversary A, there exists a t-limitedideal-model-adversary S, such that for every input vector ~x we haveidealf;S(~x) c� exec�0;A(~x):If S is restricted to black-box simulation of real-life adversaries, as described above, then we say that �t-securely computes f in a simulatable way in the computational scenario.3.4 Non-committing encryptionWe present a concise de�nition of a non-committing encryption protocol in our multi-party scenario.First de�ne the bit transmission function btr : f0; 1;?gn ! f0; 1;?gn. This function is parameterizedby two identities of parties (i.e., indices s; r 2 [n]), with the following interpretation. btrs;r describes9For simplicity we assume that the links are authenticated, namely the adversary cannot alter the communication. Authen-ticity can be achieved via standard primitives. 13

the secure transmission of a bit from party Ps (the sender) to party Pr (the receiver). That is, for~x = x1; : : : ; xn 2 f0; 1;?gn let btrs;r(~x)i = (xs if i = r? otherwisewhere btrs;r(~x)i is the ith component of the vector btrs;r(~x). We are interested in input vectors ~x wherexs (i.e., the senders input) is in f0; 1g. All other inputs are assumed to be ?.De�nition 3.10 Let s; r 2 [n] and s 6= r. A protocol " is a t-resilient (in the presence of T -semi-honest parties and adaptive adversaries), non-committing encryption protocol (from Ps to Pr) if " t-securelycomputes btrs;r, in a simulatable way, in the computational model, in the presence T -semi-honest partiesand an adaptive adversary.It may not be immediately evident how De�nition 3.10 corresponds to the informal description of non-committing encryptions, presented in Section 2.3. A closer look, however, will show that the requirementsfrom the simulator associated with a non-committing encryption protocol (according to De�nition 3.10)imply these informal descriptions. In particular, in the case where the simulated adversary corrupts thesender and receiver only after the last communication round, the simulator has to �rst generate somesimulated communication between the parties, without knowing the transmitted bit. (This communicationserves as the \dummy ciphertext".) When the sender and/or the receiver are later corrupted, the simulatorhas to generate internal data that correspond to any required value of the transmitted bit.4 Non-erasing partiesWe show that any recursive function can be securely computed in the computational setting, in the presenceof adaptive adversaries and non-erasing parties. In Subsection 4.1 we show how, using a non-committingencryption protocol, a simulatable protocol for computing some function f in the computational settingcan be constructed from any simulatable protocol for computing f in the secure channels setting. InSubsection 4.2 we present our construction of non-committing encryption. We use the following result asour starting point:Theorem 4.1 The [BGW, CCD] protocols for computing any function of n inputs are (dn3e � 1)-securelycomputable in a simulatable way, in the secure channels setting, in the presence of non-erasing parties andadaptive adversaries.104.1 Adaptive security given non-committing encryptionThe following theorem formalizes the discussion in Section 2.3.Theorem 4.2 Let f be an n-ary function, t < n and � be a protocol that t-securely computes f in a sim-ulatable way in the secure channels setting, in the presence of non-erasing parties and adaptive adversaries.Suppose that "s;r is a t-resilient non-committing encryption protocol, resilient to non-erasing parties andadaptive adversaries, for transmission from Ps to Pr. Let ~� be the protocol constructed from � as follows.For each bit � transmitted by � from party Ps to party Pr, protocol ~� invokes a copy of a "s;r for transmit-ting �. Then ~� t-securely computes f , in a simulatable way in the computational setting, in the presence ofnon-erasing parties and adaptive adversaries.10A security proof of the [BGW] construction can be extracted from [C, Chap. 3], which deals with the more involvedasynchronous model. 14

Proof (sketch): Let �0 be a non-erasing protocol for � and let S be a simulator for �0 in the securechannels setting. For simplicity we assume that in protocol �, as well as in the interaction generated by S,each party sends on bit to each other party in each round. Let � be the (computational-model) simulatorthat corresponds to the non-erasing protocol "0 for the non-committing encryption protocol ". Given thesetwo di�erent simulators, we construct a simulator ~S for protocol ~� in the computational setting. Thesimulator ~S will be a modi�cation of S and will use several copies of � as subroutines.Recall that S is supposed to interact with a black-box representing a real-life adversary in the securechannels setting. That is, at each round S generates all the messages sent from uncorrupted parties tocorrupted parties. Furthermore, whenever the black-box decides to corrupt some party P , machine Sgenerates internal data for P which is consistent with P 's input and with the messages previously sent byP to corrupted parties.The simulator ~S, interacts with a black box representing an arbitrary real-life adversary in the compu-tational setting, denoted ~A. The simulator ~S is identical to S with the exception that for each bit sent inthe interaction simulated by S, the simulator ~S invokes a copy of � and ~S incorporates the outputs of thevarious copies of � in its (i.e., ~S's) communication with ~A. Likewise, ~S extracts the transmitted bits fromthe invocations of � corresponding to message transmissions from corrupted parties to uncorrupted ones.(The way ~S handles these invocation will be discussed below.) At this point we stress that ~A is the onlyadversary that ~S needs to simulate and to this end it \emulates" real-life adversaries of its choice for thecopies of �. In particular, when S asks to corrupt some party P , the simulator ~S corrupts the same partyP . When S generates P 's view in the secure channel setting, ~S will complete this view into P 's view inthe computational setting by using the various copies of �.We describe how ~S handles the various copies of �. As stated above, ~S emulates a real-life adversaryfor each copy of � using the communication tapes by which this copy is supposed to interact with itsblack-box/adversary. The information that � expects to receive form its black box is extracted, in theobvious manner, from the information that ~S receives from ~A. That is, ~S hands � the messages, sent bythe corrupted parties, that are relevant to the corresponding invocation of "0. Furthermore, all the pastand current requests for corrupting parties (issued by ~A) are handed over to �. The partial view receivedfrom each copy of � is used in the emulation of the corresponding black-box (of this �-copy) as well asincorporated in the information handed by ~S to ~A. When ~A asks to corrupt some party P , the simulator~S emulates a `corrupt P ' request to each copy of � and obtains the internal data of P in the correspondingsub-protocol " which it (i.e., ~S) hands to ~A (along with the information obtained by S { the secure channelsimulator). Finally, observe that � = �s;r (where Ps and Pr are the designated sender and receiver) alsoexpects to interact with parties in the ideal-model. This interaction consists of issuing `corrupt' requestsand obtaining the internal data (of the ideal model). This interaction is (also) emulated by ~S as follows.Whenever � wishes to corrupt a party P which is either Ps or Pr , the simulator ~S �nds out which bit, �,was supposed to be sent in this invocation of "0r;s and passes � to �r;s. We stress that � is available to ~Ssince at this point in time P has already been corrupted and furthermore ~S (which mimics S) has alreadyobtained P 's view in the secure channel setting. (Here we use De�nitions 3.9 and 3.10 which guaranteethat � corrupts a party only if this party is already corrupted by �'s black box. We also use the fact that~S is playing �'s black box and is issuing a `corrupt P ' request only after receiving such a request from ~Aand having simulated this corruption as S.) In case P is neither Ps not Pr the simulator ~S passes ? (asP 's input) to �.Let ~�0 be a non-erasing protocol for ~� and ~A be as above (i.e., an arbitrary real-life adversary in thecomputational setting). We claim that ~S ~A (i.e., the ideal-model adversary ~S with black-box access to ~A)properly simulates the execution of ~�0. We need to show that for any adversary ~A and for any input ~x we15

have idealf; ~S ~A (~x) c� exec~�0 ; ~A(~x):Here we present only a rough sketch of the proof of this claim. The plan is to construct a real-life adversaryA in the secure channels setting, and prove the following sequence of equalities by which the above claimfollows: idealf; ~S ~A(~x) d= idealf;SA(~x) d= exec�0;A(~x) c� exec~�0 ; ~A(~x) (1)Regardless of what A is, the second equality follows immediately from the hypothesis that S is a simulatorfor �0 (the non-erasing protocol for �) in the secure channels setting. It remains to construct A so thatthe other two equalities hold.The real-life adversary A of the secure channel setting will operate via a simulation of ~A (the real-lifeadversary of the computational setting), imitating the simulation carried out by ~S. That is, for each bitcommunicated by �, machine A will invoke a copy of � while emulating an adversary in accordance with ~A.In particular, ~A will be given all ciphertexts sent in the open as well as all internal data of corrupted parties(regardless if these parties were corrupted before, during or after the `real' transmission). Furthermore,when ~A corrupts a party P , machine A corrupts P and hands ~A the internal data of P , along with theoutputs of the relevant copies �, just as ~S does. At the end of the computation A outputs whatever ~Aoutputs (that is, A outputs ~A's view of the computation). It follows from the de�nition of A that theexecution of S, with black-box access to A, is in fact identical to the execution of ~S with black-box accessto ~A. Thus, idealf; ~S ~A(~x) d= idealf;SA(~x) which establishes the �rst equality in Eq. (1).It remains to show that exec�0 ;A(~x) c� exec~�0; ~A(~x). Essentially the di�erence between these twoexecutions is that exec�0;A(~x) is a real-life execution in the secure channel setting which is augmented byinvocations of � (performed by A), whereas exec~�0 ; ~A(~x) is a real-life execution in the computational settingin which honest parties use the encryption protocol "0. However, the security of " means that invocationsof � are indistinguishable from executions by "0 (both in presence of adaptive adversaries). Using inductionon the number of rounds, one thus establishes the last equality of Eq. (1). 24.2 Constructing non-committing encryptionBefore describing our non-committing encryption protocol, let us note that one-time-pad is a valid non-committing encryption protocol.11 The drawback of this trivial solution is that it requires an initial set-up inwhich each pair of parties share a random string of length at least the number of bits they need to exchange.Such an initial set-up is not desirable in practice and does not resolve the theoretically important problemof dealing with a setting in which no secret information is shared a-priori.Our scheme uses a collection of trapdoor permutations together with a corresponding hard-core pred-icate [BM, Y, GrL]. Actually, we need a collection of trapdoor permutation with the additional propertythat they are many permutations over the same domain. Furthermore, we assume that given a permutationf over a domain D (but not f 's trapdoor), one can e�ciently generate at random another permutation f 0over D together with the trapdoor of f 0. Such a collection is called a common-domain trapdoor system.De�nition 4.3 A common-domain trapdoor system is an in�nite set of �nite permutations ff�;� :D� 1-17!Dag(�;�)2P , where P �f0; 1g��f0; 1g�, so that11 Assume that each pair of parties share a su�ciently long secret random string, and each message is encrypted by bitwisexor-ing it with a new segment of the shared random string. Then De�nition 3.10 is satis�ed in a straightforward way.Speci�cally, the simulated message from the sender to the receiver (i.e., the dummy ciphertext), denoted c, can be uniformlychosen in f0; 1g. When either the sender or the receiver are corrupted, and the simulator has to demonstrate that c is anencryption of a bit �, the simulator claims that the corresponding shared random bit was r = c� �. Clearly r is uniformlydistributed, regardless of the value of �. 16

� domain selection: There exists a probabilistic polynomial-time algorithm G1 so that on input 1n,algorithm G1 outputs a description � 2 f0; 1gn of domain D�.� function selection: There exists a probabilistic polynomial-time algorithm G2 so that on input �,algorithm G2 outputs a pair (�; t(�)) so that (�; �) 2 P . (� is a description of a permutation overD� and t(�) is the corresponding trapdoor.)� domain sampling: There exists a probabilistic polynomial-time algorithm S that on input �, uniformlyselects an element of Da.� function evaluation: There exists a polynomial-time algorithm F that on inputs (�; �) 2 P andx 2 D� returns f�;�(x).� function inversion: There exists a polynomial-time algorithm I that on inputs (�; t(�)) and y 2 D�,where (�; �) 2 P , returns f�1�;�(y).� one-wayness: For any probabilistic polynomial-time algorithm A, the probability that on input (�; �) 2P and y = f�;�(x), algorithm A outputs x is negligible (in n), where the probability distribution isover the random choices of � = G1(1n), � = G2(�), x = S(�) and the coin tosses of algorithm A.Remarks:� The standard de�nition of trapdoor permutations can be derived from the above by replacing thetwo selection algorithms, G1 and G2, by a single algorithm G that on input 1n generates a pair(�; t(�)) so that � speci�es a domain D� as well as a permutation f� over this domain (and t(�) isf� 's trapdoor). Thus, the standard de�nition does not guarantee any structural resemblance amongdomains of di�erent permutations. Furthermore, it does not allow to generate a new permutationwith corresponding trapdoor for a given domain (or given permutation). Nevertheless some populartrapdoor permutations can be formulated in a way which essentially meets the requirements of acommon-domain trapdoor system.� Common-domain trapdoor systems can be constructed based on an arbitrary family of trapdoor per-mutations, ff� :D� 1-17!D�g, with the extra property that the domain of any permutation, generatedon input 1n, has non-negligible density inside f0; 1gn (i.e., jD�j � 1poly(j�j) � 2j�j). We construct acommon-domain family where the domain is f0; 1gn and the permutations are natural extensions ofthe given permutations. That is, we let G1(1n) = 1n, G2(1n) = G(1n) and extend f� into g� so thatg�(x) = f�(x) if x 2 D� and g�(x) = x otherwise. This yields a collection of \common-domain" per-mutations, fg� :f0; 1gj�j 1-17! f0; 1gj�jg, which are weakly one-way. Employing ampli�cation techniques(e.g., [Y, GILVZ]) we obtain a proper common-domain system.In the sequel we refer to common-domain trapdoor systems in a less formal way. We say that two one-way permutations, fa and fb, are a pair if they are both permutations over the same domain (i.e., a = (�; �1)and b = (�; �2), where the domain is D�). We associate the permutations with their descriptions (andthe corresponding inverse permutations with their trapdoors). Finally, as stated above, we augment anycommon-domain trapdoor system with a hard-core predicate, denoted B. (That is, B is polynomial-timecomputable, but given (fa and) fa(x) is it infeasible to predict B(x) with non-negligible advantage over1=2.) 17

Outline of our scheme. The scheme consists of two stages. In the �rst stage, called the key generationstage, the parties arrive at a situation where the sender has two trapdoor permutations fa; fb of a common-domain system, the trapdoor of only one of which is known to the receiver. Furthermore, the simulatorwill be able to generate, in a simulated execution of the protocol, two trapdoor permutations with thesame distribution as in a real execution and such that the trapdoors of both permutations are known.(The simulator will later open dummy ciphertexts as either `0' or `1' by claiming that the decryption keyheld by the receiver is either f�1a or f�1b . The correspondence between f0; 1g and fa; bg will be chosen atrandom by the simulator and never revealed). The key generation stage is independent of the bit to betransmitted (and can be performed before this bit is even determined).Our most general implementation of this stage, based on any common-domain system, requires partic-ipation of all parties. It is described in Section 4.2.2. In the implementations based on the RSA and DHassumptions (see Section 4.3) the key-generation stage consists of only one message sent from the receiverto the sender.The second stage, in which the actual transmission takes place, consists of only one message sent fromthe sender to the receiver. This stage consists of encryption and decryption algorithms, invoked by thesender and the receiver respectively.We �rst present, in Section 4.2.1, the encryption and decryption algorithms as well as observations thatwill be instrumental for the simulation. In Section 4.2.2 we present the key generation protocol. (A readerthat is satis�ed with a construction based on speci�c number theoretic assumptions may, for simplicity,skip Section 4.2.2 and read Section 4.3 instead.) Finally we show that these together constitute the desirednon-committing encryption protocol.4.2.1 Encryption and decryptionLet fa and fb be two randomly selected permutations over the domain D, and let B be a hard-core predicateassociated with them. The scheme uses a security parameter, k, which can be thought to equal log2 jDj.Encryption: to encrypt a bit � 2 f0; 1g with encryption key (fa; fb), the sender proceeds as follows.First it chooses x1; : : : ; x8k at random from D, so that B(xi) = � for i = 1; :::; 5k and B(xi) = 1 � �otherwise (i.e., for i = 5k + 1; :::; 8k). For each xi it computes yi = fa(xi). These xi's (and yi's) areassociated with fa (or with a). Next, it repeats the process with respect to fb. That is, x8k+1; : : : ; x16k arechosen at random from D, so that B(xi) = � for i = 8k + 1; :::; 13k and B(xi) = 1 � � otherwise, andyi = fb(xi) for i = 8k + 1; :::; 16k. The latter xi's (and yi's) are associated with fb (or with b). Finally,the sender applies a random re-ordering (i.e., permutation) � : [16k]! [16k] to y1; : : : ; y16k and send theresulting vector, y�(1); : : : ; y�(16k), to the receiver.Decryption: upon receiving the ciphertext y1; : : : ; y16k, when having private key f�1r (where r 2 fa; bg),the receiver computes B(f�1r (y1)); : : : ; B(f�1r (y16k)), and outputs the majority value among these bits.Correctness of decryption. Let us �rst state a simple technical claim.Claim 4.4 For all but a negligible fraction of the �'s and all but a negligible fraction of permutation pairsfa and fb over D�, jProb(B(f�1b (fa(x))) = B(x))� 12 j is negligible (2)where the probability is taken uniformly over the choices of x 2 D�.18

Proof: Assume for contradiction that the claim does not hold. Then, without loss of generality, thereexists a positive polynomial p so that for in�nitely many n's, we haveProb�jfy 2 D� : B(f�1b (y)) = B(f�1a (y))gj > (12 + 1p(n)) � jD�j� > 1p(n)when fa and fb are independently generated from � = G1(1n). This means that for these (�; a; b)'sB(f�1a (y)) gives a non-trivial prediction for B(f�1b (y)). Intuitively this cannot be the case and indeed thislead to contradiction as follows.Given a = (�; �) 2 P and y 2 D� we may predict B(f�1a (y)) as follows. First we randomly generatea new permutation. fb, over D�, together with its trapdoor. Next we test to see if indeed B(f�1a (z))is correlated with B(f�1b (z)). (The testing is done by uniformly selecting polynomially many xi's in D�,computing zi = fa(xi), and comparing B(f�1a (zi)) = B(xi) with B(f�1b (zi)).) If a non-negligible correlationis detected then we output B(f�1b (y) (as our prediction for B(f�1a (y))). Otherwise we output a uniformlyselected bit. (Note that jProb(B(x) = 1)� 12 j must be negligible otherwise a constant function contradictsthe hard-core hypothesis.) 2>From this point on, we assume that the pair (fa; fb) satis�es Eq. (2).Lemma 4.5 Let ~y = y1; : : : ; y16k be a random encryption of a bit �. Then with probability 1� 2�
(k) thebit decrypted from ~y is �.Proof: Assume without loss of generality that the private key is f�1a . Then, the receiver outputs themajority value of the bits B(f�1a (y1)); : : : ; B(f�1a (y16k)). Recall that 8k of the yi's are associated with fa.Out of them, 5k (of the yi's) satisfy B(f�1a (yi)) = B(xi) = �, and 3k satisfy B(f�1a (yi)) = B(xi) = 1� �.Thus, the receiver outputs 1�� only if at least 5k out of the rest of the yi's (that is, the yi's associated withfb) satisfy B(f�1a (yi)) = 1��. However, Eq. (2) implies that jProb(B(f�1a (yi) = �)� 12 j is negligible for eachyi associated with fb. Thus only an expected 4k of the yi's associated with fb satisfy B(f�1a (yi)) = 1� �.Using a large deviation bound, it follows that decryption errors occur with probability 2�
(k). 2Simulation assuming knowledge of both trapdoors. In Lemma 4.7 (below) we show how the sim-ulator, knowing the trapdoors of both fa and fb, can generate \dummy ciphertexts" ~z = z1; : : : ; z16k thatcan be later \opened" as encryptions of both 0 and 1. Essentially, the values B(f�1a (zi)) and B(f�1b (zi))for each zi are carefully chosen so that this \cheating" is possible. We use the following notations. Fixan encryption key (fa; fb). Let the random variable �� = (�; ~x; �; ~y; r; f�1r) describe a legal encryption anddecryption process of the bit �. That is:� ~x = x1; : : : ; x16k is a vector of domain elements chosen at random as speci�ed in the encryptionalgorithm.� � is a random permutation on [16k].� ~y = y1; : : : ; y16k is generated from ~x and � as speci�ed in the encryption algorithm.� r is uniformly chosen in fa; bg and f�1r is the inverse of fr . (Note that the decrypted bit is de�nedby the majority of the bits B(f�1r (yi).)We remark that the information seen by the adversary, after the sender and receiver are corrupted, includeseither �0 or �1 (but not both).Let us �rst prove a simple technical claim, that will help us in proving Lemma 4.7. Let binm denotethe binomial distribution over [m]. 19

Claim 4.6 There exists an e�ciently samplable distribution � over f0; 1; :::; 4kg so that the distribution~� constructed by sampling an integer from � and adding 2k is statistically close to bin8k. That is, thestatistical distance between ~� and bin8k is 2�
(k).Proof: Let bin8k(i) denote the probability of i under bin8k (i.e., bin8k(i) = �8ki � � 2�8k). We constructthe distribution � (over f0; 1; :::; 4kg) so that Prob(�= i) = bin8k(i+ 2k) for i = 1; :::; 4n and Prob(�=0)equals the remaining mass of bin8k (i.e., it equals P2ki=0 bin8k(i) +P8ki=6k+1 bin8k(i)).It can be easily seen that each i 2 f2k + 1; :::; 6kg occurs under ~� with exactly the same probabilityas under bin8k. Integers i such that i < 2k or i > 6k have probability 0 under ~� (whereas 2k is morelikely to occur under ~� than under bin8k). Thus, the statistical distance between ~� and bin8k equals theprobability, under bin8k, that i is smaller than 2k or larger than 6k. This probability is bounded by 2�
(k).2Lemma 4.7 Let (fa; fb) be the public key, and assume that both f�1a and f�1b are known. Then it ispossible to e�ciently generate ~z; ~x(0); ~x(1); �(0); �(1); r(0); r(1), such that:1. (0; ~x(0); �(0); ~z; r(0); f�1r(0)) c� �0.2. (1; ~x(1); �(1); ~z; r(1); f�1r(1)) c� �1.Here c� stands for `computationally indistinguishable'. We stress that the same dummy ciphertext, ~z,appears in both (1) and (2).Proof: Before describing how the dummy ciphertext ~z and the rest of the data are constructed, wesummarize, in Figure 1, the distribution of the hard-core bits, B(f�1a (Y1)); :::; b(F�1a (y16k)) andB(f�1b (y1)); :::; B(f�1b (y16k)), with respect to a real encryption y�(1); : : : ; y�(16k) of the bit � = 0. Here~b~i~n8k denotes the distribution of the number of `1's in B(f�1b (yi)) for i = 1; :::; 8k. Eq. (2) implies thatthe statistical di�erence between bin8k and ~b~i~n8k is negligible. The distribution of B(f�1a (yi)) for i =8k+ 1; :::; 16k is similar. Given only �0 (or only �1), only three-quarters of the B(f�1s (yi))'s, i 2 [16k] andI = f1; :::; 8kg I = f8k+ 1; :::; 16kg8i 2 I yi = fa(xi) yi = fb(xi)Pi2I B(f�1a (yi)) = 3k ~b~i~n8kPi2I B(f�1b (yi)) = ~b~i~n8k 3kFigure 1: The distribution of the B(f�1s (yi))'s with respect to �0, where s 2 fa; bg. (The case of �1 issimilar, with the exception that 5k is replaced for 3k.)s 2 fa; bg, are known. Speci�cally, consider �� = (�; ~x; �; ~y; r; f�1r), and suppose that r = a. Then all theB(f�1a (yi))'s can be computed using f�1a . In addition, for i = 8k+1; :::; 16k, B(f�1b (yi)) = B(xi) is knowntoo. However, for i 2 [8k], B(f�1b (yi)) = B(f�1b fa(xi))) is not known and in fact it is (computationally)unpredictable (from ��). A similar analysis holds for r = b; in this case the unpredictable bits areB(f�1a (yi)) = B(f�1a fb(xi))) for i = 8k + 1; :::; 16k.Initial construction and conditions: Keeping the structure of �� in mind, we construct ~z, alongwith ~x(0), ~x(1), �(0), �(1), r(0) and r(1), as follows. First, we select uniformly a bijection, �, of f0; 1g to fa; bg(i.e., either �(0) = a and �(1) = b or the other way around) and set r(0) = �(0) and r(1) = �(1). Next, wechoose, in the way described below, two binary vectors ~
(0) =
(0)1 ; : : : ;
(0)16k and ~
(1) =
(1)1 ; : : : ;
(1)16k. Wechoose random values v1; : : : ; v16k such that
(0)i = B(f�1�(0)(vi)) and
(1)i = B(f�1�(1)(vi)), for each i 2 [16k].We uniformly select a permutation over [16k] and let the permuted vector v (1); : : : ; v (16k) be the dummyciphertext ~z = (z1; :::; z16k). It remains to determine �(0) and �(1), which in turn determine ~x(0) and ~x(1)20

so that x(�)i = f�1a (z(�(�))�1(i)) for i 2 [8k] and x(�)i = f�1b (z�(�)(i)) otherwise. This should be done sothat both permutations �(0) and �(1) are uniformly (but not necessarily independently) distributed and sothat the known B(f�1s (y(�)i))'s match the distribution seen in a legitimate encryption of �. We stress that(�; ~x(�); �(�); ~z; r(�); f�1r(�)) should appear as a valid encryption of �. In particular, for each � 2 f0; 1g thereshould exist a permutation (�) (= (�(�))�1 � �) over [16k] so that121.
(��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = �, for i = 1; :::; 5k.(E.g., if �(0) = a this means
(0) (�)(i) = �.)2.
(��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = 1� �, for i = 5k + 1; :::; 8k.(E.g., if �(0) = a this means
(0) (�)(i) = 1� �.)3.
(��1(b)) (�)(i) = B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = �, for i = 8k + 1; :::; 13k.(E.g., if �(0) = a this means
(1) (�)(i) = �.)4.
(��1(b)) (�)(i) = B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = 1� �, for i = 13k + 1; :::; 16k.(E.g., if �(0) = a this means
(1) (�)(i) = 1� �.)5. Let I = [8k] if �(�) = b and I = f8k + 1; :::; 16kg otherwise. Then,
(�) (�)(i) = B(f�1�(�)(v (�)(i))) =B(f�1�(�)(z�(�)(i))) = B(f�1�(�)(f�(1��)(x(�)i))) equals � with probability negligibly close to 12 , for i 2 I .(E.g., for �(0) = a and � = 0 we have Prob(
(0) (�)(i) = 1) � 12 for i = 8k + 1; :::; 16k, whereas for�(0) = a and � = 1 we have Prob(
(1) (�)(i) = 1) � 12 for i = 1; :::; 8k.)This allows setting �(�) = � ((�))�1 so that x(�)�(�)(i) is \mapped" to zi while �(�) is uniformly dis-tributed (i.e., x(�)i = f�1a (v (�)(i)) = f�1a (z �1(�(�)(i))) = f�1a (z(�(�))�1(i)) for i 2 [8k] and x(�)i = f�1b (z�(�)(i))otherwise).Initial setting of ~
(0), ~
(1), (0) and (1): The key issue is how to select ~
(0) and ~
(1) so that the �vecondition stated above hold (for both � = 0 and � = 1). As a �rst step towards this goal we consider thefour sums S�1 def= 8kXi=1
(��1(a)) (�)(i) ; S�2 def= 16kXi=8k+1
(��1(b)) (�)(i) ; S�3 def= 8kXi=1
(��1(b)) (�)(i) ; S�4 def= 16kXi=8k+1
(��1(a)) (�)(i)The above conditions imply S�1 = S�2 = 5k � � + 3k � (1� �) = 3k + 2k� as well as S�3 d= ~b~i~n8k if �(�) = band S�4 d= ~b~i~n8k otherwise. (Note that S�3 ; S�4 and ~b~i~n8k are random variables.)To satisfy the above summation conditions we partition [16k] into 4 equal sized subsets denotedI1; I2; I3; I4 (e.g., I1 = [4k], I2 = f4k + 1; :::; 8kg, I3 = f8k + 1; :::; 12kg and I4 = f12k + 1; :::; 16kg).This partition induces a similar partition on the
(0)i 's and the
(1)i 's. The
(0)i 's and the
(1)i 's in each setare chosen using four di�erent distributions which satisfy the conditions summarized in Figure 2. Suppose�(0) = a. Then, we may set (0)([8k]) = I1[I2 and (0)(f8k+1; :::; 16kg) = I3[I4, and (1)([8k]) = I1[I3and (1)(f8k+1; :::; 16kg) = I2[I4, where �(I) = J means that the permutation � maps the elements of theset I onto the set J . (It would have been more natural but less convenient to write ((1))�1(I1[I3) = [8k]12 In each of the following �ve conditions, the �rst equality is by the construction of the vi's, the second equality is by thede�nition of the zi's, and the third equality represents the relation between ~x(�), ~z and �(�) that holds in a valid encryption (of�). In conditions (1) through (4), the last equality represents the relation between ~x(�) and � that holds in a valid encryptionof �. In condition (5), the last equality represents the information computable from ~z using (the trapdoor) f�1r(�) . Here werefer to the inverses of the zi's which are not x(�)i 's. The hard-core value of these inverses should be uniformly distributed.21

I = I1 I = I2 I = I3 I = I4Pi2I
(0)i d= 3k 0 2k �Pi2I
(1)i d= � 4k 2k kFigure 2: The distribution of the
(0)'s and
(1)'s. (� is as in Claim 4.6.)and ((1))�1(I2 [I4) = f8k + 1; 16kg.) We claim that, for each � 2 f0; 1g, the above setting satis�es thethree relevant summation conditions. Consider, for example, the case � = 0 (depicted in Figure 3). Then,I = f1; :::; 8kg= ((0))�1(I1 [I2) I = f8k + 1; :::; 16kg= ((0))�1(I3 [I4)Pi2I
(0)i = S01 = 3k + 0 = 3k S04 = 2k + � d= ~b~i~n8kPi2I
(1)i = no condition S02 = 2k + k = 3kFigure 3: Using (0) the
(0)i 's and
(1)i 's satisfy the summation conditions S01 , S02 and S04 .S01 = P8ki=1
(0)i = 3k and S02 = P16ki=8k+1
(1)i = 3k as required. Considering S04 = P16ki=8k+1
(0)i we observethat it is distributed as 2k+� = ~� (of Claim 4.6) which in turn is statistically close to ~b~i~n8k. We stress thatthe above argument holds for any way of setting the (�)'s as long as they obey the equalities speci�ed (e.g.,for any bijection � : I1[I2 1-17! I1[I3, we are allowed to set (1)(i) = �(i) for all i 2 I1[I2). The case � = 1follows similarly; here S11 =Pi2I1[I3
(0)i = 5k, S12 =Pi2I2[I4
(1)i = 5k and S13 =Pi2I1[I3
(1)i = �+2k (seeFigure 4). In case �(0) = b we set (0)([8k]) = I3 [I4, (0)(f8k+ 1; :::; 16kg) = I1 [I2, (1)([8k]) = I2 [I4I = f1; :::; 8kg= ((1))�1(I1 [I3) I = f8k + 1; :::; 16kg= ((1))�1(I2 [I4)Pi2I
(0)i = S11 = 3k + 2k = 5k no conditionPi2I
(1)i = S13 = � + 2k d= ~b~i~n8k S12 = 4k + k = 5kFigure 4: Using (1) the
(0)i 's and
(1)i 's satisfy the summation conditions S11 , S12 and S13 .and (1)(f8k + 1; :::; 16kg) = I1 [I3. The claim that, for each � 2 f0; 1g, the above setting satis�es thethree relevant summation conditions, is shown analogously.Refinement of ~
(0), ~
(1), (0) and (1): However, the above summation conditions do not guaranteesatisfaction of all the �ve conditions. In particular, we must use permutations (�) which guarantee thecorrect positioning visible bits within the 8k-bit long block. That is, we must have(
(��1(a)) (�)(1) ; :::;
(��1(a)) (�)(8k)) = (�5k; (1� �)3k)(
(��1(a)) (�)(8k+1); :::;
(��1(a)) (�)(16k)) = (�5k; (1� �)3k)that is, equality between the sequences and not merely equality in the number of 1's. Clearly there is noproblem to set the (�)'s so that these equalities hold and thus Conditions (1) through (4) are satis�ed. Itis left to satisfy Condition (5).Suppose that �(�) = a. In this case the third summation requirement guarantees P16ki=8k+1
(�) (�)(i) d=~b~i~n8k. This is indeed consistent with the requirement that these
(�) (�)(i)'s are almost uniformly and in-dependently distributed. But this is not su�cient. In particular, we also need Pi2J
(�) (�)(i) d= ~b~i~n3k,22

where J = f8k < i � 16k :
(1��) (�)(i) = 1 � �g and furthermore the above sum needs to be independent ofPi2f8k+1;:::;16kg�J
(�) (�)(i) (which in turn should be statistically close to bin5k). Let us start with the case� = 0. In this case we need Xi2J
(0)i d= ~b~i~n3k; (3)where J = fi 2 I3 [I4 :
(1)i = 1g, and this sum needs to be independent of Pi2I3[I4�J
(0)i . By Figure 2we have jJ \ I3j = 2k. We further restrict the distributions
(0)i 's and
(1)i 's so that in part I3 the fourpossible outcomes of the pairs (
(0)i ;
(1)i) are equally likely (e.g., for exactly k integers i 2 I3 we have(
(0)i ;
(1)i) = (0; 0)). Consider J 0 = J \ I4 (note jJ 0j = k). To satisfy Eq. (3) we construct a randomvariable �0 2 f0; 1; :::; kg (analogously to Claim 4.6) so that pj def= Prob(�0 = j) = bin3k(k + j) for j 2 [k](with the rest of the mass on �0 = 0) and constrain the
(0)i 's to satisfy Prob(Pi2J 0
(0)i = j) = pj. We getPi2J
(0)i = k+�0 d= ~b~i~n3k (analogously to Claim 4.6). A minor problem occurs: the new restriction on the
(0)i 's conditions Pi2I4�J 0
(0)i which we want to be distributed as some �00 d= bin5k� 2k and independentlyof �0 (the reason being that �0 + �00 should be distributed equally to �). However this condition has anegligible e�ect since we can sample �0 and � and set the
(0)i 's accordingly, getting into trouble only incase � < �0 which happens with negligible probability (since Prob(� < �0) < Prob(� < k) = 2�
(k)).The case � = 1 gives rise to the requirementXi2J
(1)i d= ~b~i~n3k; (4)where J = fi 2 I1 [I3 :
(0)i = 0g, and this sum needs to be independent of Pi2I1[I3�J
(1)i . To satisfyEq. (4) we restrict the
(1)i 's in J 0 def= J \ I1 analogously to satisfy Pi2J 0
(1)i = �0. Finally, we observe thatgenerating the
(0)i 's and
(1)i 's at random so that they satisfy the above requirements makes them satisfyCondition (5).Beyond the five conditions. In the above construction we have explicitly dealt with conditions whichobviously have to hold for the construction to be valid. We now show that indeed this su�ces. Namely,we claim that (�; ~x(�); �(�); ~z; r(�); f�1r(�)) c� �� = (�; ~x; �; ~y; r; f�1r): (5)Consider the case � = 0. Both r(0) and r are uniformly chosen in fa; bg and so we consider, w.l.o.g.,r = r(0) = a. Furthermore, �(0) is a random permutation and fa(x(0)i) = z�(0) for i = 1; :::; 8k, andfb(x(0)i) = z�(0) for i = 8k + 1; :::; 16k, which matches the situation w.r.t �, ~x and ~y. It remains tocompare the distributions of B(f�1s (�))'s, s 2 fa; bg, with respect to ~x(0) and with respect to ~x. Bythe above analysis we know that the entries corresponding to s = a and to (s = b) ^ (i � 8k) aredistributed similarly in the two cases. Thus, we need to compare B(f�1b (fa(x(0)1))); :::;B(f�1b (fa(x(0)8k)))and B(f�1b (fa(x1))); :::;B(f�1b (fa(x8k))). Recall that the xi's are selected at random subject to B(xi) = 0for i = 1; :::; 5k and B(xi) = 1 for i = 5k + 1; :::; 8k. An analogous condition is imposed on the x(0)i 'sbut in addition we also have B(f�1b (fa(x(0)i))) = 1 for i = 1; :::; 4k, and some complicated conditions onB(f�1b (fa(x(0)i))) = 1, for i = 4k+1; :::; 8k (i.e., the distribution of 1's here is governed by � and furthermorein the �rst k elements the number of 1's is distributed identically to �0). Thus, distinguishing ~x from ~x(0)amounts to distinguishing, given fa; fb : D 7! D and the trapdoor for fa (but not for fb), between the twodistributions1. (u1; :::; u8k), where the ui's are independently selected so that B(ui) = 0 if i 2 [5k] and B(ui) = 1otherwise; and2. (w1; :::; w8k), where the wi's are uniformly selected under the conditions23

� B(wi) = 0 if i 2 [5k] and B(ui) = 1 otherwise,� B(f�1b (fa(wi))) = 1 for i 2 [4k],� P5ki=4k+1B(f�1b (fa(wi))) = �0, and� P8ki=5k+1B(f�1b (fa(wi))) = �00, for some �00 d= �� �0.We claim that distinguishing these two distributions yields a contradiction to the security of the hard-corepredicate B. Suppose, on the contrary that an e�cient algorithm A can distinguish these two distributions.Using a hybrid argument we construct an algorithm A0 which distinguishes the the uniform distributionover D0 def= fx 2 D : B(x) = �g and a distribution over D0 that is uniform over both D00 def= fx 2 D0 :B(f�1b (fa(x))) = 0g and D01 def= fx 2 D0 : B(f�1b (fa(x))) = 1g, where � is a bit which can be e�cientlydetermined. (We stress that the latter distribution is not uniform on D0 but rather uniform on eachof its two parts.) Without loss of generality, we assume � = 0. It follows that A0 must distinguishinputs uniformly distributed in D00 from inputs uniformly distributed in D01. We now transform A0 intoan algorithm, A00, that distinguishes a uniform distribution over fy 2 D : B(f�1b (y)) = 0g from a uniformdistribution over fy 2 D : B(f�1b (y)) = 1g. On input y 2 D� and fb : D 7! D, algorithm A00 �rst generatesanother permutation fa, over D, together with the trapdoor for fa. Next, it computes x = f�1a (y) andstop (outputting 0) if B(x) = 1 (i.e., x 62 D0). Otherwise, A00, invokes A0 on x and outputs A0(x). Inthis case B(f�1b (fa(x))) = B(f�1b (y)) (and B(x) = 0) so the output will be signi�cantly di�erent in caseB(f�1b (y))) = 0 and in case B(f�1b (y))) = 1. We observe that Prob(B(x) = 0) � 12 (otherwise a constantfunction violates the security of B), and conclude that one can a random y with B(f�1b (y)) = 0 from arandom y with B(f�1b (y)) = 1 (which contradicts the security of B). 24.2.2 Key generationWe describe how the keys are generated, based on any common-domain trapdoor system. We use ObliviousTransfer [R, EGL] in our constructions. Oblivious Transfer (OT) is a protocol executed by a sender Swith inputs s1 and s2, and by a receiver R with input � 2 f1; 2g. After executing an OT protocol, thereceiver should know s� , and learn nothing else. The sender S should learn nothing from participating inthe protocol. In particular S should not know whether R learns s1 or s2. We are only concerned with thecase where R is uncorrupted and non-erasing.We use the implementation of OT described in [GMW] (which in turn originates in [EGL]). Thisimplementation has an additional property, discussed below, that is useful in our construction. For selfcontainment we sketch, in Figure 5, the [GMW] protocol for OT of one bit.It can be easily veri�ed that the receiver outputs the correct value of �� in Step 4. Also, if the receiveris semi-honest in the non-erasing sense, then it cannot predict �3�� with more than negligible advantageover 12 . 13 The sender view of the interaction is uncorrelated with the value of � 2 f1; 2g. Thus it learnsnothing from participating in the protocol.The important additional property of this protocol is that, in a simulated execution of the protocol,the simulator can learn both �1 and �2 by uniformly selecting z1; z2 2 D, and having the receiver Rsend f(z1); f(z2) (in Step 2). Furthermore, if R is later corrupted, then the simulator can \convince"the adversary that R received either �1 or �2, at wish, by claiming that in Step 2 party R chose either(x1; x2) = (z1; f(z2)) or (x1; x2) = (f(z1); z2), respectively.In Figure 6 we describe our key generation protocol. This protocol is valid as long as at least one partyremains uncorrupted.13This statement does not hold if R is semi-honest only in the honest-looking sense. Ironically, this `
aw' is related to theuseful (non-committing) feature discussed below. 24

Oblivious Transfer (OT)The parties proceed as follows, using a trapdoor-permutations generator and the associated hard-core pred-icate B().1. On input �1; �2 2 f0; 1g, the sender generates a one-way trapdoor permutation f : D ! D with itstrapdoor f�1, and sends f to the receiver.2. On input � 2 f1; 2g, the receiver uniformly selects x1; x2 2 D, computes y� = f(x�), sets y3�� = x3�� ,and sends (y1; y2) to the sender.3. Upon receiving (y1; y2), the sender sends the pair (�1 �B(f�1(y1)); �2 �B(f�1(y2))) to the receiver.4. Having received (b1; b2), the receiver outputs s� = b� �B(x�) (as the message received).Figure 5: The [GMW] Oblivious Transfer protocolkey-generation ("G)For generating an encryption key (fa; fb) known to the sender, and a decryption key f�1r known only to thereceiver (R), where r is uniformly distributed in fa; bg.1. The receiver generates a common domain D� and sends � to all parties.2. Each party Pi generates two trapdoor permutations over D�, denoted fai and fbi , and sends (fai ; fbi)to R. The trapdoors of fai and fbi are kept secret by Pi.3. The receiver R chooses uniformly � 2 f1; 2g and invokes the OT protocol with each party Pi for anumber of times equal to the length of the description of the trapdoor of a permutation over �. Inall invocations the receiver uses input � . In the jth invocation of OT, party Pi acting as sender usesinput (�1; �2), where �1 (resp., �2) is the jth bit of the trapdoor of fai (resp., fbi). (Here we use theconvention by which, without loss of generality, the trapdoor may contain all random choices made byG2 when generating the permutation. This allows R to verify the validity of the data received fromPi.)4. Let H be the set of parties with which all the OT's were completed successfully. Let fa be thecomposition of the permutations fai 's for Pi 2 H, in some canonical order, and let fb be de�nedanalogously (e.g., a is the concatenation of the ai with i 2 H). Let r = a if � = 1 and r = b otherwise.The trapdoor to fr is known only to R (it is the concatenation of the trapdoors obtained in Step 3).5. R now sends the public key (fa; fb) to the sender.Figure 6: The key generation protocol4.2.3 Simulation (Adaptive security of the encryption protocol)Let " denote the combined encryption and decryption protocols, preceded by the key generation protocol.Theorem 4.8 Protocol " is an (n � 1)-resilient non-committing encryption protocol for n parties, in thepresence of non-erasing parties. 25

Proof (sketch): Let Pr be the sender and let Ps be the receiver. Recall that a non-committing encryptionprotocol is a protocol that securely computes the bit transmission function, btrs;r, in a simulatable way. Let"0 be a non-erasing protocol for ". We construct a simulator S such that idealbtrs;r;SA(�) d= exec"0;A(�),for any (n� 1)-limited adversary A and for any input � 2 f0; 1g of Ps.The simulator S proceeds as follows. First an invocation of the key generation protocol "G is simulated,in such a way that S knows both trapdoors f�1a and f�1b . (This can be done using the additional propertyof the [GMW] Oblivious Transfer protocol, as described above.) For each party P that A corrupts duringthis stage, S hands A the internal data held by P in the simulated interaction. We stress that as long asat least one party remains uncorrupted, the adversary knows at most one of f�1a ; f�1b . Furthermore, aslong as Pr remains uncorrupted, the adversary view of the computation is independent of whether Pr hasf�1a or f�1b .Once the simulation of the key generation protocol is completed, S instructs the trusted party in theideal model to notify Pr of the function value. (This value is Ps's input, �.) If at this point either Psor Pr is corrupted, then S gets to know the encrypted bit. In this case S generates a true encryptionof the bit �, according to the protocol. If neither Ps nor Pr are corrupted, then S generates the values~z; ~x(0); ~x(1)�(0); �(1); r(0); r(1) as in Lemma 4.7, and lets ~z be the ciphertext that Ps sends to Pr in thesimulated interaction.If at this stage A corrupts some party P which is not the sender or the receiver, then S hands A theinternal data held by P in the simulated interaction. If A corrupts Ps, then S corrupts Ps in the idealmodel and learns �. Next S hands A the values ~x(�); �(�) for Ps's internal data. If A corrupts Pr , then Scorrupts Pr in the ideal model, learns �, and hands A the value f�1r(�) for Ps's internal data.The validity of the simulation follows from Lemma 4.7 and from the properties of the [GMW] ObliviousTransfer protocol. 24.3 Alternative implementations of non-committing encryptionWe describe two alternative implementations of our non-committing encryption scheme, based on the RSAand DH assumptions, respectively. These implementations have the advantage that the key generationstage can be simpli�ed to consist of a single message sent from the receiver to the sender.An implementation based on RSA. We �rst construct the following common-domain trapdoor sys-tem. The common domain, given security parameter n, is f0; 1gn. A permutation over f0; 1gn is chosen asfollows. First choose a number N uniformly from [2n�1 : : :2n], together with its factorization (via Bach'salgorithm [B]). Next choose a prime 2n < e < 2n+1. (This way, we are assured that gcd(e; �(N)) = 1,where �() is Euler's totient function, even if the factorization of N is not known.) Let fN (x) = xe(mod N)if x < N and fN (x) = x otherwise. With non-negligible probability N is a product of two large primes.Thus, this construction yields a collection of common-domain permutations which are weakly one-way.Employing an ampli�cation procedure (e.g., [Y, GILVZ]) we obtain a proper common-domain system.This common-domain trapdoor system can be used as described in Section 4.2. However, here the key-generation stage can be simpli�ed considerably. Observe that it is possible to choose a permutation fromthe above distribution without knowing its trapdoor. Speci�cally, this is done by choosing the numbers N ofthe di�erent instances of fN in the direct way, without knowing their factorization. Thus, the receiver willchoose two trapdoor permutations fa; fb, where only the trapdoor to fr (i.e., f�1r) is known, r 2R fa; bg.Both fa; fb are now sent to the sender, who proceeds as in Section 4.2.1. In a simulated execution thesimulator will choose both fa and fb together with their trapdoors.1414A similar idea was used in [DP]. 26

An implementation based on DH. Consider the following construction. Although it fails to satisfyDe�nition 4.3, it will be `just as good' for our needs. The common domain, given security parameter n,is a prime 2n�1 < p < 2n where the factorization of p � 1 is known. Also, a generator g of Z�p is �xed.p and g are publicly known. All computations are done modulo p. To choose a permutation over Z�p ,choose an element v 2R Z�p�1 and let fv(x) = xv. The public description of fv is y 4= gv. The `trapdoor' isu 4= v�1(mod p� 1).This construction has the following properties:� Although it is hard to compute fv if only p; g; y are known, it is easy to generate random elementsx 2R Z�p together with fv(x): choose z 2R Z�p , and set x = gz and fv(x) = yz. (This holds sincefv(x) = xv = gzv = yz.)� If u is known then it is easy to compute f�1v (x) = xu.� An algorithm A that inverts fv given only p; g; y can be easily transformed into an algorithm A0 thatgiven p; g; g�; g� outputs g�� (that is, into an algorithm that contradicts the Di�e-Hellman (DH)assumption). Speci�cally, Assume that A(p; g; gv; xv) = x. Then, on input p; g; g�; g�, algorithm A0will run A(p; g�; g; g�) to obtain g��.� It is possible to choose a permutation from the above distribution without knowing its trapdoor.Speci�cally, this is done by uniformly choosing numbers y 2R Z�p until a generator is found. (It iseasy to decide whether a given y is a generator of Z�p when the factorization of p� 1 is known.)Note that both in the encryption process and in the simulation it is not necessary to compute thepermutations f on arbitrary inputs. It su�ces to be able to generate random elements x in the domaintogether with their function value f(x). Thus, this construction is used in a similar way to the previousone.A concluding remark to Section 4. Our solutions for non-erasing parties may appear somewhat unsat-isfactory since they are based on `trusting' the receiver to choose trapdoor permutations without knowingthe trapdoor, whereas the permutation can be chosen together with its trapdoor by simple `honest-looking'behavior. Recall, however, that if honest-looking parties are allowed then no (non-trivial) protocol can beproven adaptively secure (via black-box simulation if claw-free pairs exist). We do not see a meaningfulway to distinguish between the `honest-looking behavior' that foils the security of our constructions andthe `honest-looking behavior', described in Section 2.2, that foils provability of the adaptive security of anyprotocol.5 Honest-looking partiesOur construction for honest-looking parties assumes the existence of a \trusted dealer" at a pre-computationstage. The dealer chooses, for each party P , a truly random string rP , and hands rP to P , to be used asrandom input. (We call rP a certi�ed random input for P .) Next, the dealer generates n� 1 shares of rP ,so that rP can be reconstructed from all n � 1 shares, but any subset of n � 2 shares are independent ofrP . Finally the dealer hands one share to each party other than P .Now, all parties are able to jointly reconstruct rP , and thus verify whether P follows its protocol.Consequently, if party P is honest-looking (i.e., P does not take any chance of being caught cheating),then it is forced to use rP exactly as instructed in the protocol. Party P is now limited to non-erasingbehavior, and the construction of Section 4 applies. (We note that the use of certi�ed random inputs27

does not limit the simulator. That is, upon corruption of party P , the simulator can still compute someconvenient value r0P to be used as P 's random input, and then \convince" the adversary that the certi�edrandom input of P was r0P . The adversary will not notice anything wrong since it will never have all theshares of the certi�ed random input.)References[B] E. Bach, \How to generate factored random numbers", SIAM J. on Comput., Vol. 17, No. 2, 1988,pp. 179-193.[Be1] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO, 1991.[Be2] D. Beaver, \Adaptive Zero Knowledge and Computational Equivocation", 28th STOC, 1996.[BH] D. Beaver and S. Haber, \Cryptographic Protocols Provably secure Against Dynamic Adversaries",Eurocrypt, 1992.[BGW] M. Ben-Or, S. Goldwasser and A. Wigderson, \ Completeness Theorems for Non-CryptographicFault-Tolerant Distributed Computation", 20th STOC, pp. 1-10, 1988.[BM] M. Blum, and S. Micali, \How to generate Cryptographically strong sequences of pseudo-randombits", SIAM J. on Computing, Vol. 13, 1984, pp. 850-864.[BCC] G. Brassard, D. Chaum and C. Crepeau, \Minimum Disclosure Proofs of Knowledge", JCSS, Vol.37, No. 2, 1988, pp. 156-189.[C] R. Canetti, \Studies in Secure Multi-Party Computation and Applications", Ph.D. Thesis, Depart-ment of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel, June1995.[CDNO] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky, \Deniable Encryptions", manuscript.[CCD] D. Chaum, C. Crepeau and I Damgard, \Multi-party unconditionally secure protocols", 20th STOC,pp. 11-19, 1988.[DP] A. De-Santis and G. Persiano, \Zero-Knowledge proofs of knowledge without interaction", 33rdFOCS, pp. 427-436, 1992.[EGL] S. Even, O. Goldreich and A. Lempel, \A randomized protocol for signing contracts", CACM, vol.28, No. 6, 1985, pp. 637-647.[F] P. Feldman, personal communication via Cynthia Dwork, 1988.[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan and D. Zuckerman, \Security PreservingAmpli�cation of Hardness", 31st FOCS, 1990, pp. 318{326.[GrL] O. Goldreich and L. Levin, \A Hard-Core Predicate to any One-Way Function", 21st STOC, 1989,pp. 25-32.[GMW] O. Goldreich, S. Micali and A. Wigderson, \How to Play any Mental Game", 19th STOC, pp.218-229, 1987. 28

[GwL] S. Goldwasser and L. Levin, \Fair Computation of General Functions in Presence of ImmoralMajority", CRYPTO, 1990.[MR] S. Micali and P. Rogaway, \Secure Computation", CRYPTO, 1991.[R] M. Rabin, \How to exchange secrets by oblivious transfer", Tech. Memo TR-81, Aiken ComputationLaboratory, Harvard U., 1981.[RB] T. Rabin and M. Ben-Or, \Veri�able Secret Sharing and Multi-party Protocols with Honest Ma-jority", 21st STOC, 1989, pp. 73-85.[RSA] R. Rivest, A. Shamir, and L. Adleman, \A Method for Obtaining Digital Signatures and PublicKey Cryptosystems", CACM, Vol. 21, Feb. 1978, pp. 120{126.[Y] A. Yao, \Theory and applications of trapdoor functions", 23rd FOCS, 1982, pp. 80-91.

29

