
Testing of ‘massively
parametrized problems’ -

Ilan Newman
Haifa UniversityHaifa University

Based on joint work with:
Sourav Chakraborty, Eldar Fischer, Shirley
Halevi, Oded Lachish, Arie Matsliah, Eyal
Rozenberg, Dekel Tzur, Orly Yahalom.

Standard Models

• A Fixed underlying structure. Inputs: a set
of ‘vectors’ assigned with this structure. E.g.,
a coloring of the points. Property: a
collection of ‘vectors’, : E.g., collection of ‘vectors’, : E.g.,

• Graph properties: Structure is Kn, input
(vectors): Boolean assignment on edges.
Property: e.g., connected graphs, bipartite
graphs...

• Properties of Boolean functions:
Structure: the Boolean cube. Inputs:
Boolean assignment of vertices.
Property: e.g., monotone, linear,….

• Here: Structure is not fixed in advance !
E.g., Structure: a given undirected graph,
inputs: all 0/1 assignments to its edges,
property: the subgraph is Eulerian,
connected,….

• Strongly connected, DAG, having a di-path
of length k….of length k….

• Structure: A given graph, inputs: all 0/1
assignments to its vertices. Properties:
graph properties of the induced subgraph.

• Structure: A Boolean circuit/
formula/ branching program…, inputs:
Boolean assignment to the variables.
Property: the 1-inputs of the
computation.

• There are many more examples….

Comments on ‘standard’ models,
e.g., graph properties

• [GT01]: Every 1-sided error testable
property is testable by a generic
algorithm: An algorithm that queries
at random a subgraph of a given size
algorithm: An algorithm that queries
at random a subgraph of a given size
and accept/reject only based on it.

• Thus, algorithm are somewhat ‘not
interesting’.

• [AFNS] A characterization of all
testable graph properties in terms of
regular partitions.

• In massively parametrized graph
properties: properties:

• Typically, there is a ‘significant’ place
for preprocessing the structure.

• Algorithms turns out to be quite
different from the ‘standard’
sampling.

Some ‘old’ results

• [N00] testing membership in read-once
constant width Branching programs.

• [FLNRRS02] – testing monotonicity in
‘general’ posets.‘general’ posets.

Subgraphs porperties

• Structure: A given arbitrary underlying
graph G=(V,E). Algorithm has full
knowledge of G.

• Inputs: (Boolean) assignment on the • Inputs: (Boolean) assignment on the
edges (vertices). Hence a property P is a
subset of {0,1}E .

P can be interpreted is several ways:

subgraph porperties
The edge assignment is interpreted as its
existence /non existence. Thus an input
defines a subgraph G containing the edges
of value ‘1’.

Hence, a property is a collection of
subgraphs, e.g:

Being bipartite (k-colorable), Eulearian,
Hamiltonian, being acyclic etc.

Orientations porperties
The edge assignment is interpreted as an
orientation of it. Hence, a property is a
collection of directed graphs obtained by
orienting the edges of G in certain ways.

e.g:

Being strongly connected, Eulearian, having
an s-t path, being acyclic, excluding a
forbidden subgraph etc.

Properties of constraint graphs
Structure: An arbitrary undirected graph,
and Boolean formulae φv, for every vertex
v in G, on variables that are indexed by
the adjacent edges to v.

Inputs: Boolean assignment to the variables.

Property: assignments that satisfy φv for
every vertex v.

Examples

• the vertex formulae assert that the
number of ‘1’-edges is even (Eulerian).number of ‘1’-edges is even (Eulerian).

• A 2-coloring of the edges s.t not all
edges adjacent to a vertex have the same
value.

Motivation

• The constraint graph model is fairly
general, any property problem can be cast
in this way.

• The subgraph model directly generalizes
the dense graph model. Gives the the dense graph model. Gives the
possibility to consider sparse graphs in a
way that the representation remains
simple.

• One can pose interesting problems.

• The algorithms are interesting (not just
sampling, not just local search).

Connection to other testing problems:
Testing satisfying assignment of CNF
formulae.

• [BHR] 3CNF are generally hard to test,
even if every variable appears O(1) times.

• [FLNRRS] 2CNF are also hard, even if
monotone (By testing monotonicity).monotone (By testing monotonicity).

• If monotone and every variable appears
O(1) times – testable.

• Read-twice CNF are testable – reduction
from a result on orientation/constraint
graphs.

This works for the combination of:
every monotone variable appears O(1)
times and every non-monotone
appears 2 times.

Read-O(1)-times is not testable in
general.

Testing constraint graphs
[HLNT CCC07]

• Every property can be cast in this way
(star).

• A constraint graph is in LD3 if for every
vertex with degree at least 3, the vertex with degree at least 3, the
hamming distance between any two
assignments not satisfying φv is at least 3.
e.g: φv is a clause of size 3 or more.

• Thm: Every LD3 has an (ε, exp(1/ ε))
1-sided error test.

• Cor: Every read-twice CNF formula is
testable.

• Algorithm: non-trivial sampling. Proof is
quite technical.

• Best possible; there are properties in • Best possible; there are properties in
which two non-sat assignments have
dist=2 and are highly non-testable.
Similarly for read-3-times CNF’s.

• Cor: the property of orientation of
having no source vertex is testable.

The property of edge 2-coloring in The property of edge 2-coloring in
which not all edges have the same
color is testable.

Algorithm flavour

• Define a suitable neighborhood B(z),
around each vertex z.

• Algorithm for the ‘generic’ case:

- Select a random edge e.- Select a random edge e.

- for each vertex z such that e is in B(z),
and z has suitably bounded degree, test all
edges adjacent to z and reject if z is not
satisfied.

Testing of Orientations
[HLNT ECCC06, CFLMN Random07, FLMNY
Random08].

Testing H-freeness
• For underlying graphs with bounded
degree, being H-free is testable for any degree, being H-free is testable for any
fixed forbidden directed graph H, that
has no source or has no drain.

• For forbidden graphs with sources and
drains: P2-free is testable while P3-free
is highly non-testable.

• What about testing H-freeness in
input graphs of unbounded average
degree ?

• If testable, algorithm is not
poly(1/ ε).

Testing strong connectivity

Easy cases:

• G has ω(n) edges.

• The DAG of components has Ω(n)
sources. sources.

• Def: An undirected graph G=(V,E) is called
δ -efficiently-Steiner connected if for
every S⊆ V, |S|< δ2n there is a connected
subgraph T=(V,E’) of G spanning S, with
|E’| < 10 δn .

• Thm: If G is 1/log n -efficiently Steiner • Thm: If G is 1/log n -efficiently Steiner
connected then strong conn. is testable
for G.

• SC is testable for nxn grid.

• SC is testable on expanders.

Testing s-t connectivity

• Testing s-t connectivity can be
efficiently done for any underlying
graph.
- Algorithm is non-trivial. It uses - Algorithm is non-trivial. It uses
several reduction steps to testing
small width branching programs.

• Testing Eulerianity: Not testable in
general. However, there are sublinear
testing algorithms and quite efficient for
certain classes of graphs.

Some general lower bounds for
non-adaptive 1-sided error

algorithms

[FLNR on-going work]

Consider the property of subgraphs of
being bipartite. A 1-sided error algorithm
needs to find a refutation in order to
reject. Here a witness is an odd-cycle.

Hence, the size of the refutation is a lower
bound. However, this is quite weak.

• Let G=(V,E) be an expander graph, with
girth = Ω(log n).

• Refutation size is O(log n).

• Can prove: non-adaptive lower bound of • Can prove: non-adaptive lower bound of
Ω(nδ), for some fixed δ>0.

This is quite general; the same technique
gives lower bound for testing acyclicity,
testing any property in which a
refutation contains a ‘large’ path, or a
cycle.

E.g., any (non-trivial) minor-H-free graph
for a given H, e.g., planarity.

• [FL….. – on going]: membership in
read-once formulae is testable.

• Extensions to non-boolean case

