
Property Testing in Bounded Degree Graphs∗

Oded Goldreich
Dept. of Computer Science
and Applied Mathematics

Weizmann Institute of Science
Rehovot, Israel

oded@wisdom.weizmann.ac.il

Dana Ron†

Dept. of EE – Systems
Tel Aviv University
Ramat Aviv, Israel

danar@eng.tau.ac.il

July 2000, with two later comments (May 2008)

Abstract

We further develop the study of testing graph properties as initiated by Goldreich, Gold-
wasser and Ron. Loosely speaking, given an oracle access to a graph, we wish to distinguish
the case the graph has a pre-determined property from the case it is “far” from having this
property. Whereas they view graphs as represented by their adjacency matrix and measure
distance between graphs as a fraction of all possible vertex pairs, we view graphs as represented
by bounded-length incidence lists and measure distance between graphs as a fraction of the
maximum possible number of edges. Thus, while the previous model is most appropriate for the
study of dense graphs, our model is most appropriate for the study of bounded-degree graphs.

In particular, we present randomized algorithms for testing whether an unknown bounded-
degree graph is connected, k-connected (for k > 1), cycle-free and Eulerian. Our algorithms
work in time polynomial in 1/ǫ, always1 accept the graph when it has the tested property, and
reject with high probability if the graph is ǫ-far from having the property. For example, the
2-Connectivity algorithm rejects (w.h.p.) any N -vertex d-degree graph for which more than
ǫdN edges need to be added in order to make the graph 2-edge-connected.

In addition we prove lower bounds of Ω(
√
N) on the query complexity of testing algorithms

for the Bipartite and Expander properties.

Keywords: Approximation Algorithms, Randomized Algorithms, Graph Algorithms, Property
Testing.

∗Work done while visiting LCS, MIT and while visiting ICSI and the CS Dept. at Berkeley. Preliminary version
has appeared in the 29th STOC; [GR97].

†This work was supported by an NSF postdoctoral fellowship.
1Errata (2008): With the exception of the cycle-free tester, which may reject with small probability graphs that

are cycle-free.

0

1 Introduction

Approximation is one of the basic paradigms of modern science. One of its facets in computer
science is approximation algorithms. Yet, it is not always clear what approximation means. The
dominant approach considers a cost function associated with possible solutions of an instance,
and seeks algorithms that provide an approximation of the cost of an optimal solution (possi-
bly, as well as a solution obtaining such a cost). This approach is most suitable in case there is
a natural cost measure for candidate solutions and the optimal solution is preferable due to its
low(est) cost. An alternative approach is to consider the distance of the given instance to the
closest instance that has a desirable property. The property may be having a solution of certain
cost (w.r.t some cost measure defined as in the first approach), but it can also be of a qualita-
tive nature; for example, being a connected graph (in case the instances are graphs), or being a
linear function (in case the instances are functions). The latter approach underlines all work on
testing low-degree polynomials [BLR93, RS96, GLR+91, BFL91, BFLS91, FGL+96, ALM+98] and
codes [BFLS91, ALM+98, BGS98, H̊as96], and its relevance to the construction of probabilistically
checkable proofs [BFL91, BFLS91, FGL+96, AS98, ALM+98] is well known. In [GGR98] this ap-
proach was applied to testing properties of graphs, and its relation to the more standard approach
to approximation was demonstrated.

We stress that approximation is applicable not only when the optimization problems are in-
tractable. Also in case there exists an efficient algorithm for solving the problem optimally, one
may wish to have an even faster algorithm and be willing to tolerate its approximative nature. In
particular, in a RAM model of computation, an approximation algorithm may even run in sub-
linear time and still provide valuable information. For example, the testing algorithms of [GGR98]
run in constant time and provide “constant error approximations” (e.g., one can approximate the
value of the maximum cut in a dense graph to within a constant factor in constant time).

1.1 Testing graph properties

The study of testing graph properties was initiated by Goldreich et. al. [GGR98], as part of a general
study of property testing [RS96, GGR98]. In the general model the algorithm is given oracle access
to a function and has to decide whether the function has some specified property or is “far” from
having that property. Distance between functions is defined as the fraction of instances on which
the functions’ values differ. In their study of testing graph properties, Goldreich et. al. view the
graph as a Boolean function defined over the set of all vertex-pairs. Thus, their measure of distance
between graphs is the fraction of vertex-pairs that are an edge in one graph and a non-edge in the
other graph, taken over the total number of vertex-pairs. This model is most appropriate for the
study of dense graphs, and indeed the graph algorithms in [GGR98] refer mainly to dense graphs.
For example, their (constant time) Monte Carlo algorithm for testing whether a graph is Bipartite
or is 0.1-far from Bipartite is meaningful only for N -vertex graphs which have more than 0.1 · (N2

)

edges (since any graph having fewer edges is 0.1-close to being Bipartite). Furthermore, testing
connectivity in this model is trivial as long as the distance parameter is bigger than 2

N (since every
N -vertex graph is 2

N -close to being connected and so the algorithm may as well accept any graph).

In this paper we present an alternative model. We view bounded-degree graphs as functions
defined over pairs (v, i), where v is a vertex and i is a positive integer within a predetermined
(degree) bound, denoted d. The range of the function is the vertex set augmented by a special
symbol. Thus the value on argument (v, i) specifies the ith neighbor of v (with the special symbol
indicating non-existence of such a neighbor). Our measure of distance between (N -vertex) graphs is

1

the fraction of vertex-pairs which are an edge in one graph and a non-edge in the other, taken over
the size of the domain (i.e., over dN). Unless d = Θ(N), this model does not allow to consider dense
graphs, yet it is most appropriate for the study of bounded-degree graphs. In particular, in contrast
to the model studied in [GGR98], testing connectivity is no longer trivial in our model.2 The two
models differ not only in the type of properties that are non-trivial, but also in the applicable
techniques and the results that can be obtained for specific properties. For example, we show that
no (Monte Carlo) algorithm running in o(

√
N) time can test whether a bounded-degree graph is

Bipartite or is 0.1-far from Bipartite, where distance is as defined in our model. This stands in
contrast to the constant-time algorithm for testing bipartiteness in the [GGR98] model.

To demonstrate the viability of our model, we present randomized algorithms for testing several
natural properties of bounded-degree graphs. All algorithms get as input a degree bound d and an
approximation parameter ǫ. The algorithms make queries of the form (v, i) that are answered with
the name of the ith neighbor of v (or with a special symbol in case v has less than i neighbors).
With probability at least 2/3, each algorithm accepts any graph having the tested property and
rejects any graph which is at distance greater than ǫ from any graph having the property. Actually,
except for the cycle-freeness tester, all algorithms have one-sided error (i.e., always accept graphs
which have the property), and furthermore when rejecting they present a short certificate vouching
that the property does not hold in the tested graph. Assuming that vertex names are manipulated
at constant time, all algorithms have poly(d/ǫ) running-time (i.e., independent of the size of the
graph). Actually, most algorithms have poly(1/ǫ) running-time and some have Õ(1/ǫ) running-
time, where Õ(ℓ) = poly(log(ℓ)) · ℓ. In particular, we present testing algorithms for the following
properties:

connectivity: Our algorithm runs in time Õ(1/ǫ). Recall that by the above this means that in case
the graph is connected the algorithm always accepts, whereas in case the graph is ǫ-far from
being connected the algorithm rejects with probability at least 2

3 . Furthermore, the algorithm
supplies a small counter-example to connectivity (in the form of an induced subgraph which
is disconnected from the rest of the graph).

k-edge-connectivity: Our algorithms run in time Õ(k3 · ǫ−3+ 2
k). For k = 2, 3 we have improved

algorithms whose running-times are Õ(ǫ−1) and Õ(ǫ−2), respectively. Our techniques extend
to testing k-vertex-connectivity, for k = 2, 3, see [GR99a, Sec. 4].

Eulerian: Our algorithm runs in time Õ(ǫ−1).

cycle-freeness: Our algorithm runs in time O(ǫ−3). Unlike all other algorithms, this algorithm
has two-sided error probability, which is shown to be unavoidable for testing this property
(within o(

√
N) queries, where N is the size of the graph).

In addition, we establish Ω(
√
N) lower bounds on the query complexity of testing algorithms for

the Bipartite and Expander properties. The first lower bound stands in sharp contrast to a
result on testing bipartiteness which is described in [GGR98]. Recall that in [GGR98] graphs are
represented by their N×N adjacency matrices, and the distance between two graphs is defined
to be the fraction of entries on which their respective adjacency matrices differ. The Bipartite
tester of [GGR98] works in time poly(1/ǫ) and distinguishes Bipartite graphs from graphs in which

2 Recall that in the former model, for every ǫ ≥ 2/N , every graph is ǫ-close to being connected, and that typically
we focus on constant ǫ (or ǫ > N−1/O(1)). Thus typically, testing connectivity is trivial in that model. Indeed, in our
model every graph is (2/d)-close to being connected, but this leaves a wide range of ǫ’s (e.g., constant ǫ < 2/d) for
which the problem of testing connectivity is non-trivial.

2

at least 1
2ǫN

2 edges must be omitted in order to be bipartite. Recall that in the current paper,
graphs are represented by incidence lists of length d and distance is measured as the number of
edge modifications divided by dN (rather than by N2).

Finally, we observe that the known results on inapproximability of Minimum Vertex Cover (and
Dominating Set) for bounded-degree graphs [ALM+98, PY91], rule out the possibility of efficient
testing algorithms for these properties in our model.

1.2 What does this type of approximation mean?

To make the discussion less abstract, let us consider the k-(edge)-connectivity tester. As evident
from above, this algorithm is very fast; its running-time is polynomial in the error parameter, which
one may think of as being a constant. Yet, what does one gain by using it?

One possible answer is that since the tester is so fast, it may make sense to run it before
running an algorithm for k-connectivity. In case the graph is very far from being k-connected, we
will obtain (w.h.p.) a proof towards this fact and save the time we might have used running the
exact algorithm. (In case our tester detects no trace of non-k-connectivity, we may next run our
exact algorithm.) It seems that in some natural setting where typical objects are either good or
very bad, we may gain a lot. Furthermore, if it is guaranteed that objects are either good (i.e.,
graphs are k-connected) or very bad (i.e., far from being k-connected) then we may not even need
the exact algorithm at all. The gain in such a setting is enormous.

Alternatively, we may be forced to take a decision, without having time to run an exact algo-
rithm, while given the option of modifying the graph in the future, at a cost proportional to the
number of added/omitted edges. For example, suppose you are given a graph which represents
some design problem, where k-connectivity corresponds to a good design and changes in the design
correspond to edge additions/omissions. Using a k-connectivity tester you always accept a good
design, and reject with high probability designs which will cost a lot to modify. You may still
accept bad designs, but then you know that it will not cost you much to modify them later. In this
respect we mention the existence of efficient algorithms for determining a minimum set of edges to
be added to a graph in order to make it k-connected [WN87, NGM97, Gab91, Ben95, NI97, ?].

1.3 Testing connectivity to the rest of the graph

Our algorithm for testing k-edge-connectivity, for k ≥ 2, uses a subroutine which may be of in-
dependent interest. To describe it, suppose that you are given as input a vertex that resides in a
small “component” which is disconnected from the rest of the graph by a cut of at most k edges.
Your task is to find such a component, within complexity which depends only on the size of the
component. As above, you are allowed oracle queries of the form “what is the ith neighbor of vertex
v”.

Our algorithm finds the component containing the input vertex, within time cubic in the size of
the component (independent of k and of the size of the entire graph). It is based on the underlying
idea of the min-cut algorithm of Karger [Kar93]. For k = 2, we have an alternative algorithm which
works in time linear in the size of the component, and for k = 3, we present an algorithm which
works in quadratic time. We suggest the improvement of the complexity of the above task, for
k ≥ 3, as an open problem.

3

1.4 Subsequent work

As mentioned above, we show that in our model, any algorithm for testing whether an N -vertex
graph is bipartite requires Ω(

√
N) queries (where d and ǫ are constants). In follow-up work [GR99b],

a bipartiteness tester is presented whose query and time complexities are
√
N · poly(logN/ǫ).

In [PR99] an alternative model for testing graph properties is studied, where the graphs are
represented by incidence lists of varying lengths. In that model a graph is said to be ǫ-far from
having a property, if the number of edges that need to be added or removed divided by the number
of edges in the graph is more than ǫ. This model is more appropriate than ours for testing (sparse)
graphs in which some vertices have very high degree D (e.g., D = Ω(N)), but the average degree is
o(D) (e.g., a constant). Treating such graphs in our model will require setting d = D, but this may
not be so meaningful in case there is a huge gap between the maximum degree and the average
degree in the graph. Some of our algorithms can be extended to the varying-length incident-list
model; see [PR99].

Errarata

In a preliminary version of this work [GR97], we claimed to have an algorithm for testing planarity
that runs in time Õ(d4 ·ǫ−1). The specific algorithm we had in mind had a fundamental flaw, which
was discovered by an anonymous referee, whom we thank.3

Organization

In Section 2 we present the definitions used throughout the paper. Section 3 presents our algorithms
for testing k-edge-connectivity (for k ≥ 1). Testing algorithms for cycle-free, subgraph-free and
Eulerian graphs are presented in Sections 4, 5 and 6, respectively. Our hardness results are presented
in Section 7.

2 Definitions and Notation

We consider undirected graphs of bounded degree. We allow multiple edges but no self-loops. For
a graph G, we denote by V(G) its vertex set and by E(G) its edge set. We assume, without loss of

generality, that V(G) = [|V(G)|] def
= {1, . . . , |V(G)|} and that for every vertex v ∈ V(G), the edges

incident to v have distinct labels in {1, . . . , d}. This labeling may be arbitrary and need not be
consistent among neighboring vertices. Namely, (u, v) ∈ E(G) may be the ith edge incident to u
and the jth edge incident to v, where i 6= j. In accordance with the above, we associate with a
(bounded degree) graph G, a function fG : V(G) × [d] 7→ V(G) ∪ {0}, where d is a bound on the
degree of G. That is, fG(v, i) = u if (u, v) is the ith edge incident to v, and fG(v, i) = 0 if there is
no such edge.

We consider property testing algorithms which are allowed queries to the above representation
of a graph. That is, when referring to a graph G, the algorithm receives as ordinary inputs |V(G)|
and a degree bound d, and is given oracle access to the function fG.

Our measure of the (relative) distance between graphs depends on their degree bound. That is,
the distance between two graphs G1 and G2 with degree bound d, where V(G1) = V(G2) = [N], is

3Addendum (2008): Furthermore, as pointed out by Benjamini et. al. (STOC 2008), no one-sided error algorithm
have have query complexity o(

√
N).

4

defined as follows:

distd(G1,G2)
def
=
|{(v, i) : v ∈ [N], i ∈ [d] and fG1(v, i) 6= fG2(v, i)}|

d ·N (1)

Note that for every two graphs G1 and G2, we have 0 ≤ distd(G1,G2) ≤ 1. This notation of distance

is extended naturally to a set, C, of N -vertex graphs with degree bound d; that is, distd(G, C) def
=

minG′∈C{distd(G,G
′)}. For a graph property Π, we let ΠN,d denote the class of graphs with N

vertices and degree bound d which have property Π. In case ΠN,d is empty (for some Π, N , and
d), we define dist(G,ΠN,d) to be 1 for every G.

Definition 2.1 Let A be an algorithm which receives as input a size parameter N ∈ N , a degree
parameter d ∈ N , and a distance parameter 0 < ǫ ≤ 1. Fixing an arbitrary graph G with N vertices
and degree bound d, the algorithm is also given oracle access to fG. We say that A is a property
testing algorithm (or simply a testing algorithm) for graph-property Π, if for every N , d, and ǫ and
for every graph G with N vertices and maximum degree d, the following holds:

• if G has property Π then with probability at least 2
3 , algorithm A accepts G;

• if distd(G,ΠN,d) > ǫ then with probability at least 2
3 , algorithm A rejects G.

In both cases, the probability is taken over the coin flips of A. The query complexity of A is a
function of N , d, and ǫ bounding the number of queries made by A on input (N, d, ǫ) and oracle
access to any fG.

We shall be interested in bounding both the query complexity and the running time of A as a
function of N , d, and ǫ. In particular we try and achieve bounds which are polynomial in d,
and 1/ǫ, and sub-linear in N . Actually, our query complexity will be independent of N and so is
the running-time in a RAM model in which vertex names can be written, read and compared in
constant time.

In the above definition we deviate from some traditions of having also a confidence parameter,
denoted δ, and requiring the testing algorithm to be correct with probability at least 1−δ. Adopting
these traditions seems justifiable in case one can derive better results than by merely repeating the
basic procedure for O(log(1/δ)) times. Alas, this is not the case in the present work.

3 Testing k-Edge-Connectivity

Let k ≥ 1 be an integer. A graph is said to be k–edge-connected if there are k edge-disjoint paths
between every pair of vertices in the graph. An equivalent definition is that the subgraph resulting
by omitting any k − 1 edges from the graph, is connected. A graph that is 1–edge-connected, is
simply referred to as connected. In this section we show the following.

Theorem 3.1 For every k ≥ 1 there exists a testing algorithm for k-edge-connectivity whose query
complexity and running time are poly(k

ǫ). Specifically,

• For k = 1, 2 these complexities are O
(

log2(1/(ǫd))
ǫ

)

.

• For k = 3 these complexities are O
(

log(1/(ǫd))
ǫ2·d

)

.

5

• For k ≥ 4 these complexities are O

(

k3·log(1/(ǫd))

ǫ
3− 2

k ·d2− 2
k

)

.

Furthermore, the algorithms never reject a k–edge-connected graph.

We note that the above complexity bounds do not increase with the degree bound d. The reason
is that the distance between graphs is measured as a fraction of d ·N ; thus, d effects the number
of operations as well as the distance and its effect on the latter is typically more substantial.

We start by describing and analyzing the algorithm for k = 1, and later show how it can be
generalized to larger k. From now on we assume that d ≥ k, since otherwise we would immediately
reject the tested graph G simply because a graph with degree less than k cannot be k connected.
In the case of k = 1 we may actually assume that d ≥ 2 (since otherwise, except for N ≤ 2, the
graph cannot be connected).

3.1 Testing Connectivity

Our algorithm is based on the following simple observation concerning the connected components
(i.e., the maximal connected subgraphs) of a graph.

Lemma 3.2 Let d ≥ 2. If a graph G is ǫ-far from the class of N -vertex connected graphs with
maximum degree d, then it has more than ǫ

4dN connected components.

Proof: Assume contrary to the claim that G has at most ǫ
4dN connected components. We will

show that by adding and removing less than ǫ
2dN edges we can transform G into a connected

graph G′ which has maximum degree at most d. This contradicts the hypothesis by which G is
ǫ-far from the class of connected graphs with degree d. (Recall that according to our distance
measure (Eq. (1)) every edge in the symmetric difference between graphs is counted twice).

Let C1, . . . ,Cℓ be the connected components of G. The easy case is when the sum of degrees
in each Ci is at most d · |Ci| − 2. In this case, for every i = 1, ..., ℓ, either Ci contains at least two
vertices of degree d − 1 or it contains at least one vertex of degree at most d − 2. For simplicity,
assume that the latter sub-case holds and let vi be a vertex of degree at most d−2 in Ci. Then, for
every i = 1, ..., ℓ − 1, we may add the edge (vi, vi+1) to the graph, resulting in a connected graph.
Furthermore, the degree of each vertex in the resulting graph is at most d (as we only increased
the degrees of the vi’s). The argument extends to the other sub-case. That is, if vi, ui ∈ Ci

have both degree d − 1 then we connect some vertex of Ci−1 to vi and some vertex of Ci+1 to ui.
In both sub-cases, we made the graph connected (and maintained the degree bound) by adding
ℓ− 1 ≤ ǫ

4dN − 1 < ǫ
2dN edges.

The above analysis used the case hypothesis by which the sum of degrees in each Ci is at most
d · |Ci| − 2. But in general, this condition may not hold, and we need to do slightly more in order
to make the graph connected while maintaining the degree bound. In particular, we remove edges
within components (without disconnecting these components), so that we can add edges between
components without violating the degree bound.

Suppose that for some connected component, Ci, the sum of degrees is greater than d · |Ci| − 2
(and hence we cannot add edges between Ci and Ci±1 without violating the degree bound). Clearly,
|Ci| ≥ 2 (or else Ci is an isolated vertex having degree 0 ≤ d− 2). Let Ti be an arbitrary spanning
tree of Ci. Since Ti contains at least two vertices, it has at least two leaves. By our assumption
regarding Ci, at most one of its vertices has degree less than d. Thus, the tree Ti has a leaf which

6

has degree d ≥ 2 in G, and so this leaf has an incident edge in Ci which is not an edge in Ti.
We can remove this edge from G without disconnecting Ci and get two vertices in Ci which have
degree less than d. It follows that by removing at most one edge from each component and adding
an edge between every Ci and Ci+1, we obtain a connected graph G′ respecting the degree bound
d. Since the symmetric difference between E(G) and E(G′) is bounded above by 2ℓ− 1 < ǫdN

2 , we
reached a contradiction and the claim follows.

As an immediate corollary we get:

Corollary 3.3 If a graph G is ǫ-far from the class of N -vertex connected graphs of degree bound
d ≥ 2, then G has at least ǫdN

8 connected components each containing less than 8
ǫd vertices.

Proof: By Lemma 3.2, G has at least ǫdN
4 connected components. The number of connected

components containing at least 8/ǫd vertices is at most N
8/ǫd = ǫdN

8 . So the remaining ones are at

least ǫdN
4 − ǫdN

8 in number, and each contains less than 8/ǫd vertices.

An implicit implication of Lemma 3.2 is that for ǫ ≥ 4
d , every graph is ǫ-close to the class of

connected graphs with degree bound d (as otherwise the lemma would imply the existence of an
N -vertex graph with more than N connected components). Thus we may assume that ǫ < 4

d . By
using the fact that each connected component contains at least one vertex we conclude that if G
is ǫ-far from the class of connected graphs then the probability that a uniformly selected vertex
belongs to a connected component which contains less than 8

ǫd vertices, is at least ǫdN/8
N = ǫd

8 .
Therefore, if we uniformly select m = 16

ǫd vertices, then the probability that no selected vertex
belongs to a component of size less than 8

ǫd is bounded above by

(

1− ǫd

8

)m

< e−
ǫd
8
·m = e−2 <

1

3

(since ǫd
8 < 1). On the other hand, once we select such a vertex, we may detect that it belongs to a

small connected component at relatively low complexity (related to the size of the small connected
component). This gives rise to the following testing algorithm, where we assume that N ≥ 8

ǫd (since
otherwise a connected graph having less than 8

ǫd vertices would be rejected in Step (2)). If N < 8
ǫd ,

we can determine if the graph is connected by simply inspecting the whole graph (which takes time
O(Nd) = O(ǫ−1)).

Algorithm 3.4 (Connectivity Testing Algorithm):

1. Uniformly and independently select m = 16
ǫd vertices in the graph;4

2. For each vertex s selected perform a Breadth First Search (BFS) starting from s until 8
ǫd ver-

tices have been reached or no more new vertices can be reached (a small connected component
has been found);

3. If any of the above searches finds a small connected component then output REJECT, otherwise
output ACCEPT.

4For sake of the analysis, in this and all other algorithms the vertices are selected independently, and so they are
not necessarily distinct. However, if the number of graph vertices N is significantly larger than the sample size m,
then with high probability they will in fact be distinct.

7

We note that the BFS is implemented in the obvious manner – by making queries of the form (v, i)
to fG.

Since a connected graph consists of a single component, the algorithm never rejects a connected
graph. By the discussion preceding the algorithm and Corollary 3.3, if a graph is ǫ-far from
connected then it is rejected with probability at least 2/3. The query complexity and running time

of the algorithm are m · 8
ǫd · d = O

(

1
ǫ2d

)

. We note that the choice to perform a BFS is quite

arbitrary, and that any other linear-time searching method (e.g., DFS) will do.

The complexity of the Connectivity Tester can be improved by applying Corollary 3.3 more
carefully. Above, when analyzing the probability that the algorithm selects a vertex in a small
component, we considered the extreme case in which the component consists of a single vertex.
On the other hand, when analyzing the complexity of scanning the component, we considered
the extreme case in which the component consists of Θ(1/ǫd) vertices. Instead, suppose that all
components in the conclusion of Corollary 3.3 were of the same size, denoted s. Then the probability
that a vertex in such a component is selected is at least s · ǫdN/8

N = sǫd
8 , which means that it suffices

to set m = O(1/(sǫd)) in Step (1) of the algorithm above, and that in Step (2) it suffices to look
for s+ 1 vertices. Thus, the overall complexity would be O(1/ǫ), provided that such s exists and is
given to the algorithm. Since the latter assumption does not hold, we use a relaxed generalization

of the above idea: That is, suppose that G has at least L
def
= ǫdN

8 connected components each of

size at most 8
ǫd − 1. Then, (as we show in Lemma 3.6), there exists an i ≤ ℓ

def
= log(8/ǫd) (where

throughout the paper log(·) = log2(·)), so that G has at least L
ℓ connected components of size

ranging between 2i−1 and 2i − 1. We do not know this i, but we may try them all. This suggests
the following improved algorithm, where here we assume that N > 16·log(8/(ǫd))

ǫ·d (and for smaller N
we simply inspect the whole graph).

Algorithm 3.5 (Connectivity Testing Algorithm – Improved Version):

1. For i = 1 to log(8/(ǫd)) do:

(a) Uniformly and independently select mi = 32·log(8/(ǫd))
2i·ǫ·d vertices in G;

(b) For each vertex s selected, perform a BFS starting from s until 2i vertices have been
reached or no new vertices can be reached.

2. If any of the above searches finds a small connected component then output REJECT, otherwise
output ACCEPT.

Lemma 3.6 If G is ǫ-far from the class of connected graphs with maximum degree d then Al-
gorithm 3.5 rejects it with probability at least 2

3 . The query complexity and running time of the

algorithm are O
(

log2(1/(ǫd))
ǫ

)

.

Proof: Let Bi be the set of connected components in G which contain at most 2i − 1 vertices

and at least 2i−1 vertices. Let ℓ
def
= ⌊log(8/ǫd)⌋. By Corollary 3.3 we know that

∑ℓ
i=1 |Bi| ≥ ǫdN

8 .

Hence, there exists an i ∈ {1, 2, ..., ℓ} so that |Bi| ≥ ǫdN
8·ℓ . Thus, the number of vertices residing in

components belonging to Bi is at least 2i−1 · |Bi|. It follows that the probability that a uniformly
selected vertex resides in one of these components is at least

2i−1 · |Bi|
N

≥ ǫ · d · 2i

16 · ℓ =
2

mi

8

(where mi is as defined in Step (1a) of Algorithm 3.5). Thus, with probability at least 1 − (1 −
2

mi
)mi > 1−e−2 > 2

3 , a vertex s belonging to a component in Bi is selected in iteration i of Step (2),
and the BFS starting from s will discover a small connected component leading to the rejection
of G. The query complexity and running-time of the algorithm are bounded by

∑ℓ
i=1mi · 2i · d =

O
(

log2(1/(ǫd))
ǫ

)

.

The first part (i.e., k = 1) of Item 1 in Theorem 3.1 follows from Lemma 3.6 and the fact that

Algorithm 3.5 never rejects a connected graph (having more than 16·log(8/(ǫd))
ǫ·d vertices).

3.2 Testing k-Connectivity for k >

The structure of the testing algorithm for k-Connectivity where k > 1 is similar to the structure of
the Connectivity Tester (i.e., case k = 1): We uniformly select a set of vertices and for each of these
vertices we test if it belongs to a small component of the graph which has a certain property (i.e.,
is separated from the rest of the graph by an edge-cut of size less than k). Similarly to the k = 1
case, we show that if a graph is ǫ-far from being k–connected then it has many such components. In
addition, we present an efficient procedure for recognizing such a component given a vertex which
resides in it.

3.2.1 The Combinatorics

A subset of vertices S ⊆ V is said to be k–edge-connected if there are k edge-disjoint paths between
each pair of vertices in S. We stress that, in case k ≥ 3, these paths may go through vertices not in S
and that any singleton (a subset containing a single vertex) is defined to be k–edge-connected. The
k–edge-connected classes of a graph G are maximal subsets of V(G) which are k–edge-connected,
and each vertex in V(G) resides in exactly one such class. In the remainder of this subsection,
whenever we say k–connected we mean k–edge-connected, and a k-class is a k–connected class.

We start by assuming that the graphs we test for k-connectivity are (k−1)–connected. We later
(in Sec. 3.2.6) remove this assumption. In Appendix A we describe in more detail the structure of
(k− 1)–connected graphs in terms of their k-classes. Here we only state the facts necessary for our
algorithms. Let G be a (k−1)–connected graph. Then we can define an auxiliary graph TG [DW98]
(based on the cactus structure of [DKL76]), which is a tree, such that for every k-class in G there
is a corresponding (unique) node in TG. The tree TG might include additional auxiliary nodes,
but they are not leaves and we shall not be interested in them here. If G is k–connected, then TG

consists of a single node, corresponding to the vertex set of G. Otherwise, TG has at least two
leaves. The leaves of TG play a central role in our algorithm. Each leaf corresponds to a k-class C
of G which is separated from the rest of the graph by a cut of size k− 1. (Recall that G is assumed
to be (k − 1)–connected.) As we show below, for every leaf class C, given a vertex v ∈ C, we can
efficiently identify that v belongs to a leaf class. For k = 2 this can be done deterministically within
query and time complexity O(|C| · d). For k = 3 this can be done deterministically within query
and time complexity O(|C|2 · d). For k ≥ 4, we present a randomized algorithm with query and
time complexity O(|C|3 · d). The analysis of our algorithm relies on the following lemma which
directly follows from Lemma A.4 (see Appendix A).

Lemma 3.7 Let G be a (k− 1)–connected graph that is ǫ-far from the class of k–connected graphs
with maximum degree d ≥ k. Suppose that either d ≥ k + 1 or k · |V(G)| is even.5 Then, TG has

5 The reason for this technical requirement is to rule out the pathological case in which d(= k) and |V(G)| are both

9

at least ǫ
8d|V(G)| leaves.

Proof: Note that by the technical condition (in the lemma), either d > k or dN = kN is even,

where N
def
= |V(G)|. Assume towards contradiction that TG has L < ǫ

8dN leaves. Then by
Lemma A.4, G can be transformed into a k-connected graph G′ by removing and adding at most
4L < ǫ

2dN edges. Furthermore, the maximum degree of G′ is max(k, d) = d. This contradicts the
hypothesis that G is ǫ-far from the class of k–connected graphs with maximum degree d.

Corollary 3.8 Let G be a (k−1)–connected graph that is ǫ-far from the class of k–connected graphs
with maximum degree d ≥ k. Suppose that either d ≥ k + 1 or k · |V(G)| is even. Then TG has at
least ǫ

16d|V(G)| leaves each containing at most 16
ǫd vertices.

3.2.2 The Basic Algorithm

Corollary 3.8 suggests the following algorithm, where the implementation of Step (2) is discussed
subsequently. As was shown for the k = 1 case, the algorithm below can be modified to save a
factor of Θ̃(1/ǫd) in its query complexity and running time, but for sake of simplicity we describe
the less efficient algorithm. We also assume that the number of vertices N in G is greater than 16

ǫd ,
(since otherwise a k-connected graph having less than 16

ǫd vertices would be rejected in Step (2)). If
N < 16

ǫd , we can decide if the graph is k–connected by observing the whole graph and running an

algorithm for finding a minimum cut (in deterministic time Õ(Ndk) [Gab95] or probabilistically in
time O(Nd log3N) [Kar96], which here means O(ǫ−1 log3(1/ǫd))).

Algorithm 3.9 (k-Connectivity Testing Algorithm – Basic version): Recall, here we assume that
the input graph is (k − 1)-connected.

1. Uniformly and independently select m = 32
ǫd vertices;

2. For each vertex s selected, check whether s belongs to a k-class leaf which has at most 16
ǫd

vertices.

3. If any leaf class is discovered then output REJECT, otherwise output ACCEPT.

Our procedures for checking whether a given vertex belongs to a small k-class leaf always return
the correct answer in case the vertex does not belong to such a leaf. Hence, a k-connected graph
is always accepted. For k = 2, 3 the procedures also return a correct answer whenever the given
vertex belongs to a small k-class leaf, and for k ≥ 4 a correct answer is returned with probability
at least 5/6. Hence, if the graph is ǫ-far from being k-connected, there may be two sources for
the probability that it is erroneously accepted: By Corollary 3.8, the probability that no vertex s
belonging to a small k-class leaf is selected in Step 1 is at most (1 − (ǫd)/16)m < e−2 < 1/6. For
k ≥ 4 we need to add the probability that the procedure for identifying a k-class leaf fails given
such a vertex, obtaining the total of at most 1/3 error probability.

As said above, this algorithm can be modified analogously to the improved version of the
connectivity tester, yielding

odd in which case it is not possible to transform G into a k–connected graph with maximum degree d by performing
edge modifications. In other words, the class of k–connected graphs with max-degree k where k and |V(G)| are odd
is empty. Clearly, this pathological case is easily detected by the algorithm.

10

Lemma 3.10 Algorithm 3.9 runs in time

O

(

log(1/(ǫd))

ǫd

)

·
log(16/(ǫd))
∑

i=1

Tk(d, 2i)

2i

where Tk(d, n) is the time needed to implement the identification of a k-class leaf of size at most n
on a graph with degree at most d (i.e., Step (2)). It always accept a k–connected graph and rejects
with probability at least 2

3 any graph that is (k−1)–connected but ǫ-far from the class of k–connected
with maximum degree d.

In the following three subsection, we present such (k-class leaf) identification algorithms for the
three cases k = 2, k = 3 and k ≥ 4. The running-time bounds are T2(d, n) = O(nd), T3(d, n) =

O(n2d), and Tk(d, n) = O(n3− 2
k d), respectively, where d is the degree bound (or actually the

maximum degree of vertices in the class).

3.2.3 Identifying a 2-class Leaf

Given a vertex s and an integer n, the following Identification Procedure can be used to determine
whether s belongs to a 2–connected class of size at most n which is a leaf in TG. Note that the
upper bound, n, on the size of the class is determined by our higher level algorithm (for testing
2-connectivity) when calling the identification procedure. We use the following notation: for a

subset S ⊆ V, we let S
def
= V \ S.

Algorithm 3.11 (2-Class Leaf Identification Procedure): On input a vertex s, and a bound n.

1. Starting from s, perform a Depth First Search (DFS) until n+ 1 vertices have been reached.
Let T be the directed tree defined by the search, and let E(T) be its tree edges.

2. Starting once again from s, perform another search (using either DFS or BFS) until n vertices
are reached or no new vertices can be reached. This search is restricted as follows: If (u, v)
is an edge in T, where u is the parent of v, then (u, v) cannot be used to get from u to v in
the second search (but can be used to get from v to u). Let S2 be the set of vertices reached.

3. If there is a single edge with one end-point in S2 and the other outside of S2 (i.e. (S2,S2) is a
cut of size 1), then declare S2 as the 2-class leaf (to which s belongs). Else announce failure
to detect a small 2-class leaf containing s.

Clearly, the query complexity and running time of the procedure are O(nd). Since the procedure
always checks if it has found a cut of size 1, it will never identify a 2-class leaf when given a vertex
s belonging to a 2-connected graph (of size greater than n). Thus, we only need to prove that if s
resides in a a 2-class leaf of size at most n then the above procedure will indeed detect this.

Lemma 3.12 Let G be a connected graph, C a 2-class in G of size at most n which is a leaf in
TG, and s a vertex in C. Then the above procedure terminates with S2 = C.

Proof: Since C is a 2-class, there exists a single edge (u, v) so that u ∈ C and v ∈ C. The first
DFS terminates after seeing n+ 1 vertices, which means it must reach vertices of C, which in turn
is possible only by traversing the single edge (u, v) from u ∈ C to v ∈ C. Thus, (u, v) must be a

11

edge in T (with u being the parent). This ensures that the second search will never exit C. In
other words, S2 ⊆ C. What needs to be shown is that the second search reaches every vertex in C
(i.e., S2 = C), and hence the cut (C,C) is discovered.

Assume contrary to this claim, that X
def
= C \ S2 is non-empty. Let (u1, v1), . . . , (uℓ, vℓ) be the

set of edges crossing the cut (S2,X), where (∀i) ui ∈ S2 and vi ∈ X. Since C is 2–connected, there
must be at least two edges in the cut (S2,X). By our assumption that no vertex in X is reached in
the second search, it follows that for every i, (ui, vi) is an edge in the DFS-tree T, and furthermore,
ui is the parent of vi. Without loss of generality, let v1 be the first vertex in X reached in the DSF
defining T. Since C is 2–connected there must be a path between v1 and v2 which does not use the
edge (u1, v1). There are two cases.

1. In case the path does not contain vertices in S2, we reach a contradiction to T being a DFS-
tree (since v2 must be reached before the DFS backtracks from v1 and hence u2 → v2 cannot
be a tree edge).

2. Otherwise, there must be a cut edge between some vertex, v ∈ X, in the DFS-subtree rooted
at v1 and a vertex, u, in S2. By the structure of the DFS-tree, this cannot be a DFS-tree
edge from u to v (as v must be reached before the DFS backtracks from v1), contradicting
our hypothesis about the cut edges.

3.2.4 Identifying a 3-class Leaf

Given a vertex s and a size bound n, we first perform a DFS until n + 1 vertices are discovered.
Next, for each edge e in this DFS-tree (which contains n edges), we “omit” e from the graph and
invoke the 2-class leaf identification (of the previous subsection) on the residual graph.

Algorithm 3.13 (3-Class Leaf Identification Procedure): On input a vertex s, and a bound n.

1. Starting from s, perform a Depth First Search (DFS) on G until n + 1 vertices have been
reached. Let T be the corresponding DFS-tree.

2. For each e ∈ E(T), invoke the 2-Class Leaf Identification Procedure on the graph obtained by
omitting e from G (that is, the edge e is not traversed at any step of the procedure.) In all
these invocations, the input pair is (s, n) as above.

3. If a 2-class is identified in any of these invocations, output it as the desired 3-class. Otherwise
announce failure to detect a small 3-class leaf containing s.

Clearly, the above works in time O(n · nd), and never identifies a 3-class leaf when the graph G
is 3-connected (and has more than n vertices). Identification of small 3-class leaves follows from
Lemma 3.12.

Lemma 3.14 Let G be a 2–connected graph, C a 3-class leaf of TG with at most n vertices, and s
an arbitrary vertex in C. Then the above search process terminates in finding the cut (C,C).

Proof: Clearly the initial DFS must cross an edge of the cut (C,C), and so its DFS-tree has
at least one cut edge. When this cut edge is omitted from the graph, the cut (C,C) contains a
single edge in the resulting graph, denoted G′. While the removal of this edge might decrease the
connectivity of the vertices in C (which was 3 in G), they are at least 2–connected in G′. Invoking
Lemma 3.12, we are done.

12

3.2.5 Identifying a k-class Leaf

The following applies to any k ≥ 2, but for k = 2, 3 we have described more efficient procedures
(above). Our algorithm for finding leaf k-classes (k ≥ 2) is based on Karger’s Contraction Algo-
rithm [Kar93] which is a randomized algorithm for finding a minimum cut in a graph.

Algorithm 3.15 (k-Class Leaf Identification Procedure): Given a vertex s and a size bound n,

the following randomized search process is performed Θ(n2− 2
k) times, or until a cut (S,S) of size

less than k is found:

Random search process: Starting from the singleton set {s}, the algorithm maintains the set,
denoted S, of vertices it has visited. In each step, as long as |S| < n and the cut (S,S) has
size at least k, the algorithm selects at random (as specified below) an edge to traverse among
the cut edges in (S,S) and adds the new vertex reached to S. In case the cut (S,S) has size
less than k, we declare S to be a k-class leaf. If |S| = n the we complete the current search.
Otherwise, we proceed to the next step.

In case none of the Θ(n2− 2
k) invocations of the above process has detected a k-class leaf, we announce

failure to detect such a k-class.

Clearly, the query complexity and running time of Algorithm 3.15 are O(n2− 2
k · nd). If the

graph is k-connected (and has size greater than n), then for every possible starting vertex s, the
algorithm will announce failure to detect a k class of size at most n. Below we show that if s
belongs to a k-class leaf of size at most n, then the probability that any (independent) invocation

of the random search process succeeds is Θ
(

n−(2− 2
k
)
)

. Since the random search process is invoked

c · n2− 2
k times (for some constant c), for a sufficiently large constant c, the algorithm detects that

s belongs to a k-class leaf with probability at least 5/6. But before actually lower bounding the
success probability of the random search process, we have to fully specify the process (i.e., the
random selection of cut edges in the current (S,S)). Let C be the k-class leaf that s belongs to
(where |C| ≤ n). Then we are interested in a random process for which the probability that an
edge in (C,C) is selected before all edges within C are selected is as small as possible.

A natural idea is to select, in each step, an edge uniformly in the current (S,S); but this does
not work well.6 Instead, we think of uniformly and independently assigning each edge in the graph
a cost in [0, 1]. Then, at each step of the algorithm, we select the edge with lowest cost in the
current (S,S). This is implemented as follows: Whenever a new vertex is added to S, its incident
edges that were not yet assigned costs are each assigned a random cost uniformly in [0, 1]. Thus,
whenever we need to select an edge from the current cut (S,S), all edges in the cut have costs, and
we select the edge with lowest cost (just as in the mental experiment in which all graph edges are
assigned uniform costs at the beginning).

Lemma 3.16 Let G be a (k − 1)–connected graph, C a k-class leaf of TG with at most n vertices,

and s an arbitrary vertex in C. Then, with probability Θ
(

n−(2− 2
k
)
)

, the random search process

succeeds in finding the cut (C,C).

6 Consider the case k = 2 and a graph containing a cycle of n-vertices connected to the rest of the graph by a
single edge, denoted e = (v, u). Thus, the cycle is separated from the rest of the graph by a single cut edge e. Suppose
we start the random search at the cycle-node, denoted v, incident to e. Then, at each step until e is selected (i.e., u
joins S), the current cut (S, S) has 3 edges and e is one of them. Thus, the probability that e is selected in each step
is 1/3. It follows that the probability that all edges on the cycle are selected before e is selected (so that the random
search process detects the cycle as a k-class leaf), equals (2/3)n.

13

Proof: Assume first that instead of assigning the edges costs in an online manner as described
above, all edges in the graph are assigned random costs off-line (as in the motivating “mental
experiment”). We may think of our algorithm as simply revealing these costs as it proceeds.
Consider any assignment of costs to all edges in the graph. A spanning tree, T, of the subgraph
induced by C is said to be cheaper than the cut if the cost of every edge in T is smaller than the
cost of any of the cut edges between C and C.

Claim 3.16.1: Suppose that C contains a spanning tree that is cheaper than the cut (C,C). Then
the search process succeeds in finding (C,C).

Comment: The above claim presents a sufficient but not necessary condition for the success of
the search process. For example, the search may expand S by an edge with cost greater than any
cut-edge in case S is not incident to any cut-edge.

Proof of Claim 3.16.1: We prove, by induction on the size of the current S, that S ⊆ C. Specifically,
at each step there is a tree-edge in the current cut (S,S). Since this edge has lower cost than any
edge in (C,C), it follows that in this step the search cannot traverse an edge of (C,C). Using the
fact that |C| ≤ n, it follows that the search terminates with S = C. 2

Thus, all we need is to lower bound the probability that C contains a cheaper-than-the-cut spanning
tree. This is done by using Karger’s analysis of his contraction algorithm (for finding a minimum
cut) [Kar93]. Details follow.

Claim 3.16.2: Suppose that each edge is independently assigned a uniformly distributed cost in

[0, 1]. Then, with probability at least Θ
(

n−(2− 2
k
)
)

, C contains a spanning tree which is cheaper

than the cut.

Proof of Claim 3.16.2: We start by considering an auxiliary graph G′, in which all of C is represented
by an auxiliary vertex, denoted x. That is, V(G′) = C ∪ {x} and E(G′) contains all edges internal
to C and an edge (u, x) for every edge (u, v) such that u ∈ C and v ∈ C. Since C is a k–connected
class in G, the graph G′ has a single minimum cut of size k − 1; that is, the cut (C, {x}).

We now turn to Karger’s analysis of his Contraction Algorithm. Contraction is an operation
performed on a pair of vertices connected by an edge. When two vertices u and v are contracted,
they are merged into a single vertex, w, where for each edge (u, z) such that z 6= v, we have
an edge (w, z), and similarly for each edge (v, z′) (such that z′ 6= u). Thus, multiple edges are
allowed, but there are no self-loops. Given a graph as input, the Contraction Algorithm performs
the following process until two vertices remain: It selects an edge at random from the current graph
(which is initially the original graph), and contracts its endpoints (resulting in a new graph which
is smaller).7 An alternative presentation is to assign all edges uniformly chosen costs in [0, 1] and
to contract the cheapest edge at each step. Karger shows that the probability that the algorithm
never contracts a min-cut edge is at least 2n−2. In our case, this means that with probability at
least 2n−2, Karger’s algorithm does not contract an edge incident to x, which implies that C has a
spanning tree cheaper than the cut (C, {x}).

To obtain the better bound (i.e., Θ
(

n−(2− 2
k
)
)

) claimed above, we reproduce Karger’s analy-

sis [Kar93]. We consider an (n + 1)-vertex graph with min-cut of size c = k − 1 and such that,
except for one vertex (i.e., x), the degree of every vertex in the residual graph at any step of the

7Note that this is not the same as randomly selecting an edge between the set of vertices previously merged (S)
and the rest of the graph S, as here we allow the selection of any edge in the graph at each step.

14

Contraction Algorithm is at least D ≥ k. The degree of x remains k − 1, provided none of its
edges was contracted. Hence, for i = 1, ..., n − 1, at the ith step of the algorithm, the probability
of choosing to contract a cut edge is at most c

(c+(n−(i−1))·D)/2 (i.e., the size of the cut divided by

a lower bound on the number of current edges). The probability no cut edge is contracted in any
step of the algorithm is at least

n−1
∏

i=1

(

1− 2c

c+ (n− (i− 1))D

)

=
n−2
∏

i=0

(n− i)D − c
(n− i)D + c

=
n
∏

j=2

j − (c/D)

j + (c/D)
> Θ(n)−2c/D (2)

where the strict inequality is due to elementary algebraic manipulations (see Appendix B). In our
case, since all cuts in G′ other than the minimum cut (C, {x}) have size at least k, we can set
c = k − 1, D = k, and the claim follows. 2

Combining Claims 3.16.1 and 3.16.2, Lemma 3.16 follows.

3.2.6 Testing k-Connectivity of Graphs that are not (k −)–connected

So far we have assumed that the graph being tested (for k-connectivity) is (k − 1)-connected. In
this section we remove this assumption and show that (a slight modification of) Algorithm 3.9,
with distance parameter set to ǫ/O(k), rejects with probability at least 2/3 any graph that is ǫ-far
from being k-connected. This yields the general tester for k-connectivity asserted in Theorem 3.1.

Let us consider first what happens when we run Algorithm 3.9 on an (i − 1)–connected graph
which is ǫ-far from being i–connected, where i ≤ k. In this case, by Corollary 3.8 the auxiliary graph
TG (corresponding to the i-classes of the graph) has at least ǫ

16dN i-class leaves each containing at

most 16
ǫd vertices. Hence, with probability at least 1− (1− ǫd

16)
32
ǫd > 1− ǫ−2 > 5/6 a vertex belonging

to such a class is selected. We next observe that the Identification Procedure for k-class leaves is
such that when invoked inside a small i-class leaf it detects a cut of size i− 1 < k (with probability
at least 5/6). (We stress that this holds also for i = 1 (with probability 1), in which case this
means that the algorithm detects a small connected component.) Furthermore, the more efficient
Identification procedures for 2-class leaves (resp., 3-class leaves) can be easily modified so that they
detect small connected component (resp., small 2-class leaf), when the start vertex resides in such
a component (resp., class). Specifically, in Step (1) of the 2-Class procedure, one should declare
detection in case less than n + 1 vertices are found in the initial DFS. The 3-Class procedure is
modified analogously. Hence, with probability at least 2

3 , the algorithm will detect a small i-class
leaf and will reject.

However, in general the situation may be more complex: Although the graph may be ǫ-far
from being k–connected, it may be the case that there exists no i so that the graph is an (i− 1)–
connected graph and ǫ-far from being i–connected. Intuitively, the k-connectivity tester should
reject such graphs also with probability at least 2/3; but the question is how to prove this intuition.

Let G0
def
= G be a graph that is ǫ-far from being k–connected, and for i = 1, . . . , k, let Gi be an

i–connected graph (with maximum degree d) that is closest to Gi−1. By definition of the Gi’s there
exists an i such that Gi−1 (which is (i − 1)–connected), is ǫ/k-far from being i–connected (since
otherwise we would reach contradiction to G being ǫ-far from k-connected). Now, if the algorithm
were to run on this Gi−1 (with distance parameter ǫ/k) then it would reject with probability at
least 2/3. The problem, however, is that the algorithm runs on G. It is tempting to think that
nothing can go wrong, but there are two issues to take care to: Firstly, even if Gi−1 can be obtained
from G = G0 only by adding edges (so that G is a subgraph of Gi−1), it has to be shown that if

15

the algorithm rejects a graph it will also reject any subgraph of it. Secondly, it may not be the
case that Gi−1 can be obtained from G by just adding edges (since maintaining the degree bound
may cause us to omit edges as well – see proof of Lemma A.4). We start by addressing the second
problem. The following lemma allows us to simplify the analysis by considering the distance of the
graph to the class of i–connected graphs rather than to the class of i–connected graphs with degree
bound d. We stress that the minimum distance to the former class (which has no degree bound) is
obtained by only adding edges.

Lemma 3.17 Let G be a graph that is ǫ-far from the class of k-connected graphs with maximum
degree d, where either kN is even or d ≥ k + 1.8 Then the minimum number of edges which must
be added to G in order to transform it into a k-connected graph (without any bound on its degree),
is at least 1

26ǫdN .

Proof: Assume, contrary to the claim that in order to transform G into a k-connected graph it
suffices to augment it with m < 1

26ǫdN edges. We next show that by adding and removing at most
13m < 1

2ǫdN edges we can transform G into a k-connected graph which has maximum degree d, in
contradiction to the hypothesis.

Let Gk be a k-connected graph which results from augmenting G with m edges. Some of the
vertices in Gk might have degree larger than d. Hence we define the excess of Gk (with respect
to the degree bound d) as

∑

v, deg(v)>d(deg(v) − d). Since G has maximum degree d, and Gk was
obtained by augmenting G with m edges, the excess of Gk is at most 2m. We now show how by
performing at most 12m edge modifications to Gk, we can obtain a k-connected graph with excess
0 (i.e., maximum degree at most d). Thus, we transform G (via Gk) into a k-connected graph with
degree bound d by modifying at most m + 12m edges. At each step of the following process we
decrease the excess of the graph while retaining its k-connectivity.

While the excess of the graph is non-zero, do:

Case 1: There is an edge (u, v) such that deg(u) > d and deg(v) > k. In this case we start by
removing the edge (u, v) from the graph. If the graph remains k-connected, no additional
modification is needed. Otherwise (the graph becomes (k− 1)-connected), by Lemma A.2 (in
Appendix A), the auxiliary tree of the graph consists of a simple path, with u belonging to
one k-class leaf, and v to the other. Since v now has degree at least k, it cannot be a singleton
leaf (because leaves have exactly k− 1 edges going out of them). The same holds for u which
now has degree at least d ≥ k. We can thus apply Lemma A.3 on the two leaf k-classes, and
obtain a k-connected graph at the cost of 4 edge modifications. Thus, we have decreased the
excess by at least 1, at the cost of 1 + 4 = 5 edge modifications.

Case 2: For every vertex u such that deg(u) > d, all of u’s neighbors have degree k. (Recall that
no vertex may have degree lower than k since the graph is k-connected.) We consider two
subcases.

Case 2.a: There exist two vertices, u1 and u2, so that deg(ui) > d and all neighbors of ui

have degree k. Then there must exist two vertices v1 6= v2 such that v1 is a neighbor of
u1 and v2 is a neighbor of u2. (If u1 and u2 only had a single (common) neighbor, or
had edges between themselves, this would contradict the hypothesis that they both only
have degree k neighbors.) We add an edge between v1 and v2, increasing their degree to

8 Recall that the technical condition (i.e., either kN is even or d ≥ k + 1) is required as otherwise the class of
k-connected graph with maximum degree d is empty.

16

k + 1, and then apply Case 1 twice; that is, to the edges (ui, vi), for i = 1, 2. We have
decreased the excess of the graph by 2, at a cost of 1 + 2 · 5 = 11 edge modifications.

Case 2.b: There exist a single vertex, u, with degree greater than d (and all its neighbors have
degree k ≤ d). Here we further consider two subcases.

(i) deg(u) > d + 1. In such a case, we must remove at least two edges adjacent to u.
Let v1 6= v2 be any two neighbors of u (once again, the existence of two such distinct
vertices follows from the hypothesis that all of u’s neighbors have degree k). We
now proceed as in Case 2.a, by adding an edge between v1 and v2 and then applying
Case 1 to (u, v1) and then to (u, v2). We have decreased the excess of the graph by
2, at a cost of 1 + 2 · 5 = 11 edge modifications.

(ii) deg(u) = d+ 1. Let v be any neighbor of u (which, recall, must has degree k ≤ d).
Claim: There exists a vertex (other than v), denoted w, with degree smaller than d.
Before proving the claim, let us see how we complete the process in this case. First,
we add an edge between v and w, raising the degree of v to k+ 1 (where the degree
of w is now at most d). Applying Case 1 to the edge (u, v) we are done (at a cost
of 1 + 5 = 6 edge modifications).
Proof of Claim: Assume the claim does not hold. Then, except for u and v, all
vertices in the graph have degree d. We show that this is not possible by using
the lemma’s technical assumptions by which either d > k or dN = kN is even. In
case d > k, all neighbors of u other than v have degree d > k, contradicting the
hypothesis that all of u’s neighbors have degree k (and again, u must have such
neighbors since deg(v) = k < d + 1 = deg(u)). In case d = k we have that u has
degree d+ 1 and all other vertices in the graph have degree k = d, yielding a degree
sum of kN + 1 which is odd (and hence impossible). The claim follows. 2

Thus in all cases, a decrease of 1 unit in the excess of the graph is obtained at a cost of at most 6
edge modifications. Since the initial excess (of Gk) is at most 2m, we obtain the desired graph via
at most 2m · 6 = 12m edge modifications (to Gk). The lemma follows.

Following the discussion above, we slightly modify Algorithm 3.9 so that in Step (2) (rather than
looking for a k-class leaf) one looks for a small set of vertices which is separated from the rest of
the graph by a cut of size j < k. Such a set will be called j-separated, and is called j-extreme
if it contains no subset which is j′-separated for any j′ ≤ j. We also incorporate the change in
parameters (i.e., replacing ǫ by ǫ/O(k)). For sake of clarity, we reproduce the resulting algorithm
below.

Algorithm 3.18 (k-Connectivity Testing Algorithm – General version):

1. Uniformly and independently select m = O(k)
ǫd vertices;

2. For each vertex s selected, check whether for some j ≤ k, vertex s belongs to a j-extreme set
containing at most 200k

ǫd vertices.

3. If any such separated set is discovered then output REJECT, otherwise output ACCEPT.

Our procedures for Identifying k-class leaves are easily adapted to detect that a give vertex belongs
to a j-extreme set for some j < k (see details below). But first let us verify that Algorithm 3.18
constitutes a tester for k-connectivity. Clearly, Algorithm 3.18 always accept a k–connected graph

17

(having more than 200k
ǫd vertices). On the other hand, using Lemma 3.17 and observing that the

rejecting probability of Algorithm 3.18 can only increase when we remove edges from the graph,
we prove

Lemma 3.19 Algorithm 3.18 rejects with probability at least 2
3 any graph that is ǫ-far from the

class of k–connected graphs with maximum degree d.

Proof: Let G be ǫ-far from the class of k–connected graphs with maximum degree d. By
Lemma 3.17, at least m ≥ ǫdN

26 edges must be added to G in order to make it k–connected.
For every i ≥ 1, let us denote by mi the minimum number of edges that should be added to G in
order to make it i–connected, and let Gi denote an i–connected graph which results when adding
such mi edges to G. (We stress that Gi does not necessarily maintain the degree bound d.) Let

m0
def
= 0 and G0

def
= G. Then, there must exist an i ∈ {1, ..., k} so that mi −mi−1 ≥ m/k. Let us

consider any such i and let ǫ′
def
= ǫ/(26k).

It follows that in order to transform Gi−1 into an i–connected graph, we must augment it with
at least (m/k) = ǫ′dN edges. By applying Lemma A.2, it follows that the auxiliary tree of Gi−1

has a least 1
2ǫ

′dN leaves (or else Gi−1 can be transformed into a k-connected graph by adding at
most ǫ′dN − 1 edges).9 Following the argument in Corollary 3.3, at least 1

4ǫ
′dN of these leaves

have each at most 4
ǫ′d = 104k

ǫd vertices. Thus, with probability at least 1
4ǫ

′d = ǫd/O(k), a uniformly
selected vertex resides in such a component. Thus, if we were to run Algorithm 3.18 on Gi−1 then
the algorithm would reject with probability at least 2/3. What is left to show is that the rejection
probability of the algorithm on input graph G, which is a subgraph of Gi−1, is not smaller. The
key observation is that if a vertex, s, belongs to some i-class leaf, C, of Gi−1 then for j ≤ i vertex
s must belong to some j-extreme set C′ ⊆ C of G (which is a subgraph of Gi−1). It follows that
the number of small (disjoint) extreme sets in G is lower bounded by the number of i-class leaves
in Gi−1, and the lemma follows.

Detecting extreme sets: Algorithm 3.15 (for detecting k-class leaves) actually detect j-extreme
sets, for any j ≤ k. This can be verified by going over the proof of Lemma 3.16 and noting that it
relies only on the hypothesis that the relevant set (in that case the k-class leaf) is in fact j-extreme
(there for j = k). It follows that a single iteration of the random search process started in a

j-extreme set of size j will detect the set with probability at least O(n2− 2
j) if j ≥ 2 and probability

1 otherwise (for j = 1 which means that the set is a connected component). Algorithm 3.11
(resp., Algorithm 3.13) for detecting 2-class (resp., 3-class) leaves actually detects 2-extreme (resp.,
3-extreme) sets. But we need to modify it a little so that it may detect j-extreme sets, for any
j ≤ 2 (resp., j ≤ 3). These modifications were already discussed in the beginning of the current
subsection.

Finally, to derive Theorem 3.1, we modify Algorithm 3.18 analogously to the way Algorithm 3.4
was modified to obtain Algorithm 3.5. Observe that our analysis of the execution of the algorithm
on graphs which are far from being k-connected only refers to a collection of disjoint extreme sets.
For any such set S (which is j-extreme for some j ≤ k), the probability that a uniformly selected

vertex resides in it equals |S|
N . Moreover, on input a vertex in S and a size bound n ≥ |S| the

cut (S, S) is detected with high probability (say with probability at least 0.9) within time Tk(d, n),

9 Note that since we don’t require the resulting graph to maintain the degree bound, this simpler lemma suffices
(and we don’t need the more sophisticated Lemma 3.7, which in turn relies on Lemma A.4).

18

where Tk(d, n) denotes the running time of our procedures for identifying j-extreme sets for j ≤ k
(analogously to the definition in Lemma 3.10). Using an analysis as in the proof of Lemma 3.6 the
complexities asserted in Theorem 3.1 follow.

4 Testing if a Graph is Cycle-Free (a Forest)

The testing algorithm described in this section is based on the following observation. Let G be the
tested graph and C1,C2, . . . ,Ck its connected components. By definition, if G is cycle-free then
each of its components is a tree. In such a case, each Ci has |Ci| − 1 edges, and the total number
of edges in G is N − k. On the other hand, if G is far from being cycle-free then it has many more
edges within its components, where these edges create cycles inside the components. Each such
“superfluous” edge resides either in a small component or in a big component (where the notions
of small and big are made precise in the formal analysis of the algorithm). If there are many extra
edges residing in small components, then (due to the degree bound) there must be many vertices
that belong to such small components. In this case, if we uniformly select a large enough number of
vertices, with high probability we obtain such a vertex, and we can detect that its component has
extra edges (i.e., contains cycles), by performing a search. Otherwise, there are many extra edges
residing in big components (whom we cannot exhaustively search). In this case we consider the
subgraph of G that consists of all big components and detect a discrepancy between its edge count
and its vertex count. Since here the number of components is relatively small it cannot account for
this discrepancy.

The above discussion suggest the following algorithm.

Algorithm 4.1 (Cycle-Freeness Testing Algorithm):

1. Uniformly and independently select ℓ = Θ
(

1
ǫ2

)

vertices;

2. For each vertex s selected, perform a BFS starting from s until 8
ǫd vertices are reached or no

more new vertices can be reached (s belongs to a small connected component);

3. If any of the above searches found a cycle then output REJECT (otherwise continue);

4. Let n̂ be the number of vertices in the sample which belong to connected components of size
greater than 8

ǫd , and let m̂ be half the sum of their degrees. If m̂−n̂
ℓ ≥ ǫd

16 then output REJECT,
otherwise output ACCEPT.

Theorem 4.2 Algorithm 4.1 is a testing algorithm for the Cycle-Free property whose query com-

plexity and running time are O
(

1
ǫ3 + d

ǫ2

)

.

Proof: Since each BFS takes time O(1/(ǫd) · d) = O(1/ǫ), and ℓ = O(1/ǫ2) such searches are
performed, Steps 1-3 of the algorithm takes O(1/ǫ3) time. Step 4 takes at most ℓ · d = O(d/ǫ2)
time, and we obtain the complexity bounds stated in the lemma. We now turn to establish that
Algorithm 4.1 is indeed a tester for cycle-freeness. We start with the quality of the approximations
performed in Step (4).

We say that a component is small if it contains less than 8
ǫd vertices, otherwise it is big. Let

us denote by t the number of big components. We first establish that with probability at least 2
3

both estimates done in Step (4) are accurate to within (ǫd)/32. Let N ′ be the number of vertices

19

belonging to big components, and letM ′ be the number of edges in big components. For i = 1, . . . , ℓ,
let χi be a 0-1 random variable that equals 1 if and only if the ith vertex selected belongs to a
big component. Then n̂ =

∑

i χi, and the expected value of n̂
ℓ is N ′

N . By a Chernoff bound, since
ℓ = Θ(1/ǫ2), then for an appropriate constant in the Θ(·) notation, with probability at least 5/6, we

have
∣

∣

∣

n̂
ℓ − N ′

N

∣

∣

∣ < ǫ
32 . Similarly, for i = 1, . . . , ℓ, let ψi be a random variable taking values between

0 and d, that equals the degree of the ith vertex selected if it belongs to a big component, and 0
otherwise. Then m̂ = 1

2

∑

i ψi, and the expected value of m̂
ℓ is M ′

N . Applying a Chernoff bound once
again (while noting that the range of the random variables is [0, d]) we obtain that with probability

at least 5/6,
∣

∣

∣

m̂
ℓ − M ′

N

∣

∣

∣ < ǫd
32 . From this point on we assume that these estimates in fact hold, so

that
∣

∣

∣

m̂−n̂
ℓ − M ′−N ′

N

∣

∣

∣ < ǫd
16 . The probability (of at most 1/3) that these estimates are not within

these bounds accounts for the probability that the testing algorithm fails.

In case G is cycle-free, the algorithm never rejects in Step (2). Furthermore, in this case we
have M ′ −N ′ = −t ≤ 0, and so by our assumption on the estimates n̂ and m̂, m̂−n̂

ℓ < ǫd
16 , so that

the algorithm accepts in Step (4).

We now consider the case that G is ǫ-far from cycle-free. For any connected component in G
having n vertices and m edges, we define m − (n − 1) ≥ 0 to be the number of superfluous edges
in the component. Since G is ǫ-far from cycle-free the total number of superfluous edges is at least
1
2ǫdN . We consider two cases:

Case 1: There are ǫdN
4 superfluous edges inside small components. Consider a (small) component

having s superfluous edges. Then using the degree bound d, this component must contain at
least 2s/d vertices. Thus, the total number of vertices in small components which contain
superfluous edges is at least ǫN

2 . Recall that if a connected component has a superfluous
edge then it necessarily has a cycle. Hence, in this case a cycle is detected in Step (2) with
probability at least 1− (1− ǫ

2)ℓ > 2
3 .

Case 2: There are ǫdN
4 superfluous edges inside big components. Recall that t denotes the number

of big components, and N ′ (resp., M ′) the number of vertices (resp., edges) in them. By
definition of superfluous edges, we have M ′ − (N ′ − t) ≥ ǫdN

4 . Since t ≤ N
8/(ǫd) = ǫdN

8 , we get

that M ′−N ′

N ≥ ǫd
8 . By our assumption on the estimates n̂ and m̂, we obtain m̂−n̂

ℓ > ǫdN
16 so

that the algorithm rejects in Step (4).

Remark: The above tester has two-sided error probability. The next proposition, whose proof is
provided at the end of Subsection 7.1, asserts that this is unavoidable if one allows only o(

√
N)

many queries.

Proposition 4.3 Any algorithm for testing cycle-freeness that always accept cycle-free graphs must
make Ω(

√
N) queries.

5 Testing Subgraph Freeness

Two graphs, G1 = (V1,E1) and G2 = (V2,E2), are called isomorphic if there is a 1-1 and onto
mapping π : V1 → V2 so that (u, v) ∈ E1 iff (π(u), π(v)) ∈ E2. A graph G is H-free, if no subgraph

20

of G is isomorphic to H; that is, for every 1-1 mapping φ : V(H) → V(G) there exist u, v ∈ V(H)
so that (u, v) ∈ E(H) but (φ(u), φ(v)) ∈ E(G).

A natural algorithm for testing H-freeness consists of selecting a vertex at random and checking
if it participates in a subgraph of G which is isomorphic to H. Let diam(H) denote the diameter of
H (where the diameter of a connected graph is the largest distance between any pair of vertices in
the graph). Then starting at a random vertex, we should just search G up to distance diam(H).

Algorithm 5.1 (H-freeness Testing Algorithm):

1. Uniformly and independently select m = Θ
(

1
ǫ

)

vertices in G;

2. For each vertex s chosen, perform a BFS starting from s up to depth diam(H).

3. If any of the above searches found a subgraph isomorphic to H then output REJECT, otherwise
output ACCEPT.

Theorem 5.2 Algorithm 5.1 is a testing algorithm for the H-freeness property whose query com-

plexity and running time are O
(

ddiam(H)

ǫ

)

and O
(

ddiam(H)·|V(H)|+1·|V(H)|
ǫ

)

, respectively.

Proof: Clearly, if G is H-free it is accepted with probability 1. Since in each search at most
ddiam(H) queries are asked (as diam(H) is the depth of the BFS), the algorithm’s query complexity

is O
(

ddiam(H)

ǫ

)

. Let R denote the subgraph of G reached during the BFS in Step 2. Then, the third

step of the algorithm (i.e., looking for a subgraph isomorphic to H) can be implemented by trying
all possible 1-1 mappings of H into R, and for each such mapping checking if the induced subgraph
contains the edges of H. Thus, the time complexity is bounded by |V(R)||V(H)| · d|V(H)|. Since
|V(R)| ≤ ddiam(H) the bound in the theorem follows.

It remains to show that if G is ǫ-far from the class of H-free graphs then the Algorithm 5.1
rejects it with probability at least 2

3 . But this follows directly from the definition of ǫ-far: If G is
ǫ-far from the class of H-free graphs then it contains at least ǫ

2dN edges that reside in subgraphs of
G which are isomorphic to H. Since the degree of every vertex is at most d, there are at least ǫN

vertices that reside in such subgraphs. Since the algorithm uniformly selects Θ
(

1
ǫ

)

vertices, with

probability 2/3 at least one of these vertices resides in such a subgraph, and this will be detected
in the third step of the algorithm.

The above algorithm extends to testing whether the input graph G has no subgraph isomorphic to
any of a fixed collection of graphs H1, ...,Hk . Alternatively, we note that although, in general, prop-
erty testing is not closed under intersection of properties [GGR98], closure does hold for monotone
decreasing graph properties (such as H-freeness). That is,

Theorem 5.3 Let Π1 and Π2 be two graph properties that are monotone decreasing; that is, if
G ∈ Πi then every subgraph of G is in Πi. Suppose that Ai is an algorithm for testing property
Πi having failure probability 1/6 (rather than 1/3). Then an algorithm that on input graph G and
distance parameter ǫ invokes both Ai’s on G with distance parameter ǫ/2, and accepts if and only
if both accept, is a property tester for the conjunction of Π1 and Π2.

We comment that the above theorem extends also to arbitrary properties that are monotone de-
creasing (i.e., classes of arbitrary functions that are not necessarily graph properties).

21

Proof: Let Π1,2 denote the property that is defined by the conjunction of Π1 and Π2. Clearly,
if G has property Π1,2 then each of the two algorithms will reject it with probability at most 1/6,
and hence the combined algorithm rejects with probability at most 1/3. The key claim is that, in
case both properties are monotone decreasing, if G is ǫ-far from Π1,2 then G must be either ǫ/2-far
from Π1 or ǫ/2-far from Π2, in which case it is rejected by either A1 or A2 (with probability at
least 5/6 > 2/3). Suppose, on the contrary that G is ǫ′ = ǫ/2-close to both Π1 and Π2. Let G1 be
a graph having property Π1 that is at distance ǫ′ from G, and let G2 be a graph having property
Π2 that is at distance ǫ′ from G. Consider a maximal graph, denoted G′, which is a subgraph of
the three graphs G, G1 and G2. Namely, E(G′) = E(G) ∩ E(G1) ∩ E(G2). By monotonicity of
both properties, G′ has property Π1,2. By definition of G′, E(G′) ⊆ E(G). Finally, any edge that
appears in G and not in G′ must be missing in either G1 or G2, and so is counted in their distances
to G. This implies that

distd(G,G
′) =

2 · |E(G) \ E(G′)|
Nd

≤ 2 · |E(G) \ E(G1)|+ 2 · |E(G) \ E(G2)|
Nd

≤ 2ǫ′ = ǫ

But this contradicts the fact that G is ǫ-far from Π1,2, and the theorem follows.

6 Testing if a Graph is Eulerian

A graph G = (V,E) is Eulerian if there exists a path in the graph that traverses every edge in
E exactly once. It is well known that a graph is Eulerian if and only if it is connected and all
vertices have even degree or exactly two vertices have odd degree. The testing algorithm is quite
straightforward. In addition to testing connectivity (as done in subsection 3.1), we sample vertices
and reject whenever we see more than two vertices of odd degree.

Algorithm 6.1 (Eulerian Testing Algorithm):

1. Invoke Algorithm 3.5 with distance parameter ǫ/2, and REJECT if that algorithm rejects.

2. Uniformly and independently select m = O(1/ǫd) vertices in the graph, determine the degree
of each vertex, and REJECT if more than two different vertices have odd degree. Otherwise
ACCEPT.

That is, initiate S ← ∅, and repeat the following steps m times.

(a) Uniformly select a vertex v in the graph;

(b) If the degree of v is odd then S ← S ∪ {v}.
If |S| > 2 the REJECT else ACCEPT.

Thus, we test the two properties whose conjunction yields the desired property. However, the
analysis does not reduce to showing that each of the two sub-testers is valid – as property testing
of a conjunction of two sub-properties does not reduce in general to the property testing of each
of the two sub-properties [GGR98]. Nonetheless, the following lemma does establish the validity of
our tester.

Lemma 6.2 Let G be a graph that is ǫ-far from the class of Eulerian graphs with maximum degree
d. Then, it either has more than ǫ

8dN connected components, or it has more than ǫ
16dN vertices

with odd degree.

22

Proof: Assume contrary to the claim that G has at most ǫ
8dN connected components, and at

most ǫ
16dN vertices with odd degree. We now show that by adding and removing less than ǫ

2dN
edges we can transform G into a Eulerian graph (while maintaining the degree bound).

First consider the case in which d ≥ 2 is even, and hence all odd degree vertices have degree
less than d. In such a case, we first pair all these vertices up and add an edge between every pair
(using at most ǫ

32dN edges). Clearly, the number of connected components can only decrease in
this process. At this point, all vertices have even degree, which in particular means that all (at
most ǫ

8dN) connected components either consist of a single vertex (with degree 0) or have a cycle
in them. We can then remove one edge from each non-trivial component, and then connect all
components in a cycle without raising the degree of any vertex above d. Specifically, in case the
edge (ui, vi) was removed from the ith component then we connect ui (resp., vi) to a vertex of the
i − 1st (resp., i + 1st) component. Thus, the resulting graph is connected and all its vertices have
even degree. The total number of edge modifications is bounded by ǫdN

32 + 2 · ǫdN
8 < ǫdN

2 .

In case d is odd, we first remove a single incident edge from each vertex of degree d. Since
there are at most ǫ

16dN vertices of odd degree, at most ǫ
16dN edges were removed. The number of

vertices of odd degree cannot increase (as each edge omission flips the parity of the degrees of both
end-points, and at least one of these degrees was odd). The number of connected component may
increase by at most ǫ

16dN , and so is now at most 3ǫ
16dN . The resulting graph has degree at most

d− 1, which is even, and so we can apply the procedure of the even case (above). In this case, we
obtain an Eulerian graph of degree at most d− 1 by making at most

ǫdN

16
+

(

ǫdN

32
+ 2 · 3ǫdN

16

)

<
ǫdN

2

edge modifications.

Theorem 6.3 Algorithm 6.1 is a testing algorithm for the Eulerian property whose query complex-

ity and running time are O
(

log2(1/(ǫd))
ǫ

)

.

Proof: Algorithm 6.1 has complexities as stated and clearly accepts any Eulerian graph. Now
suppose it is given access to a graph that is ǫ-far from any Eulerian graph (with maximum degree
d). Then, by Lemma 6.2, one of the following cases holds.

Case 1: The graph has at least ǫ
8dN connected components. By adapting the figures in the proof of

Lemma 3.6 it follows that with probability at least 2/3, Algorithm 6.1 rejects in Step (1).

Case 2: The graph has at least ǫd
16 ·N vertices of odd degree. Thus, the probability that a uniformly

selected vertex has odd degree is at least ǫd/16. With an appropriate choice of m = O(1/ǫd),
it follows that with probability at least 2/3 more than two odd degree vertices are seen in
Step (2), and the algorithm rejects.

Thus, in both cases Algorithm 6.1 rejects with probability at least 2/3 as required.

7 Hardness Results

In this section we present several lower bounds on the query complexity and running time required
for testing various properties.

23

7.1 Testing Bipartiteness

A graph is said to be bipartite if its set of vertices can be partitioned into two disjoint sets so
that there are no violating edges. An edge is said to be violating with respect to a given partition
(V1,V2), if both its endpoints are either in V1 or in V2. An equivalent characterization of bipartite
graphs is that they contain no odd-length cycles. In this section we show that any algorithm for
testing whether a graph is bipartite has query complexity Ω(

√
N). This lower bound stands in

contrast to a result on testing bipartiteness which is described in [GGR98]. In [GGR98] a graph is
assumed to be represented by its N × N adjacency matrix, and the distance between two graphs
is defined to be the fraction of entries on which their respective adjacency matrices differ. Thus,
in this model, a testing algorithm for a certain graph property should distinguish between the case
in which the graph has the property, and the case in which one must add and/or remove at least
1
2ǫN

2 edges in order to transform the graph into a graph that has the property. In [GGR98] there
is an algorithm for testing bipartiteness in this model whose query complexity and running time
are poly(1/ǫ). Recall that in the current paper, graphs are represented by incident lists of length d
and distance is measured as (twice) the number of edge modifications divided by dN (rather than
by N2).

Theorem 7.1 Testing Bipartiteness with distance parameter 0.01 requires 1
4 ·
√
N queries.

Proof: We describe two families of degree-3 N -vertex graphs that are hard to distinguish by any

algorithm which makes less than
√
N/4 queries: A typical member of one family is 0.01-far from

being bipartite, whereas all members of the second family are bipartite graphs. Specifically, we fix
any testing algorithm that makes less than

√
N/4 queries, and consider its decision when given a

graph uniformly selected in one of these families. The indistinguishability claim implies that on the
average, such an algorithm will accept the random input graph, with about the same probability
regardless of the family it was selected from. But this contradicts the requirement from a testing
algorithm, since it should accept every member of the second family with probability at least 2/3
while for almost all members of the second family it is allowed acceptance probability smaller than
1/3.

We start with the construction of both families: Let N be an even integer.10

1. The first family, denoted GN
1 , consists of all degree-3 graphs that are composed of the union

of a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting the
vertices in a cycle, and the other N/2 edges are a perfect matching.

2. The second family, denoted GN
2 , is the same as the first except that the perfect matchings

allowed are restricted as follows: the distance on the cycle between every two vertices that
are connected by an perfect matching edge must be odd.

In both cases we assume that the edges incident to any vertex are labeled in the following fixed
manner: Each cycle edge is labeled 1 in one endpoint and 2 in the other. This labeling forms an
orientation of the cycle. The matching edges are labeled 3.

Clearly, all graphs in GN
2 are bipartite as all cycles in the graph are of even length. We next

prove that almost all graphs in GN
1 are far from being bipartite. Afterwards, we show that a testing

10 For odd N , every graph (in both families) contains one degree-0 vertex, and the rest of the vertices are connected
as in the even case.

24

algorithm that performs less than α
√
N queries (for some constant α < 1) is not able to distinguish

between a graph chosen randomly from GN
2 (which is always bipartite) and a graph chosen randomly

from GN
1 (which with high probability is far from bipartite).

Lemma 7.2 With probability at least 1− exp(−Ω(N)), a graph chosen randomly in GN
1 is 0.01-far

from the class of bipartite graphs.

Proof: We fix a certain ordering of the vertices on the cycle and consider all possible partitions
of the graph vertices into two sets. We say that an edge (u, v) is a violating edge with respect to
a partition (V1,V2) if for i ∈ {1, 2} both u and v belong to the same Vi. We show that with high
probability (over the choice of the matching edges) all such partitions have at least 1

64N violating

edges (and since d = 3, this implies that the graph is ǫ-far from bipartite for ǫ = 2·(N/64)
dN = 1

96).

Consider a particular partition (V1,V2) of V. We consider two cases:

1. There are at least 1
64N violating cycle edges with respect to (V1,V2). In this case we are

done no matter how the matching edges are chosen.

2. There are less than 1
64N violating cycle edges. In this case we show that with probability at

least 1− exp(− 7
32N), over the choice of the matching edges, there are at least 1

64N violating
matching edges with respect to (V1,V2).

We first observe that a random matching can be constructed by selected at each step any
arbitrary vertex that is yet unmatched, and matching it with another unmatched vertex that
is selected uniformly. Thus, assume without loss of generality that |V1| ≥ N/2 and consider
the following process for choosing a random matching. Starting from j = 1, select an arbitrary
vertex v in Vj , and match it with a randomly chosen unmatched vertex u. In case u ∈ Vj , the
edge (v, u) is a violating edge with respect to (V1,V2). If the number of unmatched vertices
in Vj is smaller than the number of unmatched vertices in the other side of the partition then
in the next step switch sides (i.e., let j ← 3− j).
By definition of the process, we always try to match a vertex from the side having more
unmatched vertices. Hence, at each step we create a violating edge with probability at least
1
2 (independent of the past events), and so the probability that less than 1

64N violating edges
are created (in the N/2 steps) is upper bounded by the probability that when tossing N/2
unbiased coins, less than N/64 turn out heads. The probability of the latter event is

(N/64)−1
∑

i=0

(

N/2

i

)

· 2−N/2 < 2(H(2/64)+o(1))·N
2 · 2−N/2 < 2−0.3N (3)

where H(p)
def
= −p log p − (1 − p) log(1 − p) is the (binary) entropy function, and the first

inequality follows from the bound
(n
k

) ≤ 2nH(k/n) (see [CT91, Page 284]).

Given the above, we upper bound the probability that there exists a partition with less than N/64
violating edges, by summing, over all possible partitions (V1,V2), the probability that (V1,V2) has
less than N/64 violating edges. We group all possible partitions into two categories corresponding
to the above two cases. The contribution of each partition of the first category (i.e., Case 1) to
the sum is zero, since by definition each of these partitions has at least 1

64N violating cycle edges.
The contribution of each partition of the second category is at most exp(− 7

32N). We multiply the
latter bound by the number of partitions of the second category. The number of such partitions

25

is computed by observing that, for any fixed i ≤ N , each partition which has i violating cycle

edges is determined by the choice of those i violating edges. Thus there are
∑(N/64)−1

i=0

(N
i

)

< 20.2N

partitions with less than 1
64N violating cycle edges. (We use H(1/64) + o(1) < 0.2.) Thus, the

probability that there exists a partition with less than N/64 violating edges is upper bounded by
20.2N · 2−0.3N = exp(−Ω(N)), and the lemma follows.

We now turn to showing that a testing algorithm which performs less than α
√
N queries (for

some constant α < 1) is not able to distinguish between a graph chosen randomly from GN
2 and a

graph chosen randomly from GN
1

Notation. Let A be an algorithm for testing bipartiteness using ℓ = ℓ(N) queries. Namely, A
is a (possibly probabilistic) mapping from query-answer histories [(q1, a1), . . . , (qt, at)] to qt+1 ∈
V × {1, 2, 3}, for every t < ℓ, and to {accept, reject}, for t = ℓ. A query qt is a pair (vt, it), where
vt ∈ V and it ∈ {1, 2, 3}, and an answer at is simply a vertex ut ∈ V. We assume that the mapping
is defined only on histories which are consistent with some graph. Any query-answer history of
length t−1 can be used to define a knowledge graph, Gkn

t−1, at time t−1 (i.e., before the tth query).
The vertex set of Gkn

t−1 contains all vertices which appear in the history (either in queries or as
answers), and its edge set contains the edges between vt′ and at′ for all t′ < t (with the appropriate
labelings – it′ at vertex vt′). Thus, Gkn

t−1 is a labeled subgraph of the labeled graph tested by A.

Overview. In what follows we describe two random processes, P1 and P2, which interact with an
arbitrary algorithm A, so that for j ∈ {1, 2}, Pj answers A’s queries while constructing a random
graph from GN

j . Thus, the interaction of Pj with A captures a (random) execution of A on a graph

uniformly distributed in GN
j . (The fact that the input graph is randomly constructed “online”

while the algorithm is making queries to it is immaterial; what is important is that the distribution
over the graphs constructed is exactly uniform over GN

j .) For a fixed A that uses ℓ queries, and

for j ∈ {1, 2}, let DA
j denote the distribution on query-answer histories of length ℓ induced by

the interaction of A and Pj . We show (below) that for any A that uses ℓ ≤ α
√
N queries, the

statistical difference between DA
1 and DA

2 is at most 4α2, where the statistical difference between
distributions D1 and D2 is defined as

1

2
·
∑

α

|Prob[D1 = α]− Prob[D2 = α]| = max
f :{0,1}∗ 7→{0,1}

|Prob[f(D1) = 1]− Prob[f(D2) = 1]| (4)

In what follows we first define the two processes and prove that they in fact induce the desired
(uniform) distribution over the respective classes of graphs. We then prove the bound mentioned
above on the statistical difference between DA

1 and DA
2 , and show that Theorem 7.1 follows by

combining this bound with Lemma 7.2.

We start by defining P1. The process has two stages. In the first stage, which goes on as long
as the algorithm performs queries, the exact position of the vertices on the cycle is undetermined.
However, each vertex that is introduced into the knowledge graph of the algorithm, following some
query, is assigned the parity of its future position on the cycle (but this bit is not given to A).
That is, we think of the N positions on the cycle as being numbered from 0 to N − 1, and a vertex
which is assigned even (resp. odd) parity, will be allowed to be positioned only in even (resp.
odd) cycle positions in the second stage. Thus, in this stage, the process essentially maintains the
knowledge graph (which is extended according to the query-answer pairs), and keeps one additional
bit per vertex. Observe that by our convention on the labeling of the edges, the knowledge graph
maintained during the first stage can be viewed as “floating” (cycle) sections some of which are
connected by arcs (the matching edges). In the second stage, all vertices in the final knowledge

26

graph are positioned on the cycle randomly in a way that is consistent with the position-parity of
the vertices, and so the knowledge graph edges that are labeled 1 or 2 coincide with cycle edges.
Thus these sections “stop floating” and are restricted to fixed positions. Finally, all vertices that
do not belong to the knowledge graph are randomly positioned on the remaining cycle positions
and all unmatched vertices are randomly matched.

First Stage of P: Starting from t = 1, for each query qt = (vt, it) of A, process P1 proceeds as
follows:

1. If vt belongs to Gkn
t−1 then there are three cases:

(a) This edge already exists in the knowledge graph (i.e., there exists an edge (vt, u) in Gkn
t−1

and this edge is labeled it at the endpoint vt). In this case P1 answers “u” (and the
knowledge graph remains unchanged).

(b) it = 3 and vt is unmatched in Gkn
t−1 (i.e., there is no edge (vt, ·) in Gkn

t−1 that is labeled 3).
In this case P1 selects a random unmatched vertex u ∈ V (where u may belong to Gkn

t−1)
and answers “u”. If u did not belong to Gkn

t−1, then it is assigned a position-parity in
the following manner: Let ne be the number of vertices in Gkn

t−1 that were assigned even
parity, and let no be the number that where assigned odd parity. Then u is assigned
even parity with probability (N/2)−ne

N−(ne+no) and odd parity otherwise. In any case, the edge

(vt, u) is added to the knowledge graph (with label 3).

(c) it ∈ {1, 2} and there is no edge incident to vt in Gkn
t−1 which is labeled it (at vt). Suppose,

without loss of generality, that it = 1 and vt has even parity. Let Xo,2 be the set of
vertices in Gkn

t−1 which have odd parity, and do not have an incident edge labeled 2.

Let no,2
def
= |Xo,2|. Then P1 first flips a coin with bias

no,2

(N/2)−no+no,2
to decide whether

to select a vertex in Xo,2. If so, it uniformly selects a vertex in Xo,2. Otherwise, it
uniformly selects a vertex not in Gkn

t−1. In either case, let the selected vertex be u. Then
the process answers “u”, and if u does not belong to Gkn

t−1, it is assigned odd parity (i.e.,
parity opposite to vt). In either case, the edge (vt, u) is added to the knowledge graph
(with label it at vt).

2. If vt does not belong to Gkn
t−1, process P1 first assigns vt parity as described in (1b) above,

adds vt to the knowledge graph, and next answers the query as in (1).

Second Stage of P: After all queries are answered, do the following:

1. Among all possible ways to embed Gkn
ℓ on the cycle, select one uniformly, where a possible

embedding of Gkn
ℓ on the cycle must satisfy the following conditions.

(a) Every vertex is assigned a cycle position (i.e., an integer in {0, . . . , N − 1}) with parity
matching the vertex’s parity bit.

(b) Vertices connected by a cycle edge in Gkn
ℓ are assigned adjacent positions on the cycle.

Furthermore, if v is assigned position j on the cycle, and v has an edge labeled “1”
connecting it to u in Gkn

ℓ , then u must be assigned position (j + 1) (mod N)).

2. Next, randomly position all other vertices on the cycle,

3. Finally, match all unmatched vertices randomly.

27

Process P is the same as P1, except when randomly matching vertices in Step (1b) of the first
stage and Step (3) of the second. Whereas process P1 matches vertices at random (regardless of
their position-parity), process P2 may match two vertices only if they have opposite position-parity.
The modification to the second stage of P2 is self-evident (i.e., in Step (3) we randomly match the
even-parity vertices with the odd-parity vertices). We also modify Step (1b) of the first stage –
when choosing a vertex to match vt, process P2 only considers vertices in Gkn

t−1 that have opposite
parity of vt. Without loss of generality, assume vt has even parity. Let Xo,3 be the set of vertices

in Gkn
t−1 that have odd parity, and do not have an incident edge labeled 3. Let no,3

def
= |Xo,3|.

Then P2 first flips a coin with bias
no,3

(N/2)−no+no,3
to decide if to select a vertex in Xo,3. If so, it

uniformly selects a vertex in Xo,3. Otherwise, it uniformly selects a vertex not in Gkn
t−1. The rest

of the process, and in particular the assignment of parity to new vertices (i.e., Step (2)), remains
unchanged.

We first show that the above two processes indeed generate a uniformly distributed graph in the
corresponding family.

Lemma 7.3 For every algorithm A and for each j ∈ {1, 2}, the process Pj , when interacting with
A, uniformly generates graphs in GN

j .

Proof: We’ll prove this by induction on the number of queries, ℓ, that A performs. Since every
probabilistic algorithm can be viewed as a distribution on deterministic algorithms, it suffices to
prove the lemma for any deterministic algorithm A. Also note that the (accept/reject) output of
the algorithm is irrelevant to the claim and hence we view the algorithm only as a mapping from
query-answer histories to queries.

The base case, ℓ = 0 is clear since the knowledge graph is empty, and so in Stage 2 process Pj

generates a random graph in GN
j from scratch. Assuming the claim is true for ℓ− 1, we prove it for

ℓ. Let A be an algorithm that performs ℓ queries, and let A′ be the algorithm defined by stopping
A before it asks the ℓth query. By the induction hypothesis, we know that Pj when interacting
with A′ uniformly generates graphs in GN

j . We thus need to show that the same will be true if the

second stage of Pj is performed following the ℓth query of A. We need to consider the following
cases, depending on the query qℓ = (vℓ, iℓ) of A. We may assume without loss of generality that
the answer to the query cannot be derived from the algorithm’s knowledge graph, since this would
be equivalent to asking no query (in which case the knowledge graph does not change and so the
distribution on Pj ’s output after ℓ steps is identical to its output after ℓ− 1 steps).

1. iℓ = 3, and vℓ belongs to the algorithm’s knowledge graph, Gkn
ℓ−1. Consider first the process

P1 (when interacting with A′). The probability that P1 matches vℓ (in the second stage) to
any vertex (either in Gkn

ℓ−1 or not) is clearly independent of the exact ordering of the vertices
on the cycle. Hence, by first answering this query and then performing the second stage of
Pj we are only changing the order in which the final graph is constructed.

In the case of P2, the probability that P2 matches vℓ to any vertex is still independent of the
exact ordering of the vertices on the cycle, but it does depend on the parity of the vertices.
In particular, assume without loss of generality that vℓ has even parity. Then in any possible
matching done in the second stage following the interaction with A′, the only vertices in
Gkn

ℓ−1 that vℓ can be matched to are vertices in Xo,3. (Recall that Xo,3 is the set of vertices
assigned odd parity that do not have an incident edge labeled 3.) On the other hand, in any
possible embedding of the vertices on the cycle, there are exactly (N/2) − no vertices not in

28

Gkn
ℓ−1 that have odd parity and thus may be matched to vℓ. (Recall that no is the number

of vertices assigned odd parity.) This implies that vℓ is matched to some vertex in Xo,3 with

probability
|Xo,3|

|Xo,3|+(N/2)−no
, and to some vertex not in Gkn

ℓ−1, with probability (N/2)−no

|Xo,3|+(N/2)−no
.

Furthermore, conditioned on the event that vℓ is matched to a vertex in Xo,3, this vertex
is distributed uniformly in Xo,3. Similarly, conditioned on the event that it is matched to
a vertex not in Gkn

ℓ−1, this vertex is uniformly distributed among vertices not in Gkn
ℓ−1. But

these probabilities are exactly as defined in Step (1b) of P2.

Therefore, for both processes the induction step holds in this case.

2. iℓ = 3, and vℓ does not belong to Gkn
ℓ−1. This case is reduced to the previous one, provided

that the parity of vℓ is chosen with the correct probability. In the second stage each vertex is
assigned parity at random according to the proportion of missing vertices (with this parity).
This is exactly the assignment rule of Step (2) in the first stage.

3. iℓ ∈ {1, 2}, and vℓ belongs to Gkn
ℓ−1. Assume, without loss of generality, that iℓ = 1 and vℓ has

even parity. Clearly, in any embedding of Gkn
ℓ−1 on the cycle, vℓ can be adjacent to a vertex u

in Gkn
ℓ−1 only if u belongs to Xo,2 (as defined in the process). It is also clear that conditioned

on the event that it is adjacent to a vertex in Gkn
ℓ−1, this vertex is uniformly distributed in Xo,2

(and similarly if it is not in the graph). Finally, since there should be exactly N/2 odd-parity
vertices, and the total number of odd-parity vertices in Gkn

ℓ−1 is no, the number of odd-parity
vertices not in Gkn

ℓ−1 (in any ordering of the vertices on the cycle) is (N/2) − no. Thus the

probability that vℓ is adjacent to some u ∈ Xo,2 is
|Xo,2|

|Xo,2|+(N/2)−no
, and the probability that it

is adjacent to some vertex outside the knowledge graph is (N/2)−no

|Xo,2|+(N/2)−no
, which is exactly as

defined by the process. Hence the induction step holds in this case.

4. iℓ ∈ {1, 2}, and vℓ does not belong to the knowledge graph. This case is reduced to the
previous one, provided that the parity of vℓ is chosen with the correct probability. The
validity of the condition was already established in Case 2.

Finally we bound the statistical difference between the distributions of query-answer sequences
induced by the interaction of A with the two processes. Recall that DA

j denotes the distribution
on query-answer histories (of length ℓ) induced by the interaction of A and Pj .

Lemma 7.4 Let α < 1
2 , ℓ ≤ α

√
N and N ≥ 8ℓ. Then, for every algorithm A that asks ℓ queries,

the statistical distance between DA
1 and DA

2 is at most 4α2. Furthermore, for both distributions,
with probability at least 1−4α2 the knowledge graph at time of termination of A contains no cycles.

Proof: We assume without loss of generality that A does not ask queries whose answer can be
derived from its knowledge graph, since those give it no new information. Under this assumption,
we first prove the following.

Claim: Both in DA
1 and in DA

2 , the total probability mass assigned to query-answer histories in
which for some t ≤ ℓ a vertex in Gkn

t−1 is returned as an answer to the tth query is at most 4α2.

Proof: We show that for every t the probability that the tth answer is in Gkn
t−1 (i.e., there exist

t′ < t such that at = vt′ or at = at′) is at most 8(t− 1)/N . The claim directly follows (as described
below). Fixing t, there are two cases in which the event at ∈ Gkn

t−1 might occur.

29

1. it = 3, and vt is matched to a vertex in the knowledge graph Gkn
t−1. Since the number of

vertices in Gkn
t−1 is at most 2(t− 1), this event occurs with probability at most 2(t−1)

N−2(t−1) when

the process is P1, and at most 2(t−1)
(N/2)−2(t−1) when the process is P2.

2. it ∈ {1, 2} and at is chosen in Gkn
t−1. According to both processes this event occurs with

probability less than 2(t−1)
(N/2)−2(t−1)

Thus, in each of the cases, the probability that at ∈ Gkn
t−1 is at most 2(t−1)

(N/2)−2(t−1) < 8(t−1)
N (as

N ≥ 8t). The probability that such an event occurs in any sequence of α
√
N queries, is at most

∑α
√

N
t=1

8(t−1)
N < 4α2. 2

In particular, the Claim implies that with probability at least 1 − 4α2, the knowledge graph of A
contains no cycles. Observe that whenever any of these processes returns as an answer a vertex
not in the current knowledge graph, this vertex is uniformly distributed among the vertices not in
that graph. Since A’s queries only depend on the preceding query-answer history, it follows that
conditioned on the process not returning vertices in the current knowledge graph, the answers are
distributed obliviously of the identity of the process. Lemma 7.4 follows.

Finishing up the proof of Theorem 7.1: We use the above three lemmas to show that A
cannot be a tester for bipartiteness with distance parameter ǫ = 0.01, and Theorem 7.1 follows.
Setting α = 1/4 and using Lemma 7.4, it follows that for any algorithm A which makes α

√
N

queries, the statistical difference between DA
1 and DA

2 is at most 4 · (1/4)2 = (1/4). By Lemma 7.3,
DA

j is distributed identically to the query-answer sequences in an execution of A on a uniformly

distributed graph in GN
j . We start by observing that since all graphs in GN

2 are bipartite (and A is
a bipartiteness tester),

Prob[A(DA
2) = accept] ≥ 2

3
(5)

Recall that A(DA
2) denotes the final decision of A after interacting with process P2, and this

distribution is identical to the one in an execution of A on a uniformly distributed graph in GN
2 .

Combining Eq. (5) with the bound of 1/4 on the statistical difference between DA
1 and DA

2 , we
have

Prob[A(DA
1) = accept] ≥ 2

3
− 1

4
> 0.4 (6)

But, by Lemma 7.2, more than 99% of the graphs in GN
1 are 0.01-far from bipartite and thus must

be rejected. Thus, Prob[A(DA
1) = accept] ≤ 0.99 · 1

3 + 0.01 < 0.35, in contradiction to Eq. (6).

Proof of Proposition 4.3: Consider either classes described in the proof of Theorem 7.1: A
testing algorithm for cycle-freeness must reject a random graph in the class with probability 2/3
since such a graph is far from cycle free. However, if the algorithm asks only o(

√
N) queries then

the probability it actually observes a cycle is negligible. Fixing any such sequence of coins where
no cycle is detected, we observe that the algorithm will also reject a graph that consists only of the
(partial) forest it has observed. Thus the algorithm has a non-zero rejecting probability on some
cycle-free graphs.

30

7.2 Testing Whether a Graph is an Expander

The neighbor set of a set S of vertices of a graph G = (V,E), denoted Γ(S), is defined as follows:

Γ(S)
def
= S ∪ {u : (v, u) ∈ E, v ∈ S}

A graph on N vertices is an (N, γ, δ)–expander if for every subset S of the vertices that has size at
most γN , |Γ(S)| ≥ δ|S|. Let us set γ = 1

4 and δ = 1.2, and simply refer to an (N, 1
4 , 1.2)–expander,

as an expander. Here we show that

Theorem 7.5 Testing whether a graph is an expander, with distance parameter ǫ = 0.01, requires
1
5 ·
√
N queries.

Proof: Similarly to the lower bound for testing bipartiteness, we first describe two families of
graphs where with extremely high probability, a graph chosen randomly in the first family is an
expander, and every graph in the second family is far from being an expander. We then describe
two processes which interact with a testing algorithm while constructing a random graph in one
of the families, and show that the distributions induced on the query-answer sequences are very
similar. For simplicity we assume that N ≡ 0 (mod 8).

Let d = 3. It is well known (see [Pin73], [MR95, Thm. 5.6]) that if we randomly construct
a graph by choosing d random perfect matchings to define its edge set, then with probability
1 − exp(−Ω(N)), the resulting graph is an expander. The first family, GN

1 , consists of all possible
resulting graphs. A graph in the second family, GN

2 , is constructed by first randomly partitioning
the vertex set into 4 equal size subsets, and then choosing d random matchings inside each subset.
Thus the four subsets are disconnected. Clearly, every graph in this family is 1

60 -far from being an
expander, since in order to transform it into an expander we must connect each of the four subsets
to at least N/20 vertices outside the subset. In both processes, each edge in the graph has the same
label at both endpoints (i.e., corresponding to the index of the perfect matching to which the edge
belongs).

The process P1 for constructing a random graph in GN
1 , while interacting with an algorithm A,

is completely straightforward. Let qt = (vt, it) be A’s tth query. If the answer at is determined by
the current knowledge graph, Gkn

t−1, then P1 answers accordingly. Otherwise, it selects a random
vertex u which does not have an incident edge labeled it, answers “u”, and adds the edge (v, u)
to the knowledge graph. (In case u does not belong to Gkn

t−1 it is of course added in.) When the
interaction with A ends, P1 randomly completes all d matchings.

Process P2 is somewhat more complex. It maintains four subsets of vertices and coordinates its
choice of matching edges with these growing subsets.

• Whenever algorithm Amakes a query of the form (v, i) where v is not in the current knowledge
graph, P2 assigns it a subset-id in {1, 2, 3, 4} with probability proportional to the number of
vertices missing in each subset (P2 starts with all subsets being empty). Specifically, let ns

be the number of vertices with subset-id s in the current knowledge graph, for s = 1, 2, 3, 4.
Then the new vertex is assigned subset-id s with probability (N/4)−ns

N−(n1+n2+n3+n4)
. The query is

then processed as follows.

• To answer a query (v, i) when v is already in the current knowledge graph, P2 matches
it to either a vertex already assigned to the same subset as v or to an unassigned vertex.
Specifically, suppose that v is already assigned to the sth subset, and let Xs,i denote the set

31

of vertices which are assigned to the sth subset but do not have an incident edge labeled i.

Then with probability
|Xs,i|−1

(N/4−ns)+(|Xs,i|−1) process P2 matches v to a uniformly selected vertex,

u, in Xs,i \ {v}. Otherwise, P2 matches v to a uniformly selected vertex, u, which does not
belong to the current knowledge graph, and assigns u to the sth subset. In both cases P2

answers with the selected vertex u, and the knowledge graph is augmented with the edge
(v, u) labeled i.

It is easy to verify, using arguments similar to those in the proof of Lemma 7.3, that for both
processes the distribution on the generated graphs is uniform in the respective graph family. Sim-
ilarly to the bipartite lower bound, it remains to show that for any (not too long) query-answer
history, the probability that we get an answer at which is a vertex in the knowledge graph (and
not a uniformly distributed new vertex) is small. But this is easy to see. In the case of P1, such
a vertex is selected following the tth query, with probability at most 2t

N−2t . In the case of P2, such

a vertex is selected with probability at most 2t
(N/4)−2t . The probability that such an event occurs

in any sequence of α
√
N queries, is at most

∑α
√

N
t=1

8t
N−8t which is at most 8α2, for every N ≥ 256.

7.3 Vertex Cover and Dominating Set

It should come with little surprise that we cannot efficiently test graph properties which are related
to hard-to-approximate problems on bounded-degree graphs.

Consider, for example, the class Cρ
d of graphs with maximum degree d having a vertex cover

of size ρN , for some constant ρ > 0. (A vertex cover of a graph G = (V,E) is a set C ⊆ V so
that every edge e ∈ E is incident to some vertex in C.) Let A be a property tester for Cρ

d as in
Definition 2.1. Namely, on input ǫ and d, and access to a graph with degree bounded by d, A
accepts (with high probability) any graph in Cρ

d but rejects (w.h.p.) any N -vertex graph (of degree
≤ d) which requires modification of ǫdN edges in order to be in Cρ

d . We observe that it suffices to
consider the number of edges omitted in the modification process, and that the number of omitted
edges can be related to an increase in the vertex cover. Specifically,

Claim 7.6 Suppose that A is a property tester for Cρ
d . Then, on distance parameter ǫ, algorithm

A distinguishes between N -vertex graphs (of degree at most d) having a vertex cover of size ρ ·N
and N -vertex graphs (of degree at most d) having no vertex cover of size

(

ρ+ 1
2ǫd
)

·N .

Since distinguishing the two cases is NP-Hard for some constants d, ǫ and ρ [ALM+98, PY91], we
cannot expect A to have “reasonable” (e.g., polynomial in N) time-complexity.

Proof: By definition, the former graphs are in Cρ
d . It remains to see that any N -vertex graph

having no vertex cover of size
(

ρ+ 1
2ǫd
)

· N requires the modification of more than 1
2ǫdN edges

in order to put it in Cρ
d . Suppose that it suffices to omit m edges from a graph G in order to

obtain a graph G′ in Cρ
d (we don’t care if edges were added in the process).11 Then taking the

ρN -vertex-cover of G′ and at most one endpoint of each of the m edges omitted from G, results in
a vertex cover of G having size at most ρN +m. Thus, we have m > 1

2ǫdN .

11 Actually, without loss of generality we may assume that no edges were added as they only make the task of
covering harder.

32

Next, we consider the class Dρ
d of graphs with maximum degree d having a dominating set of

size ρN . (A dominating set of a graph G = (V,E) is a set D ⊆ V so that every vertex in V is either
in D or adjacent to some vertex in D.) We observe that it suffices to consider the number of edges
which need to be added to put the graph in Dρ

d. Specifically,

Claim 7.7 Suppose that A is a property tester for Dρ
d. Then, on distance parameter ǫ, algorithm

A distinguishes between N -vertex graphs (of degree at most d) having a dominating set of size ρ ·N
and N -vertex graphs (of degree at most d) having no dominating set of size

(

ρ+ 1
2ǫd
)

·N .

Again, since distinguishing the two cases is NP-Hard for some constants d, ǫ and ρ [ALM+98, PY91],
we cannot expect A to have “reasonable” time-complexity.

Proof: Again, the former graphs are in Dρ
d, and it remains to see that N -vertex graphs having

no dominating set of size
(

ρ+ 1
2ǫd
)

·N require the modification of more than 1
2ǫdN edges in order

to put them in Dρ
d. Suppose that it suffices to add m edges to a graph G, with maximum degree

d, in order to obtain a graph G′ in Dρ
d (we don’t care if edges were omitted in the process).12 Let

S′ be a dominating set of size ρN of G′. Then S′ dominates all but at most m vertices in G (i.e.,
all vertices dominated in G′ except for those which are dominated due to the edges added to G).
Adding these vertices to S′ we obtain a dominating set of size |S′|+m of G, and thus m > 1

2ǫdN .

We conclude by proving a lower bound on the query complexity of testers for the Vertex Cover
Property, Cρ

d . Specifically,

Proposition 7.8 Let d = 3, ρ = 0.5 and ǫ = 0.005. Then testing whether a 3-regular N -vertex
graph belongs to Cρ

d or is ǫ-far from it requires Ω(
√
N) queries.

Proof: We use the families GN
1 and GN

2 presented in Subsection 7.1. By combining Lemmas 7.3
and 7.4, an algorithm which makes o(

√
N) queries can not distinguish graphs uniformly chosen in

GN
1 from graphs uniformly chosen in GN

2 . It is easy to see that graphs in GN
2 have a vertex cover

of size N/2 (e.g., all vertices with odd locations on the cycle). It remains to show that, with very
high probability, a graph chosen uniformly in GN

1 has no vertex cover of size 0.51 ·N . By Claim 7.6,
it follows that an algorithm which makes o(

√
N) queries cannot test C0.5

3 on distance parameter
2 · 0.01/3 > 0.005.

As in the proof of Lemma 7.2, we fix an ordering of the vertices on the cycle, and consider the
probability over the random choice of a perfect matching, that the resulting graph has a vertex
cover of size 0.51 · N . We observe that such a potential vertex cover, denoted C, must cover all
cycle edges. This allows us to upper bound the number of potential vertex covers (of size 0.51 ·N)
which we should consider. In such a vertex cover, C, each vertex not in C must be adjacent (on the
cycle) to vertices in C. Let w1, . . . , w0.51·N be the vertices in a generic cover, ordered according to
their relative position on the cycle. Then a specific cover C is determined by whether w1 is the first
vertex on the cycle or the second, and by which of the vertices among w1, . . . , w0.51·N are followed
by a vertex not in C. Thus, the number of possible sets of size 0.51N which cover the cycle edges
is at most

2 ·
(

0.51N

0.49N

)

≤ 2H(49/51)·0.51N+1 < 20.122N

12 Here we cannot assume that the modification of G into G′ consists only of the addition of edges, since we may
be forced to omit edges in order to satisfy the degree bound. Nevertheless, this fact does not effect the proof.

33

where recall that H(p)
def
= −p log p − (1 − p) log(1 − p), and that the first inequality follows from

the bound
(n
k

) ≤ 2nH(k/n) (see [CT91, Page 284]). On the other hand, for every fixed C as above,
the probability that C covers the matching edges is upper bounded by the probability that the
first 0.4N edges selected have each an endpoint in C. Consider the selection of the i + 1st edge.
The probability that both its end-points are not in C is at least (0.49N−i

N−2i)2 (using the hypothesis

that all prior edges had an end-point in C). Define f(x)
def
= 0.49−x

1−2x , and observe that this function
is monotonically decreasing in [0, 0.5]. Thus, the probability that C covers the matching edges is
upper bounded by

0.4N
∏

i=0

(

1− f(i/N)2
)

<
(

1− f(0.4)2
)0.4N

< 2−0.131N

We conclude that the probability that a graph chosen uniformly in GN
1 has a vertex cover of size

0.51 ·N is smaller that 20.122N · 2−0.131N = exp(−Ω(N)). The proposition follows.

Acknowledgments

We thank Yefim Dinitz, Shimon Even, and David Karger for helpful discussions. We are most
grateful to an anonymous referee for very useful comments.

34

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of approximation problems. Journal of the Association for Computing
Machinery, 45(3):501–555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP.
Journal of the Association for Computing Machinery, 45(1):70–122, 1998.

[Ben95] A. Benczur. A representation of cuts within 6/5 times the edge connectivity with
applications. In Proceedings of the Thirty-Sixth Annual Symposium on Foundations of
Computer Science, pages 92–101, 1995.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1(1):3–40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, pages 21–31, 1991.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability –
towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47:549–595, 1993.

[CT91] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[DKL76] E. A. Dinic, A. V. Karazanov, and M. V. Lomonosov. On the structure of the system
of minimum edge cuts in a graph. Studies in Discrete Optimizations, pages 290–306,
1976. In Russian.

[DW98] Y. Dinitz and J. Westbrook. Maintaining the classes of 4-edge-connectivity in a graph
on-line. Algorithmica, 20(3):242–276, 1998.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete. Journal of the Association for Computing Machinery, 43(2):268–
292, 1996.

[Gab91] H. Gabow. Applications of a poset representation to edge connectivity and graph rigid-
ity. In Proceedings of the Thirty-Second Annual Symposium on Foundations of Computer
Science, pages 812–821, 1991.

[Gab95] H. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50(2):259–273, 1995.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the Association for Computing Machinery, 45(4):653–
750, 1998. An extended abstract appeared in the proceedings of FOCS96.

35

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceedings of the
Twenty-Third Annual ACM Symposium on Theory of Computing, pages 32–42, 1991.

[GR97] O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pages 406–
415, 1997.

[GR99a] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Available from
http://www.eng.tau.ac.il/~danar, 1999.

[GR99b] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[H̊as96] J. H̊astad. Testing of the long code and hardness for clique. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 11–19,
1996. To appear in Acta Mathematica.

[Kar93] D. Karger. Global min-cuts in RNC and other ramifications of a simple mincut al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 21–30, 1993.

[Kar95] D. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, 1995. Available from http://theory.lcs.mit.edu/˜karger.

[Kar96] D. Karger. Minimum cuts in near-linear time. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, pages 56–63, 1996.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[NGM97] D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the
edge-connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997.

[NI97] H. Nagamochi and T. Ibaraki. Deterministic Õ(nm) time edge-splitting in undirected
graphs. Journal of Combinatorial Optimization, 1(1):5–46, 1997.

[Pin73] M. Pinsker. On the complexity of a concentrator. In 7th International Teletraffic
Conference, pages 318/1–318/4, 1973.

[PR99] M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of Random99,
pages 85–96, 1999.

[PY91] C.H. Papadimitriou and M. Yanakakis. Optimization, approximation and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[WN87] T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. Journal of
Computer and System Sciences, 35:96–144, 1987.

36

A Background on Edge-Connectivity

In this appendix we recall some known facts regarding the structure of the k-edge-connected classes
of a (k − 1)-connected graph. Whereas the structure of the 2-classes of a connected graph is well-
known and relatively simple (cf., [Eve79]), the (k-connected class) structure of (k − 1)-connected
graphs becomes slightly more complex when k ≥ 3. We thus refrain from describing in detail this
structure and merely state the facts which we need. The interested reader is referred to [DW98]
for more details.

A.1 The auxiliary tree of a (k − 1)–connected graph

We emphasize that the graphs below are not necessarily simple; that is, parallel edges are allowed.

Fact A.1 (cf., [DW98]): Let k > 1 be an integer and G be a (k − 1)-connected graph. Then there
exists an auxiliary graph, TG, which is a tree such that:

• Each k-connected class in G corresponds to a unique node in TG.

• In addition to nodes corresponding to k-connected classes, there are two types of auxiliary
nodes: empty nodes, and cycle nodes (the latter exist only for odd k). The neighbors of a
cycle node in TG are said to belong to a common cycle, and we associate a cyclic order with
them. (Since TG is a tree, any two cycles can have at most one common node.)

• All leaves of the auxiliary tree TG correspond to k-connected classes of G. Furthermore, there
are exactly k − 1 edges (in G) going out from each of these classes.

For example, when k = 2, all nodes of the auxiliary tree correspond to 2-classes, and the edges
in the auxiliary tree correspond to graph edges which are known as bridges. Bridges are edges
connecting vertices in different 2-classes of the graph, and their removal disconnects the graph. In
the case of k = 3, the auxiliary tree includes cycle nodes (but no empty nodes). If C1 . . . ,Cℓ are
neighbors of a cycle node Cy, then this means that there is a single graph edge between some vertex
in Ci and some vertex in Ci+1modℓ, for every i.

Before stating the next lemma we need to define the notion of squeezing a cycle. Let Cy be
a cycle node in TG, and let its neighbors be C1, . . . ,Ct (where their indices corresponds to their
ordering around the cycle). Then the result of squeezing Cy at Ci and Cj is the merging of Ci and
Cj into a new node Ck, with one of the following changes to the cycle:

1. In case Ci and Cj are adjacent on the cycle, then we have two subcases.

(a) If t > 3 then the merged node Ck is connected by a single edge to the cycle node Cy
(and all other nodes belonging to the cycle remain that way).

(b) If t = 3 (i.e., there was only one additional node on the cycle), then Cy is removed, and
the additional node is connected by a tree edge to Ck.

2. In case Ci and Cj are separated by at least one node on the cycle then t ≥ 4, and we have
three subcases.

(a) If t = 4 (and so Ci and Cj are separated by a single node in each cycle direction), then
we put a tree edge between each of these intermediate nodes and Ck, and the cycle
disappears.

37

(b) If t > 4 and Ci and Cj are separated by a single node Cℓ on one of the cycle directions,
then we put a tree edge between Cℓ and Ck, and Ck belongs to a single cycle with all
the rest of the (at least 2) nodes which were previously on the cycle.

(c) Otherwise (t > 4 and at least two nodes separate Ci and Cj in each direction), then we
get two cycles, where Ck belongs to both, and the other nodes are partitioned among
the cycles according to their relative position with respect to Ci and Cj.

Lemma A.2 (cf., [DW98]): Let G be a (k − 1)-connected graph, and TG be its auxiliary tree.
Suppose that we augment G by an edge with endpoints in the k-connected classes C1 and C2,
respectively. Then the classes residing on the simple path between C1 and C2 in TG form a k-
connected class in the augmented graph, and all classes in G which do not reside on the path
remain distinct k-classes in the augmented graph. In case the path passes through nodes Ci and Cj

which belong to the same cycle Cy, then Cy is squeezed at Ci and Cj.

A related lemma which we need follows. In what follows, when we refer to an edge as being in
a class we mean that it connects two vertices belonging to the class.

Lemma A.3 Let G be a (k − 1)-connected graph, TG be its auxiliary tree, and C1, C2 two (k-
connected) classes of G each containing at least one edge. Suppose that we omit a single edge
from each Ci and add two edges so to maintain the vertex degrees of G; Specifically, if the edges
(u1, v1) and (u2, v2) were omitted from C1 and C2 respectively, then we either add the edges (u1, u2)
and (v1, v2), or the edges (u1, v2) and (v1, u2). As a result, the classes residing on the simple path
between C1 and C2 in TG form a k-connected class in the augmented graph, and all classes in G
which do not reside on the path remain distinct k-classes in the augmented graph.

We note that this lemma can be proven (private communication with Y. Dinitz, December 1996)
using the Circumference Theorem in [DKL76], but we provide a direct proof for completeness.

Proof: Let I1, ..., It be the (intermediate) k-classes residing on the path between C1 and C2 in the
tree TG. (We do not exclude the case t = 0.)

Consider what happens when we omit the edge (ui, vi) from Ci. Either Ci remains a k-class, or
it breaks into several k-classes, denoted C1

i , ...,C
qi
i . It follows from Lemma A.2 that in the latter

case the classes C1
i , ...,C

qi
i correspond to a path on the auxiliary tree of the modified graph, so that

the vertex ui resides in C1
i , and vertex vi resides in Cqi

i . (Any other restructuring is ruled out by
Lemma A.2, since if we now add the edge (ui, vi) back, we must regain the k-class Ci.) Thus, the
Ij’s and the Cj

i ’s reside on a sub-tree of the auxiliary tree of the modified graph so that the only

leaves in this sub-tree are among the “extreme” Cj
i ’s (i.e., C1

1, Cq1
1 , C1

2, and Cq2
2).

Consider first the simpler case of t ≥ 1. The existence of intermediate nodes guarantees that
none of the Cj

1’s may belong to the same cycle as a Cj
2. In this case, we may use either pairs of

edges suggested in the lemma to join the four classes in two pairs and collapse the entire sub-tree
into a single node. That is, suppose we add the edges (u1, u2) and (v1, v2). Then, by Lemma A.2
the first (resp., second) added edge will cause the collapse of all classes on the path between C1

1

and C1
2 (resp., Cq1

1 and Cq2
2). Since these are the only leaves on the sub-tree, the claim follows. A

similar argument can be applied as long as C1
1, Cq1

1 , C1
2, and Cq2

2 do not belong to the same cycle.

It remains to deal with the case in which C1
1, Cq1

1 , C1
2, and Cq2

2 all belong to the same cycle.
Here we must be careful in choosing which two edges to add. Assume, w.l.o.g., that indeed their
order on the cycle is as above. Then it is essential that we add the edges (u1, u2) and (v1, v2) (i.e.,
connecting C1

1 to C1
2 and Cq1

1 to Cq2
2) in a crossing fashion, so as to insure that the two invocation

of Lemma A.2 will cause the collapse of the four classes into one class. The lemma follows.

38

A.2 Distance from k-connectivity versus number of leaves

Using Lemma A.2, it is easy to transform any (k− 1)-connected graph G into a k-connected graph
G′ by adding at most L − 1 edges, where L is the number of leaves in the auxiliary tree of G.
This follows by observing that each application of the lemma reduces the number of leaves by one.
However, this process (especially if applied obliviously) may result in a graph G′ which violates
the degree bound. Thus, we use a slightly more complicated argument which utilizes Lemmas A.2
and A.3.

Lemma A.4 Let G be a (k − 1)-connected graph, whose auxiliary graph, TG, has L leaves. Then
by removing and adding at most 4L edges to G we can transform it into a k-connected graph G′.
Furthermore, suppose that the maximum degree of G is d then the maximum degree of G′ is upper
bounded by max{d, k} if either d > k or dN is even, and by k + 1 otherwise.

We note that there might be a way to save a constant factor in the number of edges added and
removed from G when transforming it into a k-connected graph (while respecting the degree bound).

Proof: We first use Lemma A.2 to collapse all leaves in TG which correspond to singleton classes
(i.e., classes consisting of a single vertex of G). These vertices have degree k−1 and so we can match
them in pairs and add a single edge between each pair. At this point we may be left with a single
unmatched vertex/leaf, which we deal with later. Call the resulting graph G1 and its auxiliary tree
T1. The number of leaves in T1 is at most L − i, where i is the number of pairs matched above.
All leaves in T1 (except for possibly a unique singleton) can be now collapsed using Lemma A.3.
The number of edge modifications in this stage is at most 4(L − i − 1). The resulting graph, G2,

has degree at most d′
def
= max{d, k}. In case G2 is k-connected we are done.

Otherwise, G2 consists of a singleton which is connected to a k-connected class containing all
other vertices. In case some vertex in the large class has degree lower than d′ we connect it to
the singleton and conclude as per Lemma A.2. Otherwise (i.e., all vertices in the large class have
degree d′), we need to distinguish two subcases. In case k < d′ we simply omit one edge internal
to the large class and connect its endpoints to the singleton. It can be seen that this makes the
graph k-connected and that all vertices have degree at most d′. Finally, if d′ = k a parity argument
shows that d′N must be odd (as otherwise the sum of degrees, (N − 1)d′ + (k − 1) = Nd′ − 1, is
odd). In this case we are allowed to add an edge and increase the degree of the resulting graph to
d′ + 1 = k + 1.

The total number of modifications is thus i+4(L− i−1)+3 < 4L, and the lemma follows.

B Proof of Inequality (2)

Our aim is to prove that for any integers c ≤ D and n ≥ 2,

p
def
=

n
∏

j=2

j − (c/D)

j + (c/D)
> Θ(n)−2c/D

A proof that p = Ω(n−2c/D), for constant c,D, can be derived from Karger’s Ph.D. Thesis [Kar95]
(see proof of Corollary 4.7.5 which refers to an exercise in Knuth Vol. 1). An alternative proof
follows.

39

We first observe that for every i > 0

jD − c
jD + c

>
jD − c− i
jD + c− i (7)

Using Eq. (7), we have

pD =

n
∏

j=2

jD − c
jD + c)

D

>
D−1
∏

i=0

n
∏

j=2

jD − c− i
jD + c− i

=
nD
∏

k=2D−(D−1)

k − c
k + c

=
(D − c+ 1) · (D − c+ 2) · · · (D + c)

(nD − c+ 1) · (nD − c+ 2) · · · (nD + c)

>
(D/O(1))2c

(nD + c)2c

Thus, using c ≤ D and n ≥ 2, we get

p >

(

1/O(1)

n+ (c/D)

)2c/D

>

(

1

Θ(n)

)2c/D

40

