
Finding Cycles and Trees in Sublinear Time

Artur Czumaj Oded Goldreich Dana Ron C. Seshadhri∗ Asaf Shapira

Christian Sohler

June 18, 2012

Abstract

We present sublinear-time (randomized) algorithms for finding simple cycles of length at
least k ≥ 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms
is related to the distance of the graph from being Ck-minor free (resp., free from having the
corresponding tree-minor). In particular, if the graph is Ω(1)-far from being cycle-free (i.e., a
constant fraction of the edges must be deleted to make the graph cycle-free), then the algorithm

finds a cycle of polylogarithmic length in time Õ(
√
N), where N denotes the number of vertices.

This time complexity is optimal up to polylogarithmic factors.
The foregoing results are the outcome of our study of the complexity of one-sided error

property testing algorithms in the bounded-degree graphs model. For example, we show that
cycle-freeness of N -vertex graphs can be tested with one-sided error within time complexity
Õ(poly(1/ǫ) ·

√
N), where ǫ denotes the proximity parameter. This matches the known Ω(

√
N)

query lower bound for one-sided error cycle-freeness testing, and contrasts with the fact that
any minor-free property admits a two-sided error tester of query complexity that only depends
on ǫ. We show that the same upper bound holds for testing whether the input graph has a
simple cycle of length at least k, for any k ≥ 3. On the other hand, for any fixed tree T , we
show that T -minor freeness has a one-sided error tester of query complexity that only depends
on the proximity parameter ǫ.

Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where
distances are measured with respect to the actual number of edges. Such an extension is not
possible with respect to finding tree-minors in o(

√
N) complexity.

Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided
vs Two-Sided Error Probability.

∗Employee of Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Contents

1 Introduction 1
1.1 Our main results . 1
1.2 The property testing connection . 2
1.3 Techniques . 3

1.3.1 Testing cycle-freeness . 4
1.3.2 Testing Ck-minor freeness, for any k > 3 . 4
1.3.3 Testing H-minor freeness, for any cycle-free H 5

1.4 Another perspective: Finding arbitrary forbidden minors 5
1.5 Further reflections regarding one-sided error . 6
1.6 The general (unbounded-degree) graph model . 7
1.7 Organization . 8

2 Preliminaries 8

3 Testing Cycle-Freeness 9

4 Testing C4-Minor-Freeness 13

5 Testing Ck-Minor-Freeness, for any k ≥ 4 16
5.1 Some basic facts regarding spots . 16
5.2 The actual reduction . 19

6 Proof of the Lower Bound 22

7 Testing Tree-Minor Freeness 25
7.1 A reduction of unconnected H to connected H . 25
7.2 Testing that the graph contains no simple k-length path 26
7.3 Testing that the graph contains no k-star as a minor 27
7.4 The general case: Testing T -minor freeness for any tree T 28

7.4.1 Setting the stage . 29
7.4.2 The procedure find . 32

7.5 Testing T -minor freeness for any depth-two tree T 36

8 The unbounded-degree graph model 40
8.1 Testing cycle-freeness . 40
8.2 Testing tree-minor-freeness . 43
8.3 Testing with adjacency queries . 44

9 Open Problems 45

Bibliography 46

I

1 Introduction

Consider the algorithmic problem of finding a (simple) cycle in a bounded degree graph (assuming
one exists), where the aim is to find such a cycle in (randomized) sublinear time. In general, finding
a cycle in sublinear time may not be possible, since the graph may contain only cycles of length
Ω(n). This may also be the case if one needs to remove a constant number of the edges of the graph
in order to make it cycle-free. But suppose one needs to remove a constant fraction of the graph’s
edges in order to make it cycle free. Can we then devise a sublinear time algorithm? One of our
results in this paper is an affirmative answer to this question. Furthermore, the running time of
that algorithm is (essentially) optimal.

1.1 Our main results

As we have mentioned above, we consider graphs of bounded degree d with N vertices. We say
that a graph is ǫ-far from being cycle-free if one has to remove at least ǫdN edges from G in order
to make it cycle free.1 In all our results, vertex manipulation operations are counted at unit cost.
We can now formally state our first result.

Theorem 1.1 (finding cycles): There exists a randomized algorithm that, on input an N -vertex
graph G of degree bound d that is ǫ-far from being cycle-free, finds a simple cycle in G in expected
time Õ(poly(d/ǫ) ·

√
N). Furthermore, the cycle found has length at most poly(ǫ−1d logN).

Using the connection to one-sided error property testing (detailed in Section 1.2), we infer that
the algorithm of Theorem 1.1 is optimal; that is, no randomized o(

√
N)-time algorithm can find

cycles in (bounded-degree) graphs that are Ω(1)-far from being cycle-free. Furthermore, one cannot
expect to find simple cycles of length o(logN), since such may not exist (even if the graph is far
from being cycle-free). The result of Theorem 1.1 can be extended to finding a simple cycle of
length at least k, for any fixed k > 3 (where the case k = 3 is covered by Theorem 1.1).

Theorem 1.2 (finding cycles of length at least k): For every constant k > 3, there exists a
randomized algorithm that, on input an N -vertex graph G of degree bound d that is ǫ-far from
having no simple cycles of length at least k, finds such a cycle in expected time Õ(poly(dk/ǫ) ·

√
N).

Furthermore, the cycle found has length at most poly(dk · ǫ−1 logN).

Again, the algorithm obtained is optimal in the sense discussed above.
We note that our results can be stated in terms of finding graph minors. A graph G has an

H-minor if H can be obtained from G through a series of vertex removals, edge removals, and edge
contractions. A graph G is H-minor free, if it contains no H-minor. Note that cycles of length at
least k in G correspond to Ck-minors of G, where Ck denotes the k-vertex cycle.

We next turn from finding cycles to finding tree-structures in graphs; that is, finding tree-
minors. Consider the following interesting special case. For any constant k, we want to find a
tree with at least k leaves. One of our results is a randomized algorithm that finds such trees in
expected time that is polynomially related to k and to the distance of the input graph from a graph

1In some sources, being ǫ-far from a property means that and ǫ fraction of the function’s values should be changed
so to obtain a function that has the property. In our case, such a definition would translate to an omission of ǫdN/2
edges, since each edge appears twice (i.e., once in each of its endpoints). Nevertheless, for sake of simplicity, we chose
to measure distance in terms of dN (rather than in terms of dN/2).

1

having no such trees. This problem corresponds to finding minors that are k-vertex stars. More
generally, we prove the following result.

Theorem 1.3 (finding tree minors): For any fixed tree T with k vertices, there exists a randomized
algorithm that, on input an N -vertex graph G of constant degree bound d that is ǫ-far from being
T -minor free, finds a T -minor in expected time poly(dD), where D = k(16d/ǫ)4k+2.

We highlight the fact that finding tree minors can be done within complexity that does not depend
on the size of the graph (but rather depends only on (d, k and) ǫ), whereas finding cycles requires
Ω(
√
N) time (also for constant ǫ > 0). In fact, we show that Theorem 1.3 extends to any cycle-free

graph (forest) H, and on the other hand we prove that for any H that contains a cycle finding H-
minors requires Ω(

√
N) queries (see Theorem 6.1).Thus, we obtain the following characterization:

Corollary 1.4 (finding graph minors, a dichotomy): Finding H-minors in a constant degree graph
that is ǫ-far from being H-minor free can be done in complexity that only depends on ǫ if and only
if H is cycle-free.

1.2 The property testing connection

Loosely speaking, property testing refers to sublinear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object having this property
(see the surveys [Fis01, Ron10, Ron08]). Such algorithms, called testers, obtain local views of the
object by making suitable queries; that is, the object is seen as a function and the tester gets oracle
access to this function (and thus may be expected to work in time that is sublinear in the size of
the object).

Randomization is essential to natural testers (i.e., testers of natural properties that have sublin-
ear query-complexity) [GS07]. The same holds also for error probability, at least on some instances,
but the question is whether a (small) error probability must appear on all instances. In particular,
should we allow (small) error probability both on instances that have the property and on instances
that are far from having it?2

Indeed, testers come in two basic flavors referring to the foregoing question: two-sided error

testers allow (small) error probability both on instances that have the property and on instances
that are far from having it, whereas one-sided error testers only allow (small) error probability on
instances that are far from having the property. That is, in one-sided error testers, any instance
that has the property is accepted with probability 1.

An important observation regarding one-sided error testers is that whenever such a tester rejects
some instance, it always has a certificate that this instance does not have the property, where this
certificate is the partial view of the instance as obtained by the tester. Indeed, in the case of one-
sided error, rejecting an instance based on a specific partial view means that there exists no instance
that has the property and is consistent with this partial view. Furthermore, in some cases (as those
addressed in the current work), this partial view contains some natural structures (e.g., a cycle or
a tree of interest).

Consider, for example, the case of testing cycle-freeness (with one-sided error). In this case,
whenever the tester rejects, its partial view must contain a cycle. Thus, any one-sided tester of

2Recall that, in any case, the basic paradigm of property testing allows arbitrary error in case the instance neither
has the property nor is far from having it.

2

cycle-freeness may be used for finding cycles in graphs that are far from being cycle-free. A similar
observation applies to finding T -minors, for any fixed tree T .

We mention that in most of the property testing literature, one-sided error is viewed as a sec-
ondary feature that some testers have and others may lack. The foregoing connection demonstrates
the fundamental advantage of one-sided error testers over standard (two-sided error) testers. (Other
advantages are discussed in Section 1.5.)

Lower bounds on the complexity of one-sided error testers that significantly exceeds the per-
formance guarantees of known two-sided error testers have been observed, starting with [GGR98,
Sec. 10.1.6]. However, so far, no study has been devoted to providing a one-sided error tester of
optimal complexity, in the case where this complexity significantly exceeds that of the corresponding
two-sided error tester.

To the best of our knowledge, the text that seems closest to addressing this issue is the discussion
in [AS03, Sec. 2] that refers to the complexity of testing Kt,t-freeness in the adjacency matrix model
(introduced in [GGR98]). Specifically, [AS03, Clm. 2.2] asserts a two-sided tester of Kt,t-freeness
having query complexity O(1/ǫ), whereas [AS03, Clm. 2.3] (combined with [GT03, Thm. 2]) asserts
that one-sided error testing of Kt,t-freeness requires Ω(ǫ−t/4) queries. As noted at the end of [AS03,
Sec. 2], this is tight up to a polynomial function (i.e., there exists two-sided tester of Kt,t-freeness
having query complexity ǫ−O(t) = poly(ǫ−t/4)). It is telling that [AS03, Sec. 2] leaves the complexity
of one-sided error testing undetermined (at the “polynomial slackness” level). Indeed, like other
prior works that address the complexity of one-sided error testers, their interest is in demonstrating
the gap between the complexities of two-sided and one-sided error testing, and not in determining
the latter.

In contrast, our work is aimed at providing one-sided error testers of (almost) optimal com-
plexity, in cases in which this complexity significantly exceed the complexity of the corresponding
two-sided error tester. For example, recall that Goldreich and Ron provided a two-sided error
tester for cycle-freeness of poly(1/ǫ) query complexity [GR02, Thm. 4.2], where ǫ denotes the de-
sired proximity parameter (i.e., the tester distinguishes cycle-free graphs from graphs that are ǫ-far
from being cycle-free). In contrast, [GR02, Prop. 4.3] asserts that cycle-freeness has no one-sided
error tester that makes o(

√
N) queries (even for ǫ = 1/3), where N denotes the number of vertices

in the input graph. In that context, Theorem 1.1 is equivalent to

Theorem 1.5 (one-sided error tester for cycle-freeness): Cycle-freeness of constant degree N -
vertex graphs can be tested with one-sided error within time complexity Õ(poly(d/ǫ) ·

√
N). Fur-

thermore, whenever the tester rejects, it outputs a simple cycle of length poly(ǫ−1d logN).

Indeed, by the foregoing discussion, whenever the tester asserted in Theorem 1.5 rejects, it is
the case that it explored a subgraph that is not cycle-free. Moreover, the furthermore clause of
Theorem 1.5 asserts that in this case the explored subgraph actually contains a simple cycle of
length poly(ǫ−1d logN). Thus, Theorem 1.5 implies Theorem 1.1. Similarly, Theorem 1.5 extends
to testing Ck-minor freeness, for any k > 3, which in turn is equivalent to Theorem 1.2. And,
similarly, Theorem 1.3 is equivalent to the existence of a tester for T -minor freeness of query
complexity that only depends on the proximity parameter, for any tree T .

1.3 Techniques

As stated at the end of Section 1.1, all our results are obtained via the study of the complexity of
one-sided error testers for the corresponding properties.

3

Our testers for Ck-minor freeness are all obtained by local reductions. Specifically, our cycle-
freeness (i.e., C3-minor freeness) tester is obtained by a randomized reduction to testing bipar-
titeness, whereas our Ck-minor freeness tester is obtained by a deterministic reduction to testing
cycle-freeness.

1.3.1 Testing cycle-freeness

We mention that the two-sided error cycle-freeness tester of [GR02] does not even try to find a
simple cycle. It just estimates the number of edges in the graph and rejects if this estimate exceed
the number of edges that correspond to any forest that spans the set of connected components of
the graph.3 We also mention that as observed by Bollobás and Thomason [BT97, Thm. 5], a “girth
versus edge-density” lower bound implies that any graph G = ([N], E) that is ǫ-far from being
cycle-free (and hence contains N+Ω(ǫN) edges) must have a simple cycle of length O(logN+1/ǫ).
The problem, however, is finding such a cycle in sublinear time.

Our one-sided error tester of cycle-freeness finds a cycle in the original graph by randomly
reducing this problem to the problem of finding an odd-length cycle in an auxiliary graph. Specif-
ically, the input graph G = ([N], E) is randomly transformed into an auxiliary graph such that
each edge e ∈ E is replaced, with probability 1/2 by a 2-vertex path (with an auxiliary vertex),
and remains intact otherwise. Thus, with probability 1/2, each cycle in G is transformed into an
odd-length cycle. Furthermore, we show that if G is ǫ-far from being cycle-free, then (w.h.p.) the
resulting graph is Ω(ǫ)-far from being bipartite.

A crucial feature of the foregoing randomized reduction is that it is local in the sense that each
operation on the transformed graph can be implemented by a constant number of operations on the
original graph. Thus, we can emulate the execution of a bipartite tester (i.e., the one of [GR99])
on the transformed graph. This allows us to establish Theorem 1.5.

1.3.2 Testing Ck-minor freeness, for any k > 3

Recall that the set of Ck-minor-free graphs coincides with the set of graphs that have no simple
cycle of length at least k. Theorem 1.2 is proved by a (local) reduction of testing Ck-minor-freeness
to testing cycle-freeness. For example, in the case of k = 4 we replace each triangle by a 3-vertex
star; that is, we omit the original edges of this triangle, and introduce an auxiliary vertex that
is connected to the three corresponding vertices. We then prove that if the original graph is C4-
minor-free then the resulting graph is cycle-free, whereas if the original graph is ǫ-far from being
C4-minor-free then the resulting graph is Ω(ǫ)-far from being cycle-free.

For larger values of k, a more sophisticated local replacement is used; that is, replacing all small
cycles by auxiliary vertices will not do. To illustrate the difficulty of dealing with k > 4, note that,
unlike in the case k = 4, a Ck-minor free graph may contain cycles of length smaller than k that
share some common edges, and so the simple replacement will not yield a cycle-free graph.

3Note that any cycle-free graph is a forest, and if the number of trees in this forest is t, then the difference between
the number of vertices and the number of edges in the graph equals t. The two-sided error tester of [GR02] estimates
the number of edges and the number of connected components in the graph, and conducts the adequate computation.
The number of connected components is estimated by the number of connected components that have O(1/ǫ) vertices,
whereas the latter number is approximated by exploring the neighborhood of a few randomly selected vertices.

4

1.3.3 Testing H-minor freeness, for any cycle-free H

The main challenge for this problem is testing T -minor freeness, where T is an arbitrary tree. The
simple case in which T is a k-vertex star, for some k ≥ 2, provides a good illustration to the
underlying main idea. In this case we may select a random vertex and start a Breadth First Search
(BFS) at this vertex, stopping whenever either we encounter a layer with at least k vertices or we
explored more than 4k/ǫ layers (or we explored the entire connected component). In the first case,
we found a desired minor and can safely reject, whereas in the second case we found a set of at least
4k/ǫ vertices that is separated from the rest of the graph by less than dk edges. Thus, if the graph
G = ([N], E) contains at least (1− ǫ/4) ·N start vertices that do not lead the algorithm to reject,
then G can be decomposed to connected components that are each T -minor free by omitting at
most ǫdN/2 edges (i.e., the edges that are incident at the ǫN/4 exceptional vertices and the edges
of the aforementioned small cuts).

The case of a general tree T is much more complex, but the governing principle remains a tight
relation between having few start vertices that contain a T -minor at their vicinity and the ability
to decompose the graph to connected components with few edges between them. This relation is
captured by the following result, which may be of independent interest.

Theorem 1.6 (“local expansion” and tree minors): For every d and k there exists an r = r(d, k)
such that if the r-neighborhood of a vertex s in a graph of degree bound d does not contain a T -minor
of some tree T with at most k vertices, then this neighborhood contains a set S that is separated
from the rest of the graph by less than ǫd|S|/4 edges.

In other words, if all “sub-neighborhoods” of the r-neighborhood of s are “expanding” (i.e., are not
separated from the rest by small cuts), then this r-neighborhood contains a T -minor of every tree T
with at most k vertices. (We mention that the problem of finding small trees in locally expanding
graphs has been studied before (cf., e.g. [FP87]). However, our Theorem 1.6 seems incomparable,
since we seek specific tree minors rather than specific trees, whereas our expansion condition is
very weak.)

Finally, we reduce finding H-minors, where H is an arbitrary cycle-free graph (i.e., a forest),
to finding disjoint tree minors. Again, the reduction is local, and in this case it is almost straight-
forward, where the subtlety is related to the fact that we refer to one-sided error. Specifically, if
H consists of the connected components H1, . . . ,Hm, then it does not necessarily hold that G is
H-minor free if and only if G is Hi-minor free for all i ∈ [m]. Still, this is “almost true” and so a
small modification of the straightforward reduction will do.

1.4 Another perspective: Finding arbitrary forbidden minors

Our results may be viewed as progress in resolving an open problem, posed by Benjamini, Schramm,
and Shapira [BSS08], that refers to one-sided error testing of H-minor-freeness, for any finite graph
H (or even a finite family of such graphs). Specifically, Benjamini et al. [BSS08] proved that, for
any H, the property of beingH-minor-free can be tested within query complexity that only depends
on the proximity parameter,4 when allowing two-sided error. They conjectured that for any non-
forest H, there exists an H-minor-freeness tester with query complexity O(

√
N). Viewed from that

4The query complexity obtained in [BSS08] is triple-exponential in 1/ǫ. The complexity was improved to expo-
nential in 1/ǫ [HKNO09].

5

perspective, our results prove the aforementioned conjecture in the special case of H = Ck, for
every k ≥ 3.

We note that finding cycles seems the “hard” part of finding minors; that is, cycles are the
source of the Ω(

√
N) query lower bound. Specifically, recall that [GR02, Prop. 4.3] establishes

an Ω(
√
N) query lower bound for any algorithm that finds C3-minors (or, in other words, a one-

sided property tester for cycle-freeness). In [BSS08] it was suggested that this lower bound can be
deduced by adapting the lower bound argument from [GR02]. We present a proof of this fact, thus
establishing an Ω(

√
N) query lower bound for any algorithm that finds minors that contain cycles.

Recall that this stands in contrast to Theorem 1.3 (which asserts that finding cycle-free minors can
be done in a number of queries that is independent of the size of the graph).

A wider perspective on finding forbidden minors. The first result dealing with graph
minors is the well known Kuratowski-Wagner theorem [Kur30, Wag37] that states that any non-
planar graph contains a K5 or K3,3 minor. Consider a property P such that if G ∈ P, then, for
any minor H of G, it holds that H ∈ P. Such a property is minor-closed. It was conjectured by
Wagner that for any minor-closed property P, there is a finite set of graphs HP such that G ∈ P if
and only if G is H-minor free, for all H ∈ HP . Robertson and Seymour had a long series of papers,
which culminated in the proof of this conjecture [RS04], called the Graph-Minor Theorem. From
an algorithmic perspective, one of the milestones in this series was a polynomial time algorithm
that checked H-minor freeness, for any (constant-size) graph H [RS95]. (We will use a recent
improvement on that by Kawarabayashi, Kobayashi, and Reed [KKR12], which gives a quadratic
time algorithm for this problem.)

It is natural to consider a sublinear variant of the above algorithmic question; that is, given
a graph G that is far from being minor-free, can we find an H-minor by looking at a sublinear
portion of the graph? An affirmative answer would, in particular, imply that such a graph contains
sublinear sized H-minors, which is an interesting combinatorial conjecture. Needless to say, this
paper provides an affirmative answer in the special case that H is a cycle.

1.5 Further reflections regarding one-sided error

The relative power of two-sided versus one-sided error randomized decision procedures has been the
focus of considerable study in many settings, including in the context of property testing. Indeed,
in any setting, one-sided error procedures offer the advantage of never rejecting yes-instances.
However, as we already saw in Section 1.2, this advantage has a special appeal in the context
of property testing, since it yields algorithms for very efficiently finding some desired structures
(whenever the graph is far from being “free of them”). Additional benefits of one-sided error testers
are discussed next.

Firstly, we note that property testing is asymmetric in nature: It refers to distinguishing ob-
jects that perfectly satisfy a predetermined property from objects that are far from satisfying this
property. Indeed, property testing is a relaxation of the original decision task (which refers to
distinguishing objects that satisfy the property from objects that do not satisfy it), where the
relaxation is applied to one type of instances but not to the other. In this context, it is natural
to apply the probabilistic relaxation also to one type of instances (i.e., the far-away instances) but
not to the other.

Secondly, we note that one of the main applications of property testers is their potential use as
a preliminary “fast but crude” decision step, which when coupled with an exact (but slow) decision

6

procedure yields a procedure that is always correct and often very fast. That is, we envision using
a property tester as a “sieve” that rejects “on the spot” (i.e., “fast”) very bad instances (i.e.,
those that are far from satisfying this property), while passing the rest of the instances for further
examination. In such a context, we can afford passing very bad instances for further examination
(since all this means is a waste of time), but we cannot afford not passing a good instance.

Lastly, we consider the relationship between property testing and local structures in the tested
property. Intuitively, the existence of a property tester means that a global structure (i.e., dis-
tance of the object to the property) is reflected in (or co-related with) a local structure (i.e., the
part of the object being probed by the tester). In the general case (of two-sided error), this co-
relation is statistical, whereas in the case of one-sided error this correlation is actually a (“robust”)
characterization.

The last aspect is particularly clear in the current study. Firstly, the notion of local structure
is most appealing in the bounded-degree model, where it refers to graph neighborhoods. Secondly,
the different types of local structures underlying the two-sided and one-sided error testers is most
striking in the case of cycle-freeness. The two-sided error tester of [GR02] relies on the fact that
distance from cycle-freeness in connected graphs is reflected by the difference between the number
of edges and the number of vertices, whereas these numbers can be estimated (with two-sided
error) by sampling the graph’s vertices. Note that such estimates cannot yield a characterization
(let alone a robust one) of the cycle-free graphs. In contrast, our one-sided error tester relies on the
fact that distance from cycle-freeness is reflected in the density of short simple cycles in the graph,
whereas such cycles can be found by an appropriate randomized exploration of the graph. Indeed,
this yields a (robust) characterization of the set of cycle-free graphs (i.e., a graph is cycle-free if and
only if it contains no simple cycle, and the farther the graph is from being cycle-free the shorter
and more abundant these cycles are).

1.6 The general (unbounded-degree) graph model

Although our upper bounds (e.g., Theorem 1.1) state the dependence of the complexities on the
degree bound, d, so far we thought of d as being a constant (or at least as being extremely small in
comparison to N). Indeed, an upper bound as stated in Theorem 1.1 (i.e., an arbitrary polynomial
dependence on d) is not meaningful, when d = N (or even d =

√
N). Nevertheless, it is possible

to obtain a better result than stated in Theorem 1.1 – specifically, eliminate the dependence on d.
That is, there exists a randomized algorithm that, on input an N -vertex graph G of degree bound d
that is ǫ-far from being cycle-free, finds a simple cycle (of length poly(ǫ−1 logN)) in G in expected
time Õ(poly(1/ǫ) ·

√
N).

The foregoing algorithm can be extended to the general graphs model (i.e., the model in [PR02]),
where distances are measured with respect to the actual number of edges (see Section 8).5 This
follows by an alternative presentation of the basic randomized reduction, which may be viewed
as reducing cycle-freeness to a generalization of 2-colorability. In this generalization, edges of the
graph are labeled by either eq or neq, and a legal 2-coloring (of the vertices) is one in which every
two vertices that are connected by an edge labeled eq (resp. neq) are assigned the same color

5Algorithms in this model use the same type of incidence queries as in the main (bounded-degree) model we
consider. The difference is that a graph G = ([N], E) is said to be ǫ-far from H-minor-freeness if 2ǫ|E| edges (rather
than ǫdN edges) must be removed from G in order to obtain an H-minor-free subgraph. The point is that the number
of edges is related to the average degree of G rather than to its degree (upper) bound, which may be significantly
smaller. Thus, distances under this model are possibly larger, and thus the testing requirement is possibly harder.

7

(resp., opposite colors). We observe that the (one-sided error) Bipartite testers of [GR99, KKR04]
extend to this generalization of 2-colorability.

We mention that analogous extensions do not work for testing Ck-minor freeness, for k > 3,
nor for testing tree-minor-freeness. In fact, in the general graph model, it is not possible to find
tree-minors (or even test tree-minor freeness with two-sided error) by using o(

√
N) queries.

1.7 Organization

Section 2 contains a formal statement of the relevant definitions and terminology. The testers of
Ck-minor freeness are presented in Sections 3–5. Our first result (i.e., the one-sided error tester
of cycle-freeness) is presented in Section 3. The reduction of testing Ck-minor freeness to testing
cycle-freeness is presented in Section 5, but Section 4 provides an adequate warm-up by treating
the case of k = 4.

In Section 6, we prove the lower bound claimed in [BSS08] regarding the query complexity of
one-sided error testing H-minor freeness, when H contains a cycle. In contrast, in Section 7 we
consider the case that H is cycle-free, and present the improved testers for H-minor freeness in this
case (i.e., when H is a forest).

Finally, in Section 8 we consider the unbounded-degree model, discussed in Section 1.6, and in
Section 9 we compile a list of open problems that are scattered throughout the paper.

2 Preliminaries

This work refers mainly to the bounded-degree model (introduced in [GR02]). The only exception
is Section 8, where we consider the unbounded-degree model, also discussed in Section 1.6. The
bounded-degree model refers to a fixed degree bound, denoted d, where a tester is given oracle
access to an N -vertex graph G = ([N], E) of maximum degree d. Specifically, for any v ∈ [N] and
1 ≤ i ≤ d, the tester can ask for the ith neighbor of vertex v. If v has less than i neighbors, then
the answer returned is 0 (and no assumption is made on the order of the neighbors of any vertex).

Definition 2.1 (testers in the bounded-degree model): Let d ∈ N be fixed and Π be a property of
graphs with maximum degree at most d. We denote the restriction of Π to N -vertex graphs by ΠN .
A randomized oracle machine T is called a tester for Π if the following two conditions hold:

1. For every N ∈ N and ǫ ∈ [0, 1], on input (N, ǫ) and when given oracle access to any G ∈ ΠN

the machine T accepts with probability at least 2/3; that is, Pr[TG(N, ǫ) = 1] ≥ 2/3.

2. For every N ∈ N and ǫ ∈ [0, 1], and every N -vertex graph G that is ǫ-far from ΠN , it holds that
Pr[TG(N, ǫ) = 1] ≤ 1/3, where G = ([N], E) is ǫ-far from ΠN if for every G′ = ([N], E′) ∈ ΠN

it holds that the symmetric difference of E and E′ contains more than ǫ · dN elements.

In case the first condition holds with probability 1, we say that T has one-sided error. Otherwise,
we say that T has two-sided error.

Throughout our study, the degree bound d is a constant, and sometimes O/Omega-notions hide
a dependence on d. The query and time complexities of testers are stated as functions of the
graph size, N , and the proximity parameter, ǫ. When discussing time complexity, basic vertex-
manipulation operations are counted at unit cost. We may assume without loss of generality that

8

d ≥ 3, where in order to obtain a result for d = 2, we can simply run the algorithm with d = 3 and
a proximity parameter of 2ǫ/3 (and for d = 1 all problems become trivial).

Notation. For a graph G = ([N], E), we denote the set of neighbors of v ∈ [N] (in G) by ΓG(v);
that is, ΓG(v) = {u∈ [N] : {u, v}∈E}.

Terminology. By a cycle in a graph G = ([N], E) we mean a sequence of vertices (v1, . . . , vt, vt+1)
such that v1 = vt+1 and for every i ∈ [t] it holds that {vi, vi+1} ∈ E; that is, (u, v,w, v, u) (or even
(u, v, u)) is considered a cycle. A simple cycle is a cycle as above in which t ≥ 3 and |{vi : i ∈ [t]}| = t.

A useful bound. For any positive integer a and fraction 0 < α < 1/2 we have:

(
a

αa

)
< 2H2(α)·a (1)

where H2(α) = α log(1/α) + (1− α) log(1/(1 − α)) is the binary entropy function.

3 Testing Cycle-Freeness

As stated in the introduction, we reduce testing cycle-freeness to testing bipartiteness. Recall that
we consider bounded-degree graphs, where the degree bound d is assumed to be a constant (for
the general case, see Section 8). The reduction is randomized and local so that operations in the
resulting graph are easily implemented via operations in the original graph. Wishing to avoid a
general definition of (randomized) local reductions, we explicitly present the tester obtained by it.

For a fixed graph G = ([N], E) and function τ : E → {1, 2}, we denote by Gτ the graph
obtained from G by replacing each edge e ∈ E such that τ(e) = 2 by a 2-edge path (with an
auxiliary intermediate vertex). Each edge e ∈ E such that τ(e) = 1 remains an edge in Gτ . That
is, the graph Gτ = (Vτ , Eτ) is defined as follows:

Vτ
def
= [N] ∪ {ae : e ∈ E ∧ τ(e) = 2} (2)

Eτ
def
= {e : e ∈ E ∧ τ(e) = 1} ∪ {{u, ae}, {ae, v} : e = {u, v} ∈ E ∧ τ(e) = 2} (3)

Note that |Vτ | ≤ (d+ 1) ·N and that Gτ preserves the degree bound, d. We first establish the next
lemma concerning features of the transformation from G to Gτ , and later turn to discuss the tester
in detail.

Lemma 3.1 (analysis of the randomized transformation):

1. If G is cycle-free, then, for every choice of τ : E → {1, 2}, the graph Gτ is bipartite.

2. If G is not cycle-free, then, with probability at least 1/2 over the random choice of τ : E →
{1, 2}, the graph Gτ is not bipartite.

3. There exist universal constants c1 > 1 and c2, c3 > 0 such that, for every ǫ ≥ c1/(dN), if G
is ǫ-far from being cycle free, then, with probability at least 1− exp(−c2ǫdN) over the random
choice of τ : E → {1, 2}, the graph Gτ is c3 · ǫ/2d-far from being bipartite.

9

Proof: The first item follows from the fact that if G is cycle-free, then, for every τ : E → {1, 2},
the graph Gτ is also cycle-free, and thus bipartite. The second item follows by observing that any
cycle in G is transformed with probability 1/2 to an odd-length cycle in Gτ . Turning to the last
item, we consider an arbitrary graph G that is not cycle-free. Denoting by ∆ the actual number
of edges (not its fraction) that should be omitted from G in order to obtain a cycle-free graph,
we shall show the following. For ∆ that is at least some constant (i.e., ∆ ≥ c1), with probability
1−exp(−Ω(∆)), the number of edges that should be omitted from Gτ in order to obtain a bipartite
graph is Ω(∆). (Note that the second item in the lemma holds for any ∆ ≥ 1, which may be below
this constant.)

We start by considering the case that the graph G is connected. We later address the case in
which G contains more than one connected component. We may assume without loss of generality
that G has no vertices of degree 1, since removing such vertices maintains the value of ∆ (i.e., the
absolute distance from being cycle-free) as well as (the distribution of) the number of edges that
have to be removed to make Gτ bipartite. We also observe that except in the case that G is a
simple cycle, which is covered by the second item in the lemma, we may assume that there are
no vertices of degree 2. This is true since we can contract paths that only contain intermediate
vertices of degree 2 to a single edge, while again preserving ∆ as well as (the distribution of) the
number of edges that have to be removed to make Gτ bipartite. The latter assertion follows from
the fact that the distribution of the parity of the path-lengths in Gτ is maintained (i.e., both the
original path and the contracted path in Gτ have odd/even length with probability 1/2). We also
mention that the contracted graph G may contain self-loops and parallel edges, but the rest of the
argument holds in this case too. We stress that the contracted graph is merely a mental experiment
for proving the current lemma.

In light of the foregoing, we consider a connected graph G = ([N], E), which may have self-loops
and parallel edges, in which each vertex has degree at least 3. It follows that ∆ = |E| − (N − 1) >
N/2. We shall prove that, with high probability over the choice of τ , for some constant c3 > 0,
more than c3 ·∆ ≥ c3ǫdN edges must be omitted from the graph Gτ in order to obtain a bipartite
graph. Since the number of vertices in Gτ is upper bounded by (d+ 1)N (and its degree bound is
d), we get that Gτ is at least (c3ǫ/2d)-far from bipartite, since c3ǫdN

d(d+1)N > c3ǫ
2d .

For each E′ ⊂ E of size c3∆, let G′
τ denotes the subgraph of Gτ obtained by applying the

foregoing randomized reduction to the graph G′ = ([N], E \ E′) rather than to G = ([N], E). We
consider the probability that G′

τ is bipartite. Note that Gτ is at (absolute) distance at most c3∆
from being bipartite if and only if there exists a set E′ of size c3∆ such that G′

τ is bipartite. Thus,
the probability that Gτ is at distance at most c3∆ from being bipartite is given by

p
def
= Prτ [∃E′ ⊂ E such that |E′| = c3∆ and G′

τ is bipartite]

≤
∑

E′⊂E: |E′|=c3∆

Prτ [G
′
τ is bipartite]

≤
(|E|
c3∆

)
· 2N−1 · 2−(|E|−c3∆)

where the second inequality is due to considering all possible 2-partitions of [N], and noting that for
each edge e in E \E′ and each 2-partition π, with probability 1/2 over the choice of τ(e) ∈ {1, 2},
the partition π is inconsistent with the value of τ(e). (In such a case we say that e violates the
2-partition π.) Specifically, if π(u) = π(v) and τ({u, v}) = 1, then the edge {u, v} violates the

10

2-partition π, and ditto if π(u) 6= π(v) and τ({u, v}) = 2. Note that the hypothesis that G is
(connected and is) at (absolute) distance ∆ from being cycle-free implies that |E| = (N − 1) + ∆.
Now, substituting |E| by (N − 1) + ∆, using ∆ ≥ N/2 and Equation (1) we get

p ≤
(
N − 1 + ∆

c3∆

)
· 2−(∆−c3∆)

<

(
3∆

c3∆

)
· 2−(1−c3)∆

< 2H2(c3/3)·3∆−(1−c3)∆

which vanishes exponentially in ∆ provided that c3 > 0 is a sufficiently small constant.
It remains to address the case in which G is not connected. Let C1, . . . , Ct be the connected

components of G where t > 1. For each 1 ≤ i ≤ t, let Ni be the number of vertices in Ci, and let
∆i be the number of edges that should be removed from Ci in order to make it cycle-free. Thus,∑t

i=1Ni = N and
∑t

i=1 ∆i = ∆. Let τi be the restriction of τ to the edges in Ci, let Ci,τ be the
graph obtained by applying the transformation defined by τi to Ci, and let ∆i,τ be the number of
edges that should be removed from Ci to make it bipartite.

By applying the argument detailed above to each Ci separately, we get that Pr[∆i,τ < c3∆i] ≤
2−c4∆i (for constants 0 < c3, c4 < 1). We would like to infer that

Pr

[
t∑

i=1

∆i,τ < c′3

t∑

i=1

∆i

]
≤ exp

(
−Ω

(
t∑

i=1

∆i

))
= exp(−Ω(∆)) (4)

for some constant c′3. To this end, for each Ci we define mi = c3∆i independent 0/1 random
variables, Xi,1, . . . ,Xi,mi , such that Pr[Xi,j = 1] = 2−c4/c3 . Observe that Pr[

∑mi
j=1Xi,j ≤ mi] = 1

and Pr[
∑mi

j=1Xi,j = 0] = 2−c4∆i . Thus, for any β > mi, we have Pr[
∑mi

j=1Xi,j < β] = 1,

whereas for any β ≤ mi we have Pr[
∑mi

j=1Xi,j < β] ≥ 2−c4∆i ≥ Pr[∆i,τ < β]. This implies that
Pr[
∑mi

j=1Xi,j < β] ≥ Pr[∆i,τ < β] for every threshold β, which means that the random variables∑mi
j=1Xi,j and ∆i,τ can be coupled (i.e., defined over the same sample space) such that the value of

the first is always upper bounded by the value of the second. Hence, in order to prove Equation (4),
it suffices to bound the probability that

∑t
i=1

∑mi
j=1Xi,j < c′3

∑t
i=1 ∆i = c′3∆. But since these

(
∑t

i=1mi = c3∆) random variables are independent, we can apply a multiplicative Chernoff bound,
which gives us that the probability that

∑t
i=1

∑mi
j=1Xi,j < c′3∆ for c′3 = c3 · 2−c4/c3−1 (i.e., half the

expected value of the sum), is exp(−Ω(∆)).

The Tester For Cycle-Freeness. The tester emulates the execution of the bipartiteness testing
algorithm [GR99] on Gτ by performing queries to G. We next state the main theorem proved
in [GR99].

Theorem 3.2 [GR99] There exist an algorithm Test-Bipartite for testing bipartiteness of bounded-

degree graphs whose query complexity and running time are poly((log Ñ)/ǫ̃) ·
√
Ñ where Ñ denotes

the number of vertices in the graph and ǫ̃ is the given proximity parameter. The algorithm uniformly
selects random vertices and performs random walks from them. Whenever the algorithm rejects a
graph it outputs a certificate to the non-bipartiteness of the graph in form of an odd-length cycle of
length poly(ǫ̃−1 log Ñ).

11

(Indeed, the foregoing complexities are independent of the degree bound; cf. [KKR04].) As stated
in Theorem 3.2, algorithm Test-Bipartite performs two types of operations: (1) selecting a vertex
uniformly at random, and (2) taking random walks by querying vertices on their neighbors.6 Thus
the execution of the cycle-freeness tester boils down to emulating these operations, as described
next.

Algorithm 3.3 (the cycle-freeness tester): Given input graph G = ([N], E), the tester selects
uniformly at random a function τ : E → {1, 2} and invokes Test-Bipartite on the graph Gτ with
the proximity parameter set to c3ǫ/2d (where c3 is the constant from the last item in Lemma 3.1),
emulating its operations as follows.7

1. If Test-Bipartite wishes to select a random vertex in Gτ , then the tester first selects uniformly
a vertex v ∈ [N]. It then outputs v with probability 1/(d + 1), and otherwise it selects each
neighbor of v with probability 1/2d and outputs a{u,v} if τ({u, v}) = 2, where u denotes the

selected neighbor. Thus, v is output with probability 1
d+1 , and each a{u,v} such that τ({u, v}) =

2 is output (here) with probability (1− 1
d+1) · 1

2d = 1/2
d+1 .

Indeed, the foregoing process outputs a vertex in Gτ with probability at least 1/(d+ 1), and in
case no vertex is output, the procedure is repeated (up to O(logN) times).

2. If Test-Bipartite queries for the ith neighbor of vertex v ∈ [N] ⊆ Vτ , then the tester queries for
the ith neighbor of v in G, and answers accordingly. Specifically, if the answer to this query
was u (i.e., u is the ith neighbor of v in G), then u is given to Test-Bipartite if τ({u, v}) = 1
and otherwise a{u,v} is given. (If the answer was 0, indicating that v has less than i neighbors,
then 0 is returned as answer to Test-Bipartite.)

Finally, if Test-Bipartite queries for the ith neighbor of a vertex a{u,v} such that u < v, then
the tester answer with u if i = 1, with v if i = 2, and with 0 if i > 2.

When Test-Bipartite halts, the current tester halts with the same verdict.

Furthermore, if Test-Bipartite provides an odd-length cycle in Gτ , then we can easily obtain a
corresponding cycle in G (by contracting the 2-vertex paths that appear on it into single edges).

Note that in each iteration of the process detailed in Step 1, each vertex of Gτ (regardless if it
is an original vertex of G or an auxiliary vertex) is output with probability exactly 1

N · 1
d+1 (and

with probability 1−|Vτ | · 1
N · 1

d+1 no vertex is output), Thus, conditioned on a vertex being selected
in Step 1 (which happens with very high probability since the process is repeated sufficiently many
times), Step 1 implements a uniform random selection of vertices in Gτ .

Conclusion. Combining Lemma 3.1 with Theorem 3.2 we conclude that Algorithm 3.3 is a one-
sided error tester for cycle-freeness. Its complexity is Õ(poly(d/ǫ) ·

√
N) and if it rejects the graph

G then it outputs a cycle of length poly(ǫ−1d logN). This establishes Theorem 1.5.

6Actually, Test-Bipartite requires also a rough estimate of the number of vertices in the graph, since such an
estimate is used to determine a couple of parameters (i.e., the number of random walks performed and their length).
It is clear that our reduction provides such an estimate, since |Vτ | = Θ(N).

7Actually, the function τ : E → {1, 2} is selected on-the-fly; that is, whenever the tester needs the value of τ on
some edge in E, it retrieves it from its memory in case it was determined already and selects it at random (and stores
it for future use) otherwise.

12

4 Testing C4-Minor-Freeness

As a warm-up towards testing Ck-minor-freeness, for any k ≥ 3, we present the treatment of the
special case of k = 4. We actually reduce the task of testing C4-minor-freeness to the task of
testing C3-minor-freeness. Loosely speaking, the reduction replaces each triangle {u, v,w} in the
input graph by an auxiliary vertex (denoted ▽{u,v,w}) that is connected to the corresponding three

vertices. The reduction is summarized in the following construction.

Construction 4.1 (the reduction): Given a graph G = ([N], E) (of max degree d), we (locally)
construct the auxiliary graph G′ = ([N] ∪ T,E′) such that T contains the vertex ▽{u,v,w} (referred

to as a “triangle” vertex) if and only if {u, v}, {v,w}, {w, u} ∈ E and

E′ =

E \

⋃

u,v,w:▽
{u,v,w}

∈T

{u, v}

 ∪

{
{u,▽{u,v,w}} : ▽{u,v,w} ∈ T

}
. (5)

Specifically, the set of neighbors of v ∈ [N] in G′, denoted ΓG′(v), consists of the following elements
of [N] ∪ T .

1. Neighbors of v in G that do not reside in G on a triangle together with v; that is, u ∈ ΓG(v)
is in ΓG′(v) if and only if ΓG(u) ∩ ΓG(v) = ∅.

2. Each triangle that contains v in G; that is, ▽{u,v,w} is in ΓG′(v) if and only if u,w ∈ ΓG(v)

and {w, u} ∈ E.

The set of neighbors of ▽{u,v,w} ∈ T equals {u, v,w}. Noting that d +
(d
2

)
≤ d2, we view G′ as a

graph of maximal degree d2.

For an illustration of Construction 4.1 see Figure 1. Note that given any v ∈ [N], we can easily

G G′

c

a d a d

c e c

a

e c

ba

e

ddbb

G′

b

e

G

Figure 1: An illustration for Construction 4.1. On the left, G is C4-minor free, and indeed G′ is cycle-free;
while on the right, G is not C4-minor free, and G′ contains cycles (but no cycles of length 3 (triangles).)

determine its neighbors in G′ by checking the foregoing conditions. Similarly, for every u, v,w,
we can easily determine whether ▽{u,v,w} is in G′. Lastly, note that we can select a vertex of G′

uniformly by using the following procedure.

1. Select uniformly v ∈ [N].

2. Select one of the following two instructions at random with equal probability.

13

(a) (Generating a vertex of G):

Output v with probability d−2.

(b) (Generating a triangle):

Query all neighbors of v to obtain ΓG(v), and select uniformly u,w ∈ ΓG(v) such that
u 6= w. If {u,w} ∈ E, then output ▽{u,v,w} with probability pv = d−2 ·

(|ΓG(v)|
2

)
/3.

In all the other cases, there is no output.

Thus, this process outputs each vertex of G with probability N−1 ·0.5 ·d−2 = d−2/2N , and outputs

each ▽{u,v,w} ∈ T with probability
∑

x∈{u,v,w}N
−1 · 0.5 ·

(|ΓG(x)|
2

)−1 · px = d−2/2N . Since there are

at least N vertices in G′, the probability that the process does not output any vertex in G′ is at
most (1−d−2). If we repeat the process Θ(logN) times (recall that d is assumed to be a constant),
then the probability that we get no output is 1/poly(N). Since the total size of the sample needed is
o(N), by a union bound, the probability that this occurs at any step of the algorithm, is negligible,
and this can be accounted for in the one-sided error probability by letting the algorithm accept in
case sampling fails.

Algorithm 4.2 (the C4-minor-freeness tester): Given input graph G = ([N], E), the tester emu-
lates the execution of Algorithm 3.3 on the graph G′ = ([N]∪T,E′) as defined in Construction 4.1.
In the emulation, vertices of G′ are selected at random and their neighbors are explored on the fly,
as detailed above.

The analysis of Algorithm 4.2 reduces to an analysis of Construction 4.1.

Claim 4.3 If G is C4-minor-free, then G′ is cycle-free.

Proof: We first give a high-level idea of the proof and then give a detailed argument. By the
hypothesis, the only simple cycles in G are triangles, and they are replaced in G′ by stars centered at
auxiliary vertices. Specifically, the triangle {u, v,w} (i.e., the edges {u, v}, {v,w}, {w, u}) is replaced
by a star-tree centered at ▽{u,v,w} and having the leaves u, v,w. Note that this replacement can

form no simple cycles in G′, because the simple paths in G′ correspond to simple paths in G (where
the sub-path v—▽{u,v,w} —w corresponds to the edge v—w).

The corresponding detailed argument proceeds as follows. Assume, contrary to the claim, that
there exists a simple cycle ψ′ = v1—v2– · · · –vt—vt+1 = v1 in G′. Consider replacing each length-2
subpath u—▽{u,w,x}—w in ψ′ by the edge (in G) between u and w (where this edge exists because

u and w belong to a common triangle and u 6= w). Since, by construction of G′, there are no
edges in G′ between triangle vertices, this way we obtain a cycle in G, which we denote by ψ. We
next show that ψ is a simple cycle of length greater than 3, and we reach a contradiction to the
hypothesis that G is C4-minor-free.

We first verify that the length of ψ is greater than 2. This is true because otherwise, the cycle ψ′

is either of the form u—▽{u,w,x}—w—u, or it is of the form u—▽{u,w,x1}—w—▽{u,w,x2}—u. In the

first case ψ′ contains an edge {w, u} of a triangle in G, which is not possible by construction of G′.
In the second case, since ψ′ is simple (so that x1 6= x2), there is a simple 4-cycle u—x1—w—x2—u
in G (contradicting the hypothesis that G is C4-minor-free). It follows that ψ is a simple cycle and
it remains to verify that its length is greater than 3.

14

Suppose that the length of ψ is 3, that is, ψ = u—w—v—u is a triangle inG. It follows that none
of the edges {u,w}, {w, v}, {v, u} belong to G′ and therefore, ψ′ = u—▽{u,w,x1} —w—▽{w,v,x2}
—v—▽{v,u,x3} —u, where the triangles are distinct and hence at least one of them does not equal

▽{u,w,v}. But this implies that there exists a simple 4-cycle in G (contradicting the hypothesis that

G is C4-minor-free).

Claim 4.4 If G is ǫ-far from being C4-minor-free, then G′ is Ω(ǫ)-far from being cycle-free, where
the Omega-notation hides a polynomial in 1/d.

Proof: Suppose that G′ is δ-close to being cycle-free, where the distance refers to the degree
bound of G′, which is d2 as well as the number of vertices in G′ which is N + |T |. Let R′ be a
set of at most δ · d2 · (N + |T |) edges such that removing R′ from G′ yields a cycle-free graph,
([N] ∪ T,E′ \ R′). Let R ⊆ E be a set of edges that consists of (1) all edges of E that are in R′,
and (2) each edge {u, v} ∈ E such that {u,▽{u,v,w}} is in R′. Hence, |R| ≤ 2|R′| < 2δ · d4N , where

we use |T | ≤
(d
2

)
·N . We next prove that removing R from G yields a graph that is C4-minor-free,

and it follows that G is 2d3δ-close to being C4-minor-free.
Assume, contrary to the claim, that for some t ≥ 4 there exists a simple cycle v1—v2– · · · –vt—v1

in the resulting graph (i.e., in the graph ([N], E\R)). We consider the corresponding (not necessarily
simple) cycle in the graph ([N] ∪ T,E′ \R′):

Case 1: If the edge {vi, vi+1} ∈ E \ R is not a part of any triangle in G, then {vi, vi+1} ∈ E′ \ R′,
because {vi, vi+1} is an edge of G′ and it cannot be in R′ (since this would imply that
{vi, vi+1} ∈ R). In this case, we just use the edge {vi, vi+1} on the cycle in the graph
([N] ∪ T,E′ \R′).

Case 2: If the edge {vi, vi+1} ∈ E \R is part of a triangle vi, vi+1, w (in G), then {vi,▽{vi,vi+1,w}} ∈
E′\R′ and {vi+1,▽{vi,vi+1,w}} ∈ E

′\R′, because both pairs are edges of G′ and cannot be in R′

(since this would imply that {vi, vi+1} ∈ R). In this case, we replace the edge {vi, vi+1} ∈ E\R
by the length-two-path vi—▽{vi,vi+1,w} —vi+1 (in the graph ([N] ∪ T,E′ \R′)).

Observe that the “triangle” vertices used in Case (2) need not be distinct, but they can collide
only when they refer to three consecutive vertices on the original t-cycle (i.e., if ▽{vi,vi+1,w1} =

▽{vj ,vj+1,w2}, for i < j, then vj = vi+1 must hold, and w1 = vj+1 = vi+2 follows). Such collisions can

be eliminated at the cost of omitting a single “non-triangle” vertex (i.e., the path vi—▽{vi,vi+1,vi+2}
—vi+1—▽{vi,vi+1,vi+2}

—vi+2 is replaced by the path vi—▽{vi,vi+1,vi+2}
—vi+2). Thus, we derive a

simple cycle of length at least t ≥ 4 in the graph ([N]∪T,E′ \R′) (since we have a “triangle” vertex
per each omitted “non-triangle” vertex). This contradicts the hypothesis that ([N] ∪ T,E′ \R′) is
cycle-free, and so the claim follows.

Conclusion. Combining Claims 4.3 and 4.4 with Theorem 1.5 and the fact that the number of
vertices in G′ is linear in N (and polynomial in d), we conclude that there exists a one-sided error
tester of complexity Õ(poly(d/ǫ) ·

√
N) for C4-minor-freeness.

15

5 Testing Ck-Minor-Freeness, for any k ≥ 4

In this section we show that, for any k ≥ 4, the task of testing Ck-minor-freeness reduces to the
task of testing C3-minor-freeness. The reduction extends the ideas underlying the reduction of
testing C4-minor-freeness to testing C3-minor-freeness (as presented in Section 4).

The basic idea of the reduction is replacing simple cycles that have length smaller than k by
stars. Actually, we replace certain subgraphs that contain such cycles by stars. We start by defining
the class of (induced) subgraphs that we intend to replace by stars. These subgraphs (or rather
their vertex sets) will be called spots. Below, the term 2-connectivity means 2-vertex connectivity;
that is, a graph is called 2-connected if every two vertices in the graph can be connected by two
vertex-disjoint paths.

Definition 5.1 (spots): A set S ⊆ [N] is called a k-spot of the graph G = ([N], E) if the following
three conditions hold:

1. The subgraph induced by S, denoted GS, contains no simple cycle of length at least k; that is,
GS is Ck-minor-free.

2. The subgraph induced by S is 2-connected and |S| ≥ 3.

3. For every u, v ∈ S such that u 6= v, either u and v are not connected by any path that is

external to GS or the length of every such external path is at least ℓ(k)
def
= 2k. Here, by a path

external to GS we mean a path that does not use any edge that is incident to a vertex in S
with the exception of the endpoints u and v (i.e., all intermediate vertices of the path belong
to [N] \ S).

For example, every 4-spot ofG induces a triangle inG, whereas the set of possible subgraphs induced
by 5-spots of G consists of the following graphs: the 4-cycle (i.e., C4), the 4-cycle augmented by
a chord, the 4-clique (i.e., K4), and the graphs K2,n and K ′

2,n for every n ≥ 3, where K ′
2,n is the

graph K2,n augmented by a single edge that connects the two vertices on the small side.8 (Indeed,
in Section 4 we essentially used a relaxed notion of a 4-spot in which the third condition was not
required.)

5.1 Some basic facts regarding spots

Since k is fixed throughout the rest of our discussion, we may omit it from the notations and refer
to k-spots as spots. A few basic properties of spots are listed below.

Claim 5.2 If S is a k-spot of G, then the diameter of GS is smaller than k/2.

It follows from the claim that for every k-spot S where k ≥ 4,

|S| <
k/2∑

i=0

di < 2dk/2 < dk−1 (6)

8Recall that Km,n denotes the complete bipartite graph with m vertices on one side and n vertices on the other
side; that is, Km,n = ([m + n], {{i, m + j} : i∈ [m], j∈ [n]}).

16

(since d ≥ 3).9

Proof: Assume, contrary to the claim that the diameter of GS is at least k/2 and consider u, v ∈ S
such that the distance between u and v in GS is at least k/2. Since GS is 2-connected, there exists
a simple cycle in GS that passes through both u and v, and it follows that this cycle has length at
least k, which contradicts the hypothesis that GS is Ck-minor-free.

Note that, for any spot S and every three distinct vertices u, v,w ∈ S, the subgraph GS contains
a simple path that goes from u to v via w. This holds by the very fact that GS is 2-connected (i.e.,
the second condition in Definition 5.1). By Claim 5.2 the length of this path is less than dk−1. As
we shall show next, a much better bound follows by using the fact that GS is Ck-minor-free (i.e.,
the first condition in Definition 5.1),

Claim 5.3 For every k-spot S and distinct vertices u, v,w ∈ S, the subgraph GS contains a simple
path of length at most 2k − 1 that goes from u to v via w.

S

u

v

w

x

Figure 2: An illustration for the proof of Claim 5.3. The jotted line is the path between u and v that passes
through w.

Proof: We just take a closer look at the standard proof that the fact that a graph is 2-connected
implies the existence of a u– · · · –w– · · · –v path (for every three vertices u, v,w in the graph). For an
illustration of the argument that follows, see Figure 2. The proof starts by considering two different
vertex-disjoint u– · · · –w paths, and an arbitrary path between v and w. In the current case (i.e.,
by Ck-minor-freeness), we may assume that the total length of the first two paths is smaller than
k. Similarly, without loss of generality, the length of the third path is smaller than k. Proceeding
as in the standard proof, we ask whether the third path (i.e., the v– · · · –w path) intersects both
the u– · · · –w paths. If the answer is negative, then we are done (as we obtain the desired simple
path by concatenating the path v– · · · –w to the w– · · · –u path that does not intersect it).

Otherwise, let x be the “closest to v” vertex on the path v– · · · –w that appear on either of
the u– · · · –w paths; that is, x is on one of the u– · · · –w paths and the sub-path v– · · · –x (of the
path v– · · · –w) contains no vertex from either the u– · · · –w paths. Note that x = v is possible (but

9We mention that there may exists spots of size d(k−1)/2. Consider, for example, a graph that consists of two
copies of a depth (d − 1)-ary tree of depth (k − 1)/2 such that each vertex in one tree is connected to its mirror
vertex in the second tree. To see that this graph is Ck-minor-free, consider the correspondence between cycles on this
graphs and traversals of parts of the original tree, and note that simple cycles correspond to traversals in which each
edge is used at most twice. Since such traversals have length at most twice the depth of the tree, the claim follows.

17

x = w is not), and assume, w.l.o.g., that x resides on the first u– · · · –w path. Then, consider the
path obtained by combining the following three path segments: (1) the segment v– · · · –x of the
path v– · · · –w, (2) the segment x– · · · –w of the first u– · · · –w path, and (3) the second u– · · · –w
path. Note that the total length of this path is at most 2(k − 1) (i.e., the total length of the three
paths), and that the three segment do not intersect (since the v– · · · –x segment does not intersect
the x– · · · –w segment nor the u– · · · –w path by the choice of x).

w

u′

v′

S2

u

v

S1

Figure 3: An illustration for the proof of Claim 5.4.

Claim 5.4 If S1 6= S2 are k-spots of G, then |S1 ∩ S2| ≤ 1.

Proof: Assume, contrary to the claim that |S1 ∩ S2| > 1 for two k-spots S1 6= S2. Consider
(w.l.o.g.) u, v ∈ S1 ∩ S2 such that u 6= v and w ∈ S2 \ S1 (as in Figure 3). By Claim 5.3, the
subgraph GS2 contains a simple path of length at most 2k − 1 that goes from u to v via w. Let u′

(resp., v′) be the last (resp., first) vertex of S1 that appears on this path before reaching w (resp.,
after leaving w). Then, we get a simple path (in G) from u′ ∈ S1 to v′ ∈ S1 \ {u′} such that this
path contains only intermediate vertices of S2 \ S1. Recalling that this path has length at most
2k − 1, we reach a contradiction to the hypothesis that S1 is a k-spot (specifically to the third
condition of Definition 5.1).

As a corollary of Claim 5.4 we get:

Corollary 5.5 Every vertex v may belong to at most |Γ(v)|/2 spots and hence the number of spots
in a graph G is upper-bounded by the number of edges in G.

Proof: The second part of the corollary follows directly from the first, and so we only need to
establish the first part. Since by the definition of a spot, it must contain at least 3 vertices, every
spot S that contains a vertex v must also contain at least two of v’s neighbors. However, by
Claim 5.4, spots that contain v may not share any other vertex.

Claim 5.6 Each simple cycle in any Ck-minor-free graph G is a subset of some k-spot of G.

Proof: Consider the following iterative process of constructing a spot S that contains the afore-
mentioned cycle. Initially, we set S to equal the set of vertices that reside on this cycle. Clearly,
this set S satisfies the first two conditions of the definition of a spot (i.e., Definition 5.1), which
is an invariant that we shall maintain throughout the iterative process. The process ends once all
three conditions are satisfied. Since the size of the spot increases in each iteration, the process must
eventually end. Thus, at the start of each iteration of the process we have a set S that satisfies
the first two conditions in Definition 5.1 but does not satisfy the third condition. That is, there

18

exists a simple path external to S that connects two of its vertices u, v ∈ S. Adding this path to
S we obtain a new set that satisfies Condition 1 (since G is Ck-minor-free). To see that the new
set satisfies Condition 2, we need to show that there exist two disjoint paths between each pair of
vertices that are not both in S. For an illustration of the argument that follows, see Figure 4.

u

v v

w1

w2

w1

w2

u

SS

Figure 4: An illustration for the proof of Claim 5.6.

In the case that w1 and w2 are both new vertices (which reside on the aforementioned S-external
path), we connect them by the direct path that resides outside of S as well as by a simple path
that (without loss of generality) connects w1 to u (via the external path), connects u and v via S,
and connects v and w2 (via the external path). In the case that w1 is new but w2 ∈ S, we use
the external path to connect w1 to u and v, respectively, and use the fact that there are vertex
disjoint paths in GS that connect u and v to w2. Thus the new set satisfies the first two conditions
in Definition 5.1, as desired.

5.2 The actual reduction

Using these facts, we are ready to present our reduction.

Construction 5.7 (the reduction): Given a graph G = ([N], E) (of max degree d), we (locally)
construct the auxiliary graph G′ = ([N] ∪ {〈S〉 : S∈S}, E′) such that S is the set of all spots of G
and

E′ =
(
E \

(⋃

S∈S
{{u, v} : u, v∈S}

))
∪
{
{v, 〈S〉} : S ∈ S, v∈S

}
. (7)

Specifically, the set of neighbors of v ∈ [N] in G′, denoted ΓG′(v), consists of the following elements
of [N] ∪ {〈S〉 : S∈S}.

1. Neighbors of v in G that do not reside in any spot together with v; that is, u ∈ ΓG(v) is in
ΓG′(v) if and only if {u, v} is not a subset of any S ∈ S.

2. Each spot that contains v in G; that is, 〈S〉 is in ΓG′(v) if and only if S ∈ S and v ∈ S.

For any S ∈ S, the set of neighbors of 〈S〉 in G′ equals S. Recalling that by Equation (6) each
S ∈ S has size at most dk−1, we view G′ as a graph of maximal degree dk−1.

Observe that the set of spots that contain a vertex v ∈ [N] is determined by the (k + ℓ(k))-
neighborhood of v in G, where the t-neighborhood of v contains all vertices that are at distance at
most t from v. Thus, we can determine the set of neighbors of each vertex in G′. We note that
the process of determining the spots that contain a vertex may fail if a cycle of length at least k
is encountered. In such a case the algorithm can clearly reject. Lastly, note that we can select a
vertex of G′ uniformly by using the following procedure.

19

1. Select uniformly v ∈ [N].

2. Select one of the following two instructions at random with equal probability.

(a) (Generating a vertex of G):

Output v with probability 1/d.

(b) (Generating a spot):

Select uniformly a spot S that contain v (i.e., S ∈ Sv), and output 〈S〉 with probability

pv(S) = |Sv|
d|S| , where Sv

def
= {S ∈ S : v ∈ S}. (Recall that by Corollary 5.4, |Sv| ≤ d/2, so

that pv(S) < 1).

In all the other cases, there is no output.

Thus, this process outputs each vertex of G with probability N−1 ·0.5 ·d−1 = 1/(2dN), and outputs
each spot 〈S〉 ∈ S with probability

∑
v∈S N

−1 · 0.5 · |Sv|−1 · pv(S) = 1/(2dN).

Algorithm 5.8 (the Ck-minor-freeness tester): Given input graph G = ([N], E), the tester em-
ulates the execution of Algorithm 3.3 on the graph G′ as defined in Construction 5.7. In the
emulation, vertices of G′ are selected at random and their neighbors are explored on the fly, as
detailed above.

The analysis of Algorithm 5.8 reduces to an analysis of Construction 5.7.

Claim 5.9 (yes-instances): If G is Ck-minor-free, then G′ is cycle-free.

Proof: Suppose, contrary to the claim, that v1—v2– · · · –vt—v1 is a simple cycle in G′. We consider
two cases.

Case 1: All vi’s are vertices of G. In this case, the edges {vi, vi+1} in G′ must be edges of G (since
the only edges in G′ that are not edges in G are incident to spot-vertices). On the other hand
t < k must hold, because G is Ck-minor-free. But this yields a contradiction, because, by
Claim 5.6, the set {vi : i ∈ [t]} must be a subset of some spot of S, which means that none
of the edges {vi, vi+1} may exist in G′.

Case 2: Some vi represents a spot of G. Let vi = 〈S〉, for some S ∈ S. By the definition of the
neighborhood relations in G′ we have that vi+1, vi−1 ∈ S. Now, consider a minimal sub-path
of vi+1, . . . , vt, v1, . . . , vi−1 that starts in a vertex of S, denoted u, and ends in a vertex of S,
denoted v. That is, we consider a sub-path that starts and ends in vertices of S, but has no
intermediate vertices in S. This sub-path (in G′) cannot consist of a single edge (because the
edge {u, v} ⊂ S cannot appear in G′), it cannot contain the vertex 〈S〉 (because 〈S〉 already
appears as vi), and it cannot be a path of length 2 that goes through another spot (because,
by Claim 5.4, no other spot may contain both u and v). Since this path may not contain
intermediate vertices in S, and since spot-vertices cannot be adjacent in G′, it follows that
this path must contain a vertex w ∈ [N] \ S. That is, we get a path in G′ that goes from u
to v via w, without passing through any vertex in S.

We now obtain a corresponding path in G; that is, a path in G that goes from u to v via
w, without passing through any vertex in S. This is done by replacing any length-2 subpath

20

u′—〈S′〉—v′ (in G′) by a sub-path u′– · · · –v′ (in G) that does not pass through S, where the
latter path exists by the fact that u′, v′ ∈ S′ are connected by vertex-disjoint paths (internal
to S′) such that their intersection with S contains at most a single vertex (see Claim 5.4).
It follows that G itself contains a path between u and v that passes through w and does not
pass through S, where u, v ∈ S but w 6∈ S. Thus, G itself contains a simple (non-edge) path
between u and v that does not pass through S (i.e., an external path). By the third condition
in Definition 5.1, the length of this external path is at least ℓ(k) > k, but this contradicts
the hypothesis that G is Ck-minor-free (because u and v are connected in GS and ℓ(k) ≥ k,
yielding a simple cycle of length at least k).

The claim follows.

Claim 5.10 (no-instances): If G is ǫ-far from being Ck-minor-free, then G′ is Ω(ǫ)-far from being
cycle-free, where the Omega-notation hides a d−k factor.

Proof: Suppose that G′ is δ-close to being cycle-free, where the distance refers to the degree bound
of G′, which is dk−1. Recall that by Corollary 5.5 |S| ≤ |E| ≤ dN/2. Let R′ be a set of at most
δ ·dk−1(N+ |S|) < δ ·dkN edges such that removing R′ from G′ yields a cycle-free graph. Let R ⊆ E
be a set of edges that consists of (1) all edges of E that are in R′, and (2) each edge {v,w} ∈ E
such that {v, 〈S〉} is in R′. Hence, |R| ≤ d|R′| < δ · dk+1N . We next prove that removing R from
G yields a graph that is Ck-minor-free, and it follows that G is δ · dk-close to being Ck-minor-free.

Suppose, contrary to the claim, that for t ≥ k there exists a simple cycle v1—v2– · · · –vt—v1 in
the resulting graph (i.e., in the graph ([N], E \R)). We first show that there exists a corresponding
(not necessarily simple) cycle in E′ \ R′. Specifically, for each {vi, vi+1} ∈ E \ R, we consider two
cases.

Case 1: This edge is not a subset of any spot in G. In this case, {vi, vi+1} ∈ E′ \ R′, because this
edge is in E′ and cannot be in R′ (or else it would have been in R). So we just use this edge
in the cycle (in E′ \R′).

Case 2: This edge is a subset of a spot S in G. In this case, {vi, 〈S〉}, {vi+1, 〈S〉} ∈ E′\R′, because
both these edges are in E′ and cannot be in R′ (or else {vi, vi+1} would have been in R). In
this case, we replace the edge {vi, vi+1} ∈ E \R by the length-two-path vi—〈S〉—vi+1.

Thus, we obtain a cycle in ([N]∪{〈S〉 : S∈ S}, E′ \R′) that contains the vertices v1, . . . , vt ∈ [N] as
well as (possibly) some elements in {〈S〉 : S∈ S}. Since the latter elements may appear in multiple
copies, the foregoing cycle is not necessarily simple. Note that a simple cycle in ([N] ∪ {〈S〉 : S ∈
S}, E′\R′) yields a contradiction to the hypothesis that this graph is cycle-free, and thus establishes
our claim that the graph ([N], E \R) is Ck-minor-free. We obtain a simple cycle, in two steps, as
follows.

First, we replace every maximal sub-path of the form vi—〈S〉—vi+1—〈S〉– · · · –〈S〉—vj, where
j 6= i (or else S contains a t-cycle for t ≥ k), by a length-two path vi—〈S〉—vj. If the resulting
cycle contains distinct spot (representative) vertices, then we are done (since we obtain a simple
cycle). Otherwise, we obtain a cycle of the form

u1– · · · –ut1—〈S1〉—ut1+1– · · · –ut1+t2—〈S2〉—ut1+t2+1– · · · –ut1+t2+t3—〈S3〉 · · · 〈Sm〉—u1

where the ui’s are all distinct and adjacent Si’s are distinct (but non-adjacent Si’s may be identical).
Next, we consider a sub-path of the foregoing cycle such that the endpoints of this sub-path are two

21

copies of the same spot S and no other spot appears more than once on this sub-path. This sub-
path cannot have length two (because adjacent Si’s are distinct), which means that it is actually a
simple cycle, and we are done.

Conclusion. Combining Claims 5.9 and 5.10 with Theorem 1.5 and the fact that the number
of vertices in G′ is linear in N (for constant d and k), we conclude that Algorithm 5.8 is a one-
sided error tester for Ck-minor-freeness, and its complexity is Õ(poly(dk/ǫ) ·

√
N). This establishes

Theorem 1.2.

6 Proof of the Lower Bound

Recall that Goldreich and Ron proved a Ω(
√
N) query lower bound on the complexity of one-

sided error testers for cycle-freeness [GR02, Prop. 4.3]. As stated in the introduction, Benjamini,
Schramm, and Shapira [BSS08] suggested that this lower bound can be extended to testing H-minor
freeness for any H that is not a forest. This is indeed the case, as proved next.

Theorem 6.1 (lower bound for one-sided error testing ofH-minor freeness, for anyH that contains
cycles): For any fixed H that contains a simple cycle, the query complexity of one-sided error testing
of H-minor freeness is Ω(

√
N).

Indeed, as can been seen in the case that H is a single edge, the lower bound does not hold in case
H contains no simple cycles. A general study of testing H-minor freeness for any cycle-free H is
initiated in Section 7.

Proof: Following the proof of [GR02, Prop. 4.3], we show that for sufficiently large N , with high
probability, the random N -vertex graphs considered in [GR02, Sec. 7] are far from being H-minor
free. Once this is done, the theorem follows, since it was shown in [GR02, Sec. 7] that a probabilistic
algorithm that makes o(

√
N) queries is unlikely to find a cycle in such a random graph (and this

algorithm must accept whenever it fails to see a cycle, because otherwise it will reject some H-minor
free graph with positive probability). Furthermore, it suffices to show that, for any fixed k and
sufficiently large N , with high probability, such a random graph is far from being Kk-minor free,
because containing a minor of Kk implies containing a minor of any k-vertex graph H.

The random graphs considered in [GR02, Sec. 7] are graphs uniformly chosen in the family
GN (which is denoted GN

1 in [GR02]). Each (N -vertex) graph in GN consists of the union of a
simple N -vertex (Hamiltonian) cycle and a perfect matching of these N vertices. (Indeed, each
graph in GN is 3-regular.) Furthermore, the cycle is fixed to be (1, 2, . . . , N, 1) and so a random
graph in GN corresponds to a random choice of a perfect matching. Our aim is to prove that,
with high probability, such a random graph is ǫ/3-far from being Kk-minor free, where ǫ = 1/ck2

for a sufficiently large constant c (to be determined below). We first show that any graph having
a specific property (which is stated in the conditions of the following claim) is far from being
Kk-minor free.

Claim 6.2 Suppose that the vertices of the N -vertex graph G can be partitioned into N̂ = 2ǫN
equal-sized sets, denoted S1, S2, . . . , S bN , such that the following conditions hold:

1. The subgraph induced by each Si is connected.

22

2. For every two disjoint collections of sets, C and C ′, such that |C| = |C ′| ≥ N̂/6k, there are
at least ǫN + 1 edges between vertices in U =

⋃
i∈C Si and vertices in U ′ =

⋃
i∈C′ Si.

Then, removing any set of ǫN edges from G, yields a graph that contains an Kk-minor (i.e., G is
ǫ/3-far from being Kk-minor free).

Proof: We prove the claim by contradiction. Suppose that there is a subset E′ of at most ǫN
edges whose removal from G results in a graph, denoted G′, that is Kk-minor free. First, note that
at most ǫN of the sets Si can become disconnected. Thus, (1) at least N̂ − ǫN = N̂/2 of the Si’s
induced connected subgraphs in G′. Furthermore, (2) for every U and U ′ as defined in the claim,
there exists at least one edge in G′ between U and U ′.

Starting with (1), assume, w.l.o.g., that for i = 1, ..., Ñ
def
= N̂/2, the subgraph of G′ induced

by Si is connected. We partition these sets into k equal-sized parts; that is, for 1 ≤ i ≤ k, let

Ti =
⋃i eN/k

r=((i−1) eN/k)+1
Sr and G′

i be the subgraph of G′ induced by Ti.

We first show that each G′
i has a connected component that contains at least Ñ/3k sets Sr

(which are contained in Ti). Let W1, ...,Wt denote the connected components of G′
i, and suppose

towards the contradiction that each of them contains less than Ñ/3k sets Sr. Then, there exists
I ⊂ [t] such that both W =

⋃
i∈I Wi and W ′ =

⋃
i∈[t]\I Wi contain at least Ñ/3k = N̂/6k sets Sr.

But, then a contradiction is reached, because by (2) there must be an edge in G′ between some
vertex of W and some vertex of W ′.

Hence, each G′
i contain a connected component, denoted Ci, that has at least Ñ/3k sets Sr.

Applying (2) again, we infer that there must be an edge in G′ going between any two of the Ci’s.
By contracting each Ci to a node, we obtain a Kk-minor in G′, which contradicts the hypothesis
that G′ is Kk-minor free.

It remains to show that, with high probability, a graph G drawn from GN satisfies the two
conditions stated in Claim 6.2. Recalling that graph G in GN consists of a Hamiltonian cycle
augmented by a matching, we obtain the desired sets S1, . . . , S bN , by partitioning the Hamiltonian

cycle into N̂ = 2ǫN contiguous segments, each of length 1/2ǫ. Clearly, these Si’s satisfy the first
condition (i.e., the subgraph of G induced by each Si is connected). We shall show that the second
condition holds too, by considering all relevant sets U and U ′, showing that, with probability
1 − exp(−Ω(N/k2)) (over the choice of a random matching), there are Ω(N/k2) > ǫN + 1 edges
going between U and U ′, and applying a union bound.

Specifically, we fix two arbitrary disjoint collections of sets, C and C ′, such that |C| = |C ′| =
N̂/6k, and consider the sets U =

⋃
i∈C Si and U ′ =

⋃
i∈C′ Si. Since |U | = |U ′| = (N̂/6k) · (1/2ǫ) =

N/6k, we expect the number of edges between U and U ′ to be N/(36k2). Intuitively, with very high
probability (i.e., with probability 1− exp(−Ω(N/k2))), the number of edges is a constant fraction
of its expected size; in fact, this is the case as shown in Claim 6.3 (below).

Applying a union bound over all possible choices of C and C ′ (which underlie the choice of
U and U ′), we infer that the second condition stated in Claim 6.2 is satisfied with probability

at least 1 −
(2ǫN
2ǫN/(6k)

)2 · exp(−Ω(N/k2)), which is lower bounded by 1 − 24ǫN · exp(−Ω(N/k2)) =

1− exp(−Ω(N/k2)), since ǫ = 1/ck2 for a sufficiently large c (which is determined at this point to
make assertion hold). Thus, modulo Claim 6.3 (below), the theorem follows.

Claim 6.3 For some universal constant c′ > 0, the following holds for all N and t. Consider
selecting a matching between N vertices uniformly at random, and let T1 and T2 be two disjoint

23

sets of N/t vertices each. Then, with probability at least 1− exp(−c′ ·N/t2), over the choice of the
matching edges, there exist c′N/t2 edges going between these sets.

Proof: A random matching can be selected in N/2 steps, where at each step we pick an arbitrary
yet-unmatched vertex v, and select, uniformly at random, another yet-unmatched vertex u to match
v to. In particular, we can start by matching the vertices in T1, and once they are all matched we
continue in an arbitrary order with the remaining unmatched vertices.

Observe that the number of steps it takes to match all vertices in T1 is at least N ′ def
= N/(2t),

and we shall lower bound the number of edges obtained between T1 and T2 (only) in the first N ′

steps. Let X1, . . . ,XN ′ be 0/1 random variables, where Xi = 1 if and only if the selected edge in
the ith step has as its second endpoint a vertex in T2. By the definition of the matching process,
Pr[X1 = 1] = N ′/(N − 1). More generally, Pr[Xi = 1] equals the fraction of yet-unmatched
vertices in T2 at the start of the ith step over N − 2(i − 1) − 1. Since we consider only the first
N ′ steps, which means that at most half of the vertices in T2 can be matched, we have that
Pr[Xi = 1] ≥ N ′

N−2i+1 >
1
2t for every i ∈ {1, 2, ..., N ′}. Hence, the expected value of

∑N ′

i=1Xi, which

is a lower bound on the expected number of edges between T1 and T2, is at least N ′/2t = N/(4t2).
We would like to show that

Pr

[
N ′∑

i=1

Xi <
N

8t2

]
< exp(−Ω(N/t2)) . (8)

Since the Xi’s are not independent random variables (as the probability that Xi = 1 depends
on X1, . . . ,Xi−1), we cannot simply apply a multiplicative Chernoff bound in order to obtain
Equation (8). However, we shall define a related sequence of independent random variables that
will give us the bound in the equation.

For every x1, ..., xN ′ ∈ {0, 1} and every i ∈ [N ′], let f(x1 · · · xi−1) denote the probability that
Xi = 1 conditioned on Xj = xj for every j ∈ [i− 1] (i.e., f(x1 · · · xi−1) = Pr[Xi = 1|X1 · · ·Xi−1 =
x1 · · · xi−1]). Recall that f(x1 · · · xi−1) ≥ 1/2t. Define random variables Y1, ..., YN ′ such that Yi

depends on X1, ...,Xi−1 and Pr[Yi = 1] = 1/2t
f(X1···Xi−1)

. Lastly, define Z1, ..., ZN ′ such that Zi = 1

if and only if Xi = Yi = 1. Observe that for every x1, ..., xi−1 ∈ {0, 1} and z1, ..., zi−1 ∈ {0, 1} it
holds that

Pr[Zi = 1|X1 · · ·Xi−1 = x1 · · · xi−1 ∧ Z1 · · ·Zi−1 = z1 · · · zi−1]

= Pr[Xi = 1|X1 · · ·Xi−1 = x1 · · · xi−1] ·
1/2t

f(x1 · · · xi−1)

=
1

2t

Hence, the Zi’s are independent random variables (since independence in presence of an auxiliary

condition implies independence without it).10 Also,
∑N ′

i=1 Zi ≤
∑N ′

i=1Xi always holds (since Zi =
1 occurs only when Xi = 1). Now the claim (or rather Equation (8)) follows by applying a
multiplicative Chernoff bound to the sum of the Zi’s.

As stated above, the proof of Claim 6.3 completes the proof of the theorem.

10That is, if Pr[A|B&X = x] = Pr[A|X = x] for every x, then Pr[A|B] =
P

x Pr[X = x] · Pr[A|B&X = x] =
P

x Pr[X =x] · Pr[A|X =x] = Pr[A].

24

7 Testing Tree-Minor Freeness

As noted in Section 6, the Ω(
√
N) lower bound of Theorem 6.1 does not hold in the case that the

forbidden minor is a tree. This is easiest to see in the case that the forbidden minor is a single
edge. We show that, for any cycle-free graph H, the set of H-minor free graphs can be tested with
one-sided error with query complexity that is independent of the input graph’s size (and that only
depends on the proximity parameter and on H).

To begin, we provide a reduction of the case where H is a forest to the case where H is a tree.
Actually, this reduction works for any H (regardless of cycle-freeness) allowing to focus on the
connected components of H. Next, we turn to two special cases (which are easy to handle): the
case that H is a k-path and the case that H is a k-star. Since these cases correspond to the two
possible extremes, it is tempting to hope that all cases can be treated easily. We warn, however,
that the extreme cases have simple characterizations, which are not available in non-extreme cases.
Nevertheless, the case of stars provides some intuition towards the more complicated treatment
of general trees. Further intuition can be obtained from the case of depth-two trees, treated in
Section 7.5, where we also obtain better complexity than in the general case.

7.1 A reduction of unconnected H to connected H

Let H be a graph with connected components H1, . . . ,Hm. Then, essentially (but not exactly),
a graph G is H-minor free if and only if for some i ∈ [m] the graph G is Hi-minor free; in other
words, G has an H-minor if and only if for every i ∈ [m] the graph G contains an Hi-minor. The
alternative formulation reveals the small inaccuracy: it may be that the Hi-minors contained in G
are not disjoint (and in such a case G does not necessarily have an H-minor). Still, for our purposes
(of studying one-sided error testers of sublinear query complexity), this problem can be overcome
(as done next).

Indeed, we focus on one-sided error testers of sublinear query complexity. Given such testers
for Hi-minor freeness, we present the following one-sided error tester for H-minor freeness.

Algorithm 7.1 (the H-minor-freeness tester for cycle-free H): On input G = ([N], E) and prox-
imity parameter ǫ, set G0 = G and proceed in m iterations, as follows. For i = 1 to m,

1. Invoke the Hi-minor tester on input Gi−1, using error parameter 1/3m and proximity param-
eter ǫ/2.

2. If the answer is positive then accept.

3. Otherwise, omit from Gi−1 all vertices that were visited by the tester, obtaining a residual
graph Gi.

If all iterations rejected, then reject.

If Algorithm 7.1 rejects, then (by the one-sided error feature of the tests) the m exploration contain
corresponding (disjoint) Hi-minors, and so G contains an H-minor. Thus, Algorithm 7.1 satisfies
the one-sided error condition. On the other hand, if G is ǫ-far from being H-minor free, then, for
every i ∈ [m], the graph G must be ǫ-far from being Hi-minor free (because otherwise G is ǫ-close
to an Hi-minor free graph, which in turn is H-minor free). Furthermore, for every i ∈ [m], the
graph Gi−1 is ǫ/2-far from being Hi-minor free, because Gi−1 is obtained from G by omitting o(N)

25

edges (since all testers have sublinear query complexity). Thus, in each iteration i, with probability
at least 1− (1/3m), the corresponding tester rejects. It follows that Algorithm 7.1 rejects G with
probability at least 2/3 (as required). We thus get the following result.

Proposition 7.2 Let H have connected components H1, . . . ,Hm, and suppose that Hi-minor free-
ness can be tested by a one-sided error tester of query complexity qi(N, ǫ). Suppose that qi(N, ǫ) is
monotonically non-decreasing with N . Then, H-minor freeness can be tested by a one-sided error
tester of query complexity q(N, ǫ) = O(logm) ·∑n

i=1 qi(N, ǫ/2).

(The O(logm) factor is due to error reduction that is employed on each of the testers.)

Detour. For sake of elegance, it would be nice to prove a similar reduction also for the case of
two-sided error testers. Naturally, for testing H-minor freeness with two-sided error, we may just
run all Hi-minor freeness tests (with error probability parameter set to 1/3m) and accept if and
only if at least one of these tests accepted (i.e., reject if and only if all these tests rejected). Clearly,
if G is ǫ-far from being H-minor free, then, for every i, the graph G must be ǫ-far from being
Hi-minor free (see above), and so in this case, with probability at least 2/3, all tests will reject,
and so will we. But what is missing is proving that if G is H-minor free, then the above tester
accepts with high probability. (Indeed, it is not necessarily the case that if G is H-minor free then
for some i it holds that G is Hi-minor free).

7.2 Testing that the graph contains no simple k-length path

Here we consider the special case where H = Pk, where Pk denotes the k-length path. Note that
a graph G is Pk-minor free if and only if G contains no simple path of length k. Thus, we just
search for such a path at random. Specifically, we select uniformly a start vertex and take a random
k-step walk, rejecting if and only if the walk corresponds to a simple path. Clearly, we never reject
a Pk-minor free graph.

Claim 7.3 If G is ǫ-far from being a Pk-minor free graph, then we reject with probability at least
ǫ/2dk.

Thus, Pk-minor freeness can be tested by a one-sided error tester of query complexity q
def
= O(dkk/ǫ)

and time complexity O(q). We note that it may be possible to reduce the query complexity to
poly(dk/ǫ), but an analogous improvement of the time complexity is unlikely (because finding k-
long paths in graphs is NP-Hard, when k is part of the input). We mention that, subsequent to our
initial posting of this work, Reznik [Rez11] presented a poly(dk/ǫ)-time algorithm for the special
case that the input graph is cycle-free.

Proof: We call a vertex v bad if there is a simple path of length k starting at v. Let ρ denote the
density of bad vertices in G. Then, on the one hand, we reject G with probability at least ρ/dk.
On the other hand, ρ ≥ ǫ/2, because omitting all bad vertices (or rather their incident edges) from
G we obtain a graph that has no simple k-length paths.

26

7.3 Testing that the graph contains no k-star as a minor

Here we consider the special case where H = Tk, where Tk denotes the k-star (i.e., the (k+1)-vertex
tree that has k leaves). The key observation here is that a graph G = ([N], E) is Tk-minor free
if and only if for every set S such that GS is connected it holds that the set S has less than k
neighbors (in [N] \ S). This implies that if for every connected set S of size at most k/ǫ, the set S
has less than k neighbors in [N]\S, then the graph is ǫ-close to being Tk minor free. The reasoning
(which is detailed in the proof of Claim 7.5) is that if the premise of the statement (the small-cuts
condition) holds, then by removing less than k · d · (N/(k/ǫ)) = ǫdN edges we can partition the
graph into connected components such that each is Tk-minor free. Another useful observation is
that searching for sets that violate the condition can be done efficiently by performing a BFS with
a bounded depth (and width) and running a polynomial-time procedure on the subgraph induced
by the BFS.

Algorithm 7.4 (the k-star-minor-freeness tester): On input G = ([N], E) and proximity parame-
ter ǫ, proceed as follows.

1. Select uniformly a start vertex s ∈ [N].

2. Perform a BFS starting at s and stopping as soon as either 2k/ǫ layers were explored or a
layer with at least k vertices was encountered.

Note that it may also be that the BFS terminates before either of these conditions hold; this
can only happen if s resides in a connected component of size smaller than 2k2/ǫ.

3. Accept if and only if the explored graph is Tk-minor free.

Clearly, Algorithm 7.4 never rejects a Tk-minor free graph. The query complexity of Algorithm 7.4
is q(k, ǫ) = O(k2/ǫ) (the maximum depth of the BFS times the maximum number of vertices in
each level, assuming the degree d is a constant). By Corollary 1.2 in [KKR12], the time complexity
is of the form f(k) · q(k, ǫ)2 for some function f (which is not explicitly specified in [KKR12]).
Thus, all that is left is to prove the following claim.

Claim 7.5 If G is ǫ-far from being a Tk-minor free graph, then Algorithm 7.4 rejects with proba-
bility at least ǫ/2.

Thus, Tk-minor freeness can be tested by a one-sided error tester that invokes Algorithm 7.4 for
O(1/ǫ) times. This tester has query complexity O(q(k, ǫ)/ǫ) = O(k2/ǫ2) and time complexity
f ′(k) ·O(1/ǫ3) for some function f ′.

Proof: We call a vertex v bad if there exists a set S containing v such that (i) GS is connected
and has radius at most 2k/ǫ from v (i.e., all vertices in S are at distance at most 2k/ǫ from v),
and (ii) the set S has at least k neighbors in G (i.e., |{u∈ [N] \ S : ∃w∈S s.t. {u,w}∈E}| ≥ k).
Note that if a bad vertex is chosen in Step 1, then Algorithm 7.4 rejects in Step 3 (because either
a 2k/ǫ-step BFS of G starting at v reaches a layer with at least k vertices, or it reaches all vertices
in the witness set S). Let ρ denote the fraction of bad vertices in G. By the above, Algorithm 7.4
rejects with probability at least ρ. We next show that G must be (ρ+(ǫ/2))-close to Tk-minor free,
and so ρ ≥ ǫ/2 follows.

27

Let G(0) denote the graph obtained from G by omitting all the edges that are incident at bad
vertices. Indeed, G(0) is ρ-close to G. The rest of our analysis proceeds in iterations. If the current
graph G(i−1) is Tk-minor free, then we are done. Otherwise, we pick an arbitrary vertex s(i) that
resides in some Tk-minor. Since s(i) is not bad, it must reside in a connected component of G(i−1)

that has radius at least 2k/ǫ from s(i) (because otherwise the existence of a Tk-minor containing
s(i) contradicts the hypothesis that v is not bad). Consider an arbitrary set S(i) ∋ s(i) of 2k/ǫ

vertices such that G
(i−1)

S(i) is connected. Since s(i) is not bad, it follows that S(i) has less than k

neighbors (in G(i−1)). We now obtain G(i) by omitting from G(i−1) the (less than kd) edges of the

cut (S(i), [N] \ S(i)), and observe that G
(i)

S(i) is Tk-minor free (and that S(i) will not intersect with

any future S(j)). When the process ends, we have a Tk-minor free graph. In total, we omitted at
most tk · d edges (from G(0)), where t ≤ N/(2k/ǫ) denotes the number of iteration. Noting that
tdk ≤ (ǫ/2)dN , we conclude that G(0) is ǫ/2-close to G(t) and thus G is (ρ+(ǫ/2))-close to Tk-minor
free.

7.4 The general case: Testing T -minor freeness for any tree T

Following is a presentation of the main result of this section: a one-sided tester for T minor-freeness,
where T is an arbitrary rooted tree with k vertices. The algorithm is an extension of the algorithm
for stars: We perform a BFS from a random starting vertex (but for more levels) and check if we
find a T -minor.

The analysis of this algorithm, in the current (general) case, is far more involved; nonetheless,
the basic intuition remains the same. Suppose our procedure is typically unable to find a T -minor
in G. We shall show that we can split up the graph into many small pieces, each being T -minor
free and having few edges leaving it. Removing the few edges going between these pieces, we get a
T -minor free graph, which proves that G is close to being T -minor free.

The main challenge is to perform the foregoing decomposition. For that, we will define an
auxiliary procedure, called find, that attempts to find T -minors. This procedure will not be used
by our algorithm; it will be used solely in the analysis. But, first, let us detail the alleged tester.
In all that follows we assume that ǫ ≤ ǫ0 for some sufficiently small constant ǫ0 (or else we can run
the algorithm with ǫ set to ǫ0).

Algorithm 7.6 (the tree-minor-freeness tester): Given as input a proximity parameter ǫ and given
query access to a graph G = ([N], E) with maximum degree at most d, set D = k · (4d/ǫ)4k+2 and
proceed as follows.

1. Select uniformly, independently at random, 8/ǫ start vertices in [N].

2. For each selected start vertex s, perform a BFS starting at s and stop as soon as D layers
are explored (or the BFS reaches all the vertices of a connected component in G).

3. Accept if and only if all explored subgraphs are T -minor free.

Clearly, Algorithm 7.6 never rejects a T -minor free graph. Its query complexity is exponential in
D, and its time complexity is polynomial in its query complexity (for constant k, by Corollary 1.2
of [KKR12]). The correctness of the algorithm thus follows from the next theorem.

Theorem 7.7 If G is ǫ-far from being a T -minor free graph, then Algorithm 7.6 rejects with
probability at least 2/3.

28

As noted in the introduction, one of the byproducts of our analysis is a combinatorial theorem
claiming that any graph with “local” expansion must contain all tree minors of some constant size.

Definition 7.8 Let G be a graph of maximum degree d and s be a vertex of G. We say that the
R-neighborhood of s in G is ǫ-expanding, if for every vertex set S such that maxu∈S{dist(s, u)} ≤ R,
it holds that the number of edges in the cut (S, [N] \ S) is at least ǫ|S|d.

Theorem 7.9 For any k and d, if the k(4d/ǫ)4k+2-neighborhood of s in G is ǫ-expanding, then this
neighborhood contains a T -minor of any tree T of at most k vertices.

Both theorems are proved using a procedure called find, which tries to find small T -minors.
When invoked at a certain vertex and failing to find a small T -minor, the procedure provides us
with a sort of “explanation for its failure” in the form of a sparse cut, that is, a cut with relatively
few edges crossing it. Thus, if the graph G is accepted by the tester with high probability, then we
can use this procedure to get the desired decomposition. As may be expected, the procedure find

is designed by a (tedious, but not obvious) induction on the size of T . Following is an overview of
our approach.

Consider the tree T and remove an edge so as to obtain two trees T1 and T2. Let the roots of
these trees be the endpoints of the edge removed. A T -minor can be broken up into a T1-minor and
T2-minor with a path connecting the two respective roots. So, it seems that we should try to find
“rooted minors”, where we specify a vertex v that must be present in the connected component
that is the root. Inductively, assume that we have a procedure find for T1 and T2. We can use
find to get these minors and try to connect the roots by a path. The problem is that we have to
get disjoint minors to get a T -minor. Suppose we find a T1-minor in the original graph. Because
we want to find a disjoint T2-minor, we make the vertices in this minor a forbidden set F (and
effectively remove them from G). This means that find is not allowed to use the vertices of F
in the T2-minor. But now, find may return a sparse cut, instead of a T2-minor, in the modified
graph. This cut, between a set S and the rest of the vertices, is only sparse in the modified graph
(without F), but it is possible that it is not sparse in the graph G. That is, there may be many
edges between S and the rest of the vertices in G, which include the vertices in F . To get around
this, we somehow need to ensure that whenever a cut is found, the number of vertices in the smaller
side of the cut is much larger than |F |. Then, a sparse cut in the modified graph remains sparse
in the original. We will give an indication of how this is done when we describe the parameters of
find.

7.4.1 Setting the stage

We introduce some definitions and notation, after which we can formally express the claim about
the procedure find. Given that claim, we will prove Theorem 7.7 and Theorem 7.9. In the next
subsection, we will prove the claim about find. For a graph H = (V (H), E(H)) and a subset of
vertices S ⊆ V (H), we use the standard notation HS to denote the subgraph of H that is induced
by S.

Definition 7.10 (Distances) Let H = (V (H), E(H)) be a fixed graph. For any pair of vertices
v, u ∈ V (H), let distH(v, u) be the shortest-path distance between u and v in H. Given a set of

vertices T ⊂ V (H) and a vertex v ∈ V (H), let ∆H(v, T)
def
= maxu∈T {distH(v, u)}. More generally,

for two sets of vertices S, T ⊆ V (H), let ∆H(S, T)
def
= maxu∈T minv∈S distH(v, u).

29

Definition 7.11 (Sparse Cuts) For a graph H = (V (H), E(H)) with degree bound d, a cut
(S, V (H) \ S) is ζ-sparse with respect to H, if the number of edges in E(H) that cross the cut
is at most ζ|S|d. We denote the cut (S, V (H) \ S) by cutH(S).

The parameters of find: The procedure find takes as input a vertex v in a graph G′ =
([N], E′), a set of vertices U containing v, a rooted tree T with k nodes, and a set of forbidden
vertices F (not containing v). There is also a proximity parameter ζ, but since it is fixed for our
discussion, we will not consider it as an input parameter. We will set ζ = Θ(ǫ) for the final analysis.
For now, it will be convenient to have it as a separate parameter.

Let f = max{|F |, k(4d/ζ)4k+2}, and G′′ = G′
[N]\F . The procedure works under the condi-

tions that U is disjoint from F , |U | ≥ 4f/ζ, and ∆G′′(v, U) ≤ (4/ζ) ln(f/ζ). The procedure
find(v, U, T, F) outputs a pair (σ, S) such that σ ∈ {minor, cut} and S ⊆ [N] \ F , where there is
a path in G′′ between v and every vertex in S. It will be convenient to express quantities in terms
of k̂ = 4k − 2.

The requirement from find: The output (σ, S) of find(v, U, T, F) should satisfy the following
conditions.

• ∆G′′(v, S) ≤ (4d/ζ)k̂ ln(f/ǫ).

• If σ = minor, then the graph G′
S contains a T -minor not involving F that is rooted at v (i.e.,

v resides in the connected component that is contracted to fit the root r of T).

If σ = cut, Then the cut cutG′(S) is ζ-sparse.

Intuitively, the set U acts as a kind of large buffer around v. This deals with the issue that we
raised earlier. When we try to find a T2-minor by making the vertices of the T1-minor forbidden,
we could get a sparse cut in this modified graph. The buffer U ensures that this cut contains
sufficiently many vertices.

Claim 7.12 There exists a procedure find that satisfies the foregoing requirements.

We next show how Theorem 7.7 and Theorem 7.9 can be proved based on this claim. In what
follows, when we say we perform a BFS in a graph H = (V (H), E(H)) from a subset of vertices

M , we mean the following. Consider the graph H ′(M) whose vertex set is (V (H) \M) ∪ {v(M)}
(so that M is replaced by a single vertex v(M)), and whose edge set is {(u,w) ∈ E(H) : u,w ∈
V (H) \ M} ∪ {(u, v(M)) : u /∈ M and ∃w ∈ M s.t. (u,w) ∈ E(H)}. A BFS from M in H
corresponds to a BFS in H ′(M) that starts from v(M). We first state a fairly simple claim that
gives one of the basic “dichotomies” that we will repeatedly use: Either a BFS starting from some
set M finds a ζ-sparse cut, or it leads to a level set that is quite large. We will introduce a forbidden
set F , and make all our arguments with respect to G′

[N]\F .

Claim 7.13 Let F and M be two disjoint subsets of vertices in G′ such that |M | ≥ (2/ζ)|F |.
Suppose we perform a BFS up to depth t in G′

[N]\F , starting from M , and let ℓ be the size of the
last level reached. Then either there exists a subset of vertices R that are reached by the BFS and
such that cutG′(R) is ζ-sparse, or ℓ ≥ |M | · e(ζ/3)t.

30

Proof: Consider some intermediate level in the BFS, and let R be the set of vertices reached up
to that level (including it). Suppose that the next level has at most ζ|R|/2 vertices. All edges in
cutG′(R) are either incident to vertices in the next level (which contains at most ζ|R|/2 vertices)
or to F . Since |R| ≥ |M | ≥ 2|F |/ζ, the size of the cut is at most ζ|R|d, and hence it is ζ-sparse.

Otherwise, the size of the levels keeps expanding by a factor of at least (1 + ζ/2). Since the
depth of the BFS is t, the size of the last level is at least |M | · (1 + ζ/2)t ≥ |M | · e(ζ/3)t.

Proof of Theorem 7.7. Recall that D = k · (8d/ǫ)4k+2, and that Algorithm 7.6 performs a
BFS from 4/ǫ start vertices, up to depth D for each, and rejects if any of the subgraphs observed
contains a T minor. We call a vertex v bad if its D-neighborhood (i.e., the subgraph induced by all
vertices at distance at most D from v) contains a T -minor, and denote the fraction of bad vertices
(in G) by ρ. We shall show that G is (ρ+ǫ/2)-close to being T -minor free. The lemma follows since
this implies that if G is ǫ-far from being T -minor free, then ρ > ǫ/2. In such a case, the probability
that no bad vertex is selected as a start vertex by the algorithm is at most (1−ǫ/2)4/ǫ < e−2 < 1/3.

In order to prove that G is (ρ + ǫ/2)-close to being T -minor free, we will remove at most
(ρ + ǫ/2)dN edges from G to make it T -minor free. We start by removing all edges incident to
bad vertices, so that the number of edges removed at this stage is at most ρdN . Let the resulting
graph be G(0). The rest of our analysis proceed in iterations in which we invoke the procedure
find with proximity parameter ζ = ǫ/2. Note that D = k(4d/ζ)4k+2. At the start of each
iteration we have a current graph G(i−1) where some connected components are marked “minor
free”. These components are certified to have no T -minor. If all the components are marked, then
we are done. Otherwise, consider some unmarked component C. Suppose there is v ∈ C, such that
∆G(i−1)(v,C) ≤ D. If C contains a T -minor, then v must be bad. This contradicts that fact that
C is a connected component containing v. Therefore C has no T -minor, and can be marked. We
proceed in this fashion till we get a component C that cannot be marked.

For such an unmarked component C we take an arbitrary vertex s(i) ∈ C and observe that
∆G(i−1)(s(i), C) > D. Let F be initialized to ∅. Set f = max(|F |, k(4d/ζ)4k+2). We perform a BFS
from s(i) up to depth D0 = (3/ζ) ln(4f/ζ) steps, and invoke Claim 7.13 with M = {s(i)}, F = ∅,
and t = D0. We have f = k(4d/ζ)4k+2 (and k ≥ 1), so

D0 = (3/ζ) ln(4f/ζ) ≤ (4/ζ) ln(4k(4d/ζ)4k+2/ζ)

= (4/ζ) ln(4k/ζ) + ((16k + 8)/ζ) ln(4d/ζ) ≤ k(4d/ζ)4k+2 = D . (9)

Suppose we get a set S(i) such that cutG(i−1)(S(i)) is ζ-sparse. By the bound in Equation (9),
∆G(i−1)(s(i), S(i)) = D0 ≤ D. Hence, the subgraph GS(i) cannot contain a T -minor. We remove all
edges in the cut cutG(i−1)(S(i)) and mark the connected components in GS(i) as minor free. This
gives us the graph G(i), and we continue with the next iteration.

Otherwise (by Claim 7.13), the BFS gives a set U , such that |U | ≥ e(ζ/3)D0 = 4f/ζ, and
∆G(i−1)(s(i), U) ≤ D0 ≤ (4/ζ) ln(f/ζ). We therefore call find(s(i), U, T, F) (on the graph G′ =
G(i−1)). If it outputs (minor, S(i)), then s(i) must be bad. This is a contradiction, and hence the
output must be (cut, S(i)). We have ∆G(i−1)(s(i), S(i)) ≤ D, where cutG(i−1)(S(i)) is ζ-sparse. We
proceed as before by removing all edges in cutG(i−1)(S(i)) to get G(i).

When the process ends, we have a T -minor free graph. Since all the S(i)’s considered are disjoint,
in total, we omitted at most

∑
i ζd|S(i)| ≤ ǫdN/2 edges (from G(0)), and thus G is (ρ+ ǫ/2)-close

to T -minor freeness.

31

Proof of Theorem 7.9. The theorem follows from Claim 7.12, where the key observation is that
find works for any k-vertex tree T and that find may not return a ζ-sparse cut (because no such
cut exists by the hypothesis). Specifically, set ζ = ǫ, F = ∅, and f = k(4d/ǫ)4k+2. Let U be a
set such that |U | ≥ 4f/ǫ and ∆G(v, U) ≤ (4/ǫ) ln(f/ǫ) (which exists since the said neighborhood
contains no ζ-sparse cuts). Now, for any k-vertex tree T , we run find(v, U, T, F) and get the output
(σ, S), where σ 6= cut. Thus, we get the desired T -minor.

7.4.2 The procedure find

We first introduce the notion of a boundary.

Definition 7.14 (Boundaries) Given sets of vertices S and F , let ∂F (S) denote the boundary of

S in G′
[N]\F . That is, ∂F (S)

def
= {u ∈ S : ∃w ∈ [N] \ (S ∪ F) s.t. (u,w) ∈ E(G′)} . We use ∂F (S)

to denote the set S \ ∂F (S).

We build a little on the basic dichotomy of Claim 7.13. Given a starting set M and forbidden
set F , we try to find a ζ-sparse cut that is not too far from the boundary ∂F (M). If we fail, then
we can find a vertex v ∈ ∂F (M) and a set Uv ∋ v disjoint from F , such that Uv is large, but vertices
in Uv are quite close to v.

Claim 7.15 Let F and M be two disjoint subsets of vertices such that |M | ≥ (2/ζ)|F |, and let
F̃ = ∂F (M) ∪ F . There is a procedure that, given a graph G′ and an integer parameter t, outputs
one of the following:

• A set R such that the cutG′(R) is ζ-sparse and ∆G′
[N]\F

(∂F (M), R) ≤ t.

• A vertex v ∈ ∂F (M) and a set Uv disjoint from F̃ such that v ∈ Uv, |Uv | ≥ e(ζ/3)t, and
∆G′

[N]\ eF
(v, Uv) ≤ t

Proof: We start by performing a BFS from M in G′′ = G′
[N]\F up to depth t. By the definition of

the BFS, all the vertices reached in levels 1, . . . , t are disjoint from M and F . Applying Claim 7.13,
in the process of this BFS either we find a ζ-sparse cut, thus satisfying the first condition, or the
size of the last level is at least |M | · e(ζ/3)t. In the latter case, for each vertex v ∈ ∂F (M), perform
a BFS in G′

[N]\ eF
up to depth t, and let Uv be the set of vertices reached. Since the last level of the

original BFS is contained in
⋃

v Uv, we have that
∑

v∈∂F (M) |Uv| ≥ |M | · e(ζ/3)t. Therefore, there

exists a vertex v ∈ ∂F (M) such that |Uv| ≥ |M | · e(ζ/3)t/|∂F (M)| ≥ e(ζ/3)t.

With these tools in hand, we are ready to describe the procedure find.

Proof of Claim 7.12. We prove the claim by induction over the size of the tree T . For the base
case, let T be a singleton vertex. Then, the procedure find just outputs the pair (minor, U). Now
for the induction step.

Take an edge e of T that is incident to the root r. Removing this edge gives us two trees T1 and
T2 with roots r1 and r2 (these are the respective endpoints of e). We let T1 be the tree still rooted
at r (so that r1 = r). Using subscripts to denote the respective size parameters of these trees, we
have k̂ = k̂1 + k̂2 + 2 (recall that k̂ = 4k − 2). We also have that k̂1, k̂2 ≥ 2.

32

v

v1

v2

∂U

∂A

U

A

2D1

P

S2

Figure 5: The various sets in find

We will describe the procedure find(v, U, T, F) using the respective procedures for T1 and T2.

We set D1 = (4d/ζ)k̂1 ln(6f/ζ2) (recall that f = max{|F |, k(4d/ζ)4k+2}). We will be dealing
mainly with the graph G′′ = G′

[N]\F and hence all our boundaries are in this graph. Recall that

the procedure is required to work under the conditions that U is disjoint from F , |U | ≥ 4f/ζ, and
∆G′′(v, U) ≤ (4/ζ) ln(f/ζ). We may actually assume that |U | = 4f/ζ. Suppose this is not the
case. Take the vertex in U farthest from v and remove it from U . We keep repeating this until
|U | = 4f/ζ. Note that the upper bound on ∆G′′(v, U) remains.

We now describe the steps of the procedure find. We will encapsulate each step through a
different claim. These claims will be stated here, and their proofs shall be given after we describe
find (and provide guarantees on its behavior on the basis of these claims). These proofs will
depends heavily on the notation used here as well as the induction hypotheses. Nonetheless, we
defer their proofs so that the reader can more easily follow the flow of our argument. Refer to
Figure 5 to understand the various claims. For a set R, it will be convenient to refer to the

following as Condition (*): R ∋ v, cutG′(R) is ζ-sparse, and ∆G′′(v,R) ≤ (4d/ζ)k̂ ln(f/ζ). If R
satisfies this, we will say “R satisfies Condition (*)”.

Claim 7.16 We can either find a set R satisfying Condition (*) or a set A with the following
properties. The set A is disjoint from F and exactly contains all vertices (outside F) at distance
at most 2D1 from U . Also, |U | · e(ζ/2)D1 ≤ |∂F (A)| and |A| ≤ |U | · e2D1 ln d.

Claim 7.17 Suppose we have a set A satisfying the conditions given in Claim 7.16. Then, we
can either find a set R satisfying Condition (*), or a vertex v2 ∈ ∂F (A) and set S2 ∋ v2 with the
following properties. The set S2 is disjoint from F ∪ ∂F (A) and contains a T2-minor such that v2

belongs to the set whose contraction is the root. Furthermore, ∆G′′(v, S2) ≤ (4d/ζ)k̂ ln(f/ζ).

33

Claim 7.18 Let A, v2 and S2 have the properties stated in the previous claims. We can either find
a set R satisfying Condition (*), or a path P ⊆ A, a vertex v1 ∈ ∂F (U), and set S1 ∋ v1 satisfying
the following. The sets P and S1 are disjoint from F and disjoint from each other. The path P
connects v2 to U in G′′. The set S1 contains a T1-minor such that v1 belongs to the set whose
contraction is the root, and ∆G′′(v, S1) < 2D1.

With the claims, the proof becomes fairly direct. The procedure find invokes Claim 7.16. If
we find a ζ-sparse cut, we are done. Otherwise, we have a set A with the properties stated in
Claim 7.16. Now, find invokes Claim 7.17. Again, if we do not find a ζ-sparse cut, we have a
vertex v2 and set S2. Applying Claim 7.18, we either find a ζ-sparse cut, or get a path P , vertex
v1 and set S1.

We show how to construct a T -minor using U , S1, S2, and P . Refer to Figure 5 to see how these
sets are laid out. Note that all these sets are disjoint from F . Furthermore, since ∆G′′(v, S1) < 2D1

and all vertices in S2 have distance at least 2D1 from U , the set S1 is disjoint from S2. Also, S1 is
disjoint from P (Claim 7.18). Our aim is to connect v1 to v2 (in G′′) by a path that is disjoint from
S1 ∪ S2. If this path contains v, we will get a T -minor rooted at v that involves no vertex of F .
Take the path P in G′′ that connects ∂F (U) to v2. This path is disjoint from S1 ∪ S2. The vertex
v1 is in ∂F (U) and connected to all of U in G′′. We take a path from v to P and a path from v to
v1. This connects v1 to v2 (via v) in G′′ and completes the construction of the T -minor.

In the proofs of Claims 7.16, 7.17 and 7.18, the following bounds will be repeatedly used.

By assumption, ∆G′′(v, U) ≤ (4/ζ) ln(f/ζ), |U | = 4f/ζ and D1 = (4d/ζ)k̂1 ln(6f/ζ2). Since
k̂ = k̂1 + k̂2 + 2 and k̂1, k̂2 ≥ 2, max(k̂1, k̂2) ≤ k̂ − 4. We first state a technical claim.

Claim 7.19

∆G′′(v, U) + (2 + 6(ln d)/ζ)D1 + (4d/ζ)k̂2 ln(|U |/ζ) + (3/ζ) ln(4|U |/ζ) ≤ (1/2)(4d/ζ)k̂ ln(f/ζ) .

Proof: As argued earlier, |U | = 4f/ζ, so (3/ζ) ln(4|U |/ζ) ≤ (4/ζ) ln(16f/ζ2). Assuming ζ is at
most a sufficiently small constant, we can bound:

∆G′′(v, U) + (3/ζ) ln(4|U |/ζ) ≤ (4/ζ)(ln(f/ζ) + ln(16f/ζ2))

= (4/ζ) ln(16f2/ζ3)

≤ (4/ζ)4 ln(f/ζ) .

We trivially bound 2 + 6(ln d)/ζ by 8d/ζ. We now bound the summation in the claim as follows.
We use the fact that k̂1 + 2 ≥ 4, and that k̂ − 2 ≥ max(k̂1 + 2, k̂2 + 2).

(4/ζ)4 ln(f/ζ) + 8dD1/ζ + (4d/ζ)k̂2 ln(|U |/ζ)
= (4/ζ)4 ln(f/ζ) + 2(4d/ζ)k̂1+1 ln(6f/ζ2) + (4d/ζ)k̂2 ln(4f/ζ2)

≤ (4d/ζ)k̂1+2 ln(f/ζ) + (4d/ζ)k̂1+2 ln(f/ζ) + (4d/ζ)k̂2+2 ln(f/ζ)

≤ (1/2)(4d/ζ)k̂ ln(f/ζ) ,

and the proof is completed.

Proof of Claim 7.16. Initiate a BFS in the residual graph G′′ = G′
[N]\F starting from U for

2D1 steps. Let A denote the set of all vertices reached (including U). We now invoke Claim 7.13

34

with F , M := U , and t := 2D1. Suppose we find a ζ-sparse cut cutG′(R). We have ∆G′′(v,R) ≤
∆G′′(v, U) + 2D1. By Claim 7.19, this is at most (4d/ζ)k̂ ln(f/ζ). Hence, R satisfies Condition
(*). Otherwise, the BFS reaches 2D1 levels, and (by Claim 7.13), |U | · e(ζ/2)D1 ≤ |∂F (A)|. Since
the degree bound is d, the size (after 2D1 steps of a BFS) can only blow up by d2D1 . Hence,
|A| ≤ |U | · e2D1 lnd.

Proof of Claim 7.17. Note that |∂F (A)| ≥ |U | = 4f/ζ ≥ |F |. Set F2 = ∂F (A) ∪ F , so that

|F2| = |∂F (A) ∪ F | = |∂F (A)|+ |F | ≤ |∂F (A)| + |∂F (A)| = |A| ≤ |U | · e2D1 lnd .

We invoke Claim 7.15 with F , M := A, and t := (3/ζ) ln(4|F2|/ζ). Suppose we get a ζ-sparse cut
cutG′(R).

∆G′′(v,R) ≤ ∆G′′(v, U) + ∆G′′(U, ∂F (A)) + t

≤ ∆G′′(v, U) + ∆G′′(U, ∂F (A)) + (3/ζ) ln(4|F2|/ζ)
≤ (4/ζ) ln(f/ζ) + 2D1 + (3/ζ) ln(4|U |/ζ) + 6D1(ln d)/ζ

An application of Claim 7.19 proves that this is at most (4d/ζ)k̂ ln(f/ζ). So R satisfies Condition
(*). By Claim 7.15, if we do not get a set R, we get a vertex v2 ∈ ∂F (A) and a set U2 disjoint
from F2 such that v2 ∈ U2, |U2| ≥ e(ζ/3)t, and ∆G′

[N]\F2
(v2, U2) ≤ (3/ζ) ln(4|F2|/ζ). By choice of t,

|U2| ≥ 4|F2|/ζ. Let f2 = max{|F2|, k2(4d/ζ)
4k2+2}. To call the procedure find(v2, U2, F2, T2),

we need to argue that |U2| ≥ 4f2/ζ and ∆G′
[N]\F2

(v, U2) ≤ (4/ζ) ln(f2/ζ). We have chosen

f = max{|F |, k(4d/ζ)4k+2}, and |F2| ≥ f . Hence, f2 = |F2|. So |U2| ≥ 4|F2|/ζ = 4f2/ζ and
∆G′

[N]\F2
(v2, U2) ≤ (3/ζ) ln(4|F2|/ζ) ≤ (4/ζ) ln(4f2/ζ).

Let (σ, S∗) be the output of this call to find. We have,

∆G′′(v, S∗) ≤ ∆G′′(v, U) + ∆G′′(U, ∂FA) + ∆G′′(v2, S
∗) .

By the induction hypothesis ∆G′′(v2, S
∗) ≤ (4d/ζ)k̂2 ln(f2/ζ). Since f2 ≤ |U |e2D1 lnd, this is at

most (4d/ζ)k̂2 ln(|U |/ζ) + (2 ln d)(4d/ζ)k̂2D1. We now get

∆G′′(v, S∗) ≤ ∆G′′(v, U) + ∆G′′(U, ∂FA) + (4d/ζ)k̂2 ln(|U |/ζ) + (2 ln d)(4d/ζ)k̂2D1

Barring the last term, we have that ∆G′′(v, U) + 2D1 + (4d/ζ)k̂2 ln(|U |/ζ) is at most

(1/2)(4d/ζ)k̂ ln(f/ζ) by Claim 7.19. Turning to the last term,

(2 ln d)(4d/ζ)k̂2D1 = (2 ln d)(4d/ζ)k̂2 · (4d/ζ)k̂1 ln(6f/ζ2)

= (2 ln d)(4d/ζ)k̂1+k̂2 ln(6f/ζ2)

= (2 ln d)(4d/ζ)k̂−2 ln(6f/ζ2)

< (1/2)(4d/ζ)k̂ ln(f/ζ) .

Putting it all together, ∆G′′(v, S∗) ≤ (4d/ζ)k̂ ln(f/ζ). If the output is a cut, then S∗ is the desired
R (satisfying Condition (*)). Otherwise (by the induction hypothesis), the set S∗ (disjoint from
F2) contains a T2-minor such that v2 belongs to the subset whose contraction corresponds to the
root r2 of T2. We have F2 = ∂F (A) ∪ F , where the set A contains all vertices whose distance (in

35

G′′) from U is at most 2D1. Since S∗ is disjoint from F2, the distance in G′′ of any vertex in S∗

from U is at least 2D1. So S∗ is the desired set S2.

Proof of Claim 7.18. Consider the shortest path P from U to v2 (in G′′). Since v2 ∈ ∂F (A), the
path P \ {v2} is entirely contained in ∂F (A). Hence, S2 is disjoint from P \ {v2}. By construction,
|P | ≤ 2D1.

We have f = max{|F |, k(4d/ζ)4k+2}. By some elementary calculations (see Fact 7.20 (below)),

we have f ≥ (4d/ζ)k̂ ln(6f/ζ2) ≥ 2D1 ≥ |P |. Hence, |F ∪ P | ≤ 2f . Let F ′ := F ∪ P , F1 :=
∂F (U) ∪ F ′ and f1 = max{|F1|, k1(4d/ζ)

4k1+2}. We invoke Claim 7.15 with F ′ as the forbidden
set, M := U , and t := (3/ζ) ln(4f1/ζ). Since |F1| ≤ |U | + 2f ≤ 4f/ζ + 2f < 6f/ζ, we have that

t = (3/ζ) ln(4f1/ζ) < (4d/ζ)k̂1 ln(6f/ζ2) = D1. If we get a ζ-sparse cut cutG′(R), we end with the
desired R.

Otherwise, we get a vertex v1 ∈ ∂F (U) and a set U1 ∋ v1 disjoint from F1 such that |U1| ≥
e(3/ζ)t = 4|f1|/ζ and ∆G′

[N]\F1
(v1, U1) ≤ t ≤ 4 ln(f1/ζ)/ζ. We thus have the necessary conditions to

call find(v1, U1, F1, T1). By the induction hypothesis, for the set S∗ returned, ∆G′
[N]\F1

(v1, S
∗) ≤

(4d/ζ)k̂1 ln(f1/ζ) ≤ (4d/ζ)k̂1 ln(6f/ζ2) ≤ D1 (using the bound f1 < 6f/ζ). Hence ∆G′′(v, S∗) ≤
∆G′′(v, U) +D1 < 2D1 ≤ (4d/ζ)k̂ ln(f/ζ). Regardless of whether S∗ is output as a cut or a minor,
we complete the proof.

Fact 7.20 If x ≥ k(4d/ζ)4k+2, then x ≥ (4d/ζ)k̂ ln(6x/ζ2), where k̂ = 4k − 2.

Proof: Consider the function x/ ln(αx). The derivative is given by d
dx

(
x

ln(αx)

)
= 1

ln(αx) − 1
ln2(αx)

.

Hence, this function is increasing when x ≥ e/α. We set α = 6/ζ2, and note that for small enough
ζ, k(4d/ζ)4k+2 > eζ2/6. For x ≥ k(4d/ζ)4k+2,

x

ln(6x/ζ2)
≥ k(4d/ζ)4k+2

ln(6k/ζ2) + (4k + 2) ln(4d/ζ)
≥ (4d/ζ)4k−2 ,

and the proof is completed.

7.5 Testing T -minor freeness for any depth-two tree T

Let T be an arbitrary depth-two tree with k vertices; that is, T consists of a root, denoted r, and
m stars, denoted T1, . . . , Tm, that are rooted at neighbors of r, where here we consider also the
singleton vertex as a star (with 0 leaves). Denote the m corresponding roots by r1, . . . , rm, and
denote the number of leaves in these stars by k1, . . . , km (i.e., k = 1+m+

∑
i∈[m] ki). The following

algorithm is tailored for this tree T .

Algorithm 7.21 (tailored for the foregoing T): On input G = ([N], E) and proximity parameter
ǫ, set D = (5d2k/ǫ)2 and proceed as follows.

1. Select uniformly a start vertex s ∈ [N].

2. Perform a BFS starting at s and stopping as soon as D layers are explored (or the BFS
reaches all the vertices of a connected component in G).

3. Accept if and only if the explored graph is T -minor free.

36

Clearly, Algorithm 7.21 never rejects a T -minor free graph. Its query complexity is exponential in
D, and its time complexity is polynomial in its query complexity (by Corollary 1.2 of [KKR12]).

Lemma 7.22 If G is ǫ-far from being a T -minor free graph, then Algorithm 7.21 rejects with
probability at least ǫ/4.

Proof: We call a vertex v bad if its D-neighborhood (i.e., the vertices that are at distance at most
D from v) contains a T -minor, and denote the fraction of bad vertices (in G) by ρ. As in the proof
of Claim 7.5, it suffices to show that G is (ρ + (ǫ/2))-close to being T -minor free, and we again
start by omitting all edges incident at bad vertices and considering the resulting graph, denoted
G(0). Indeed, G(0) is ρ-close to G.

The rest of our analysis proceed in iterations. If the current graph G(i−1) is T -minor free, then
we are done. Otherwise, we pick an arbitrary vertex s(i) that resides in (the root of) some T -minor.
Since s(i) is not bad, it must reside in a connected component of G(i−1) that has radius at least

D from s(i). We shall show how to identify a set S(i) such that G
(i−1)

S(i) has radius at most D and

the cut (S(i), [N] \S(i)) has less that ǫd|S(i)|/2 edges. Omitting these cut edges yields a graph G(i)

such that G
(i)

S(i) is T -minor free (and S(i) will not intersect with any future S(j)). When the process

ends, we have a T -minor free graph. In total, we omitted at most
∑

i ǫd|S(i)|/4 ≤ ǫdN/2 edges
(from G(0)), and thus G is (ρ+ (ǫ/2))-close to T -minor free.

The crux of the proof is indeed the process of identifying a suitable set S′ = S(i) in G′ def
= G(i−1).

The identification procedure is initiated at s′ = s(i) and proceeds in two stages. In the first stage,
the procedure tries to find either a set S0 of size at least 4m/ǫ such that the cut (S0, [N] \ S0) has
less than m edges or a set S0 of size at most 2dm/ǫ such that G′

S0
contains an m-star as a minor

rooted at s′. Clearly, in the first case we are done. In the second case, we get to the second stage
of the procedure, which explores G′ (somewhat) beyond S0 in an attempt to extend the m-star
minor into a T -minor, but this attempt is bound to fail, and this failure will allow finding the
desired cut. Loosely speaking, this second stage proceeds by trying to find disjoint Tj-minors, for
j = 1, . . . ,m. This is done by invoking a “k′-star-minor finding” procedure, denoted FSk′ , which
generalizes the procedure that is described in the proof of Claim 7.5. The procedure FSk′ is invoked
on a vertex, v, and a set of forbidden vertices, denoted F , and tries to either find a k′-star rooted at
v in G′

[N]\F or find a good cut. Indeed, F will contain the set S0 as well as adequate sets that will
prevent the current search from entering any of the previously found star minors. We first provide
a specification of FS, and then turn to its actual implementation.

Specification of the procedure FS. On input a vertex v and a forbidden set F , the procedure FSk′

outputs a triplet (σ,R′, F ′) such that σ ∈ {minor, cut, free} and F ′ ⊆ R′ ⊆ [N] \ F such that
|F ′| < dk′ and |R′| < (4dk′/ǫ) · (|F | + 1). In addition, it always holds that all vertices of G′

R′ are
connected to v, and one of the following cases holds.

σ = minor. The graph G′
R′ contains a k′-star as a minor that is rooted at v (i.e., v resides in the

connected component that is contracted to fit the root of the k′-star). Furthermore, all edges
of the cut (R′ \ F ′, [N] \ (R′ \ F ′)) are incident at F ∪ F ′.

σ = cut. The cut (R′, [N] \R′) contains less that ǫd|R′|/2 edges.

σ = free. All edges of the cut (R′, [N] \R′) are incident at F .

37

Let T ′ denote a generic k′-star, where we may assume that k′ ≥ 1.

Implementing the procedure FS. Our aim is to either find a (relatively small) T ′-minor or find a
set with a relatively small cut from the rest of the graph. This is done by initiating a BFS in the
residual graph G′

[N]\F starting at v, and stopping as soon as one of the following three cases occurs.

Case 1: A layer containing at least k′ vertices is found before 4(|F |+k′)/ǫ vertices are encountered.
In this case the procedure returns (minor, R′, F ′), where R′ is the set of encountered vertices
and F ′ is the set of vertices in the last BFS layer.

Note that in this case G′
R′ contains a T ′-minor rooted at v, and that |F ′| < dk′ (as otherwise

the BFS would have terminated in a previous layer). Furthermore, by structure of the BFS,
all edges of the cut (R′ \ F ′, [N] \ (R′ \ F ′)) are incident at F ∪ F ′.

Case 2: The search encountered at least 4(|F | + k′)/ǫ vertices, while Case 1 does not hold. In this
case the procedure returns (cut, R′, ∅), where R′ is the set of encountered vertices.

Note that in this case the cut (R′, [N] \R′) contains less than (|F |+ k′) · d ≤ ǫd|R′|/4 edges.

Case 3: The search cannot be extended any further, while Cases 1 and 2 do not hold. In this case
the procedure returns (free, R′, ∅), where R′ is the set of encountered vertices.

Note that in this case the cut (R′, [N] \R′) contains only edges that are incident at F .

Observe that in the first case |R′| < 4(|F | + k′)/ǫ, in the second case |R′| < 4d(|F | + k′)/ǫ (since
otherwise the BFS could have stopped in the previous level), and in the third case |R′| < 4(|F | +
k′)/ǫ. Hence, in all cases

|R′| < 4dk′(|F |+ 1)/ǫ . (10)

Thus, this implementation satisfies the specification. We note that the above description applies
also in case k′ ∈ {0, 1}, where k′ = 0 is trivial11 (i.e., always return (minor, {v}, {v})) and k′ =
1 is almost trivial (i.e., return (minor, {v,w},ΓG′ (v) \ F) if v has a neighbor w in G′

[N]\F and

(free, {v}, ∅) otherwise).
Using the star finding procedure FS, we now turn to the main identification procedure, which

is invoked on input vertex s′ = s(i) and aims at finding an adequate set S′ = S(i). Recall that r
denotes the root of T , and r1, . . . , rm denote the roots of the subtrees T1, . . . , Tm, where Tj is a
kj-star. The main procedure operates as follows.

1. It initiates a BFS in the graph G′ starting at s′, stopping as soon as at least B = 4dk/ǫ
vertices are encountered. Let S0 denote the set of encountered vertices. Note that |S0| ≥ B
must hold, because s′ = s(i) resides in a set of vertices that can be contracted to the root of
some T -minor having radius greater than D.

Note that necessarily |S0| < dB (because otherwise we would have stopped at the previous
BFS-layer).

2. Let F0 denote the last layer in the BFS performed in the previous step. If |F0| < m, then we
just use S0 as the desired set (i.e., let S(i) = S0).

11Actually, this case never occurs; that is, we never invoke FS0. The case k′ = 1 may occur, but we could have
avoided it too, by a direct treatment.

38

Note that, in this case, the cut (S0, [N]\S0) contains less than m·d edges, whereas by the case
hypothesis |S0| ≥ B > 4m/ǫ (as k > m). So the conditions regarding this set are satisfied.

We continue to the next step only if |F0| ≥ m.

3. (The purpose of the current step is to generate calls to FS that will eventually lead to returning
a set as in the second output case (i.e., cut), which can serve as S(i) (see above). The
presentation, however, pretends that we attempt to find a T -minor as in the first output case
(i.e., minor). Observing that S0 \ F0 can serve as a contraction of the root of T , we attempt
to find disjoint sets Sj that contain Tj-minors rooted at some vj ∈ F0.)

For j = 1, . . . ,m, we try to find Sj as follows. Let F ′ =
⋃

a∈[j−1] Fa and V ′ = {v1, . . . , vj−1}.
For every v ∈ F0 \ V ′, we proceed as follows.

We invoke FSkj
, letting (σ,X, Y)← FSkj

((F0 \ {v}) ∪ F ′, v).

We note that by the specification of FSkj
and Equation (10), we have that |X| ≤ (4dkj/ǫ)·

(|F0| + |F ′| + 1) and |Y | ≤ dkj . Recall that |F0| < |S0| < dB = 4d2k/ǫ and |F ′| =∑
a∈[j−1] |Fa| < d

∑
a∈[j−1] ka < d(k −m), where k = 1 +m +

∑
a∈[m] ka. Thus, |X| <

(5d2k/ǫ)2.

We consider the following three cases regarding σ.

σ = minor. In this case we set vj ← v and (Sj , Fj) ← (X,Y), and proceed to the next
value of j (i.e., j ← j + 1); see comment below.
Note that |Sj | < (5dk/ǫ)2. In fact, the same upper bound can be proved for∑j

a=0 |Sa|.
Note that this case cannot occur when j = m, because this would yield a small
T -minor rooted in s′ in contradiction to the hypothesis that s′ = s(i) is not bad.

σ = cut. In this case we just use X as the desired set (i.e., let S(i) = X).
Note that, by the specification of FS, the cut (S(i), [N] \S(i)) contains relatively few
edges.

σ = free. In this case we do nothing, and continue to the next candidate v.

Note that we halted with a desired cut if either Step 2 found such a cut or any of the invoca-
tions of FS returned a cut-value. Furthermore, as noted in the above discussion concerning
the case σ = minor, it cannot be the case that in Step 3 we obtained a minor-value for
each j ∈ [m]. Thus, we remain with the case that, for some j ∈ [m], all invocations of FS
returned a free-value. In this case, we let X ′ be the union of all sets X that were returned
in the corresponding |F0| − (j − 1) invocations, and use S0 ∪ X ′ as the desired set (i.e., let
S(i) = S0 ∪ X ′). In this case, the size of the cut (S(i), [N] \ S(i)) is at most d · |F ′| < d2k,
because for each X all edges of the cut (X, [N] \X) are incident at F0 ∪F ′ ⊆ S0 ∪F ′. Thus,
the cut is sufficiently small, because |S(i)| ≥ |S0| ≥ B = 4dk/ǫ. On the other hand, the size
of S0 ∪X ′ is at most |F0| · (4dk/ǫ) · |F ′| < (4dk/ǫ)2.

This completes the description of the operation of the procedure I as well as the showing that it
satisfies its specification. It follows that for any s(i) that reside in the root of some T -minor in
G(i−1), we obtain a set S(i) such that the cut (S(i), [N] \ S(i)) has less than 4d|S(i)|/ǫ edges. Using

the fact |S(i)| < D, it follows that G
(i−1)

S(i) is T -minor free, and the lemma follows.

39

8 The unbounded-degree graph model

In this section we consider (one-sided error) testing cycle-freeness (and tree-minor freeness) in what
we shall refer to as the unbounded-degree incidence-lists model. In this model, introduced in [PR02],
the maximum degree d may be as large as N−1, so there is effectively no degree-bound, and a graph
G is represented by a function g : [N] × [N − 1] → {0, . . . , N}. Similarly to the bounded-degree
model, the algorithm may ask for the identity of the ith neighbor of a vertex v, for any v ∈ [N]
and i ∈ [N − 1] of its choice, by querying the function g. (If v has less than i neighbors, then the
answer returned is ‘0’). For the sake of simplicity, we assume that the algorithm can also query
the degree of any vertex of its choice (where such a query can, of course, be replaced by O(logN)
neighbor queries).

The main and crucial difference between the unbounded-degree model and the bounded-degree
model is in the distance measure between graphs. Rather than measuring distance between graphs
in terms of the size of the domain of g, as done in the bounded-degree model, we measure it with
respect to the number of edges |E| in G = ([N], E). That is, we shall say that a graph G is
ǫ-far from being cycle-free (in the unbounded-degree model), if the number of edges that must be
removed in order to make it cycle-free is greater than 2ǫ|E| (see Footnote 1). Letting davg denote
the average degree in G (and assuming that G is connected), this is equivalent to saying that the
number of edges in G is greater than (N − 1) + ǫdavgN .

We note that while the bounded-degree model is appropriate for testing graphs in which the
maximum degree is of the same order as the average degree (and in particular for constant-degree
graphs), the unbounded-degree model is appropriate for testing graphs in which the maximum
degree may be much larger than the average degree. We mention that the model considered
in [KKR04] (see also Section 8.3) also allows adjacency queries (as in [GGR98]), but such queries
are useless for us when the degree is smaller than

√
N .

A necessary assumption. Throughout this section, we assume that the number of edges in the
graph is at least linear in the number of vertices. As noted in [KKR04], without this assumption
the model becomes intractable for sublinear algorithms, because one can always hide a tiny graph
(which may be far from having the property) inside a huge graph that contains mostly isolated
vertices. Also, unless explicitly stated otherwise, we also assume that the graphs are simple (i.e.,
have no self-loops or parallel edges).

8.1 Testing cycle-freeness

In this subsection, we show that the result of Theorem 1.5 (and thus also Theorem 1.1) extends
to the unbounded-degree (incidence lists) model. Furthermore, the extended result is actually
stronger than stated in Theorem 1.5, since we eliminate the dependence of the complexities on the
average (let alone maximum) degree of vertices in the input graph. This is done by viewing the
randomized reduction that underlies Algorithm 3.3 in a slightly different manner, which actually
yields an alternative tester (which is closely related to but different from Algorithm 3.3). We then
show that this algorithm extends easily to the unbounded-degree model.

The pivot of our exposition is the following generalization of 2-colorability in which edges of the
graph are labeled by either eq or neq. That is, an instance of this problem is a graph G = ([N], E)
along with a labeling Λ : E → {eq, neq}. We say that χ : [N]→ {0, 1} is a legal 2-coloring of this
instance if for every {u, v} ∈ E it holds that χ(u) = χ(v) if and only if Λ({u, v}) = eq. That is, a

40

legal 2-coloring (of the vertices) is one in which every two vertices that are connected by an edge
labeled eq (resp. neq) are assigned the same color (resp., opposite colors). Note that the standard
notion of 2-colorability corresponds to the case in which all edges are labeled neq.

We first observe that the (one-sided error) Bipartite testers of [GR99] and [KKR04] can be
extended to test this generalization of 2-colorability.12 Next, we observe that the randomized
reduction that underlies Algorithm 3.3 can be viewed as a randomized reduction of cycle-freeness
to generalized 2-coloring, while keeping the graph intact. Combining these two observations, we
obtain:

Theorem 8.1 (Theorems 1.5 and 1.1, generalized to the unbounded-degree model): Cycle-freeness
in N -vertex graphs can be tested with one-sided error within time complexity Õ(poly(1/ǫ) ·

√
N),

where ǫ denotes the proximity parameter that refers to the number of (omitted) edges as a fraction
of the total number of edges in the input graph. Furthermore, whenever the tester rejects, it outputs
a simple cycle of length poly(ǫ−1 logN).

Proof: We first present a (local) randomized reduction of testing cycle-freeness to testing the
foregoing generalization of 2-colorability. Unlike the reduction that underlies Algorithm 3.3, the
current reduction does not modify the input graph G = ([N], E); it merely introduces a random
labeling Λ : E → {eq, neq}. Specifically, the graph G = ([N], E) is mapped to a random instance
of the generalized 2-coloring problem such that the graph equals G itself and the labeling is se-
lected uniformly among all possible Λ : E → {eq, neq}. Thus, invoking any generalized 2-coloring
(one-sided error) tester on the resulting instance, we are done. (Indeed, unlike in the case of Al-
gorithm 3.3, here the emulation of the generalized 2-coloring tester is straightforward. Also note
that here we obtained a true local reduction, whereas in Section 3 we only showed how to emulate
bipartite testers of a special type (i.e., such that only select uniformly distributed vertices and make
random-neighbor queries).)

The analysis of the forgoing randomized reduction is analogous to the proof of Lemma 3.1. For
sake of clarity, we spell out what this means.

1. If G is cycle-free, then, for every choice of Λ : E → {eq, neq}, the graph G is 2-colorable with
respect to the labeling Λ (i.e., the exists a legal 2-coloring of the instance (G,Λ)).

2. If G is not cycle-free, then, with probability at least 1/2 (over the random choice of Λ : E →
{eq, neq}), the graph G is not 2-colorable with respect to the labeling Λ.

3. There exist universal constants c1 > 1 and c2, c3 > 0 such that, for every ǫ ≥ c1/|E|, if G is
ǫ-far from being cycle free, then, with probability at least 1− exp(−c2ǫdN) (over the random
choice of Λ : E → {eq, neq}), at least c3ǫ · |E| edges must be omitted from G in order to
obtain a graph that is 2-colorable with respect to the labeling Λ.

Each of the above three claims may be proved by mimicking the proof of the corresponding item
of Lemma 3.1. In particular, note that in the proof of the third item, we actually established that
(w.v.h.p.) c3 · (|E| −N + 1) edges must be omitted from Gτ in order to obtain a bipartite graph,13

12A similar observation refers to the k-colorability testers of [GGR98], which operate in the dense graph model.
Thus, for every k ≥ 2, the foregoing generalization of k-colorability can be tested (with one-sided error) in the dense
graph model by using poly(1/ǫ) queries.

13The stated distance of c3ǫ/2d in the bounded degree model, was obtained by using |E| − N + 1 = ǫdN (which
holds there), and dividing the result by d · (d + 1)N (which represents the product of the degree of Gτ by an upper
bound on the number of its vertices).

41

which means that these many edges must be omitted from G in order to obtain a graph that is
2-colorable with respect to the labeling Λ.

We turn to presenting a generalized 2-coloring (one-sided error) tester for the unbounded-degree
model. One way of doing so it to observe that the 2-coloring tester of [KKR04] (which builds
upon [GR99]) extends to the generalized version. We shall not follow this way, but rather present
an alternative one, but before doing so we comment that all that is needed in order to support
this observation is to (fictitiously) define edges labeled eq as having even length (say, length zero
or two), whereas edges labeled neq are defined as having odd length (say, length one). Modulo
this definition, the entire analysis of [GR99] remains intact. Specifically, all references in [GR99]
to the length of paths and cycles are re-interpreted as referring to the foregoing definition. In
particular, an odd length cycle (under this label-dependent definition of length) indicates that the
graph cannot be 2-colored (under the corresponding labeling of edges), whereas the non-existence
of odd length cycles enables such a 2-coloring. (The same holds for [KKR04], which operates by a
(local) reduction to [GR99].)

Seeking a self-contained presentation, we present an alternative way of deriving a generalized
2-coloring (one-sided error) tester for the unbounded-degree model. Specifically, we shall reduce
generalized 2-coloring testing to standard 2-coloring testing as follows. Given an instance (G,Λ)
of the generalized 2-coloring problem, where G = ([N], E) and Λ : E → {eq, neq}, we consider the
following multi-graph G′ = ([2N], E′), where a multi-graph is a graph with parallel edges: Each
vertex v ∈ [N] of G is replaced by two vertices, v and N + v, which are connected by 2|ΓG(v)|
parallel edges, and the edges of G are replaced by edges among the corresponding copies such
that edges labeled neq are replaced by edges between “matching copies” and edges labeled eq

are replaced by edges between opposite copies. Specifically, if the edge {u, v} ∈ E is labeled neq

(i.e., Λ({u, v}) = neq), then E′ contains the edges {u, v} and {N + u,N + v}, otherwise (i.e.,
Λ({u, v}) = eq) the edges {u, v +N} and {N + u,N} are placed in E′.

Note that the degree of each vertex v in G′ is thrice the degree of the original vertex v′
def
=

(v − 1) mod N + 1 in G, where the first 2|ΓG(v)| edges go to the other copy of v′ and the rest are
connected to the adequate copies of neighbors of v′. Clearly, this reduction is local; specifically,
given oracle access to G and Λ, one can implement oracle access to G′ by issuing a single query to G
per each query to G′. The reader can easily verify that the number of edges that must be omitted
from G in order to obtain a graph that is 2-colorable with respect to Λ equals half the number of
edges that must be omitted from G′ in order to obtain a bipartite graph. (The key observation is
that when 2-coloring G′, the number of edges that are violated is minimized by assigning the two
copies of each vertex of G different colors).

It seems that we are done, except that the multi-graph obtained in the reduction has parallel
edges, whereas the algorithm of [KKR04] only refers to simple graphs (i.e., no parallel edges).
This assumption is used in [KKR04] for a single purpose – for the construction of a randomized
subroutine that samples vertices with probability that is (approximately) proportional to their
degree. Other than that, both the algorithm and the analysis of [KKR04] are oblivious to whether
the input is a simple graph or a multi-graph. The algorithm and its analysis refer to the behavior
of random walks taken on an auxiliary graph, and at that level it does not matter whether the
original graph (or the auxiliary graph) have parallel edges or not. Thus, we merely need to address
the problem of sampling vertices in the graph G′ obtained via our reduction such that vertices are
sampled with probability that is (approximately) proportional to their degree.

The latter problem is easily solved by noticing that if we drop all parallel edges from G′, we

42

obtain a graph G′′ such that the degree of each vertex in G′′ is one third of its degree in G′. Hence,
we may just as well invoke the vertex-sampling procedure of [KKR04] on G′′, which is a simple
graph. The theorem follows.

Digest. Note that combining the two reductions presented in the foregoing proof, we obtain a
randomized reduction of (one-sided error) testing cycle-freeness to (one-sided error) testing bipar-
titeness (of graphs having parallel edges). The advantage of this reduction over the one presented in
Section 3 is that the number of vertices in the resulting graph is only a constant factor larger than
the number of vertices in the original graph. (The same holds for the number of edges, but this was
true also for the reduction in Section 3.) The disadvantage of the current reduction (in comparison
to the one presented in Section 3) is that it yields graphs with parallel edges. Fortunately, the
number of parallel edges incident at each vertex is a fixed fraction of the degree of this vertex,
which in turn allows for an easy adaptation of the Bipartiteness tester presented in [KKR04] so
that it can be applied to these graphs.

Finding longer cycles. We were not able to extend our results regarding finding Ck-minors for
k > 3 to the unbounded-degree model. Our reductions to finding simple cycles (i.e., to the case of
k = 3) increase the size of the graph by a factor of at least dk−3, where d is the initial degree bound,
putting aside the difficulty of handing the case that the average degree is significantly smaller than
d. Indeed, this topic is left for further study.

8.2 Testing tree-minor-freeness

In contrast to Section 8.1, we show that the result of Theorem 1.3 cannot be extended to the
unbounded-degree model. This follows by considering an N -vertex graph G that consists of a cycle
of length N −

√
N and a clique of size

√
N (i.e., G = CN−

√
N + K√

N). Denoting the 3-star by

T3, note that G is Ω(1)-far from being T3-minor-free (since we must omit
√
N − 3 edges from each

vertex of the
√
N -clique in order to eliminate all copies of T3 itself). On the other hand, no o(

√
N)-

query algorithm can find a T3-minor in a random isomorphic copy of G, except with probability
o(1). Furthermore, any algorithm of query complexity o(

√
N) cannot distinguish a random copy

of G from a random copy of a N -vertex graph that consists of a cycle of length N −
√
N and

√
N

isolated vertices. Thus, in this model, even two-sided error testing of T3-minor freeness requires
Ω(
√
N) queries.

We mention that an O(
√
N)-query one-sided error tester for Tk-minor-freeness does exist for

any k, where Tk denotes the k-star. This tester may be obtained by combining the tester for the
bounded-degree model (for d = k−1, as presented in Section 7.3) with an O(

√
N)-query procedure

for finding a vertex of degree at least k. The argument is detailed in the proof of the following
result.

Theorem 8.2 (Testing Tk-minor freeness in the unbounded-degree model): For every k ≥ 3,
testing Tk-minor freeness of N -vertex graphs, in the unbounded-degree model, has query complexity
Θ̃(
√
N), where the upper bound hides factors that are polynomial in k/ǫ. Furthermore, the lower

bound holds also for two-sided error testers, whereas the upper bound holds with respect to a one-
sided error tester that outputs a Tk-minor of size O(k2/ǫ) whenever it rejects.

43

Proof: The lower bound follows from the foregoing discussion. Recall that we consider an N -
vertex graph G that consists of a cycle of length N−

√
N and a clique of size

√
N , which is Ω(1)-far

from being Tk-free. We claim that any algorithm of query complexity o(
√
N) cannot distinguish

a random copy of G from a random copy of a N -vertex graph that consists of a cycle of length
N −

√
N and

√
N isolated vertices. This claim is proved by noting that, conditioned on the case

that all the prior queries refer to vertices that are on the long cycle, the probability that the next
query refers to a vertex not on this cycle is at most

√
N/N , where equality holds if the next query

refers to a vertex that was not seen before (as either part of a query or an answer).
We now turn to the upper bound. The suggested tester invokes an arbitrary (one-sided error)

Tk-minor free tester for the bounded-degree model (e.g., Algorithm 7.4), where the degree bound, d,
is set to k− 1. Indeed, this algorithm is invoked on a graph that may not satisfy the degree bound,
and so while emulating this algorithm we check whether each encountered vertex has degree at most
k−1. If (during the emulation) we ever encounter a vertex of degree at least k, then we reject (while
outputting this vertex and k of its neighbors). If the emulation terminates outputting a Tk-minor,
then we just output this minor. Otherwise, using the edge sampling algorithm of [KKR04, Fig. 5]
(which has query complexity Õ(

√
N/ǫ) per sample), we take an almost uniform sample of O(1/ǫ)

edges and check the degrees of the endpoints of all these edges. Needless to say, if any of these
vertices is found to have degree at least k, then we reject (while outputting this vertex and k of its
neighbors), otherwise we accept.

Suppose that G = ([N], E) is ǫ-far from being Tk-minor free, which means that at least 2ǫ|E|
edges have to be removed from G in order to obtain a Tk-minor free graph. Let H denote the set of
vertices in G that have degree at least k, let G′ = (V ′, E′) be the subgraph of G that is induced by

V ′ def
= [N] \H, and G′′ = ([N], E′) be G′ augmented by |H| isolated vertices. If at least ǫ|E| edges

have to be removed from G′ in order to obtain a Tk-minor free graph, then G′′ is ǫ/4k-far from
being a Tk-minor free (with respect to the bounded-degree model with d = k − 1, while assuming
|E| > N/2). Thus, Algorithm 7.4 invoked on G′′ (with proximity parameter ǫ/4k), will output a
Tk-minor with probability at least 2/3. The same would happen if Algorithm 7.4 is invoked on G,
because as long as vertices in H are not visited both graphs are indistinguishable, whereas visiting
any graph in H will cause the algorithm to output a Tk-minor.

So we are left with the complimentary case in which G can be made Tk-minor free by omitting
at least ǫ|E| edges that have at least one endpoint in H. In this case, the edge sampling algorithm
of [KKR04] (invoked with proximity parameter ǫ/2), will hit such an edge with probability at
least Ω(ǫ) per each invocation (see [KKR04, Lem. 6]). (Needless to say, hitting any edges with an
endpoint in H will cause the algorithm to output a Tk-minor.) The theorem follows by noting that
we invoked this edge sampling algorithm O(1/ǫ) times, whereas its query complexity is Õ(

√
N/ǫ)

(and the query complexity of Algorithm 7.4 is O(k2/ǫ)).

Finding other tree-minors. Our star-minor free (one-sided error) tester to the unbounded-
degree model, begs the question of whether similar results can be obtained with respect to other
tree-minors. Indeed, this question is left for further study.

8.3 Testing with adjacency queries

Here we consider an augmentation of the model with adjacency queries. This augmentation was
first considered in [KKR04], and it was shown to be useful (for testing bipartiteness) when the

44

average degree, davg, exceeds
√
N . We observe that the same holds with respect to testing cycle-

freeness (see details below). (In contrast, recall that in the bare model (i.e., without adjacency
queries) the upper bound presented in Section 8.1 are optimal.)

We note that the reduction presented in Section 8.1 remains valid, except that in this case the
generalized 2-coloring tester (derived from [KKR04]) may use adjacency queries. In this case, the
resulting cycle-freeness tester will have complexity min(Õ(

√
N), Õ(N)/davg) ·poly(1/ǫ) (just as the

2-coloring tester of [KKR04]).
We also note that the results regarding testing tree-minors (see Section 8.2) extend similarly.

Specifically, for any k ≥ 3, the complexity of testing Tk-minor freeness is min(Θ̃(
√
N), Θ̃(N)/davg)).

9 Open Problems

The current paper leaves open many questions regarding the complexity of one-sided error testing
of H-minor-freeness, for arbitrary (fixed) graphs H. While some significant progress has been done
regarding this general question, much is left to be desired (even if we restrict ourselves to the
bounded-degree model).

Let us denote by QTH : N × [0, 1] → N the query complexity of one-sided error testing of H-
minor-freeness in the bounded-degree model. (For simplicity, we fix the degree bound and consider
the number of queries made as a function of the number of vertices and the proximity parameter.)
The most begging open problem is whether or not, for any fixed ǫ0 > 0 and graph H, it holds
that QTH(N, ǫ0) = o(N). We showed that QTH(N, ǫ0) = Θ̃(

√
N) for any H that is a cycle, and

QTH(N, ǫ0) = O(1) for any cycle-free H, but for other graphs H that have cycles we only know that
QTH(N, ǫ0) = Ω(

√
N). The only step beyond this state of knowledge is represented by the following

result, which we discovered recently.

Proposition 9.1 Let H be a 4-vertex graph consisting of a triangle and an additional edge. Then,
for any fixed ǫ0 > 0, it holds that QTH(N, ǫ0) = Õ(

√
N).

There seems to be hope to obtain a similar result for any graph H that contains exactly one cycle
(along with some additional edges), but we do not see how to do this at the moment.14 Another
natural case to consider is the one in which H is the 4-vertex clique (or the 4-vertex clique with
one edge omitted).

Proof: The lower bound follows as a special case of Theorem 6.1, and so our focus is on the upper
bound. The idea is to invoke a one-sided tester for cycle-freeness (e.g., Algorithm 3.3), and scan
the simple cycles in the subgraph that this algorithm has explored. Our goal is to find a cycle that
contains a vertex of degree greater than two, since any such cycle yields a desired H-minor. (If
this vertex has a neighbor outside the cycle, then the cycle combined with the corresponding edge
yields an H-minor. Otherwise the non-cycle edge is a chord, and we can use this chord together
with half of the cycle and some other edge to form an H-minor.)

Note that if the current cycle that we scan does not yield an H-minor, then it resides on an
isolated cycle in the input graph. In this case, we omit it from the subgraph explored by the
algorithm and continue looking for other cycles (which may still exist) in this subgraph.

14Even the two cases of 5-vertex graphs that contain a single cycle and a total of five edges cannot be handled by
the idea that underlies the proof of Proposition 9.1.

45

To analyze this algorithm assume that G is ǫ-far from being H-minor free, and consider the
isolated cycles (of vertices having degree G) that may exist in G. Let G′ be a graph obtained from G
by omitting a single edge from each such isolated cycle. Then, G′ is also ǫ-far from being H-minor
free (and so also ǫ-far from being cycle-free), whereas invoking our algorithm on G′ will yield an
H-minor with probability at least 2/3 (since any cycle in G′ contains a vertex of degree exceeding
2). But then the same must happen also when we invoke our algorithm on G, because the manner
in which Algorithm 3.3 explores one connected component is independent of its exploration of a
different connected component.

Finer bounds. Focusing on the case that H is cycle-free, we know that QTH(N, ǫ) = FH(ǫ) for
some function FH . A natural question refers to the exact dependence of FH(ǫ) on the graph H.
Specific questions include:

1. We know that if H is a k-path, then FH(ǫ) is at most exponential in k. Can FH(ǫ) be
polynomial in k?

(Partial progress is reported in [Rez11], which deals with the special case that the input graph
is a tree.)

2. We know that if H is a k-vertex tree, then FH(ǫ) is at most double-exponential in k. Can
FH(ǫ) be at most exponential in k?

(In case H has at most depth two, the answer is positive, as reported in [CGR+10, Sec. 7.5].
Also recall that if H has depth one (i.e., is a star), then FH(ǫ) is polynomial in k.)

Also recall that when H is a k-cycle, we have QTH(N, ǫ) = Õ(
√
N) · poly(2k/ǫ), and one may ask

whether QTH(N, ǫ) = Õ(
√
N) · poly(k/ǫ) is possible.

The unbounded degree model. Turning to the unbounded degree model, which was considered
in Section 8, we let QT′H : N×N× [0, 1]→ N denote the corresponding query complexity (assuming
only neighbor queries), which is now a function of the number of vertices, the (approximate) average
degree, and the proximity parameter. We showed that, for every fixed ǫ0 > 0 and H that is either
a 3-cycle or a star, it holds that QT′H(N, d, ǫ0) = Θ̃(

√
N). The open questions here refer even to

other cycles and trees (for which the complexity in the bounded-degree model is known).

Acknowledgments

We are grateful to Aviv Reznik for useful comments on a prior version, and to the anonymous
reviewers for their numerous comments, corrections, and suggestions.

References

[AS03] N. Alon and A. Shapira. Testing satisfiability. Journal of Algorithms, 47:87–103, 2003.

[BSS08] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. In Proceedings of the Fourtieth Annual ACM Symposium on the
Theory of Computing, pages 393–402, 2008.

46

[BT97] B. Bollobás and A. Thomason. On the girth of Hamiltonian weakly pancyclic graphs.
Journal of Graph Theory, 26(3):165–173, 1997.

[CGR+10] A. Czumaj, O. Goldreich, D. Ron, C. Seshadhri, A. Shapira, and C. Sohler. Finding
cycles and trees in sublinear time. Technical report, arXiv paper number 1007.4230
[cs.DS, cs.DM], 2010. Also available as ECCC report TR12-035.

[Fis01] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of
the European Association for Theoretical Computer Science, 75:97–126, 2001.

[FP87] J. Friedman and N. Pippenger. Expanding graphs contain all small trees. Combinator-
ica, 7:71–76, 1987.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

[GR99] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[GR02] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
pages 302–343, 2002.

[GS07] O. Goldreich and O. Sheffet. On the randomness complexity of property testing. In Pro-
ceedings of the Eleventh International Workshop on Randomization and Computation
(RANDOM), pages 296–310, 2007.

[GT03] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties.
Random Structures and Algorithms, 23(1):23–57, 2003.

[HKNO09] A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In Proceedings of the Fiftieth Annual Symposium on Foundations
of Computer Science (FOCS), 2009.

[KKR04] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in
general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004.

[KKR12] K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic
time. Journal of Combinatorial Theory Series B, 102(2):424–435, 2012.

[Kur30] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Math-
ematica, 15:271–283, 1930.

[PR02] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and
Algorithms, 20(2):165–183, 2002.

[Rez11] A. Reznik. Finding k-paths in cycle-free graph. Master’s thesis, Weizmann Institute of
Science, December 2011.

[Ron08] D. Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008.

47

[Ron10] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and
Trends in Theoretical Computer Science, 5, 2010.

[RS95] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory Series B, 63(1):65–110, 1995.

[RS04] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory Series B, 92(1):325–357, 2004.

[Wag37] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570–590, 1937.

48

