
Robust Self-Ordering versus Local Self-Ordering

Oded Goldreich*

December 17, 2022

Abstract

We study two notions that refers to asymmetric graphs, which we view as graphs having a
unique ordering that can be reconstructed by looking at an unlabeled version of the graph.

A local self-ordering procedure for a graph G is given oracle access to an arbitrary isomorphic
copy of G, denoted G′, and a vertex v in G′, and is required to identify the name (or location)
of v in G, while making few (i.e., polylogarithmically many) queries to G′. A graph G = (V,E)
is robustly self-ordered if the size of the symmetric difference between E and the edge-set of
the graph obtained by permuting V using any permutation π : V → V is proportional to the
number of non-fixed-points of π and to the maximal degree of G; that is, any permutation of the
vertices that displaces t vertices must “displace” Ω(t · d) edges, where d is the maximal degree
of the graph.

We consider the relation between these two notions in two regimes: The bounded-degree
graph regime, where oracle access to a graph means oracle access to its incidence function,
and the dense graph regime, where oracle access to the graph means access to its adjacency
predicate.

We show that, in the bounded-degree regime, robustly self-ordering and local self-ordering are
almost orthogonal; that is, even extremely strong versions of one notion do not imply very weak
versions of the other notion. Specifically, we present very efficient local self-ordering procedures
for graphs that possess permutations that displace all but one vertex while preserving all but
a pair of edges. One the other hand, we show robustly self-ordered graphs having no local
self-ordering procedures even when allowing a number of queries that is a square root of the
graph’s size.

In the dense graph regime, local self-ordering procedures are shown to yield a quantitatively
weaker version of the robust self-ordering condition, in which the said proportion is off by a
factor that is related to the query complexity of the local self-ordering procedure. Furthermore,
we show that this quantitatively loss is inherent. On the other hand, we show how to transform
any robustly self-ordered graph into one having a local self-ordering procedure, while preserving
the robustness condition. Combined with prior work, this yields explicit constructions of graphs
that are both robustly and locally self-ordered, and an application to property testing.

A preliminary version of this work was posted as TR21-034 of ECCC. The current version eliminates
some inaccuracies and hand-wavings that appeared in the preliminary version.

*Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:
oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/18) and
by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 819702).

Contents

1 Introduction 1
1.1 The question and a brief summary of the answers . 1
1.2 Quantitative definitions . 2
1.3 The bounded-degree graph regime . 3
1.4 The dense graph regime . 4
1.5 The story: From the initial motivation to a general study 6
1.6 Organization . 7

2 The Dense Graph Regime 8
2.1 On local self-ordering procedures . 8
2.2 Proof of Theorem 1.5 . 11
2.3 Explicit construction of graphs with local self-ordering procedures 16
2.4 From robustness to locality: Proof of Theorem 1.7 19

3 The Bounded-Degree Graph Regime 26
3.1 Proof of Part 1 of Theorem 1.3 . 26
3.2 Proof of Part 2 of Theorem 1.3 . 27

Acknowledgements 38

References 38

i

1 Introduction

In this work we study two notions that refers to asymmetric graphs, which we view as graphs
having a unique ordering that can be reconstructed by looking at an unlabeled version of the graph
(equiv., by exploring any graph that is isomorphic to it). These notions, called robust self-ordering
and local self-ordering, were introduced by Goldreich and Wigderson [6, 7], where the focus was
on constructions and applications. The current work is devoted to studying the relation between
these two notions.

Robustly self-ordered graphs. Loosely speaking, a robustly self-ordered graph is as far as
possible from having non-trivial automorphisms; specifically, for any t, any permutation of the
vertices that displaces t vertices must “displace” Ω(t · d) edges, where d is an upper-bound on the
degree of the graph. In other words, a graph G = ([n], E) is called robustly self-ordered if for every
permutation π : [n] → [n] it holds that G and π(G) differ on Ω(d) · |{v ∈ [n] : π(v) ̸= v}| vertex-
pairs, where π(G) = ([n], {{π(u), π(v)} : {u, v}∈E}); that is, if π has t non-fixed-points, then the
symmetric difference between the graphs is Ω(t · d).

We shall consider two regimes (or types of graphs). In the regime of bounded-degree graphs
being robustly self-ordered means that the symmetric difference is at least a constant fraction of
the number of non-fixed-points. In contrast, in the regime of dense graphs, where the degree bound
is the trivial one (i.e., the number of vertices), being robustly self-ordered means that the symmetric
difference is at least a Ω(n) times the number of non-fixed-points, where n denotes the number of
vertices in the graph.

The two regimes also differ in what it means to have oracle access to the graph. In the regime
of bounded-degree graphs this means having oracle access to the incidence function of the graph;
that is, the query (v, i) is answered with the ith neighbor of v (and by a special symbol in case v has
less than than i neighbors). In the regime of dense graphs oracle access to the graph means access
to its adjacency predicate; that is, the query (u, v) is answered 1 if u is adjacent to v in the graph,
and is answered 0 otherwise. (Indeed, these oracles are the ones considered in the bounded-degree
and dense graph models of the property testing literature (cf., e.g., [3, Chap. 8-9]).)1

Local self-ordering procedures. Loosely speaking, a local self-ordering procedure for G, is
given oracle access to an arbitrary isomorphic copy of G, denoted G′, and a vertex v in G′, and is
required to identify the name (or location) of v in G, while making few queries to G′. That is, a local
self-ordering procedure for G is a randomized algorithm that, for every permutation π : [n] → [n], on
input v ∈ [n] and oracle access to G′ = π(G), makes poly(log n) queries to G′ and outputs π−1(v)
(with probability at least 1−n−c, for any desired constant c). We stress that π is a priori unknown
to this procedure, but indeed π−1(v) is partial information (about π) obtained by the procedure.

1.1 The question and a brief summary of the answers

It seems that the two aforementioned notions may be related. They both carry an air of resiliency
of the self-ordering phenomenon; that it, they both require the graph to be self-ordered (a.k.a
asymmetric) in a very strong sense. In the case of robust self-ordering this strong sense is expressed

1The definitions of robustness in the two regimes also fits the definition of distance in these two property testing
models.

1

in global terms (i.e., the relative size of the symmetric difference between a graph and a graph in
which some vertices are displaced), and in the case of local self-ordering the criteria is local (i.e., a
local exploration suffices for identifying each vertex). This begs the following question:

Does robust self-ordering imply local self-ordering and is it implied by it?

That is, does any robustly self-ordered graph have a locally self-ordering procedure and
does the existence of such a procedure imply that the graph is robustly self-ordered?

Loosely speaking, we show that in the bounded-degree graph regime the answers are extremely neg-
ative: Robustly self-ordered graphs may have no local self-ordering procedure, even when allowing
such procedure to use o(

√
n) rather than poly(log n) many queries, whereas local self-ordering is

possible in graphs that are extremely non-robust in the sesnse that they have permutations that
displace all but one vertex while preserving all but a pair of edges.

In the dense graph regime local self-ordering procedures exist only for graphs that satisfy a
quantitatively weaker version of the robust self-ordering condition, but these graphs need not be
robustly self-ordered in the full-fledged sense. We also show how to transform any robustly self-
ordered graph into one having a local self-ordering procedure, while preserving the robustness con-
dition. The question of whether all robustly self-ordered graphs have local self-ordering procedures
is left open.

We interpret these results as saying that the global and local versions of the vague concept of
resiliency of self-ordering are not as tightly related as one could have thought. Especially in the
dense graph regime, this interpretation is quantitative in nature, just as the results on which it is
based. Hence, a more clear discussion of the question does require more quantitative definitions
than the ones outline above. We provide such definitions next, and will re-visit the foregoing
(vaguely stated) results later.

1.2 Quantitative definitions

Although the following definitions are presented in terms of individual graphs, we view these graphs
as belonging to some infinite sets (or families) of graphs and presents the various quantities as
function of the size of the graph (i.e., the number of vertices in it). For example, when we talk of
dense graphs we envision a family of graphs such the maximum degrees of vertices in an n-vertex
graph is Ω(n). In contrast, when we talk of bounded-degree graphs we envision a family of graphs
such the maximum degrees of vertices in an n-vertex graph is bounded by a constant d, which is
independent of n. With these preliminaries in place, we turn to the actual definitions.

Definition 1.1 (robustly self-ordered graphs): For a function γ : N → R, we say that graph
G = (V,E) is γ-robustly self-ordered if for every permutation π : V → V it holds that

|E△{{π(u), π(v)} :{u, v}∈E} | ≥ γ(|V |) · |{v∈V :π(v) ̸= v}|. (1)

where S△T denotes the symmetric difference between the sets S and T .

Recall that in the bounded-degree regime, we say that a family is robustly self-ordered if γ is
lower-bounded by a positive constant (i.e., γ(n) = Ω(1)). In contrast, in the dense graph regime,
we say that a family is robustly self-ordered if γ is lower-bounded by a positive linear function
(i.e., γ(n) = Ω(n)). Note that if G = (V,E) has maximum degree d, then for every permutation

2

π : V → V the size of symmetric difference between G and π(G) = (V, {{π(u), π(v)} :{u, v}∈E})
is upper-bounded by d · |{v∈V :π(i) ̸= i}|.

Definition 1.2 (local self-ordering procedures):2 For a function q : N → N, a q-query local self-
ordering procedure for a self-ordered graph G = ([n], E) is a randomized oracle machine that, given
a vertex v in any graph G′ = ([n], E′) that is isomorphic to G and oracle access to G′, makes at
most q(n) queries, and outputs, with probability at least 2/3, the vertex that corresponds to v in G;
that is, it outputs ϕ(v) ∈ [n] for the unique bijection ϕ : [n] → [n] such that ϕ(G′) = G (i.e., the
unique isomorphism of G′ to G).

The definition outlined at the beginning of the introduction mandates that q is a polylogarithmic
function, but we may consider arbitrary sub-linear functions. Recall that in the bounded-degree
graph regime, with degree bound d, oracle access to G′ means oracle access to the incidence function
of G′ (i.e., the function g′ : V × [d] → V ∪ {⊥} such that g′(v, i) is the ith neighbor of v in G′ and
g′(v, i) = ⊥ if v has less than than i neighbors). In contrast, in the regime of dense graphs, oracle
access to G′ means access to its adjacency predicate (i.e., the function g′ : V × V → {0, 1} such
that g′(u, v) = 1 if and only if u is adjacent to v in G′).

We stress that, in contrast to [6, Def. 4.6], Definition 1.2 does not place restrictions on the time
complexity of the procedure. We shall, however, refer to the time complexity of local self-ordering
procedures when proving that even efficient ones do not have certain implications, making such
negative results stronger.

1.3 The bounded-degree graph regime

Recall that in the bounded-degree graph regime we seek graphs that are Ω(1)-robustly self-ordered,
and that oracle access to a graph (as provided to a local self-ordering procedure) means oracle access
to its incidence function. We show that in this regime robustly self-ordering and local self-ordering
are almost orthogonal.

Theorem 1.3 (robustness versus locality in the bounded-degree regime):

1. There exist explicit n-vertex bounded-degree graphs that are not (3/n)-robustly self-ordered,
but have O(log n)-time deterministic local self-ordering procedures.

2. There exist n-vertex bounded-degree graphs that are Ω(1)-robustly self-ordered, but have no
o(
√
n)-query local self-ordering procedure.

Part 1 (proved in Theorem 3.1) asserts that even an extremely strong notion of local self-ordering
(i.e., deterministic procedures of logarithmic time complexity) fails to imply an extremely weak
notion of robust self-ordering (i.e., anything above merely being self-ordered). Note that, query
complexity O(logn

log logn) is the absolute minimum for any local self-ordering procedure, because the
actual information contents of the answers to q queries is an unlabelled graph with q edges, whereas
the number of such unlabelled graphs is exp(O(q log q)).3 On the other hand, local self-ordering
a n-vertex graph requires that the graph is asymmetric, which implies that it is (2/n)-robustly

2The requirement may be extended to n-vertex graphs G′ with an arbitrary vertex-set, V ′, provided that V ′ is
also given to the algorithm (as explicit input).

3Note that the q answers should determine an index in [n]. Hence, we get exp(O(q log q)) ≥ n.

3

self-ordered (because any non-trivial permutation must displace at least one edge (contributing
two units to the symmetric difference)), and so ruling out 3/n-robustness is the extreme.4

Part 2 (proved in Theorem 3.2) is also very strong: It asserts that full-fledged robustly self-
ordered graphs do not imply the existence of very weak local self-ordering procedure that are allowed
o(
√
n) queries (rather than poly(log n) queries). This result is proved using random O(1)-regular

graphs.
The proofs of Parts 1 and 2 (see Theorems 3.1 and 3.2, resp.) clarify that, in the bounded-degree

graph regime, the robust self-ordering feature has little to do with local self-ordering procedures.
What matters for the latter is the ability to locate oneself based on exploring a small portion of the
graph, where in bounded-degree graphs such an exploration is truly local. In particular, a directed
and positional (binary) tree (used in the proof of Theorem 3.1) is the archetypical structure that
supports such a localization. We note that these directed and colored edges can be implemented by
constant-size gadgets (which are either trees (having vertices of different degrees) or have constant
girth). Needless to say, these graphs may not be robustly self-ordered. In contrast, a regular
graph of large girth (which may be robustly self-ordered) hinders any attempt at such localization,
since the neighborhoods look identical anywhere. In fact, different vertex degrees and short cycles
are the only ways one can gather information about one’s location in the graph by exploring the
neighborhood. (We stress that the foregoing discussion refers to the bounded-degree regime, and
makes little sense in the dense graph regime.)

A glance at the techniques. Part 2 of Theorem 1.3 is proved by reducing the problem of
establishing lower bounds on the query complexity of local self-ordering procedures for a regular
graph G to analyzing the probability of closing a (simple) cycle in a random (non-backtracking)
walk on G. Specifically, the (query complexity) lower bound is inversely proportional to the square
root of the said probability. We note that non-backtracking random walks, introduced in [1], are
harder to analyze than standard random walks. Nevertheless, we show that the said probability
in a random regular graph is inversely proportional to the size of the graph. We also observe that
the probability of closing a (simple) cycle in a random (non-backtracking) walk on a regular graph
vanishes exponentially with its girth (see Proposition 3.3). It follows that, for any regular graph,
the query complexity of local self-ordering is exponential in its girth.

Remark 1.4 (on the difference between the two robustly self-ordered graphs that were presented
in [6, Part I]): The proof of Theorem 3.2 actually shows that a random bounded-degree n-vertex
graph, which is Ω(1)-robustly self-ordered [6, Thm. 6.1], does not have o(

√
n)-query locally self-

ordering procedures. In contrast, the construction of Ω(1)-robustly self-ordered n-vertex graphs
presented in [6, Sec. 4] has a poly(log n)-time locally self-ordering procedure [6, Thm. 4.7]. This
articulates a fundamental difference between these two results.

1.4 The dense graph regime

Recall that in the dense graph regime we seek n-vertex graphs that are Ω(n)-robustly self-ordered,
and that oracle access to a graph (as provided to a local self-ordering procedure) means oracle
access to its adjacency predicate. We show that, in this regime, local self-ordering procedures
do not imply the full-fledged notion of robust self-ordering, but do imply a quantitatively weaker
version of it.

4Indeed, 3/n stands for any quantity larger than 2/n.

4

Theorem 1.5 (from locality to robustness in the dense graph regime):

1. For every ℓ(n) ∈ [Ω(log n), o(n)], there exist n-vertex graphs that have a O(ℓ(n)2)-query local
self-ordering procedure, but are not ω(n/ℓ(n))-robustly self-ordered. Furthermore, the proce-
dure is non-adaptive and relies on inspecting a subgraph induced by O(ℓ(n)) vertices.

2. Every n-vertex graph that has a q(n)-query local self-ordering procedure is Ω(n/q(n)2)-robustly
self-ordered. Furthermore, if the procedure is non-adaptive, then the graph is Ω(n/q(n))-
robustly self-ordered.

Recall that a procedure is called non-adaptive if it determines all its queries beforehand (i.e., based
on its explicit input and internal coin tosses, but independently of the answers to previous queries).

Theorem 1.5 asserts that there is a quantitative relation between the query complexity of the
local self-ordering procedure and the robustness parameter of the graph: As one may expect,
the robustness parameter is inversely related to the query complexity of the local self-ordering
procedure. Specifically, Part 2 asserts that the robustness is at least inversely proportional to the
non-adaptive query complexity, and Part 1 assert that this relation is rather tight (i.e., in general,
the robustness may be at most inversely proportional to a square root of the non-adaptive query
complexity).

Part 1 of Theorem 1.5 suggests that graphs having local self-ordering procedures may be easier
to construct than Ω(n)-robustly self-ordered n-vertex graphs. The proof of Theorem 2.9 supports
this feeling because it presents a relatively simple construction of n-vertex graphs coupled with
efficient local self-ordering procedures. These graphs are not Ω(n)-robustly self-ordered, and the
construction is significantly simpler than the construction of the latter (presented in [6, Sec. 8]).

The foregoing seems to suggest that robustly self-ordered is a stronger condition than hav-
ing a local self-ordering procedure. However, we do not know whether this “suggestion” is true
(i.e., whether every Ω(n)-robustly self-ordering graph has a poly(log n)-query local self-ordering
procedure).

Open Problem 1.6 (does Ω(n)-robustness imply poly(log n)-locality): Is it the case that any
Ω(n)-robustly self-ordered n-vertex graph has a poly(log n)-query local self-ordering procedure?

A positive answer to Problem 1.6 would have allowed us to establish [7, Thm. 1.2–1.4] while using
efficiently recognizable graph properties (by using the explicit construction of robustly self-ordered
graphs provided in [6, Thm. 8.10]).5 Fortunately, these positive corollaries also follow from an
efficient transformation of Ω(n)-robustly self-ordered n-vertex graph to ones that have poly(log n)-
query local self-ordering procedure. We do provide such a transformation.

Theorem 1.7 (from robustness to locality in the dense graph regime): There exists a polynomial-
time transformation of Ω(n)-robustly self-ordered n-vertex graphs to Ω(n)-robustly self-ordered O(n)-
vertex graphs that have poly(log n)-time local self-ordering procedures. Furthermore, the transfor-
mation is local in the sense that the adjacency predicate of the resulting graph can be computed by
a poly(log n)-time reduction to the adjacency predicate of the input graph.

5Doing the same for [7, Thm. 1.5] would have required more significant modifications. In particular, the current
proof of [7, Thm. 1.5] uses a non-explicit two-source extractor (see [7, Clm. 5.3]).

5

(Indeed, the time bounds on these local procedures imply corresponding query complexity bounds.)
Combining Theorem 1.7 with [6, Thm. 8.10] (or even the weaker [6, Thm. 1.4]), we obtain graphs
that are both robustly and locally self-ordered.

Corollary 1.8 (explicit constructions obtaining linear robustness and polylogarithmic locality):
There exists an explicit construction of n-vertex graphs that are Ω(n)-robustly self-ordered and have
local self-ordering procedures that run in poly(log n)-time. Furthermore, the adjacency predicate of
these graphs can be computed in poly(log n)-time.

As stated above, substituting the non-explicit constructions used in the proofs of [7, Thm. 1.2–1.4]
by the (strongly) explicit construction of Corollary 1.8, we obtain an explicit version of [7, Thm. 1.4]
(which generalizes [7, Thm. 1.2&1.3]).

Corollary 1.9 (explicit separation between adaptive and non-adaptive testers in the dense graph
model): There exists a polynomial-time recognizable graph property that is testable by an adaptive
oracle machine that make O(ϵ−1 ·

√
n · poly(log n)) queries but testing it non-adaptively requires

Ω(n) queries, where n denotes the number of vertices in the graph. Furthermore, for every functions
f, g : N → N such that f(n) ≤

√
n and g(m) ≤ m, there exists a polynomial-time recognizable graph

property Π that satisfies the following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that runs in time O(ϵ−1 · f(n) ·poly(log n)),
and any tester for Π must make Ω(f(n)) queries.

2. Any non-adaptive tester of Π must make Ω(g(f(n)) · f(n)) queries, and there exists such a
tester that runs in time O(ϵ−2 · g(f(n)) · f(n) · poly(log n)).

Actually, the same holds with respect to the more general result of [7, Thm. 1.7], which we avoid
stating here. We stress that Corollary 1.9 provides an upper bound on the computational complexity
of the testers, whereas the results in [7] only upper-bound the query complexity. However, the
query complexity of the testers asserted by Corollary 1.9 is a poly(log n) factor larger than the
upper bounds stated in [7, Thm. 1.2–1.4].

A glance at the techniques. With the exception of Part 2 of Theorem 2.6, our results in this
regime are proved by constructions of adequate graphs. The common theme in these constructions
is combining several graphs that are “locally distinguishable” and locating the vertices within each
part of the combined graph based on their adjacencies in some (but not all) of the parts. The
simplest case occurs in the proof of Part 1 of Theorem 2.6, where we combine three (non-explicit)
robustly self-ordered graphs that are each locally self-ordered. More sophisticated constructions
appear in the proofs of Theorems 2.9 and 1.7, where we combine logarithmically many parts and
locate vertices in each part based on their adjacencies in some of the other parts.

1.5 The story: From the initial motivation to a general study

Our initial motivation was proving Corollary 1.9, which asserts explicit graph properties that match
the results proved in [7] using non-explicit graph properties. Specifically, the results proved in [7,
Thm. 1.2–1.4] assert various separation between adaptive and non-adaptive testers in the dense
graph model. The properties used there were non-explicit, because they relied on Ω(n)-robustly

6

self-ordered n-vertex graphs that have poly(logn)-query local self-ordering procedures. At the time,
such graphs were only known to exist (via a probabilistic argument [7, Cor. 2.7]), but no explicit
construction was known. In contrast, explicit constructions of Ω(n)-robustly self-ordered n-vertex
graphs were given in [6, Thm. 1.4], but they were not known to have a poly(log n)-query local
self-ordering procedures.

This gave rise to Problem 1.6 (i.e., does every Ω(n)-robustly self-ordered n-vertex graph have a
poly(log n)-query local self-ordering procedure). While we did not resolve Problem 1.6, the trans-
formation provided by Theorem 1.7 is good enough for the original motivation, since it efficiently
transforms the graphs of [6, Thm. 1.4] into ones that are both linearly robust and have local
self-ordering procedures of polylogarithmic query complexity.

A natural question that arose was whether the converse implication holds; that is, does the
existence of a poly(log n)-query local self-ordering procedure for a dense n-vertex graph imply
that the graph is Ω(n)-robustly self-ordered? This question was answered negatively in Part 1
of Theorem 1.5, whereas Part 2 asserts that such a graph must be Ω(n/poly(log n)))-robustly
self-ordered.

While the foregoing refers to the dense graph regime, a comparative study of the situation in the
bounded-degree graph regime seemed begging. Note that in the latter regime explicit constructions
of n-vertex graphs that are Ω(1)-robustly self-ordered and have poly(log n)-query local self-ordering
procedures were known [6, Thm. 4.7].6 Nevertheless, it is interesting to see whether phenomena
that occur in one regime also occur in the other regime, and Theorem 1.3 indicates that this is not
the case with respect to the current question (since in the bounded-degree graph regime robustly
self-ordering and local self-ordering are almost orthogonal).

1.6 Organization

The next two sections can be read independently of one another: Section 2 studies the dense graph
regime, whereas Section 3 is devoted to the study of the bounded-degree graph regime.

The dense regime. Section 2 starts with a study of local self-ordering procedures per se, which
related general (adaptive) procedures to non-adaptive ones, and presents a simplified form of the
latter (which will be used in the proof of Theorem 1.5). This section (Section 2.1) also contains
an exposition of a strong notion of local self-ordering, captured by the notion of a reliable locator
(Definition 2.4) and poses the question of whether this is actually a real strengthening (Problem 2.5).
In Section 2.2 we prove a rather tight quantitative implication from local self-ordering to robust
self-ordering, establishing Theorem 1.5. In Section 2.3 we present a relatively simple construction
of dense graphs with an efficient local self-ordering procedures (Theorem 2.9). In Section 2.4,
we present a transformation of robustly self-ordered graph into ones having local self-ordering
procedures, establishing Theorem 1.7.

The bounded-degree graph regime. In Section 3 we prove Theorem 1.3, which asserts that –
in the bounded-degree graph regime – robust self-ordering and local self-ordering are almost or-
thogonal. Part 1 of the theorem is proved in Section 3.1 by observing that directed and positional
(binary) trees have extremely simple local self-ordering procedures. On the other hand, Part 2 of

6Interestingly, our study uncovers a fundamental different between this construction and an alternative construc-
tion presented in [6, Sec. 3] (see Remark 1.4).

7

Theorem 1.3 is proved in Section 3.2 by proving that regular graphs have no local self-ordering
procedure of complexity q if the probability that a random (non-backtracking) walk on them closes
a (simple) cycle with probability o(1/q2).

2 The Dense Graph Regime

Recall that in the dense graph regime we seek n-vertex graphs that are Ω(n)-robustly self-ordered,
and that oracle access to a graph (as provided to a local self-ordering procedure) means oracle
access to its adjacency predicate.

It seems that, in the current regime, robustly self-ordering and locally self-ordering are related.
On the one hand, the fact that an n-vertex graph is Ω(n)-robustly self-ordered implies that the
neighborhoods of its n vertices are pairwise far apart, and so random samples of a O(log n)-vertices
would yield n different adjacency-patterns. Furthermore, if such a random sample induces a
subgraph that is not isomorphic to any subgraph induces by a different set, which is a big IF,
then we get a locally self-ordering procedure. The foregoing unsettled conjecture leaves us with
Problem 1.6.

On the other hand, the fact that an n-vertex graph has a poly(log n)-query local self-ordering
procedure seems to imply that a random set of poly(log n) vertices induces a self-ordered sub-
graph (w.h.p.). This seems to suggest that the graph is Ω(n/poly(log n))-robustly self-ordered.
It turns out that the conclusion is correct (i.e., an n-vertex graph that has a poly(log n)-query
local self-ordering procedure is Ω(n/poly(log n))-robustly self-ordered), but our proof of this fact
(see Theorem 2.8) does not quite follow the foregoing reasoning. In any case, the fact that such
a local self-ordering procedure does not imply that the graph is Ω(n)-robustly self-ordered is no
coincidence; see Theorem 2.6. This establishes the two parts of Theorem 1.5.

Organization of this section. We start this section with a study of local self-ordering procedures
per se. The results of this study, presented in Section 2.1, will be used in the proof of Theorem 2.8
(asserting that an n-vertex graph that has a poly(log n)-query local self-ordering procedure is
Ω(n/poly(log n))-robustly self-ordered). In contrast, the notion of reliable locators (Definition 2.4),
reviewed in Section 2.1, will not be used in the rest of this section, but raises a couple of open
problems (e.g., Problem 2.5). The rest of this section is organized as detailed in Section 1.6.
In particular, Theorem 1.5 is proved in Section 2.2, Theorem 1.7 is proved in Section 2.4, and
Theorem 2.9 (which is briefly mentioned in the introduction) is proved in Section 2.3.

2.1 On local self-ordering procedures

In this section, we present “canonical” forms of local self-ordering procedures (akin the ones pre-
sented for property testers in [5, Sec. 4]). Things are more tricky in the current setting, because
the algorithm is given an explicit designated vertex (which it has to locate in G) rather than only
oracle access to a graph (i.e., an isomorphic copy of the graph G).

Non-adaptivity. A local self-ordering procedure is called non-adaptive if it determines all its
queries upfront, based solely on its explicit input (i.e., a vertex) and its randomness. Following [5,
Sec. 4.1], we first observe that adaptivity can be disposed of at the cost of squaring the query
complexity.

8

Proposition 2.1 (obtaining non-adaptive local self-ordering procedures): If G = ([n], E) has a
q-query local self-ordering procedure, then it has a non-adaptive 3q2-query local self-ordering proce-
dure. Furthermore, the non-adaptive procedure makes queries in

({v}∪S
2

)
, where v is its input vertex

and S is a random set of 2q vertices (which excludes v).

Proof: We adapt the proof strategy of [5, Sec. 4.1] to the current context. First, we convert the
general algorithm into a “vertex-uncovering” one; that is, an algorithm that works in iterations
such that at each iteration it selects a new vertex (based on all information available to it) and
queries all pairs that consist of this new vertex and one of the old vertices. Indeed, any q-query
algorithm can be emulated by a vertex-uncovering algorithm that uses 2q iterations and makes(
2q+1
2

)
≤ 3q2 queries, where the extra unit accounts for the input vertex.

Next, we observe that, without loss of generality, the new vertices can be selected uniformly
at random (among all vertices that were not used so far). Formally, given a vertex-uncovering
algorithm A′, consider an algorithm A′′ that on input v, and oracle access to a graph G′ = ([n], E),
selects a random permutation π : [n] → [n] such that π(v) = v, and replaces each new vertex w
selected by A′ with π(w). Equivalently, we may think of A′′ as selecting q′ random vertices, denoted
u1, ..., uq′ , for its q

′ iterations, and defining π(vi) = ui if vi is the ith vertex selected by A′. Then,
A′′ satisfies the syntactic condition of the proposition (e.g., it is non-adaptive). On the other hand,
on input v and oracle access to G′, algorithm A′′ emulates an execution of A′ on input v and oracle
access to π(G′), which implies that A′′ is a local self-ordering procedure for G.

Label-obliviousness. Intuitively, the labels of the various vertices are irrelevant to the task (of
local self-ordering) at hand. All that matters is the adjacencies among vertices. Indeed, we show
that one may assume, without loss of generality, that the local self-ordering procedure is “label-
oblivious” (i.e., it is oblivious of the label of the input vertex as well as of the labels of all other
vertices that appear in its queries).

Definition 2.2 (label-oblivious procedures): We say that a q(n)-query non-adaptive (local self-
ordering) procedure is label-oblivious if on input a vertex s0 = v and randomness r = (s1, ..., sℓ, ω),

where ℓ = 2q(n) and {s1, ..., sℓ} ∈
([n]\{s0}

ℓ

)
, it makes the query {si, sj} if and only if {i, j} ∈ P (ω),

where P (ω) ∈
({0,1,...,ℓ}

2

)
is a set of pairs determined solely by ω, and decides based solely on the

answers to the queries and on ω.

We stress that P (ω) as well as the final decision are oblivious of s0, s1,, sℓ. Note that the non-
adaptive O(q2)-query algorithm derived in the proof of Proposition 2.1 is label-oblivious. More
importantly, any non-adaptive q-query algorithm can be transformed into label-oblivious algorithm,
while preserving the number of queries (cf. [5, Sec. 4.2]).

Proposition 2.3 (obtaining label-oblivious local self-ordering procedures): If G has a non-adaptive
q-query local self-ordering procedure, then it has a label-oblivious q-query local self-ordering proce-
dure.

Proof: Here we adapt the strategy of [5, Sec. 4.2]. Let A be an algorithm as in the hypothesis.
Recall that A determines its queries based on its own input, denoted v, and its own randomness,
denoted r, and decides based on v, r and the answers obtained from the oracle. Suppose that the

foregoing queries refer to the vertices v0
def
= v and v1, ..., vℓ, where the vi’s are determined based

9

on v and r. Then, we define P (v, r) ⊆
({0,1,...,ℓ}

2

)
such that it includes {i, j} if and only if the

query {vi, vj} is made by A(v, r). Using these notation, we present the following label-invariant
algorithm.

On input s0
def
= u, our label-oblivious algorithm, denoted A, uses randomness (s1, ..., sℓ, ω) such

that ω = (v, r), and emulates the execution of A making the query {si, sj} if and only if {i, j} is in

P (v, r). That is, A make queries to pairs in
({s0,s1,...,sℓ}

2

)
, such that the choice of specific queries is

determined by P (v, r), where (v, r) = ω is the residual randomness, and the final decision depends
on the answers as well as on (v, r), but not on u and s1,, sℓ.

The performance ofA is analyzed by observing that, on input a vertex u, randomness (s1, ..., sℓ, (v, r))

and oracle access to a graph G′, algorithm A emulates the execution of Ar(v)
def
= A(v, r) with oracle

access to ϕ(G′) such that ϕ(v) = u and ϕ(vi) = si for every i ∈ [ℓ], where the vi’s are as above.
Hence, the probability that A is correct (on input u and access to G′ = π(G)) equals the probability
that A is correct on a random input v and access to a random isomoprohic copy of G (i.e., to the
graph ϕ(G′) = ϕ(π(G)), where ϕ is a random permutation mapping u to v). Formally, for fixed
s0 = u and G′ = π(G), we have

Prs1,...,sℓ,(v,r)[A
G′

s1,...,sℓ,(v,r)
(u)=π−1(u)] = Prr,ϕ[A

ϕ(G′)
r (ϕ(u))=π−1(u)]

= Prr,ϕ[A
ϕ(π(G))
r (ϕ(u))=(ϕ ◦ π)−1(ϕ(u))] (2)

where the first equality follows by the fact that A emulates A on input v0
def
= v = ϕ(u) and

oracle access to ϕ(G′), because A replaces queries of the form (vi, vj) made by A by the queries
(si, sj) = (ϕ(vi), ϕ(vj)). Note that, for every r and uniformly distributed v ∈ [n], it holds that
(v, s1, ..., sℓ) is distributed identically to (ϕ(u), ϕ(v1), ..., ϕ(vℓ)), where ϕ is a random permutation.7

Lastly, note that Eq. (2) equals the probability that A is correct on a random input v and access
to a random isomoprohic copy of G.

Reliable locators. We seize the opportunity provided by this section to review the notion of
reliable locators, which was presented by Goldreich and Wigderson [7]. Loosely speaking, a set S
of the vertices of G is called a reliable locator if the subgraph of G induced by S is self-ordered and
unique in G, and every other vertex has a unique “profile” with respect to S (i.e., its sequence of
adjacencies with S is unique). As sketched below, an abundence of reliable locators yields a local
self-ordering procedure, but the converse is not known.

Definition 2.4 (reliable locator of a self-ordered graph [7, Def. 2.5]): A set of vertices S ⊂ [n] is
called a reliable locator of a graph G = ([n], E) if the following two conditions hold

1. The subgraph of G induced by S is self-ordered and is not isomorphic to any other induced
subgraph of G.

2. For every v ∈ [n] \ S, the adjacencies of v with S uniquely determine v; that is, for every
w ̸= v in [n] \ S there exists s ∈ S such that {w, s} ∈ E if and only if {v, s} ̸∈ E.

7A random v ∈ [n] corresponds to a random setting of ϕ(u), and also determines v1, ..., vℓ (via A(v, r)). Then, a
random choice of {s1, ..., sℓ} ∈

(
[n]\{u}

ℓ

)
corresponds to a random setting of ϕ at v1, ..., vℓ, which are distinct elements

of [n] \ {v}.

10

Note that if almost all ℓ-sized subsets in a graph are reliable locators, then this graph has a O(ℓ2)-
query local self-ordering procedure; specifically, on input a vertex v and oracle access to a graph
G′, this procedure selects a random ℓ-set of vertices R and inspects the subgraph of G′ induced
by R ∪ {v}, which uniquely identifies v. The point is that if G′ = π(G) and π−1(R) is a reliable
locator of G, then we obtain the location of v in G (i.e., π−1(v)).

We stress that, although one may be tempted to think that a q(n)-query local self-ordering
procedure for an n-vertex graph yields an abundance of (poly(q(n) · log n)-sized) reliable locators
(via error reduction)8, it is not clear if this is the case. Indeed, we ask

Open Problem 2.5 (do local self-ordering procedures yield reliable locators?) Does the existence
of local self-ordering procedure of polylogarithmic query complexity imply that almost all polyloga-
rithmically sized sets are reliable locators?

Oddly enough, the only graphs known to have reliable locators of polylogarithmic size are random
graphs (see [7, Thm. 2.6]).9 In particular, at the current time, we do not know of any efficient
construction of graphs that have reliable locators of polylogarithmically size (let alone an abundance
of such sets).10

2.2 Proof of Theorem 1.5

We first prove a special case of Part 1 of Theorem 1.5 (i.e., for ℓ = Θ(log n) rather than for every
ℓ = Ω(log n)).

Theorem 2.6 (local self-ordering does not imply linearly-robust self-ordering): There exist n-
vertex graphs that have O((log n)2)-query local self-ordering procedures, but are not (n/ log2 n)-
robustly self-ordered. Furthermore, the procedure is non-adaptive and is based on examining the
subgarph induced by the input vertex and O(log n) random vertices. Moreover, each vertex in the
graph has degree Θ(n).

Theorem 2.6 can be generalized by replacing O(log n) with any ℓ = Ω(log n). That is, for every
ℓ ∈ [Ω(log n), o(n)], there exist n-vertex graphs that are not ω(n/ℓ)-robustly self-ordered, but have
local self-ordering procedures that are based on examining the subgraph induced by the input vertex
and ℓ random vertices.11

Proof: We consider n-vertex graphs that consists of three dense n/3-vertex graphs that are
connected by random bipartite graphs of low edge density. Specifically, for any constant p ∈ (0, 1),
let G(k, p) be the Erdos–Renyi random k-vertex graph in which each pair of vertices is connected
with probability p independently of all other vertex-pairs. Then, for k = n/3, we consider a
distribution on n-vertex graphs that is generated as follows (see Figure 1).

8Error reduction does imply that (for every G′ that is isomorphic to G) almost all O(q(n) · logn)-long sequences
of vertices can be used to localize all vertices (of G′ in G), but this falls short from yielding a reliable locator. In
particular, we need the same sequence of vertices to correctly localize all vertices when accessing any graph G′ that
is isomorphic to G.

9Their proof extends to Erdos–Renyi random graphs of any constant edge probability (see [7, Clm. 5.5]).
10Indeed, we retract statements to the opposite that were made in a prior version of this work.
11This can be seen by replacing all occurrences of log2 n in the following proof with ℓ/O(1).

11

Figure 1: The construction demonstrating Theorem 2.6.

� Pick G1 = ([k], E1) at random from G(k, 1/3), and G2 = ({k+1, ..., 2k}, E2) at random from
G(k, 1/2). Let G3 = ({2k + 1, ..., 3k}, E3) be an isomorphic copy of G1, obtained by letting
E3 = {{2k + u, 2k + v} :{u, v}∈E1}.

� Connect G1 to G2 by a random bipartite graph in which each edge is included with probability
1/ log2 n, independently of all other choices.

� Connect G3 to G2 by a bipartite graph in which each edge is included with probability
2/ log2 n, independently of all other choices.

Clearly, with overwhelmingly high probability, each vertex in the resulting graph G has degree
Θ(n). We now turn to establishing the main claims.

On the one hand, with overwhelmingly high probability, the resulting graph G is not (n/ log2 n)-
robustly self-ordered. To see this, consider a bijection π that switches the vertices of G1 with the
corresponding vertices of G3. The symmetric difference between G and π(G) is due solely to the
edges between G2 and the other Gi’s, but the expected number of these edges is 3k2/ log2 n, whereas

the number of non-fixed-points of π is 2k. Noting that 3k2/ log2 n
2k = n

2 log2 n
, the non-robustness claim

follows.
On the other hand, we show that G has a local self-ordering procedure that rules according to

the subgraph induced by a set containing the input vertex and O(log n) random vertices. Let S be
a random set of ℓ = O(log n) vertices in G, and let Si denote its intersection with the vertices of
Gi. Then, with probability at least 1− exp(−Ω(ℓ)) over the choice of S and the choice of the graph
G, the following conditions hold:

1. Each Si has size approximately ℓ/3.

12

This claim relies only on the randomness of S; that is, it holds for every graph G and all but
a 1/poly(n) fraction of the possible choices of the set S. In contrast, all subsequent claims
hold (with probability 1− 1

poly(n) over the choice of G) for any set S that satisfies the current
condition.

2. Each vertex of S1 (resp., S3) has approximately ℓ/9 neighbors in S, whereas each vertex of
S2 has approximately ℓ/6 neighbors in S.

(In all cases, almost all of the neighbors of vertex v ∈ S in S reside in the same part Si as v
(i.e., in the same Gi); see Condition 4.)

3. The number of edges between S1 and S2 is approximately ℓ2/9 log2 n, whereas the number of
edges between S3 and S2 is approximately 2ℓ2/9 log2 n.

4. Each vertex of Gi has at least ℓ/4 neighbors in Si, but at most ℓ/100 neighbors in S \ Si.

(Here we use a union bound over all n vertices. Note that, with probability 1−exp(−Ω(ℓ)), a
vertex in Gi has at least ℓ/4 neighbors in Si and at most ℓ/100 neighbors in S \Si. A sharper
dichotomy can be obtained for vertices in S, since, with probability at least 1 − o(1/ℓ), a
vertex in Si has o(ℓ) neighbors in S \ Si.)

5. Each Si constitutes a reliable-locator for Gi.

This follows by a generalization of [7, Thm. 2.6]. Specifically, while the original assertion refers
to G(k, 1/2), the generalization to G(k, p) for any constant p ∈ (0, 1) is quite straightforward
(cf. [7, Clm. 5.5]).

Condition 2 allows to distinguish S′ = S1∪S3 from S2, whereas Conditions 3–4 allows to distinguish
S1 from S3. Specifically, once the set S′ is identified, we determine its bi-partition into (S1, S3)
by considering the subgraph of G induced by S and using Condition 4 (since (S1, S3) is the only
bi-partition that satisfies Condition 4, alas this does not determine which part of the bi-partition is
S1). Then, by Condition 3, we tell which of the two parts of S′ is S1 and which is S3. Combining
Conditions 4 and 5, we conclude that S can be used to locate each vertex in G, where Condition 4
allows to determine to which Gi each vertex belongs (and Condition 5 allow to locate it within this
Gi). The local self-ordering claim follows.

Comment. The foregoing proof falls short of proving that (w.v.h.p.) the O(log n)-vertex set S
is a reliable locator, but it seems that this is the case. Specifically, we conjecture that every set
S that satisfies the foregoing Condition 1 (i.e., each Si is of size approximately ℓ/3) is a reliable
locator for G with probability at least 1 − (1/poly(n)), where the probability is taken over the
random construction of the graph G. Proving this conjecture reduces to proving that (w.p. at
least 1 − (1/poly(n))) the subgraph of G induced by S is self-ordered and not isomorphic to any
other induced subgraph of G. The actual challenge is establishing the latter part12, whereas the
self-ordering of the subgraph induced by S follows from the foregoing argument.

12We envision proving that (w.v.h.p. over the choice of G) the subgraph of G induced by S is not isomorphic to
any other induced subgraph of G by extending the proof of [7, Clm. 2.6.1], which in turn extends [4, Clm. 3.2.2].

13

An alternative to Part 1 of Theorem 1.5. In light of the foregoing comment, we provide
an alternative result in which the local self-ordering condition refers to the abundance of reliable
locators, but the non-robustness parameter is a larger. This means that the local self-ordering
condition is seemingly stronger, but the non-robustness result is weaker.

Theorem 2.7 (local self-ordering does not imply linearly-robust self-ordering, take two): For every
ℓ ∈ [Ω(log n), o(n)] and γ ≥ O(log n)/ℓ, there exist n-vertex graphs in which all but a exp(−Ω(γℓ)+
O(log n)) fraction of the ℓ-vertex subsets are reliable locators, but the graph is not γ-robustly self-
ordered.

In particular, for ℓ = ω(log n), we can use γ = o(1).

Proof Sketch: The proof simplifies the strategy used in the proof of Theorem 2.6. Specifically, the
n-vertex graph G consists of two identical copies of a random n/2-vertex graph that are connected
by a bipartite graph in which each edge appears with probability γ/2. The non-robustness of G is
witnessed by a permutation that switches its two parts (while maintaining the order within each
part). The density of ℓ-vertex sets that are reliable locators can be established by extending the
proof of [7, Clm. 2.6.1], which in turn extends [4, Clm. 3.2.2]. Specifically, the proof presented
in [7, Apdx. B] refers to the case that each edge appears in the random graph with probability
exactly 1/2, and yields a probability bound of n · ℓ3 · (1/2)Ω(ℓ). Extending this proof to the case
that each edge occurs with an arbitrary probability in [p, q] only means that the base 1/2 of the
exponent in all expressions (e.g., [7, Eq. (10)]) is replaced by

max
p1,p2∈[p,q]

{p1 · p2 + (1− p1) · (1− p2)} = max
x∈{p,q}

{x2 + (1− x)2}, (3)

which represents the probability that two different pairs of vertex are either both connected or
both unconnected (by edges in the random graph). In our case, where p = γ < 1/2 and q = 1/2,
Eq. (3) equals γ2 + (1 − γ)2 ≤ exp(−Ω(γ)), which implies that the density of reliable locators is
n · ℓ3 · exp(−Ω(γ · ℓ)).

Proving Part 2 of Theorem 1.5. While local self-ordering procedures do not imply linear-
robustness, they do imply a sublinear level of robust self-ordering.

Theorem 2.8 (local self-ordering implies weak robust self-ordering): Suppose that G = ([n], E)
has a local self-ordering procedure that makes q(n) non-adaptive queries and errs with probability
at most 1/3. Then, G is Ω(n/q(n))-robustly self-ordered.

It follows that if G has a local self-ordering procedure that uses q(n) general (adaptive) queries,
then it is Ω(n/q(n)2)-robustly self-ordered, since q adaptive queries can be emulated by 3q2 non-
adaptive ones (see Proposition 2.1). Recall that Theorem 2.6 implies that G is not necessarily
ω(n/q(n)1/2)-robustly self-ordered.

Proof: To gain some intuition, consider a permutation π that switches two vertices of G and
keeps the rest intact. We claim that in this case the symmetric difference between G and π(G)
is Ω(n/q(n)). This is shown by first showing that, without loss of generality, a q(n)-query local
self-ordering procedure queries the graph on some adjacencies among the input vertex and 2q(n)
random vertices. (The argument, which appears below, is similar to the one in [5, Sec. 4.2].) Next,

14

we note that if the symmetric difference between G and π(G) is o(n/q(n)), then such a procedure
cannot distinguish the two vertices that are switched by π, since distinguishing these two cases
mandates hitting a pair of vertices that is in the symmetric difference, whereas each query made by
the algorithm has at least one endpoint that is almost uniformly distributed among the fixed-points.
This argument can be extended to the case that π has O(1) non-fixed-points, but extending it to
the general case requires a more careful counting, which we detail below.

Using Proposition 2.3 we reduce the analysis to the case of label-oblivious algorithms (as in
Definition 2.2). Next, we consider an arbitrary q-query label-oblivious algorithm, denoted A. Recall
that on input v and randomness r = (s1, ..., sℓ, ω), when given oracle access to the graph G′, the
output of A, denoted AG′

r (v), is determined by ω and the sequence of answers provided to the
ordered sequence of queries {(si, sj) : (i, j)∈P (ω)} where s0 = v (and the ordering is determined

by a fixed ordering of P (ω) ∈
({0,1,...,ℓ}

2

)
). We let AG′

(v) denote the random variable AG′
r (v) such

that r is uniformly distributed (in
([n]\{v}

ℓ

)
× Ω, for some adequate Ω).

Towards analysing the robust self-ordering of G, we consider an arbitrary bijection π : [n] → [n].
Let T = {v∈ [n] :π(v) ̸=v} denote the set of non-fixed-points of π. Then, recalling that A is correct
on each input, with probability at least 2/3, it follows that, for every v ∈ T , it holds that

Pr[AG(v) ̸=AG(π(v))] ≥ Pr[AG(v)=v]− Pr[AG(π(v))=v] ≥ 1/3, (4)

where the foregoing holds regardless of the dependency between the two random invocations of
A in the first probabilistic expression (i.e., the l.h.s of Eq. (4)). Recalling that AG

r (x) denote the

output of AG on input x and randomness r = (s, ω) = (s1, ..., sℓ, ω), and letting Sv
def
=

([n]\{v}
ℓ

)
, we

can write Eq. (4) as

Pr
(s,ω)∈Sv×Ω

[AG
s,ω(v) ̸=AG

π(s),ω(π(v))] ≥ 1/3, (5)

since π(s) = (π(s1), ..., π(sℓ)) is a uniformly distributed (ordered) ℓ-subset of [n] \ {π(v)}.
The key observation is that, since A is label-oblivious, the execution AG

s,ω(s0) makes the queries

{(si, sj) : (i, j) ∈ P (ω)}, whereas AG
π(s),ω(π(s0)) makes the queries {(π(si), π(sj)) : (i, j) ∈ P (ω)}.

Furthermore, both executions rule based solely on the answers and ω. Hence, Eq. (5) implies
that there exists ω ∈ Ω such that, with probability at least 1/3 over the choice of s, there exists
(i, j) ∈ P (ω) such that the answer to {si, sj} is different from the answer to {π(si), π(sj)} (i.e.,
{si, sj} ∈ E if and only if {π(si), π(sj)} ̸∈ E). Letting χ : [n]2 → {0, 1} denote the adjacency
predicate of the graph G (i.e., χ(u, v) = 1 if and only if {u, v} is an edge of G), and letting s0 = v,
we get

Pr
s={s1,...,sℓ}∈Sv

[∃(i, j)∈P (ω) s.t. χ(si, sj) ̸= χ(π(si), π(sj))] ≥ 1/3. (6)

(Again, this holds because AG
s,ω(s0)=AG

π(s),ω(π(s0)) holds if the same answers were provided to all

corresponding queries.) Fixing ω as above, and letting Q = P (ω) ∩
(
[ℓ]
2

)
, we get

Pr
s={s1,...,sℓ}∈Sv

[
∃i∈ [ℓ] s.t. χ(v, si) ̸= χ(π(v), π(si))
∨ ∃{i, j}∈Q s.t. χ(si, sj) ̸= χ(π(si), π(sj))

]
≥ 1/3. (7)

We now consider two cases, while letting χ(w,w) = 0 for every w.

15

Case 1: The first event in Eq. (7) is likely. That is,

Pr
{s1,...,sℓ}∈([n]\{v}

ℓ)
[∃i∈ [ℓ] s.t. χ(v, si) ̸= χ(π(v), π(si)) > 0.1.

Using the union bound, it follows that Prs∈[n]\{v}[χ(v, s) ̸= χ(π(v), π(s))] > 0.1/ℓ. Since this
holds for every v ∈ T , we get

|{(v, s)∈ [n]2 : χ(v, s) ̸= χ(π(v), π(s))}| ≥
∑
v∈T

|{s∈ [n] \ {v} : χ(v, s) ̸= χ(π(v), π(s))}|

=
∑
v∈T

(n− 1) · Prs∈[n]\{v}[χ(v, s) ̸= χ(π(v), π(s))]

>
0.1 · (n− 1)

ℓ
· |T |,

which is Ω(n/q(n)) · |T |, since ℓ = 2q(n).

Case 2: The second event in Eq. (7) is likely. That is,

Pr
{s1,...,sℓ}∈([n]\{v}

ℓ)
[∃(i, j)∈Q s.t. χ(si, sj) ̸= χ(π(si), π(sj))] > 0.1.

It follows that Pr
{r,s}∈([n]\{v}

2)
[χ(r, s) ̸= χ(π(r), π(s))] > 0.1/|Q|, which implies

|{(r, s)∈ [n]2 : χ(r, s) ̸= χ(π(r), π(s))}| > 0.1 · (n− 1)2/|Q|.

This is definitely Ω(n/q(n)) · |T |.

Hence, in each of the cases, the size of the symmetric difference between G and π(G) (i.e.,
|E△{{π(u), π(v)} :{u, v}∈E} |) is Ω(n/q(n)) · |{v ∈ [n] : π(v) ̸= v}|. Since this holds for every
bijection π : [n] → [n], it follows that G is Ω(n/q(n))-robustly self-ordered.

2.3 Explicit construction of graphs with local self-ordering procedures

In light of Theorem 2.6, which asserts that n-vertex graphs that have (O(log n)2) local self-ordering
procedures are not necessarily Ω(n)-robustly self-ordered, it is natural to ask whether it is easier
to construct graphs having self-ordering procedures than to construct Ω(n)-robustly self-ordered
graphs. This seems to be the case, as demonstrated next: The point is that the construction
presented in the following proof is much simpler than the known construction of Ω(n)-robustly
self-ordered graphs, which relies on non-malleable two-source extractors (cf. [6, Sec. 8]).

Theorem 2.9 (explicit construction with an efficient procedure): There exists an efficient con-
struction of a family of graphs that have a local self-ordering procedure. Furthermore, the n-vertex
graphs are locally constructable (i.e., the adjacency of two vertices in the graph can be determined
in polynomial-time) and the local self-ordering procedure runs in poly(log n)-time. On the other
hand, the graph is not ω(n/ log2 n)-robustly self-ordered and each vertex in the graph has degree
Θ(n/ log n).

16

Using Theorem 2.8, it follows that these n-vertex graphs are (n/poly(log n))-robustly self-ordered.
We note that Theorem 2.9 does not supersede Theorem 2.6, because the vertex degrees are linear
in Theorem 2.6 and the quantitative relation is tighter there.13

Proof: The graph consists of logarithmically many cliques of noticeably different sizes that are
connected in a way that reflects the location of the vertices in each clique: The (approximate)
degree of each vertex identifies to which clique it belongs, whereas its exact location in this clique is
indicated by the identity of the cliques in which it has neighbors. Indeed, each vertex has relatively
few neighbors in other cliques, but sufficiently many such neighbors so to enable the localization
procedure.

Specifically, For ℓ = O(log n) and m = Θ(n/ℓ2), we consider a graph that consists of ℓ cliques of
different sizes that are connected by bipartite graphs of edge-density 1/poly(ℓ). The ith clique has
(ℓ+ i) ·m = Θ(n/ℓ) vertices, and each of its vertices is connected to at most m/2 vertices in other
cliques. The identity of the cliques to which each vertex is connected encode its location; that is,
we encode each vertex by an ℓ/3-bit long string and connect it to at most ℓ/3 of the (subsequent)
cliques. Furthermore, we partition the vertices in each clique to cells, and connect vertices only if
they reside in corresponding cells. This guarantees that the degrees of vertices are dominated by
the size of the clique in which they reside; in particular, vertices in different cliques have sufficiently
different degrees in the (final) graph. Details follow (see Figure 2).

Figure 2: Detail in the construction demonstrating Theorem 2.9.

13Recall that Theorem 2.6 refers to n-vertex graphs in which each vertex has degree Θ(n). Also recall that
Theorem 2.6 asserts a O((logn)2)-query local self-ordering procedure for an n-vertex graph that is not (n/ log2 n)-
robustly self-ordered. In contrast, the proof of Theorem 2.9 yields a local self-ordering procedure of query complexity
Õ((logn)7).

17

The cliques: For each i ∈ Zℓ = {0, 1, ..., ℓ−1}, let Ci be an (ℓ+i) ·m-vertex clique, with vertex-set
Vi = {⟨i, j⟩ : j ∈ [(ℓ+ i) ·m]}.
Let V =

⋃
i∈Zℓ

Vi, and note that n = |V | = Θ(ℓ2 ·m) < 2ℓ/3.

Cells in cliques: For each i ∈ Zℓ, we partition Vi into 2ℓ2 + 2iℓ cells, each of size m′ = m/2ℓ;
that is, for every j ∈ Z2ℓ2+2i·ℓ, let Vi,j = {⟨i, r⟩ : r ∈ [j ·m′ + 1, ..., j ·m′ +m′]}.
(Indeed, |Vi| = (2ℓ2 + 2iℓ) ·m′ = (ℓ+ i) ·m.)

Connecting the cells: Using any (efficiently computable and invertible) injective map M : V →
{0, 1}ℓ/3 as an encoding, for every i, j (as above) and s ∈ [ℓ/3], we connect each vertex
v = ⟨i, r⟩ ∈ Vi,j to all vertices in Vi+s mod ℓ , j mod 2ℓ2 if and only if the sth bit of M(v) is 1;
that is, v ∈ Vi,j is connected to u ∈ Vi′,j′ if and only if the following three conditions hold:

1. distance between cliques: i′ = i+ s mod ℓ for some s ∈ [ℓ/3];

2. corresponding cells: j′ = j mod 2ℓ2;

3. the encoding of v matches the distance: M(v)s = 1.

Hence, for j ∈ Z2ℓ2 , vertices in Vi,j are only connected to vertices in either Vi or in Vi+s mod ℓ , j

or in Vi−s mod ℓ , j ∪ Vi−s mod ℓ , j+2ℓ2 such that s ∈ [ℓ/3]. As for j ∈ Z2ℓ2+2iℓ \ Z2ℓ2 , vertices in
Vi,j are only connected to vertices in either Vi or in Vi+s mod ℓ , j−2ℓ2 such that s ∈ [ℓ/3]. See
Figure 2. Note that, for every i, j and s ∈ [ℓ/3], if a vertex v ∈ Vi is connected to some vertex

in V ′ def= Vi+s mod ℓ , j , then v is connected to all m′ = Ω(n/ℓ3) vertices in V ′.

Envisioning the Ci’s as residing on a cycle, the vertices in each Ci are only connected to the Ci′ ’s
that are at distance at most s ∈ [ℓ/3] from Ci on the cycle, where the edges between Vi and Vi+s

are confined to
⋃

j∈Z2ℓ2+2iℓ
(Vi,j × Vi+s , j mod 2ℓ2).

Denoting the resulting graph by G = (V,E), we observe that vertices of the different cliques
can be easily told apart based on their degree, because vertices in Ci have degree at least |Vi|−1 =
(ℓ+ i) ·m− 1 and at most

(ℓ+ i) ·m+
ℓ

3
· m
2ℓ

+
ℓ

3
· 2 · m

2ℓ
= (ℓ+ i+ 0.5) ·m,

where the first term is due to the edges of Ci, and the second (resp., third) term is due to the edges
that connect Ci and Ci+s mod ℓ (resp., Ci and Ci−s mod ℓ) for s ∈ [ℓ/3].

A vertex v in a graph G′ = (V ′, E′) that is isomorphic to G is located (in G) by taking a sample
S of poly(log n) random vertices in G′, and querying the subgraph of G′ induces by S ∪{v}. Using
the degrees of the vertices in this induced subgraph, we identifying the clique to which each of these
vertices belongs, and using the adjacencies of v with S we obtain the encoding of the corresponding
vertex of G under M , which yields its identity. That is, we decide that v corresponds to vertex ⟨i, r⟩
of G if v appears to reside in a clique of size (ℓ+ i+0.25±0.25) ·m and for every s ∈ [ℓ/3] the vertex
v is connected to a vertex that seems to resides a clique of size (ℓ+ (i+ s mod ℓ) + 0.25± 0.25) ·m
if and only if M(⟨i, r⟩)s = 1.

More specifically, approximating the degree of poly(ℓ) many vertices upto ±0.1m/ℓ (w.h.p.) can
be done by using a sample of Õ(ℓ6) vertices, since m = Θ(n/ℓ2), and so the foregoing procedure
can be implemented using Õ(ℓ12) queries. A closer look reveals that it suffices to use a sample of

18

Õ(ℓ3) vertices in order to hit all the Vi,j ’s (w.h.p.), since m′ = Θ(n/ℓ3), whereas we only need to
approximate the degrees of the vertices in this sample upto ±0.1m (w.h.p.), which can be done
using a sample of size Õ(ℓ4). Hence, local self-ordering can be done using Õ(ℓ7) non-adaptive
queries.

Lastly, we upper-bound the robustness parameter of G by considering a permutation π that
switches C1 and ℓ · m of the vertices of C2. The contribution of each non-fixed-point to the
symmetric difference between G and π(G) is smaller than 2m, since the number of edges that go
outside each clique is at most m/2 (and the difference in the sizes of C1 and C2 is m). Hence, G is
not 2m-robustly self-ordered, whereas m = O(n/ log2 n).

2.4 From robustness to locality: Proof of Theorem 1.7

While we do not know the answer to Problem 1.6 (i.e., whether any Ω(n)-robustly self-ordered
n-vertex graph has a poly(log n)-query local self-ordering procedure), we show an efficient trans-
formation of Ω(n)-robustly self-ordered n-vertex graphs into ones that are Ω(n)-robustly as well as
have a poly(log n)-query local self-ordering procedure.

Theorem 2.10 (from robustness to robustness plus locality): There exists an efficient transforma-
tion of n-vertex graphs that are Ω(n)-robustly self-ordered to 3n-vertex graphs that are Ω(n)-robustly
self-ordered and have locally self-ordering procedures that runs in poly(log n)-time. Furthermore,
the transformation is local in the sense that the adjacency predicate of the resulting graph can be
computed by a poly(log n)-time reduction to the adjacency predicate of the input graph.

Proof: The construction borrows some elements from the proof of Theorem 2.9. In particular, we
use the idea of locating a vertex according to its adjacency with large subsets in a fixed partition
of the vertex set (e.g., large cliques). Specifically, we shall combine any n-vertex Ω(n)-robustly
self-ordered graph G with Θ(log n) locally distinguishable Θ(n/ log n)-vertex cliques that will be
used to locate vertices in G, where the vertices in the cliques will be located either via the other
cliques or via the vertices of G. In addition, we connect the various graphs such that the robust
self-ordering of G induces robust self-ordering of the larger resulting graph, denoted G′. The latter
issue implies that we cannot use relatively sparse connections as in the proof of Theorem 2.9, which
will complicate our construction and analysis.

More specifically, the graph G′ consists of G and Θ(log n) many Θ(n/ log n)-vertex cliques,
where the cliques are locally distinguishable by virtue of having a noticeably different number of
vertices. The cliques will be used to locate vertices of G via assigning each vertex v of G a different
codeword C(v) that determines to which cliques the vertex v is connected such that v is connected
to all vertices of the ith clique if C(v)i = 1 and is connected to none of these vertices otherwise. The
robust self-ordering of G′ will follow from the robust self-ordering of G and the edges connecting
G and the rest of G′. Since the edges between G and the rest of G′ are used in two different ways
(i.e., to locate vertices of G and induce robustness on G′), we partition the rest of G′ to two parts
and connect them to G in different ways. Details follow.

Our construction of G′ = (V ′, E′) uses a few ingredients. First, we use the n-vertex graph
G = ([n], E) that is guaranteed by the hypothesis. Let γ > 0 be a constant such that G is γ · n-
robustly self-ordered (and assume for simplicity that γ < 1/50). Furthermore, for simplicity, we

19

assume that each vertex in G has degree at least γ · n.14 The second ingredient we use is an
efficiently computable error correcting code, C : [n] → {0, 1}ℓ, of constant relative distance, where
ℓ = O(log n). That is, the code C has distance Ω(ℓ); for simplicity, we assume that the distance is
at least ℓ/10. In addition, for γ′ = γ/3, we require C to satisfy the following two conditions, where
the constant 0.25 is an arbitrary constant in (0, 0.5):

1. Each codeword of C has Hamming weight (0.25 ± γ′) · ℓ; that is, for every x ∈ [n], it holds
that |{i∈ [ℓ] :C(x)i=1}| = (0.25± γ′) · ℓ.

2. For each coordinate i ∈ [ℓ], it holds that Prx∈[n][C(x)i=1] = 0.25± γ′.

(Such a code can be constructed using the concatenated code paradigm.)15 As stated above, we
shall also use 2ℓ cliques of different sizes, where these sizes are evenly distributed between 0.9n/ℓ
and 1.1n/ℓ. Specifically, the ith clique will have ni vertices such that

ni =
(
10ℓ+ (−1)i mod 2 · ⌈i/2⌉

)
· n

10ℓ2 .

Hence, n2j−1 + n2j = 2 · 10ℓ · n/10ℓ2 = 2n/ℓ and
∑ℓ

i=1 ni = n =
∑2ℓ

i=ℓ+1 ni follows (assuming ℓ is
even). Lastly, for simplicity, we shall first assume that n is close to a power of two, and let IP2(v, u)
denote the inner-product mod 2 (of the binary representation) of the vertices v and w (which are
viewed as elements of [n]).

Construction 2.10.1 (the graph G′ = (V ′, E′)): The graph G′ consists of a copy of G = ([n], E)
and 2ℓ cliques, denoted G1, ..., G2ℓ, where Gi = (Vi, Ei) is a clique such that |Vi| = ni, that are
connected as follows (see Figure 3).

� Each vertex v ∈ [n] of G is connected to all vertices in Gi such that C(v)i = 1 (and i ∈ [ℓ]).

� Each vertex v in
⋃

j∈[ℓ] Vj ≡ [n] is connected to all vertices in Gℓ+i such that C(v)i = 1 (and
i ∈ [ℓ]).

� Each vertex v in
⋃

j∈[ℓ] Vℓ+j ≡ [n] is connected to vertex w in G if and only if IP2(v, w) = 1.

(Both v and w are viewed as elements of [n].)16

14By the robustness feature, G may contain at most one vertex of degree smaller than 0.5γn. We can make this
vertex isolated at the cost of decreasing the robustness constant to γ/2, and leave this vertex isolated in the following
construction of G′.

15We start with a Reed-Solomon code C′ : [n] → GF(p)p such that p = ℓ/ℓ′ where ℓ′ = Θ(log ℓ), and note that

pp = ℓ(1−o(1))·ℓ/ℓ′ = n
(1−o(1))· ℓ

log2 n
· log2 ℓ

ℓ′ = nc, and that the constant c > 0 can be made arbitrary large (by picking
a suitable ℓ). Hence, each codeword of C′ has at most p/c < γ′ · p/2 zero coordinates, and each coordinate of a

random codeword is uniformly distributed in GF(p). Next, we find an inner-code C′′ : GF(p) → {0, 1}ℓ
′
that satisfies

all conditions (with γ′ replaced by γ′/2) by an exhaustive search on a suitable sample space of pseudorandom p× ℓ′

matrices. Specifically, we use an exp(−ℓ′)-biased space on 2 · p · ℓ′-bit long strings in order to define p × ℓ′ Boolean
matrices such that each entry is 1 with probability approximately 1/4, and test that the distance between rows as
well as the weight of rows and of columns are all as postulated. In the concatenated code C each codeword is a
sequence of C′′-codewords, which implies that Condition 1 holds. As for Condition 2, note that each coordinate in
a random C-codeword corresponds to a coordinate in a random C′′-codeword. Lastly, the relative distance of C is
lower-bounded by the product of the relative distances of C′ and C′′.

16Actually, we use two injective mappings µ1 : [n] → Sn and µ2 :
⋃

i∈[ℓ] Vℓ+j → Sn, where Sn is the set of the n

lexicographically first strings in {0, 1}⌈log2(n+1)⌉ \ {0⌈log2(n+1)⌉}. Hence, IP2(v, w) stands for IP2(µ2(v), µ1(w)).

20

Figure 3: Illustration of Construction 2.10.1.

Recall that ni = (10ℓ+ (−1)i mod 2 · ⌈i/2⌉) · n/10ℓ2 ∈ [0.9n/ℓ, 1.1n/ℓ]. We shall refer to a three-way
partition of G′, calling G the first part, and

⋃
i∈[ℓ]Gi (resp.,

⋃
i∈[ℓ]Gℓ+i) the second (resp., third)

part. Assuming that ℓ is even, each part has n vertices.

Note that the bipartite graph connecting the first and third parts has edge-density approxi-
mately 1/2, whereas the other two bipartite graphs (which connect other pairs of parts) have
edge-density approximately 1/4. These densities are reflected in the number of neighbors that each
vertex has in the other parts. In particular, each vertex in the first part of G′ has degree at least
γn+(0.25n− γ′n)+ (0.5n− o(n)), where the first term is due to its neighbors in G and the second
(resp., third) term is due to its neighbors in the second (resp., third) part. In contrast, each vertex
in the second (resp., third) part has degree 2 · (0.25n ± γ′n) + o(n) = 0.5n ± 2γ′n + o(n) (resp.,
(0.25n ± γ′ · n) + (0.5n ± o(n)) + o(n) = 0.75n ± γ′n ± o(n)), where the main contribution comes
from neighbours in the other two parts.

The foregoing facts imply that the approximate degree of a vertex in G′ determines in which
of the three parts of G′ it resides. Furthermore, for any vertex in the second (resp., third) part of
G′, we can determine in which Gi it resides by approximating the size of the maximum clique that
is induced by its neighbors that reside in the second (resp., third) part. Both observations will be
used in the localization process described next.

Claim 2.10.2 (G′ is locally self-ordered): The graph G′ has a poly(log n)-time local self-ordering
procedure. Furthermore, the procedure is non-adaptive and is based on examining the subgarph
induced by the input vertex and O((log n)5) random vertices.

Proof: Intuitively, our localization process is anchored in the 2ℓ cliques (i.e., the Gi’s). As hinted
above, using a small sample of random vertices, it is easy to identify the vertices that reside in G
(based on the vertex degree), and identify the clique in which each other vertex resides in (based
on the subgraph induced by vertices that are not in G). Using this identification, we can locate the

21

vertices of the first (resp., second) part based on whether or not they neighbor each of the Gi’s.
The vertices of the third part are located using the locations of their neighbors in the first part.
Details follow.

Letting S be a random O(log5 n)-subset of V ′, we show how to locate each vertex v of V ′

(including v ∈ S) based on the subgraph of G′ induced by S ∪ {v}. Our localization process
proceeds as follow.

1. Determining which vertices reside in the first part: We first determine whether or not v is
located in the first part of G′, by relying on the degree dichotomy outlined above. Specifically,
we rule that v resides in the first part if and only if it has more than (0.75 + 0.5γ) · |S|/3
neighbors in S.

Similarly, we determine for each vertex in S whether it resides in the first part of G′, and let
S1 denote the corresponding set of vertices.

2. Determining which vertices reside in the second part: Assuming that v is in V ′ \ V , we
determine whether or not v is located in the second part of G′, by relying the number of
neighbors v has in S1. Specifically, we rule that v resides in the second part if and only if
it has less than 0.375 · |S1| neighbors in S1. (Indeed, we rely on the fact that vertices in the
second (resp., third) part have approximately 0.25n (resp., 0.5n) neighbors in the first part.)

Similarly, we determine for each vertex in S \ S1 whether or not it resides in the second part
of G′, and let S2 and S3 denote the corresponding sets of vertices.

3. Determining the partition of S2 and S3 into cliques: We determine the partition of S2 (resp.,
S3), among the ℓ cliques by considering the subgraph of G′ induced by S2 (resp., S3); specif-
ically, for i ∈ [ℓ], we denote by S2,i ⊆ S2 the vertices that reside in Gi (resp., that S3,i ⊆ S3

contains the vertices that reside in Gℓ+i). Note that, with high probability (over the choice
of S), it holds that |S2,i| = (1± o(1/ℓ2)) · ni

3n · |S| and |S3,i| = (1± o(1/ℓ2)) · nℓ+i

3n · |S|. In this
case, the various sizes uniquely determine the indices of the various sets.

Furthermore, the partition can be found in poly(|S|)-time, since (w.h.p.) the subgraph of G′

induced by S2 (resp., S3) consists of ℓ cliques.

4. Locating vertices in the first part: If v is located in the first part of G′, then we determine
its exact location in G according to its neighborhood in each of the Gi’s of the second part.
Specifically, denoting the (unknown) location of v in G by x, we determine C(x)i by checking
whether v has a neighbor in S2,i. Note that, unless S2,i ̸= ∅, it holds that C(x)i = 1 if and
only if S2,i contains a vertex that is connected to v (and in this case v is actually connected
to all vertices in S2,i).

Similarly, we locate each vertex in S1 (i.e., we determine the exact location of each vertex
in S1).

5. Locating vertices in the second part: If v is located in the second part of G′, then we determine
its exact location in G according to its neighborhood in each of the Gi’s of the third part
(i.e., according to the adjacencies in the various S3,i’s). (Indeed, this is done analogously to
Step 4.)17

17We can similarly locate each vertex in S2, but this is not useful for us.

22

6. Locating vertices in the third part: If v is located in the third part of G′, then we determine its
exact location in G according to its neighborhood in the first part (or rather its adjacencies
to vertices in S1). We do so while relying on the fact that we have already located all vertices
in S1 (see Step 4).

Specifically, a vertex s ∈ S1 that is located at vertex w in G yields a linear equation on the
location of vertex v in G′. Denoting the latter (unknown) location by x, we get the equation
IP2(w, x) = χ(s, v), where χ(s, v) = 1 if and only if s neighbors v (in the subgraph of G′

induced by S ∪ {v}). Hence, we get Ω(|S|) ≫ log2 n linear equations in x (viewed as an
Boolean vector), where the equations are almost uniformly and independently distributed
(when S is random).18 Solving this (full rank) linear system, we obtain x.

Indeed, once the partition of S according to the parts and cliques of G′ is determined (i.e., once S1

and the S2,i’s and S3,i’s are determined), the process of localization proceeds from the first part of
G′ to its second and third parts. That is, we first locate each vertex of the first part based on the
cliques it neighbors in the second part. Likewise, we locate each vertex of the second part based on
the cliques it neighbors in the third part. Lastly, we locate each vertex of the third part based on
the location of the vertices of S1 in G, which means that the localization of a vertex in the third
part uses the prior localization of the vertices in S1.

The foregoing process works provided that S hits each of the cliques (i.e., the Gi’s) in pro-
portion to its size and that S (or rather S1) hits a set of vertices in G whose locations (viewed
as ⌈log2(n+ 1)⌉-dimensional vectors) contain a basis of the vector space that encodes [n]. These
events occur with probability at least 1−1/poly(n). Hence, with probability at least 1−1/poly(n)
over the choice of S, we can locate each vertex v in G′ according to the subgraph induced by S∪{v}.

Partial summary. Claim 2.10.2 asserts that the graph G′ (as defined in Construction 2.10.1) has a
poly(log n)-time locally self-ordering procedure. The next claim (i.e., Claim 2.10.3) asserts that
G′ is Ω(n)-robustly self-ordered. Note that, so far (i.e., in the proof of Claim 2.10.2), we did not
use the relative distance of the bijection C, although we did use the bounds on the weight of its
codewords (in order to distinguish the vertices of the different parts according to their degrees).
More importantly, the hypothesis that G is γ · n-robustly self-ordered was not used so far either.
Both hypotheses will be used next.

Claim 2.10.3 (G′ is Ω(n)-robustly self-ordered): Recall that C has distance at least 0.1ℓ, and that
G = ([n], E) is γn-robustly self-ordered, where γ < 1/50. Then, G′ = (V ′, E′) is Ω(γn)-robustly
self-ordered.

Proof: The current proof goes in an opposite direction to the proof of Claim 2.10.2: Whereas the
localization process is anchored in the 2ℓ cliques (i.e., the Gi’s), the analysis of the robust self-
ordering of G′ is anchored in the first part (i.e., the robustly self-ordered graph G). Recall that, for
every permutation µ of the vertices of G′, we need to compare the number of non-fixed-points in µ
to the size of the symmetric difference between G′ and µ(G′). Intuitively, focusing at permutations
that preserve the three-way partition of G′, we first observe that the claim follows in the case that
many of the non-fixed-points of the permutation reside in the first part, because in this case we can

18Here we used the hypothesis that [n] is close to {0, 1}⌊log2 n⌉, which implies that the locations of the vertices in
S are distributed almost uniformly and identically in {0, 1}⌊log2 n⌉.

23

rely on the subgraph of G′ induced by the first part (i.e., G). Otherwise, we get a contribution (to
the symmetric difference) of vertices in the third part that is due to their different adjacencies with
the vertices of the first part. An analogue argument holds for vertices of the second part, based on
their different adjacencies with the vertices of the third part. Details follow.

We consider an arbitrary permutation µ : V ′ → V ′, and its set of non-fixed-points T = {x ∈
V ′ : µ(x) ̸= x}. Recalling that V ′ = [n] ∪

⋃
i∈[2ℓ] Vi, we let T ′ denote the set of vertices that are

mapped by µ to a different part of G′; that is,

T ′ def=
⋃
j∈[3]

{
v ∈ V ′

j : µ(v) ̸∈ V ′
j

}
,

where V ′
j denotes the jth part of G′ (i.e., V ′

1 = [n], V ′
2 =

⋃
i∈[ℓ] Vi and V ′

3 =
⋃

i∈[ℓ] Vℓ+i). We consider
the following cases.

Case 1: |T ′| > γ · |T |/2. In this case, we consider the contribution of the vertices of T ′ to the
symmetric difference between G′ and µ(G′). Each such vertex v ∈ T ′ contributes Ω(n) units
to the difference, where this contribution is due to the difference between the degree of vertices
in the three parts. Specifically, recall that the vertices in the first part have degree at least
γn + (0.75n − γ′n − o(n)), whereas the vertices of the second and third parts have degree
0.5n±2γ′n+o(n) and 0.75n±γ′n±o(n), respectively. (Recall that γ′ = γ/3 = Ω(1).) Hence, in
this case, the size of the symmetric difference between G′ and µ(G′) is |T ′|·Ω(n) = Ω(γ ·|T |·n).

Let T1
def
= {v ∈ V ′

1 : µ(v) ∈ V ′
1 \ {v}}, and note that T1 ⊆ T \ T ′.

Case 2: |T ′| ≤ γ · |T |/2 and |T1| > |T |/100. In this case, we consider the contribution of the ver-
tices in T1 (which move inside the first part of G′ (i.e., G)) to the symmetric difference between
G′ and µ(G′). Intuitively, by the robust self-ordering of G, each such vertex contributes at
least γ · n units on the average, but we have to discount the neighbors that moved out of the
first part. By the case hypothesis, the number of these potential neighbors (which reside in
T ′) is at most γ · n/2, and so each vertex v ∈ T1 contributes at least γ · n/2 units (on the
average). Hence, in this case, the size of the symmetric difference between G′ and µ(G′) is at
least |T1| · γn/2 = Ω(γ · |T | · n).

Let T3
def
= {v ∈ V ′

3 : µ(v) ∈ V ′
3 \ {v}}, and note that T3 ⊆ T \ (T ′ ∪ T1).

Case 3: |T ′| ≤ γ · |T |/2 and |T1| ≤ |T |/100 and |T3| > |T |/100. In this case, we consider the con-
tribution of the vertices in T3 (which move within the third part of G′) to the symmetric differ-
ence betweenG′ and µ(G′). The contribution of each such vertex v ∈ T3 is due to the difference
in its adjacencies in the first part; that is, to vertices w ∈ V ′

1 that neighbor either v or µ(v)
but not both. Recalling that the adjacency between the third and first parts is determined
by IP2, the number of such vertices w equals |{w ∈ V ′

1 : IP2(v, w) ̸= IP2(µ(v), w)}| ≈ n/2.

As in Case 2, we need to discount vertices w that move out of V ′
1 ; actually, here we need to

discard any vertex w ∈ V ′
1 that is a non-fixed-point of µ. This means that we should discard

at most |T ′| + |T1| ≤ 2|T |/100 ≤ 6n/100 vertices, where the first inequality uses the case
hypothesis (as well as γ < 1/50). Hence, each v ∈ T3 contributes Ω(n) units; so, in this case,
the size of the symmetric difference between G′ and µ(G′) is |T3| · Ω(n) = Ω(|T | · n).

24

Case 4: |T ′| ≤ γ · |T |/2 and |T1| ≤ |T |/100 and |T3| ≤ |T |/100. In this case, most vertices in T
are vertices v that reside in the second part such that µ(v) ̸= v also resides in the second

part. The contribution of each such vertex v ∈ T2
def
= T \ (T ′∪T1∪T3) is due to the difference

in its adjacencies in the third part; that is, vertices w ∈ V ′
3 that neighbor either v or µ(v) but

not both. Recalling that the adjacency between the second and third parts is determined by
C applied to vertices of the second part, the number of such vertices w (i.e., which neighbor
either v or µ(v) but not both) equals∑

i∈[ℓ]

|{w ∈ Vℓ+i : C(v)i ̸= C(µ(v))i}| ≥ |{i ∈ [ℓ] : C(v)i ̸= C(µ(v))i}| ·min
i∈[ℓ]

{nℓ+i}

≥ 0.1ℓ · 0.9n/ℓ,

where the second inequality is due to the distance of C (which we assume to be at least ℓ/10).
Analogously to Case 3, we have to discard vertices of V ′

3 that are non-fixed-points, whereas
their number is upper-bounded by |T ′∪T3| ≤ 2 · |T |/100 ≤ 6n/100. Hence, each vertex v ∈ T2

contributes at least 0.09n − 0.06n = Ω(n) units, and we get a total contribution of at least
|T2| · Ω(n) = Ω(|T | · n).

Hence, in each of the possible cases, the size of the symmetric difference between G′ and µ(G′) is
Ω(γ · |T | · n) = Ω(γ · |V ′|) · |T |.

Conclusion. Combining Claims 2.10.2 and 2.10.3, we established the theorem for any n that is
closed to a power of two. This hypothesis was used for a single reason: It guaranteed that a uni-
formly distributed element of [n] has a binary representation that is almost uniformly distributed
in {0, 1}⌊log2 n⌉, which in turn implies that IP2(u, v) is almost unbiased, when u is uniformly dis-
tributed in [n] and v ∈ [n] is fixed. We can obtain the latter effect, for any n ∈ N, by using ideas
as in [6, Rem. 8.9].

Specifically, we replace IP2(u, v) by IP2(G(u), G(v)), whereG : [n] → {0, 1}⌈log2(n+1)⌉\{0}⌈log2(n+1)⌉

is a small-biased generator that is injective. In this case, for each fixed v and a uniformly dis-
tributed u ∈ [n], it holds that IP2(G(u), G(v)) is almost unbiased, since this bit is a non-zero
linear combination of the bits of G(u). As for constructing the generator G, for t = ω(1) such
that exp(Õ(2t)) ≤ poly(log n), we let ℓ = ⌈log2(n+ 1)⌉, associate [n] with the n first elements in
⌈[n/2ℓ−t⌉]× {0, 1}ℓ−t and define G(s′, s′′) = (G′(s′), s′′) such that G′ : [⌈n/2ℓ−t⌉] → {0, 1}t \ {0t} is
a small-biased generator (which is also injective), which is found by exhaustive search. (Indeed, the
upper bound on t was selected in order to make the exhaustive search feasible, whereas the lower
bound on t was selected to make 2−t be o(1).)

Digest. Construction 2.10.1 (i.e., the graph G′) combines a Ω(n)-robustly self-ordered n-vertex
graph (i.e., G) with a logarithmic number of Θ(n/ log n)-vertex cliques arranged in two parts.
These three parts are connected by bipartite graphs of constant edge-density. The cliques serve
as an “anchor” for the local self-ordering procedure of G′: Using the adjacencies of vertices to
these cliques, we locate the vertices of the first and second parts of G′, whereas the vertices of the
third part are located via the already located vertices of the first part. In contrast, the first part
(i.e., G) is the anchor for establishing the Ω(n)-robust self-ordering of G′: The hypothesis that G
is Ω(n)-robustly self-ordered implies that each non-fixed-point of µ that resides in the first part
contributes Ω(n) units to the symmetric difference between G′ and µ(G′). On the other hand, when

25

almost all vertices in the first part of G′ are fixed-points, each non-fixed-point in the third part
of G′ contributes Ω(n) units to the symmetric difference, by virtue of their neighbors in the first
part. Likewise, if there are few non-fixed-points in the third part, then we lower-bound the size of
symmetric difference by considering the non-fixed-points of the second part (and their neighbors in
the third part).

Construction 2.10.1 is based on a three-way partition of the vertices, where the original graph G
is defined as the first part, and the smaller cliques (i.e., the Gi’s) are partitioned among the second
and third parts. The reason we use a three-way partition is that we need two different types of
edges between G and the rest of the graph. The first type of edges serves for locating the vertices
of G according to their adjacencies in the cliques, whereas the second type is used for the analysis
of the robust self-ordering of G′ (in case the permutation fixes almost all vertices in G).

3 The Bounded-Degree Graph Regime

Recall that in the bounded-degree graph regime we seek graphs that are Ω(1)-robustly self-ordered,
and that oracle access to a graph (as provided to a local self-ordering procedure) means oracle
access to its incidence function. We show that in this regime robustly self-ordering and local self-
ordering are almost orthogonal; that is, even extremely strong versions of one notion do not imply
very weak versions of the other notion.

3.1 Proof of Part 1 of Theorem 1.3

We show that very simple graphs, which are evidently far from being Ω(1)-robustly self-ordered,
have simple local self-ordering procedures.

Theorem 3.1 (local self-ordering does not imply robust self-ordering): There exist explicit n-
vertex graphs of maximal degree 3 that have O(log n)-time locally self-ordering deterministic proce-
dures, but are not (3/n)-robustly self-ordered.

The failure of a potential implication is extremely strong. We use the strongest possible notion of
local self-ordering (i.e., deterministic procedures of logarithmic19 time complexity), and rule out an
extremely weak notion of robust self-ordering (i.e., anything above merely being self-ordered).

Proof: We first present the construction in terms of directed graphs with edge-coloring. In these
terms, the graph is a balanced binary (positioned) tree of depth log2 n with edges directed from
the root to the leaves, colored left and right, respectively. Specifically, each internal vertex has two
children, and the edges are directed from it to its children such that one edge is colored ‘left’ and
the other is colored ‘right’.

This (directed and edge-colored) graph can be locally self-ordered by going from the given
vertex towards the root (using edges that are directed in the opposite direction), and collecting
the edge-colors, which determines the vertex’s location. To see that this tree is not 3/n-robustly
self-ordered, consider the permutation that flips the two sides of the tree: This permutation has

19Actually, one can envision a procedure of query complexity O(logn
log logn

), but this is the absolute minimum. The
reason is that the labels obtained by such a procedure are irrelevant, and so the actual information contents of
the answers to q queries is an unlabelled graph with q edges, whereas the number of such unlabelled graphs is
exp(O(q log q)).

26

n − 1 non-fixed-points, but the corresponding symmetric difference is only 2 (i.e., the two edges
incident to the root), which yields a robustness ratio of at most 2/(n− 1).

To transport this example to our model (of undirected graphs with no edge colors), we re-
placed the two directed and colored edges by two constant-sized gadgets that encode the edge’s
direction and color. Specifically, an edge from u to v colored ‘left’ is replaced by a 5-path
(u, tu,v, t

′
u,v,hu,v,h

′
u,v, v) augmented by a vertex lu,v that is connected to tu,v, and ditto for color

’right’ except that lu,v is connected to t′u,v, where ‘t’ stands for tail, ‘h’ for head, and ‘l’ for leaf.
(The direction is encoded by connecting the leaf to a vertex at distance at most 2 from a single
endpoint of the path, whereas the color is encoded by whether this distance is 1 or 2.)

Note that each type of vertex in the resulting tree is easily identified by its constant distance
neighborhood (which identifies the gadget in which it resides or those to which it is connected).
Hence, the local self-ordering procedure of the former case can be modified at a constant factor
overhead. On the other hand, the permutation that flips the two sides of the resulting tree has
only one fixed-point (i.e., the original root), and the corresponding symmetric difference is only 2
(i.e., the edges connecting the leaves that appear in the two gadgets incident at the root).

3.2 Proof of Part 2 of Theorem 1.3

We show that Ω(1)-robust self-ordered graphs may have no local self-ordering procedures of poly-
logarithmic query complexity. In fact, we prove a stronger statement.

Theorem 3.2 (robust self-ordering does not imply local self-ordering): There exist n-vertex bounded-
degree graphs that are Ω(1)-robustly self-ordered, but do not have local self-ordering procedures of
query complexity o(

√
n). Furthermore, this holds for a 1− o(1) fraction of the O(1)-regular graphs.

The failure of a potential implication is extremely strong. We use the strongest possible notion of
robust self-ordering, and rule out local self-ordering procedures of high query complexity, regardless
of their computational complexity. We warm, however, that the following proof is the most complex
in the current paper, although its underlying idea is quite simple.

Proof: The key observation is that, in the case of regular graphs, the only meaningful information
that a local exploration of the graph can obtain arises from encountering a simple cycle in the
graph. Hence, proving lower bound on the query complexity of local self-ordering procedures can
be reduced to proving upper bounds on the probability that such procedures find a simple cycle.
Furthermore, as long as the procedure does not encounter a simple cycle, it is “practically non-
adaptive” (see below). Hence, it suffices to upper-bound the probability that a “blind” exploration
of the graph yields some simple cycle, which in turn reduces to upper-bounding the probability
that the next exploration-step closes a simple cycle. Lastly, we observe that the latter probability
can be upper-bounded in terms of the probability that a non-backtracking random walk closes a
simple cycle.

A non-backtracking random walk is a walk that at each step chooses uniformly at random one
of the neighbors of the current vertex other than the neighbor visited in the previous step [1]. Such
a walk captures the foregoing “blind” exploration since in each step the explorer can avoid going
back on the last edge it has traversed, but all unused edges are practically indistinguishable. Note
that if a non-backtracking walk closes a simple cycle, then some sequence of steps in it constitutes
a simple cycle. Hence, we consider the probability that a non-backtracking random walk consists
of a simple cycle.

27

Definition 3.2.1 (probability of forming a simple cycle): For a graph G = ([n], E), the probability
of forming a simple cycle in an ℓ-step random walk, denoted scℓ(G), is the probability that a non-
backtracking random walk that starts at a uniformly distributed vertex s reaches s in its ℓth step
after visiting ℓ− 1 distinct vertices. The probability of forming a simple cycle in G, denoted sc(G),
is maxℓ∈[n]{scℓ(G)}.

We mention that scℓ(G) = 0 if ℓ is either smaller than the girth of G or larger than n. Furthermore,
scΩ(logn)(G)) = (1 ± o(1))/n if G is a regular expander. The choice to take the maximum up to
n is rather arbitrary; we could, as well, have taken the maximum up to the query complexity that
we care about. We shall show (see Lemma 3.2.3) that most O(1)-regular n-vertex graphs G satisfy
sc(G) = O(1/n). But before doing so, we prove that this result implies the claimed lower bound
(on the query complexity of local self-ordering procedures for such graphs). More generally, we
prove the following.

Lemma 3.2.2 (the reduction): For d ≥ 3 and any d-regular graph G = ([n], E), the probability
that a q-query procedure succeeds in locating a random vertex in a random isomorphic copy of G is
upper-bounded by O(q2 ·max(sc(G), 1/n)).

Proof: We start with an overview of the proof, which refers to an arbitrary q-query algorithm that
explores a graph G′, which is a random isomorphic copy of G, starting at an arbitrary vertex given
to it. We may assume, without loss of generality, that this algorithm is deterministic (by fixing
the best possible sequence of coin tosses). Furthermore, we observe that the labels of the vertices
that appear as queries or as answers to queries are immaterial; all that matters is the equality and
inequality relation between these labels.

Next, we consider the event in which an answer to a query equals a vertex that was visited
before, where the probability space is uniform over all G′ obtained by letting G′ = π(G). An
uninformative case is that we queried u for one of its neighbors, received w as an answer, and later
queried w and received the answer u. The informative cases, which are actually unlikely and are
called surprising, are of two types: Either the answer closes a cycle in the subgraph seen so far,
or it joins two connected components of that subgraph. We observe that before any surprising
event occurs, the subgraph seen so far is a directed forest, where the edges are directed from the
queries to the answers. Furthermore, the structure of this forest is determined beforehand, since
the answers are practically determined by this hypothesis; that is, the forest represents a sequence
of queries that are all answered by vertices that were unvisited till the time of the query.

At this point we make two key observations. The first observation is that the probability of

a surprising event is upper-bounded by p
def
=

(
q
2

)
·max(O(sc(G)), 1/(n − q)), where the first term

is due to answers that close a cycle and the second term is due to answers that merge two trees.
The second observation is that if no surprising event occurs, then (w.v.h.p) the algorithm fails to
locate the input (i.e., start) vertex. The latter observation relies on the hypothesis that graph
is regular, which implies that no information is leaked by a vertex’s degree. Needless to say, the
precise argument (presented next) involves providing a more precise description of the operation of
a generic algorithm and the “exploration forest” defined by it.

The actual proof: preliminaries. To simplify the exposition, we define the incidence queries as
providing not only the neighbor w of the queried vertex u but also the index of u in the list of
neighbors of w; that is, the query (u, j) is answered by (w, k) such that w is the jth neighbor of
u, which is the kth neighbor of w. Needless to say, this only makes the algorithm stronger, but it

28

offers the benefit of assuming (w.l.o.g.) that after making the query (u, j) and receiving the answer
(w, k), the algorithm never queries (w, k). This corresponds to avoiding traversing an edge in both
directions (i.e., uninformative events are avoided). In addition, we assume (also w.l.o.g.) that the
algorithm never makes the same query twice.

Next, we note that the labels of the vertices given as answers to the incidence queries are
immaterial; all that matters is the equality and inequality relation between these labels. Likewise,
the indices of vertices in their neighbor’s incidence list do not matter; all that matters is that our
queries refer to indices that were not given as answer (i.e., we may query (u, j) only if (u, j) was
not provided as an answer to a prior query). Hence, we may replace the query (u, j) by a request
for a neighbor of u that was not known already to be a neighbor of u. Lastly, incidence queries
regarding a vertex that was not visited so far are replaced by a request for a new vertex followed
by an incidence query to it. In light of the above, the algorithm may refer to vertices by the order
in which they were first visited.

Hence, the algorithm’s queries are of two types: (1) an incidence query of the form “provide a
new neighbor of the ith vertex visited so far” (assuming that this is possible)20, and (2) a request
to provide a new vertex (which, once obtained, is defined as visited). Note that queries of type (1)
may be answered by a vertex that was not visited before (and is defined as visited at this time) or
by a vertex that was visited before (either via a different vertex or via a request of type (2)). In the
latter case we call the answer surprising and note that it either closes a cycle (within a connected
component of the subgraph seen before) or causes two connected components (of this subgraph) to
merge.

The connected components that we refer to are those in the directed graph defined by the
queries and answers, where edges are directed from a query to its answer. This directed graph
contains also the input (or start) vertex. Note that if none of the answers is surprising, then this
graph is is directed forest.

Assuming that none of answers is surprising, the sequence of queries made by the algorithm
is uniquely determined, since all vertices have the same degree and so the question of whether all
neighbors of a vertex were visited is predetermined by the queries (under the assumption that no
answer is surprising). The ith element in this query-sequence is either a request for a new vertex
or a request for a new neighbor of the jth visited vertex for some j ∈ {0, 1, ..., i− 1}. In both cases,
the answer is defined to be the ith visited vertex, where the input vertex is defined as the 0th visited
vertex. (Recall that the input vertex is the vertex to be located by the algorithm.)

Note that the definition of the sequence of queries has been presented as referring to an actual
execution of the algorithm, when the answers are provided by the graph G′, and while assuming that
none of the answers is surprising. Nevertheless, the same definition applies to a mental experiment
in which the algorithm is invokes and the answers are fictitiously emulated such that none of them
is surprising. Indeed, the two definitions collide if no surprising answer occurs in the real execution
(where the answers are provided by G′). When this condition does not hold in a real execution, it
is the case that the ith1 visited vertex (according to this definition) equals the ith2 visited vertex.

Hence, we shall analyze what happens in a real execution while referring to the forest that is
defined by the foregoing mental experiment. This makes sense because our analysis is focused at the
case that no surprising event occurs, and as long as this holds both definitions are equivalent. Such a

20If the ith vertex was visited from the jth vertex, then the jth vertex is excluded from the list of possible answers.
Also excluded are all neighbors previously visited from the ith vertex. Hence, an answer is possible if and only if less
than d neighbors were excluded so far.

29

(real) random execution is described by a sequence of random variables (X0, ..., Xq) such that X0 is
the input vertex (given to the algorithm), andXi is the answer to the i

th query. Specifically, if the ith

query is a request for a new vertex, then Xi is uniformly distributed in [n] \{X0, X1, ..., Xi−1}, and
otherwise Xi in a new neighbor of a previous Xp (i.e., if the i

th query is a request for a new neighbor
of Xp, where p ∈ {0, 1, ..., i− 1}, then Xi is uniformly distributed among the unknown neighbors of
Xp).

21 A surprising event occurs if Xi = Xj for some i > j, and we upper-bound the probability
for the occurrence of any surprising event by taking a union bound over all pairs (i, j) and upper-
bounding the probability that the corresponding event is the first one. That is, for each (i, j) such
that i > j, we upper-bound the probability that Xi = Xj and Xi′ ̸= Xj′ for every i′ < i and j′ < i′.
Denoting the combined event by χi,j , we shall prove that Pr[χi,j] = O(max(sc(G), 1/(n− q))).

Bounding the probability of a surprising event. Recall that χi,j holds only if the ith query is a request
for a new neighbor of some vertex Xp such that p < i. Furthermore, X0,, Xi−1 are distinct. We
distinguish two cases: The case that Xp and Xj reside in the same tree (where Xi = Xj closes
a simple cycle that contains the (non-tree) edge {Xp, Xj}), and the case that Xp and Xj reside
in different trees (where Xi = Xj merges these trees with the edge {Xp, Xj}). We stress that we
consider a directed forest (i.e., a collection of trees directed from the roots to the leaves), but the
cycle being closed is not necessarily directed (see below).

Figure 4: The query that closes a cycle (detail for the proof of Lemma 3.2.2).

We start with the first case (i.e., Xp and Xj reside in the same tree (and the current query
closes a simple cycle that contains the edge {Xp, Xj})), which is more interesting. Letting ℓ
denote the (undirected) distance between Xj and Xp on the tree, note that the (undirected) path
connecting Xj and Xp in the tree has the form Xj , Xi1 , ..., Xiℓ−1

, Xp. We will show that in this case
Pr[χi,j] = O(scℓ+1(G)), where the probability space is uniform over all permutations π : [n] → [n]

21That is, Xk is excluded if either Xk was provided as a prior answer to a new neighbor request regarding Xp or
Xp was provided as answer to a new neighbor request regarding Xk.

30

and the algorithm gets its answers from G′ = π(G). To clarify the exposition, we rename the
vertices on the path between Xj and Xp by Y0, Y1, ..., Yℓ such that Yk = Xik is the vertex at
(undirected) distance k from Y0 = Xj on the said path (e.g., i0 = j and iℓ = p). Indeed, the ik’s
are distinct. See Figure 4.

Note that the foregoing path (i.e., the sequence of adjacent vertices Y0,, Yℓ)) is not necessarily
directed from Y0 to Yℓ, and the following sub-cases will distinguish the two possibilities (i.e., a path
directed from Y0 to Yℓ versus two paths from some Yi ending at Y0 and Yℓ). Another distinction
refers to the question of whether one of the Yk’s is the root of the tree on which all these Yk’s reside.
Hence, we have four sub-cases, which are analyzed next, while recalling that in all sub-cases the
undirected (ℓ+ 1)-cycle consists of the foregoing undirected ℓ-path and the edge {Yℓ, Y0}. In each
of the four sub-cases, we upper-bound the probability of forming a simple (ℓ+ 1)-cycle (consisting
of the vertices Y0, ..., Yℓ), while noting that the probability of the corresponding event (i.e., χi,j)
can only be lower (since it conditions on not having surprising events in other parts of the forest).

Figure 5: The first two sub-cases in the proof of Lemma 3.2.2.

1. The vertex Y0 is a root of the tree in which it resides (i.e., Y0 is a response to a “new vertex”
request), and each other Yi is the answer to a (“new neighbor”) query regarding Yi−1. In this
sub-case, a simple directed path of length ℓ leads from Y0 to Yℓ, and the edge from Yℓ to Y0
closes a simple directed (ℓ + 1)-cycle. (See the l.h.s. image in Figure 5, where the explosion
image represents the answer to a “new vertex” request.)

The probability that the algorithm traverses this simple (ℓ + 1)-cycle equals the probability
that a (ℓ + 1)-step non-backtracking random walk forms a simple cycle in G, which equals
scℓ+1(G). The foregoing assertion uses the observation that the order in which the algorithm
traverses edges of the forest is immaterial, and so we may assume that the path from Y0 to
Yℓ is traversed before any other edge is traversed. The latter assumption is justified by the
hypothesis that Y0 is the root of a tree; that is, the said cycle is formed by a single “new
vertex” request followed by ℓ “new neighbor” queries each referring to the previous answer
(i.e., last encountered vertex).

2. The vertex Y0 is not the root of the tree in which it resides (i.e., Y0 is a response to a “new
neighbor” request regarding some Z), and (as in the previous sub-case) each other Yt is the
answer to a (“new neighbor”) query regarding Yt−1. Hence, as in the previous sub-case, we
obtain a simple directed (ℓ + 1)-cycle that goes from from Y0 to Yℓ, and then returns to Y0.
(See the r.h.s. image in Figure 5.)

31

The probability that the algorithm traverses this simple (ℓ + 1)-cycle equals the probability
that a (ℓ + 1)-step non-backtracking random walk closes a simple cycle in G conditioned on
the first step not taking a specific neighbor of Y0 (i.e., not taking the aforementioned vertex
Z). This means that the probability space of the walks taken by the algorithm is cut by a
factor of d/(d− 1). It follows that in this sub-case the probability that a simple (ℓ+ 1)-cycle
is formed is upper-bounded by d

d−1 · scℓ+1(G).

Figure 6: The other two sub-cases in the proof of Lemma 3.2.2.

3. For some k ∈ [ℓ], the vertex Yk is a root of the current tree, and the edges are directed from Yk
to Yℓ (as in the previous sub-cases) and from Yk to Y0. That is, the path (Y0, ..., Yℓ) consists
of two directed subpaths, one going from Yk to Yk+1, ..., Yℓ, and the other going from Yk to
Yk−1, ..., Y0. (Recall that all Yt’s are distinct, and see the l.h.s. image in Figure 6.)

By reversing the order in which the second path is traversed, we note that this sub-case is
“isomorphic” to the first sub-case. Specifically, in the current sub-case we have two “new
neighbor” requests for Yk and a single requests for each Yt such that t ∈ [ℓ] \ {k}, rather than
a single “new neighbor” request for each Yt such that t ∈ {0, 1, ..., ℓ}. In other words, the
space of possible choices corresponds to [d]× [d− 1]× [d− 1]ℓ−1 rather than to [d]× [d− 1]ℓ

(as in the first sub-case). Hence, the probability that a simple (ℓ + 1)-cycle is formed is
upper-bounded again by scℓ+1(G).

4. The last sub-case is a hybrid of the second and third sub-cases. As in the third sub-case, for
some k ∈ [ℓ], the edges are directed from Yk to Yℓ and from Yk to Y0, but Yk is not a root of
the current tree (analogously to the second sub-case). (See the r.h.s. image in Figure 6.)

In this sub-case, we make two choices for neighbors of Yk, but have to avoid a specific neighbor
(as in the second sub-case). Hence, the space of possible choices corresponds to [d− 1]× [d−
2] × [d − 1]ℓ−1, which means that the probability space (of the non-backtracking random

walks) is cut by a factor of d(d−1)
(d−1)(d−2) . Hence, in this sub-case, the probability that a simple

(ℓ+ 1)-cycle is formed is upper-bounded by d
d−2 · scℓ+1(G).

Thus, in all sub-cases, we got a probability bound of at most 3 · scℓ+1(G), since d ≥ 3.
We now turn to the second case, which is the case that these two vertices (i.e., Xp and Xj)

reside in different trees (which are merged by the edges {Xp, Xj}). The probability that this event
occurs (i.e., that a new neighbor request for Xp is answered by Xj) is at most 1/(n − q), because
there are at least n − q possible locations for the root of the second tree and only one of them

32

yields the said event. Taking account of both cases, it follows that the probability of a surprising

event occurring during the q-query execution on G′ is at most ϵ
def
=

(
q
2

)
·max(3 · sc(G), 1/(n− q)),

as claimed.

Showing that locating fails when there is no surprising event. Lastly, assuming that ϵ < 1/2, we
claim that the local self-ordering procedure errs with very high probability (when querying G′ that
is isomorphic to G), because, when no surprising events occurs, little information is revealed on the
location of the start (i.e., input) vertex s in G. The key observation is that the only information
that is revealed to the algorithm is the non-occurring of a surprising event. Hence, fixing an input
s ∈ [n], for a uniformly distributed permutation π : [n] → [n], we consider the distribution of the
location of s in G (i.e., π−1(s)) given that no surprising event occurs (when exploring G′ = π(G)
on input s). Specifically, let χG′

(s) denote the foregoing surprising event, where G′ = π(G) is a
uniformly distributed isomorphic copy of G. Then, for every i ∈ [n], it holds that

Prπ[π
−1(s)= i | ¬χπ(G)(s)] =

Prπ[¬χπ(G)(s) |π−1(s)= i] · Prπ[π−1(s)= i]

Prπ[¬χπ(G)(s)]

≤ Prπ[π
−1(s)= i]

Prπ[¬χπ(G)(s)]

≤ 1/n

1− ϵ

which is less than 2/n. This means that π−1(s) is hard to predict when all we know is that no
surprising event occurred during an exploration of π(G). Specifically, when exploring a random
isomorphic copy G′ = π(G) of G, the probability that a q-query algorithm correctly locates the
start vertex is smaller than ϵ+ (2/n).

Proving the claim of the theorem. Using Lemma 3.2.2, it suffices to upper-bound the probability of
closing a simple cycle in a random d-regular graph.

Lemma 3.2.3 (the cycle forming probability of random graphs): For any d ≥ 3 and t > 1, for at
least 1−O(1/t2) of the d-regular n-vertex graphs G, it holds that sc(G) = O(t/n).

Taking t = ω(1) and recalling that 1 − o(1) fraction of the O(1)-regular graphs are Ω(1)-robustly
self-ordered (see [6, Thm. 6.1]), the theorem follows. We mention that Proposition 3.3 implies a
weak bound of sc(G) ≤ n−Ω(1), since almost all d-regular n-vertex graphs G have logarithmic girth.

Proof: Using the fact that, with very high probability, the graph G is an expander, we may assume
that scℓ(G) < 1.01/n for all sufficiently large ℓ = Ω(log n). Hence, we focus on upper-bounding
scℓ(G) for ℓ = O(log n).

To facilitate the proof, we prove the result in the configuration model, in which a random d-
regular multi-graph is generated by selecting uniformly a perfect matching among the dn ports,
where each vertex has d ports that represence its d possible incidences (cf., e.g., [2]). We note
that a simple d-regular graph is generated with probability approximately exp(−d2/4), and that
each simple d-regular graph is generated with the same probability. Hence, an upper bound on the
probability of a bad event in the configuration model yields an upper bound (which is at most an
exp(d2/4) factor larger) on the probability of this event in random d-regular graphs.

33

For every ℓ ∈ [O(log n)], we consider random variables that represent all possible non-backtracking
walks of length ℓ on a random d-regular multi-graph G = ([n], E). Such a walk is represented by

a start vertex s ∈ [n] and a sequence of ℓ (non-backtracking) moves α ∈ D
def
= [d] × [d − 1]ℓ−1,

where αi is an index in the list of neighbors of the current vertex that exclude the previous vertex.
(That is, the walk reprsented by the pair (s, α) has the form (v0=s, v1,, vℓ), where vi is the αth

i

neighbor of vi in a list that excludes vi−1.) We stress that selecting a random d-regular multi-graph
includes also ordering at random the d edges incident at each vertex.

We define 0-1 random variables ζs,α = ζs,α(G) such that ζs,α = 1 if the walk on the random
multi-graph G that corresponds to the pair (s, α) returns to s in its last step after visiting ℓ − 1
different vertices. Note that the average of the ζs,α(G)’s equals the probability that a random
non-backtracking ℓ-step walk on G closes a simple cycle; that is,

scℓ(G) =
1

n · |D|
·

∑
s∈[n],α∈D

ζs,α(G). (8)

Our aim is to prove that, for every t > 1, the sum (i.e., Eq. (8)) exceeds O(t/n) with probability
O(1/t2), where the probability space is uniform over the perfect matchings used to generate the
d-regular multi-graphs G (in the configuration model).

Intuitively, it seems that E[ζs,α] ≈ 1/n and that the ζs,α’s are almost pairwise independent.
Indeed, we shall shortly show that this is essentially the case. But first, let us assume that E[ζs,α] ≤
B/n and that the sum of the covariances of all (distinct) pairs is at most C · |D|2, where the
covariance of ζs,α and ζs′,α′ equals E[ζs,αζs′,α′] − E[ζs,α]

2. Then, using Chebyshev’s inequality we
get

Pr

 ∑
s∈[n],α∈D

ζs,α > t · |D|

 <
B · |D|+ C · |D|2

(t−B)2 · |D|2
=

1

(t−B)2
·
(

B

d · (d− 1)ℓ−1
+ C

)
.

(9)

Combining Eq. (8) and Eq. (9), while assuming t > 2B, we get PrG[scℓ(G) > t/n] = O(((d−1)−ℓ ·
B+C)/t2). Hence, PrG[sc(G) > t/n] = O((B+C · log n)/t2), because, for a suitable L = O(log n),
we have

PrG[sc(G) > t/n] ≤ PrG

[
∃ℓ∈ [L+ 1, n] s.t. scℓ(G) > t/n

]
+ PrG

[
∃ℓ∈ [L] s.t. scℓ(G) > t/n

]
≤ O(1/n) +

∑
ℓ∈[L]

O(((d− 1)−ℓ ·B + C)/t2).

Thus, the claim follows once we establish B = O(1) and C = O(1/ log n), since then Pr[sc(G) >
t/n] = O(1/t2).

Bounding B and C. We start by upper-bounding B; specifically, we prove that pℓ
def
= E[ζs,α] ≤

1/(n− ℓ). This can be seen by fixing the first ℓ− 1 steps in the walk that starts at s (and proceeds
according to α), which means fixing ℓ − 1 adjacencies in the random multi-graph G. Denoting
the corresponding vertices by v1, ..., vℓ−1, where v0 = s, we assume that they are distinct (or else
ζs,α = 0), and observe that n − ℓ vertices were not visited at all and therefore each of them has
d free incidences. In contrast, we used one incidence of each vi, including v0 = s, to get to vi+1,
which means that vertex s has only d− 1 free incidences. Hence, the probability (over the residual

34

choice of G) that s is chosen in the last step, as the αth
ℓ neighbor of vℓ−1, is at most d−1

d·(n−ℓ) , and it

follows that pℓ ≤ d−1
d · 1

n−ℓ .
Towards upper-bounding the covariances of all (distinct) variable pairs, we also establish a lower

bound on pℓ (for ℓ ≥ 3).22 This is done by noting that the first ℓ − 1 steps visit distinct vertices
with probability 1−O(ℓ/n), and by taking a closer look at the free incidences. The point is that we
used one incidence of v0 = s, two incidences of each vi such that i ∈ [ℓ−2], and a single incidence of
vℓ−1. Hence, the number of free incidences is (n−ℓ) ·d+2 ·(d−1)+(ℓ−2) ·(d−2) = n ·d−2 ·(ℓ−1),

and it follows that pℓ ≥ (1−O(ℓ/n)) · d−1
n·d−2·(ℓ−1) >

d−1
d · 1−O(ℓ/n)

n .
We now show that, although the ζs,α’s are not pairwise independent, the sum of their covariances

is at most O(|D|2 · ℓ/n); that is, we shall show that C = O(ℓ/n). (We comment that a weaker
bound of C = O(ℓ) is easier to obtain, but it only implies a probability bound of poly(log n)/t2).)23

Using these bounds (i.e., B = O(1) and C = O(ℓ/n) = O(1/ log n)), the claim follows (as detailed
above).

Hence, it is left to prove the claim regarding the sum of all covariances; that is, the covariances
of ζs,α and ζs′,α′ for all s, s′ ∈ [n] and α, α′ ∈ D such that (s, α) ̸= (s′, α′). (This is proved only for
ℓ ≥ 3, since sc1(G) = sc2(G) = 0 holds for any graph G.) We consider two cases according to the
relation between s and s′.

Case 1: s = s′. In this case α ̸= α′ and a crude upper-bound on the covariance of ζs,α and ζs,α′

will suffice, because there are relatively few such pairs. In particular, we upper-bound the
covariance of ζs,α and ζs,α′ by Pr[ζs,α=ζs,α′ =1], and upper-bound the latter by the product
of Pr[ζs,α = 1] and the probability that both walks end at the same vertex (although they
take different paths (i.e., α ̸= α′)). Details follow.

Let γ denote the longest common suffix of α and α′ (i.e., γ is longest sequence over [d − 1]

such that α = βγ and α′ = β′γ), and note that i
def
= ℓ − |γ| ≥ 1 and αi ̸= α′

i. Then, the
probability that after i steps the two walks (corresponding to ζs,α and ζs,α′) are at the same
vertex is at most 1/(n− 2ℓ), since in the ith step different incidences are used (regardless of
whether or not the walks are at the same vertex after i − 1 steps). This upper bound holds
also when conditioning on ζs,α = 1, since it is derived by fixing the first walk and considering
the choice made in the ith step of the second walk. On the other hand, if the two walks are
at different vertices after i steps, then with probability at least 1 − ((ℓ − i)/(n − 2ℓ) they
will end-up in different vertices (since, as long as they are at different vertices, the next step
depends on different incidences). Hence,

Pr[ζs,α=ζs,α′ =1] ≤ Pr[ζs,α=1] ·
(

1

n− 2ℓ
+

ℓ− i

n− 2ℓ

)
= O(ℓ/n2).

Observing that there are less than n · |D|2 pairs in this case, it follows that the sum of their
covariances is n · |D|2 ·O(ℓ/n2) = O(|D|2 · ℓ/n).

22Note that p1 = p2 = 0.
23Specifically, we (crudely) upper-bound the covariance of ζs,α and ζs,α′ by Pr[ζs,α = ζs,α′ =1], and upper-bound

the latter by considering two cases. In case s = s′, we use a bound of Pr[ζs,α=1] = O(1/n), and the fact that there
are less than n · |D|2 such pairs. In case s ̸= s′, we upper-bound Pr[ζs,α=ζs,α′ =1] by the product of Pr[ζs,α=1] and
the probability that the second walk either hits the first one or ends at s′, where each of the latter events occurs with
probability O(ℓ/n). Hence, the sum of all covariances is upper-bounded by (n · |D|2) ·O(1/n)+ (n2 · |D|2) ·O(ℓ/n2) =
O(ℓ) · |D|2.

35

Case 2: s ̸= s′. In this case, we upper-bound the covariance of ζs,α and ζs′,α′ more carefully,
while relating it to Pr[ζs,α = 1]2. Fixing the first walk, we consider two sub-cases: In the
first sub-case the second walk does not intersect the first walk, and the analysis of the second
walk is very similar to the analysis of Pr[ζs,α=1], except that here at most 2ℓ vertices may
have less than d free incidences. The complementary sub-case occurs with probability at
most O(ℓ2/n), and we can show that the residual walk (after the collision) will hit s′ with
probability O(1/n). Combining both sub-cases, it follows that in this case Pr[ζs,α=ζs′,α′ =1]
is at most Pr[ζs,α=1]2 +O(ℓ2/n3). Details follow.

Our focus is on upper-bounding q
def
= Pr[ζs′,α′ = 1 | ζs,α = 1], and this is done by fixing an

arbitrary walk that witnesses ζs,α=1. As stated above, the probability that the second walk
intersects the first walk is O(ℓ2/n), and in this sub-case we consider the intersection point v
and argue that the probability that the residual walk that starts at v ends at s′ is O(1/n).
Hence, the contribution of this sub-case to q is O(ℓ2/n2).

Our main concern is with the complementary sub-case in which the second walk does not
intersect the first walk. In this sub-case the analysis of the second walk is very similar to
the analysis of Pr[ζs′,α′ = 1], except that here at most ℓ additional vertices (i.e., those on
the first walk) may have less than d free incidences. Specifically, we may assume that the
ℓ − 1st vertex in the walk is different from the first one (or else ζs′,α′ = 0), and therefore
the probability that the walk ends at s′ is at most d−1

d · 1
n−2ℓ , since at least n − 2ℓ vertices

have d free incidences. Hence, in this sub-case we get a probability bound of p′ℓ ≤
d−1
d · 1

n−2ℓ .

Recalling that pℓ >
d−1
d · 1−O(ℓ/n)

n , we get p′ℓ ≤
n

n−O(ℓ) · pℓ, which means that the contribution

of this sub-case to q is at most n
n−O(ℓ) · pℓ = (1 +O(ℓ/n)) · pℓ.

Combining the contribution of both sub-cases, we upper-bound Pr[ζs,α=ζs,α′ =1] = pℓ · q by

pℓ ·
(
O(ℓ2/n2) + (1 +O(ℓ/n)) · pℓ

)
= (1 +O(ℓ/n)) · p2ℓ ,

since pℓ = Ω(1/n) = ω(ℓ2/n2). Using pℓ = Pr[ζs,α = 1] = O(1/n), it follows that the
corresponding covariance equals

Pr[ζs,α=ζs,α′ =1]− Pr[ζs,α=1]2 ≤ (1 +O(ℓ/n)) · p2ℓ − p2ℓ

= O(ℓ/n) · Pr[ζs,α=1]2

= O(ℓ/n3).

Hence, the sum of the covariances of this case is at most n2 · |D|2 ·O(ℓ/n3) = O(|D|2 · ℓ/n).

Combining both cases, we conclude that the sum of all covariances is O(|D|2 ·ℓ/n), and C = O(ℓ/n)
follows.

Combining Lemmas 3.2.2 and 3.2.3, the theorem follows.

Digest. The proof of Theorem 3.2 reduces the problem of establishing lower bounds on the query
complexity of local self-ordering procedures for a graph G to analyzing the probability of forming
a simple cycle in a random walk on G (see Lemma 3.2.2). The definition of the latter probability
referred to non-backtracking random walks (see Definition 3.2.1). Indeed, non-backtracking random
walks, introduced in [1], are harder to analyze than standard random walks, but they fit our

36

application well. Nevertheless, an analogous definition of the probability of closing (i.e., containing)
a simple cycle in a random walk is natural also in the context of other types of random walks (e.g.,
standard or lazy ones).24 Turning back to Definition 3.2.1, we observe that the probability of
forming a simple cycle decreases exponentially with the girth of the graph. That is –

Proposition 3.3 (sc decreases exponentially with the girth): For every d-regular graph G of girth
g it holds that sc(G) ≤ (d− 1)−⌊(g−1)/2⌋.

Using Lemma 3.2.2 it follows that any d-regular n-vertex graph that has logarithmic girth does not
have local self-ordering procedures of query complexity O(no(1)).

Proof: Clearly, scℓ(G) = 0 for every ℓ ∈ [g − 1]. For ℓ > ⌊(g − 1)/2⌋, we observe that the
(distribution of the) vertex reached by an ℓ-step non-backtracking random walk (starting at a fixed
vertex) is a convex combination of vertices reached by ⌊(g − 1)/2⌋-step non-backtracking random
walks (which start at various vertices), which represent the last ⌊(g − 1)/2⌋ steps in the ℓ-step
walk. (That is, letting Xs(t) denote the vertex reached by an t-step non-backtracking random walk
starting at vertex s, we observe that Xs(ℓ) is a convex combination of Xv(⌊(g − 1)/2⌋)’s.) On
the other hand, the vertex reached by a ⌊(g − 1)/2⌋-step non-backtracking random walk (starting

at a fixed vertex) is uniformly distributed on a set of M
def
= d · (d − 1)⌊(g−1)/2⌋−1 vertices (i.e.,

Pr[Xs(⌊(g − 1)/2⌋)=v] ∈ {1/M, 0} for every s and v). Hence, an ℓ-step non-backtracking random
walk returns to the start vertex with probability at most 1/M < (d− 1)−⌊(g−1)/2⌋, let alone doing
so without revisiting any other vertex.

Can Theorem 3.2 be strengthened? Recall that Theorem 3.2 establishes the existence of
O(1)-regular n-vertex graphs G that are Ω(1)-robustly self-ordered such that any local self-ordering
procedure for G requires Ω(

√
n) queries. We ask whether this lower bound can be increased.

Open Problem 3.4 (what is the query complexity of local self-ordering for the worst possible
robustly self-ordered graph): For every d ∈ N and γ > 0, determine the minimal function Q :
N → N such that every n-vertex graph of maximal degree d that is γ-robustly self-ordered has a
local self-ordering procedure of query complexity at most Q(n). Specifically, two opposite extreme
challenges are stated next.

1. Does Q(n) = Ω(n); that is, do there exist n-vertex bounded-degree graphs that are Ω(1)-
robustly self-ordered, but do not have local self-ordering procedures of query complexity o(n).

2. Does Q(n) = Õ(
√
n); that is, does every n-vertex bounded-degree graph that is Ω(1)-robustly

self-ordered have a local self-ordering procedure of query complexity Õ(
√
n).

We note that the robustness (self-ordering) condition is essential for Problem 3.4, since there exist
n-vertex (asymmetric) graphs that require Ω(n) queries for local self-ordering: Consider an (n−3)-
cycle that is augmented by an isolated vertex that is connected to one vertex and an 2-vertex path
that is connected to its adjacent vertex (see Figure 7). This graph is asymmetric but any local
self-ordering procedure for it requires Ω(n) queries; however, this graph is not ω(1/n)-robustly
self-ordered.

24Note that in the latter cases it makes little sense to consider the probability of forming a simple cycle, since these
walks are likely to backtrack. On the other hand, one may consider the probability of containing a simple cycle (rather
than forming one) also in the case of non-backtracking random walks. However, as noted above, Definition 3.2.1 fits
our application best.

37

Figure 7: An augmented cycle requiring a linear number of queries for localization.

We also note that the lower bound asserted in Theorem 3.2 cannot be increased using the
proof strategy used in our proof (i.e., using Lemma 3.2.2). Furthermore, it seems that such an
improvement may not hold for random regular graphs, which (as shown in [6, Thm. 6.1]) are
Ω(1)-robustly self-ordered with probability 1− o(1).

Conjecture 3.5 (random regular graphs have Õ(
√
n)-query self-ordering procedures): For every

d ≥ 3, with probability 1−o(1), a random d-regular n-vertex graph has a local self-ordering procedure
of query complexity Õ(

√
n).

We believe that Conjecture 3.5 can be proved using the following strategy. Let ℓ′ = O(log log n)
and ℓ = 0.5 · ⌈logd−1 n⌉+ ℓ′. For every vertex v in a random n-vertex d-regular graph, let χv be a
random variable representing the number of collisions between pairs of vertices that are at distance
exactly ℓ from v. Then, it seems that the expected value of χv is O((d − 1)2ℓ

′
), and no value is

assigned probability that exceeds O((d − 1)−ℓ′). Furthermore, the values of different χv’s seem
sufficiently independent. Hence, it seems that a vertex v in a random d-regular graph G can be
uniquely identified by the number of collisions in ℓ-step walks from the vertices that are at distance
ℓ′/3 from v; that is, letting SG

v denote the set of vertices at distance ℓ′/3 from v (in G) and mG
w

denote the number of collisions between pairs of vertices that are at distance ℓ from w (in G), it
seems that the multi-set {mG

w : w ∈ SG
v } uniquely identifies v (in G). In such a case, we get a local

self-ordering procedure of query complexity (d− 1)ℓ
′/3 · (d− 1)ℓ = Õ(n1/2).

Acknowledgements

I am grateful to Avi Wigderson for collaboration in early stages of this research.

References

[1] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-Backtracking Random Walks Mix
Faster. Communications in Contemporary Mathematics, Vol. 9 (4), pages 585–603, 2007.

38

[2] D. Ellis. Lecture 13: The Expansion of Random Regular Graphs. Lecture notes, Algebraic
Methods in Combinatorics, University of Cambridge, March 2011.
Available at https://davidellis2.files.wordpress.com/2019/07/lecture13.pdf

[3] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[4] O. Goldreich. On Testing Asymmetry in the Bounded Degree Graph Model ECCC, TR20-118,
2020.

[5] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random
Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[6] O. Goldreich and A. Wigderson. Robustly Self-Ordered Graphs: Constructions and Applica-
tions to Property Testing. ECCC, TR20-149, 2020.

[7] O. Goldreich and A. Wigderson. Non-adaptive vs Adaptive Queries in the Dense Graph Testing
Model. ECCC, TR20-160, 2020. (Third revision, Sept. 2021.)

39

	Introduction
	The question and a brief summary of the answers
	Quantitative definitions
	The bounded-degree graph regime
	The dense graph regime
	The story: From the initial motivation to a general study
	Organization

	The Dense Graph Regime
	On local self-ordering procedures
	Proof of Theorem 1.5
	Explicit construction of graphs with local self-ordering procedures
	From robustness to locality: Proof of Theorem 1.7

	The Bounded-Degree Graph Regime
	Proof of Part 1 of Theorem 1.3
	Proof of Part 2 of Theorem 1.3

	Acknowledgements
	References

