
On Testing Asymmetry in the Bounded Degree Graph Model

Oded Goldreich∗

July 1, 2021

Abstract

We consider the problem of testing asymmetry in the bounded-degree graph model, where
a graph is called asymmetric if the identity permutation is its only automorphism. Seeking to
determine the query complexity of this testing problem, we provide partial results.

1. The query complexity of O(1/ log n)-testing asymmetry of n-vertex graphs is Ω̃(
√
n/ log n),

even if the tested graph is guaranteed to consist of connected components of size O(log n).

2. For s(n) = Ω(log n), the query complexity of ε-testing the set of asymmetric n-vertex
graphs in which each connected component has size at most s(n) is at most O(

√
n ·s(n)/ε)

and at least Ω(
√
n1−O(ε)/s(n)).

In addition, we show that testing asymmetry in the dense graph model is almost trivial.

Contents

1 Introduction 1

2 In the bounded-degree graph model 3

3 In the dense graph model 7

1 Introduction

Property testing refers to probabilistic algorithms of sub-linear complexity for deciding whether a
given object has a predetermined property or is far from any object having this property. Such
algorithms, called testers, obtain local views of the object by performing queries and their perfor-
mance guarantees are stated with respect to a distance measure that (combined with a distance
parameter) determines which objects are considered far from the property.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [5]). Much of this attention was devoted to testing graph properties in a variety of
models including the dense graph model [7], and the bounded-degree graph model [8] (surveyed
in [5, Chap. 8] and [5, Chap. 9], resp.). We mention, without elaboration, that the known results
concerning these models include both results regarding general classes of graph properties and
results regarding many natural graph properties. Yet, one natural property that (to the best of our
knowledge) was not considered before is asymmetry.

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:
oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/18).

1

A graph is called asymmetric if the identity permutation is its only automorphism. Recall that,
for a (labeled) graph G = (V,E) and a bijection φ : V → V ′, we denote by φ(G) the graph
G′ = (V ′, E′) such that E′ = {{φ(u), φ(v)} : {u, v}∈E}, and say that G′ is isomorphic to G. The
set of automorphisms of the graph G = (V,E), denoted aut(G), is the set of permutations that
preserve the graph G; that is, π ∈ aut(G) if and only if π(G) = G.

Definition 1.1 (asymmetric and symmetric graphs): A graph is called asymmetric if its sets of
automorphisms is a singleton, which consists of the trivial automorphism (i.e., the identity permu-
tation). Otherwise, the graph is called symmetric.

It turns out that testing asymmetry in the dense graph model is quite trivial, because, under the
corresponding distance measure, every graph is close to being asymmetric (see Section 3). Our
focus is on the bounded-degree graph model, where we obtain partial results. Our first result refers
to the complexity of testing asymmetry with a proximity parameter that vanishes at a moderate
rate.

Theorem 1.2 (lower bound on the query complexity of testing asymmetric graphs (in the bounded-
degree graph model)): The query complexity of O(1/ log n)-testing asymmetry of n-vertex graphs
is at least Ω̃(n0.5). Furthermore, this holds even if the tested graph is guaranteed to consist of
connected components of size O(log n).

Considering the related problem of testing the set of asymmetric graphs with small connected
components, we are able to obtain matching upper abnd lower bounds.

Theorem 1.3 (testing asymmetric graphs with small connected components (in the bounded-
degree graph model)): The query complexity of ε-testing whether an n-vertex graph is asymmetric
and has connected components of size poly(log n) is at most Õ(n0.5/ε) and at least Ω̃(n0.5−O(ε)).
Furthermore, the upper bound holds for one-sided error testers, whereas the lower bound holds also
for general (i.e., two-sided error) testers.

The results generalize to graphs with connected components of size at most s(n) = Ω(log n),
but in that case the gap between the upper and lower bounds is poly(s(n)). Note that, for
s(n) = o((log n)/ log log n), the testing problem is trivial, since the number of bounded-degree
s-vertex graphs is smaller than exp(O(s log s)).1 Hence, Theorem 1.3 is analogous to the state of
knowledge regarding (both versions of) the graph isomorphism testing problem.2 For all (three)
problems, we essentially know the query complexity for the related property that also postulates
small connected components (i.e., of poly-logarithmic size), but know little about the original prop-
erty: In particular, do testers of sublinear query complexity exist for these problems (in the original
property)? Or, on the other hand, is the original property harder than the restricted one?

1This implies that an n-vertex graph that consists of connected components of size at most s(n) =
o((logn)/ log logn) must have a few identical components, and is thus symmetric.

2For testing Graph Isomorphism in the bounded-degree graph model, the following is known [6].

1. The query complexity of testing isomorphism to a fixed n-vertex graph is Ω̃(n1/2).

2. The query complexity of testing isomorphism between two n-vertex graphs is Ω̃(n2/3).

The lower bounds are shown by using graphs that have connected components of size poly(logn), and in this case
the lower bounds are tight [6]. We mention that, unlike Theorem ??, one-sided error testing of isomorphism (even to
a fixed graph) has linear query complexity [6, Thm. 2.5].

2

2 In the bounded-degree graph model

In the bounded-degree model, graphs are represented by their incidence functions and distances
are measured as the ratio of the number of differing incidences over the maximal number of edges.
Specifically, for a degree bound d ∈ N, we represent a graph G = ([n], E) of maximum degree d
by the incidence function g : [n] × [d] → [n] ∪ {0} such that g(v, i) indicates the ith neighbor of v
(where g(v, i) = 0 indicates that v has less than i neighbors). The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the symmetric difference between E and E′ over dn/2,
and oracle access to a graph means oracle access to its incidence function.

Definition 2.1 (testing graph properties in the bounded-degree graph model): For a fixed degree
bound d, a tester for a graph property Π is a probabilistic oracle machine that, on input parameters
n and ε, and oracle access to (the incidence function of) an n-vertex graph G = ([n], E) of maximum
degree d, outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π of maximum degree d it holds that the
symmetric difference between E and E′ has cardinality that is greater than ε · dn/2.

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error.

(Throughout this work, we consider undirected simple graphs (i.e., no self-loops and parallel edges).)
The query complexity of a tester for Π is a function (of the parameters d, n and ε) that represents

the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ε. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). The query complexity of ε(n)-testing Π is defined as the query
complexity of testing when the proximity parameter is set to ε(n); that is, we say that the query
complexity of ε(n)-testing Π is at least Q(n) if distinguishing between n-vertex graphs in Π and
n-vertex graphs that are ε(n)-far from Π requires at least Q(n) queries.

Establishing Theorem 1.2. We generalize the claim by replacing the size bounds (of the
connected components) from logarithmic to an arbitrary function s : N → N such that s(n) =
Ω((log n)/ log logn). The strategy will be used also in the proof of Part 1 of Theorem 2.3, which
generalizes the lower bound part of Theorem 1.3.

Theorem 2.2 (Theorem 1.2, generalized): For every d ≥ 3 and any s : N → N such that s(n) =
Ω((log n)/ log logn), the query complexity of (1/(3d · s(n)))-testing whether an n-vertex graph is
asymmetric is Ω((n/s(n))1/2). This holds even if it is guaranteed that the tested graph consists of
connected components of size at most s(n).

Proof: We use the following facts, proved in [2, 3]: (F1) most d-regular s-vertex graphs are
asymmetric, and (F2) their number exceeds Nd(s) = Ω(s/d!)ds/2. Note that (F1) holds even if we
require the graphs to be connected, since most d-regular graphs are actually expanders. Hence, for
some constant c and s(n) = c log2 n

d log2 log2 n
it holds that Nd(s(n)

s(n)! > 2(0.5d−1)c log2 n−o(logn), which is larger

3

than n when c > 2/(d− 2). It follows that there exists a collection, denoted C, of m = n/s(n) non-
isomorphic s(n)-vertex d-regular graphs that are asymmetric and connected. The theorem follows
by showing that Ω(

√
m) queries are necessary for distinguish the following two distributions:

1. A random isomorphic copy of the n-vertex graph G1 that consists of copies of all graphs in
C; that is, G1 consists of m connected components such that each graph in C appears as a
connected component.

2. A random isomorphic copy of the n-vertex graph that consists of two copies of m/2 random
graphs in C; that is, we first select a random m/2-subset of C, denoted C ′, and take a random
isomorphic copy of the n-vertex graph GC′ that consists of two copies of each graph in C ′.

Note that each graph in the support of the first distribution is asymmetric, whereas each graph
in the support of the second distribution is (1/(3d · s(n)))-far being asymmetric. The latter claim
holds because making GC′ asymmetric requires modifying the incidence of at least one vertex in
at least m/2 of its connected components, which amounts to at least m

4 = n
4s(n) >

1
3d·s(n) · dn/2

edge-modifications.
The fact that Ω(

√
m) queries are necessary to distinguish the foregoing two distributions is

proved by the “birthday” argument. Specifically, when making q queries to a graph drawn from
the second distribution, we encounter vertices in two different connected components that are
isomorphic to the same graph (in C) with probability at most

(
q
2

)
/|C ′|, where |C ′| = m/2. Whenever

this event does not occur, the answers are distributed identically to the way they are distributed
when querying a graph drawn from the first distribution.

Establishing Theorem 1.3. We generalize the claim by replacing the size bounds (of the
connected components) from polylogarithmic to an arbitrary function s : N → N such that
s(n) = Ω((log n)/ log log n).

Theorem 2.3 (Theorem 1.3, generalized): For s : N → N, let Π(s) =
⋃
n∈N Π

(s)
n such that Π

(s)
n is

the set of asymmetric n-vertex graphs that have connected components of size at most s(n). Then,
for every degree bound d ≥ 3, the following holds.

1. If s(n) = Ω((log n)/ log log n), then the query complexity of ε-testing Π
(s)
n (in the bounded-

degree graph model) is Ω((n/s(n))0.5−O(ε)).

In particular, the query complexity of (1/(3d · s(n)))-testing Π
(s)
n is Ω((n/s(n))0.5).

2. There exists a one-sided error ε-tester for Π(s) (in the bounded-degree graph model) that
makes O(n0.5 · s(n)/ε) queries, and runs in time Õ(n0.5/ε) · poly(s(n)).

We stress that Part 1 holds also for two-sided error testers. Recall that, for s(n) = o((log n)/ log log n),
the testing problem is trivial, since the number of bounded-degree s-vertex graphs is smaller than
exp(O(s log s)) < n/s(n). Theorem 2.3 follows by combining Propositions 2.4 and 2.5, which are
stated and proved next.

Proposition 2.4 (lower bound on testing Π(s) (in the bounded-degree graph model)): For every
d ≥ 3 and any s : N → N such that s(n) = Ω((log n)/ log logn), the query complexity of ε-testing
the set of n-vertex asymmetric graphs that consist of connected components of size at most s is
Ω((n/s(n))0.5−O(ε)).

4

Proof: We use the same ingrediants as in the proof of Theorem 2.2, but generalize the argument
as follows. Specifically, recall that, for s(n) = c log2 n

d log2 log2 n
, we denote by C a collection of m = n/s(n)

non-isomorphic s(n)-vertex d-regular graphs that are asymmetric expanders. Letting t = nO(ε), the
claim of the proposition follows by showing that Ω(

√
m/t) queries are necessary for distinguish the

following two distributions:

1. A random isomorphic copy of the n-vertex graph G1 that consists of copies of all graphs in
C; that is, G1 consists of m connected components such that each graph in C appears as a
connected component.

2. A random isomorphic copy of the n-vertex graph that consists of t copies of m/t random
graphs in C; that is, we first select a random m/t-subset of C, denoted C ′, and take a
random isomorphic copy of the n-vertex graph GC′ that consists of t copies of each graph
in C ′.

Note that the first distrtibution is defined exactly as in the proof of Theorem 2.2, whereas the
second distribution in the latter proof corresponds to the special case of t = 2. Recalling that each
graph in the support of the first distribution is asymmetric (and so in Π(s), the key observation
here is that each graph in the support of the second distribution is ε-far from Πs). We prove this
claim in two steps.

Step 1: We show that if GC′ is ε-close to Π(s), then it can be made asymmetric by making O(εdn)
edge modifications, while preserving the partition of its vertices to connected components.

This is shown by using the following two facts.

1. The graph GC′ consists of connected components that are each an s-vertex exapnder
graph, whereas each graph in Π(s) consists of connected components that are each of
size at most s.

2. The cost (in edges) of splitting a connected component of GC′ into two disconnected
parts is at most a constant factor cheaper than the cost of modifying its smaller part
arbitrarily, since each connected component is an expander.

Now, let us consider a bijection µ of the connected components of GC′ to (a subset of)
the connected components of G′ ∈ Π(s) that preserve a majority vote of the vertices in
each component (i.e., if a strict majority of the vertices of component i were mapped to
component j, then µ(i) = j). If the said majority exists for all connected components, then
the claim follows directly by the second fact (by charging edge-modifications to the minority
parts). Otherwise, for connected components that are relocated with no such majority, we can
charge the edge-modifications to the entire connected component. Actually, we first modify
the connected components in which the majority of the vertices are mapped to the same
component, and then modify all the incidences of the remaining vertices in order to obtain a
graph in Π(s).

Step 2: Next we show that making the graph GC′ asymmetric, while preserving the partition of
its vertices to connected components, requires mapping the t copies of each graph in C ′ to t
different s(n)-vertex graphs.

5

The point is that the number of s-vertex d-regular graphs that are ε′-close to a given graph is
smaller than

(
ds

2ε′·ds
)
·(s+1)2ε′·ds < (ds)4ε′ds < n4cε′ . Using ε′ = O(ε) and n4cε′ = o(t), it follows

that making GC′ asymmetric (while preserving its connected components) requires modifying
at least 2ε′ ·ds incidences in almost each of its connected components, which amounts to more
than m · ε′ · ds = ε′ · dn edge modifications.

Combining these two steps, the claim (that GC′ is ε-far from Π(s)) follows.
The fact that Ω(

√
m/t) queries are necessary to distinguish the foregoing two distributions is

proved by the “birthday” argument (as in the proof of Theorem 2.2). Specifically, when making
q queries to a graph drawn from the second distribution, we encounter vertices in two different
connected components that are isomorphic to the same graph (in C) with probability at most(
q
2

)
/|C ′|, where |C ′| = m/t.

Proposition 2.5 (upper bound on testing Π(s) (in the bounded-degree graph model)): For every
d ≥ 3, there exists a one-sided error tester of query complexity O(n1/2 · s/ε) for the set of n-vertex
asymmetric graphs that consist of connected components of size at most s. Furthermore, the running
time of the tester is Õ(n1/2/ε) · poly(s).

Proof: On input parameters n, s and ε > 0, and oracle access to a graph G = ([n], E), the
algorithm proceeds as follows.

1. It selects uniformly at random m = O(
√
n/ε) vertices v1, ..., vm ∈ [n].

2. For each i ∈ [m], the algorithm starts a (e.g., BFS) exploration of the connected component
in which vi resides, and halts rejecting if it discovers a connected component having more
than s vertices.

3. If for some i ∈ [m], the connected component explored from vi is symmetric, then the algo-
rithm halts rejecting.

4. If for some i, j ∈ [m], the connected components explored from vi and vj are different but
isomorphic (i.e., vi does not reside in the same connected component as vj but these two
connected components are isomorphic), then the algorithm halts rejecting.

If the algorithm did not reject, then it accepts.
The query complexity of this algorithm is O(m · s), while its running time is dominated by

Steps 3 and 4. Observe, however, that Steps 3 and 4 can be implemented in time Õ(m) · poly(s)
by using the canonical labeling algorithm (for bounded-degree graphs) of [1] (along with a sorting
algorithm).

Let Π = Π
(s)
n denote the set of n-vertex asymmetric graphs that consist of connected components

of size at most s. Evidently, the algorithm accepts each graph in Π with probability 1. On the
other hand, if G is ε-far from Π, then one of the following three cases must hold.

Case 1: At least εn/6 of its vertices reside in connected components of size greater than s.

In this case, Step 2 of the algorithm rejects (w.h.p.).

Case 2: At least εn/6 of its vertices reside in connected components of size at most s that are
symmetric.

In this case, Step 3 of the algorithm rejects (w.h.p.).

6

Case 3: At most εn/3 of its vertices reside in connected components that are either of size ex-
ceeding s or are symmetric.

In this case, let S denote the set of all other vertices (i.e., vertices that reside in asymmetric
connected components of size at most s), and let GS denote the subgraph of G induced by S.

Consider the graph G′ that results by augmenting GS with (n−|S|)/s connected components
(each of size s) that are neither symmetric nor isomorphic to any other connected component
(where the existence of such a collection of s-vertex graphs has been established in the first
paragraph of the proof of Theorem 2.2). Recalling that G is ε-far from Π and n− |S| ≤ εn/3,
it follows that G′ is ε/3-far from being asymmetric.

Let C1, ..., Cm′ denote the connected components of GS , and recall that each Ci has at most
s vertices. Consider the equivalence relation, denoted ≡, defined by graph isomorphism (over
the set of Ci’s); that is, Ci ≡ Cj if and only if Ci is isomorphic to Cj . Let nk denote the
number of k-vertex connected components that reside in equivalence classes that has more
than a single Ci; that is,

nk = |{i ∈ [m′] : |Ci| = k & ∃j 6= i s.t. Ci ≡ Cj}|

where |Ci| denotes the number of vertices in Ci. Then,
∑

k∈[s] nk ·k ≥ εn/6 must hold, because

otherwise G′ is ε/3-close to being asymmetric; to see this, replace the connected components
in the non-singleton equivalence classes by asymmetric connected components of size s that
are not isomorphic to any other connected component (see the foregoing comment regarding
the existence of such a collection).

Now, if we take a sample of Θ(ε−1√n) vertices, then it is very likely that Θ(
√
n) of these

vertices hit connected components in the non-singleton equivalence classes. Recalling that∑
k∈[s] nk · k ≤ n, we infer that this sample is likely to hit two different elements of the same

class. This holds because, with high probability, we are likely to have several classes hit by at
least two samples, and with probability at least 1/2 each of these pairs of samples hit different
Ci’s in the relevant class.

Hence, in each of these cases, the algorithm rejects with high probability, which establishes our
claim.

On testing the set of symmetric graphs. We mention that testing the set of symmetric graphs
is almost trivial; specifically, the query complexity is 0 if ε ≥ 4/n, and dn = O(d/ε) otherwise. This
is the case because, with respect to a degree bound d, every n-vertex graph is 2d

dn/2 -close to being

symmetric (e.g., by making two vertices isolated).

3 In the dense graph model

In the dense graph model, a graph G = ([n], E) is represented by its adjacency predicate, g :
[n]× [n]→ {0, 1}, such that g(u, v) = 1 if and only if {u, v} ∈ E. The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the symmetric difference between E and E′ over

(
n
2

)
,

and oracle access to a graph means oracle access to its adjacency predicate.

7

Definition 3.1 (testing graph properties in the dense graph model): A tester for a graph property
Π is a probabilistic oracle machine that, on input parameters n and ε, and oracle access to (the
adjacency predicate of) an n-vertex graph G = ([n], E), outputs a binary verdict that satisfies the
following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ε ·

(
n
2

)
.

The query complexity of a tester for Π is a function (of the parameters n and ε) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ε. In this section, we show that testing the set of asymmetric graphs in the dense graph
model is almost trivial; specifically, the query complexity is 0 if ε > O((log n)/n), and

(
n
2

)
= Õ(1/ε2)

otherwise. This holds because in the first case (i.e., ε > O((log n)/n)), all n-vertex graphs are ε-close
to being asymmetric (see Proposition 3.2), whereas in the second case one can afford to retrieve
the entire graph.

Proposition 3.2 (all graphs are close to being asymmetric): In the dense graph model, every

n-vertex graph G is O(logn)
n -close to being asymmetric.

Proof: Given an arbitrary graph G = ([n], E), we construct a random variant of it, denoted
G′, by re-randomizing O(n log n) of its adjacencies, and show that (w.h.p.) the resulting graph is
asymmetric. Specifically, we consider the following “randomized” version.

Construction 3.2.1 (construction of G′): Given an arbitrary graph G = ([n], E), we proceed as
follows.

1. Select an arbitrary subset, S, of ` = O(log n) vertices in G.

2. Replace the subgraph of G induced by S with a random `-vertex graph.

3. Replace the bipartite subgraph that connects S and [n] \ S by a random bipartite graph; that
is, for each s ∈ S and v ∈ [n] \ S, the edge {s, v} in contained in the resulting graph G′ with
probability 1/2.

We shall first show that, with very high probability, the subgraph of G′ induced by S is not
isomorphic to the subgraph of G′ that is induced by any other `-subset.

Claim 3.2.2 (uniqueness of S): For every `-subset S fixed in Step 1 of Construction 3.2.1, with
high probability over Steps 2 and 3, for every `-subset S′ 6= S of [n], the subgraph of G′ induced by
S′ is not isomorphic to the subgraph of G′ induced by S.

Proof: The case of S′∩S = ∅ is easy, because in this case the subgraph of G′ induced by S′ is fixed
is Step 1 (since it equals the subgraph of G induced by S′), whereas a random `-vertex graph (as

selected in Step 2) is isomorphic to this fixed graph with probability at most (`!) · 2−(`2) �
(
n
`

)−1
,

where the inequality uses a sufficiently large ` = O(log n). Hence, we can afford to take a union

8

bound over all `-subsets that are disjoint of S. However, for sets that are not disjoint of S, the
foregoing probability bound does not hold, and a more careful analysis is called for. Nevertheless,
the foregoing analysis does provide a good warm-up towards the rest.

First, for each `-set S′ ⊂ [n] such that S′ 6= S, we shall upper-bound the probability that the
subgraphs of G′ induced by S and S′ are isomorphic as a function of |S ∩ S′|. For every bijection

π : S → S′, let FP(π)
def
= {v ∈ S : π(v) = v} denote the set of fixed-points of π, and note that

|FP(π)| ≤ ` − 1 (since S 6= S′). Now, letting GR denote the subgraph of G induced by R, we
claim that the probability that there exists a bijection π : S → S′ such that π(G′S) = G′S′ is
upper-bounded by ∑

π:S
1-1→S′

min
(

2−|FP(π)|·(`−|FP(π)|)/3, 2−((`−|FP(π)|)/32)
)

(1)

≤
∑

f∈{0,...,|S∩S′|}

`!

f !
· 2−max(6·f ·(`−f),(`−f)·(`−f−1))/18

<
`!

|S ∩ S′|!
· 2−Ω((`−|S∩S′|)·`) (2)

where f represents the size of FP(π). To justify the upper bound claimed in Eq. (1), consider
an arbitrary bijection π : S → S′, and identify a set I ⊆ S \ FP(π) such that π(I) ∩ I = ∅ and
|I| ≥ (` − |FP(π)|)/3. Letting eG′(u, v) = 1 if {u, v} is an edge in G′ and eG′(u, v) = 0 otherwise,
observe that π(G′S) = G′S′ if and only if eπ(G′)(π(u), π(v)) = eG′(π(u), π(v)) for every {u, v} ∈

(
S
2

)
.

Noting that eπ(G′)(π(u), π(v)) = eG′(u, v), the first bound in Eq. (1) is justified by

PrG′

[
∀(u, v)∈

(
S

2

)
: eπ(G′)(π(u), π(v)) = eG′(π(u), π(v))

]
≤ PrG′ [∀(u, v)∈FP(π)×I : eG′(u, v) = eG′(π(u), π(v))]

=
∏

(u,v)∈FP(π)×I

PrG′ [eG′(u, v) = eG′(u, π(v))]

= 2−|FP(π)|·|I|

≤ 2−|FP(π)|·(`−|FP(π)|)/3

where the equalities are due to the disjointness of the sets FP(π)× I and FP(π)× π(I) (to the fact
that π(u) = u for every u ∈ FP(π)), and to the fact that the incidences of all vertices in FP(π) ⊆ S
are random. Similarly, we justify the second bound in Eq. (1) by

PrG′

[
∀{u, v}∈

(
S

2

)
: eπ(G′)(π(u), π(v)) = eG′(π(u), π(v))

]
≤ PrG′

[
∀{u, v}∈

(
I

2

)
: eG′(u, v) = eG′(π(u), π(v))

]
=

∏
{u,v}∈(I2)

PrG′ [eG′(u, v) = eG′(π(u), π(v))]

= 2−(|I|2)

≤ 2−((`−|FP(π)|)/32)

9

where the equalities are due to the disjointness of the sets
(
I
2

)
and

(
π(I)

2

)
, and to the fact that the

incidences of all vertices in I ⊆ S \ FP(π) ⊆ S are random.
Combining Eq. (1)&(2) with a union bound over all `-subsets S′ ⊂ [n] that are different from

S, we upper-bound the probability that the subgraphs of G′ induced by S and by some other `-set
are isomorphic by∑

S′∈([n]`)\{S}

`!

|S ∩ S′|!
· 2−Ω((`−|S∩S′|)·`) =

∑
i∈{0,...,`−1}

(
`

i

)
·
(
n− i
`− i

)
· `!
i!
· 2−Ω((`−i)·`) (3)

where the index i represents the size of the intersection with S. Using a sufficiently large ` =
O(log n), we have

∑
i∈{0,...,`−1}

(
`

i

)
·
(
n− i
`− i

)
· `!
i!
· 2−Ω((`−i)·`) =

∑
i∈{0,...,`−1}

(
`

i

)2

·
(
n− i
`− i

)
· (n− i)!

(n− `)!
· 2−Ω((`−i)·`)

<
∑

i∈{0,...,`−1}

n`−i ·
(
`

i

)2

· 2−Ω((`−i)·`)

< ` · max
i∈{0,...,`−1}

{
n`−i ·

(
`

i

)2

· 2−Ω((`−i)·`)

}
= ` ·

(
n · `2 · 2−Ω(`)

)
which is o(1). The claim follows.

Conclusion. Using Claim 3.2.2, we claim that (w.h.p.) the graph G′ is asymmetric. This holds
because each of the following claims holds with high probability.

1. Any automorphism of the graph G′ maps the set S to itself.

(Indeed, this is due to Claim 3.2.2.)

2. The subgraph of G′ induced by S is asymmetric.

(Recall that by [4], almost all `-vertex graphs are asymmetric.)

3. Any vertex v ∈ [n] \ S has a different “neighborhood pattern” with respect to S; that is, for
every u 6= v ∈ [n]\S, there exists w ∈ S such that {u,w} is an edge in G′ if and only if {v, w}
is not an edge in G′.

By combining Conditions 1 and 2, it follows that any automorphism of the graph G′ maps each
vertex w ∈ S to itself, whereas by Condition 3 such an isomorphism must map each v ∈ [n] \ S to
itself. Hence, the claim (that G′ is asymmetric) follows, and the proposition follows by noting that
G′ is `·n

n2 -close to G.

On testing the set of symmetric graphs. We mention that testing the set of symmetric
graphs is also almost-trivial; specifically, the query complexity is 0 if ε ≥ 1/n, and

(
n
2

)
= O(1/ε2)

otherwise. This is the case because each n-vertex graph is 1
n -close to being symmetric, since by [4,

Thm. 1] any n-vertex graph can be made symmetric by modifying the edge relation of at most n−1
2

vertex-pairs. (Note that an upper bound of n − 1 is obvious by picking two vertices u and v, and
modifying the neighborhood of u to equal that of v.)

10

References

[1] L. Babai and E.M. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium on the
Theory of Computing, pages 171–183, 1983.

[2] B. Bollobas. Distinguishing Vertices of Random Graphs. North-Holland Mathematics Studies,
Vol. 62, pages 33–49, 1982.

[3] B. Bollobas. The Asymptotic Number of Unlabelled Regular Graphs. J. Lond. Math. Soc.,
Vol. 26, pages 201–206, 1982.

[4] P. Erdos and A. Renyi. Asymmetric Graphs. Acta Mathematica Hungarica, Vol. 14 (3), pages
295–315, 1963.

[5] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[6] O. Goldreich. Testing Isomorphism in the Bounded-Degree Graph Model. ECCC, TR19-102,
2019.

[7] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract in 37th
FOCS, 1996.

[8] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

11

