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Abstract

Prior studies of testing graph properties presume that the tester can obtain uniformly dis-
tributed vertices in the tested graph (in addition to obtaining answers to the some type of
graph-queries). Here we envision settings in which it is only feasible to obtain random vertices
drawn according to an arbitrary distribution (and, in addition, obtain answers to the usual
graph-queries). We initiate a study of testing graph properties in such settings, while adapting
the definition of distance between graphs so that it reflects the different probability weight of
different vertices. Hence, the distance to the property represents the relative importance of
the “part of the graph” that violates the property. We consider such “vertex-distribution free”
(VDF) versions of the two most-studied models of testing graph properties (i.e., the dense graph
model and the bounded-degree model).

In both cases, we show that VDF testing within complexity that is independent of the
distribution on the vertex-set (of the tested graph) is possible only if the same property can be
tested in the standard model with one-sided error and size-independent complexity. We also
show that this necessary condition is not sufficient; yet, we present size-independent VDF testers
for many of the natural properties that satisfy the necessary condition.
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g.,
a recent textbook [14]). Loosely speaking, property testing typically refers to sub-linear time
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and the testers get
oracle access to this function (and thus may be expected to work in time that is sub-linear in the
size of the object).

A significant portion of the foregoing research was devoted to testing graph properties in two
different models: the dense graph model (introduced in [18] and reviewed in [14, Chap. 8]) and the
bounded-degree graph model (introduced in [20] and reviewed in [14, Chap. 9]).1 In both models,
it was postulated that the tester can sample the vertex-set uniformly at random2 (and, in both
models, distances between graphs were defined with respect to this distribution).

1.1 The new models

Envisioning settings in which uniformly sampling the vertex-set of the graph is not realistic, we
ask what happens if the tester can obtain random vertices drawn according to some distribution D
(and, in addition, obtain answers to the usual graph-queries). The distribution D should be thought
of as arising from some application, and it is not known a priori to the (application-independent)
tester. In this case, it is also reasonable to define the distance between graphs with respect to the
distribution D, since this is the distribution that the application uses. (See motivational discussion
in Section 1.4.) The foregoing suggestion may become more clear when focusing on specific graph
testing models, as we do next.

The bounded-degree graph model. In the standard model of testing bounded-degree graphs,
for a constant degree bound d, graphs (over the vertex-set [n] = {1, 2, ..., n}) are represented by
incidence functions of the form g : [n] × [d] → [n] ∪ {⊥} such that g(v, i) is the ith neighbor of
v (and g(v, i) = ⊥ if v has less than i neighbors). The tester is given n (along with a proximity
parameter ǫ) and oracle access to g, and is required to accept (whp) if g represents a graph having a
predetermined property and reject (whp) if g is far from representing such a graph. Specifically, g is
considered ǫ-far from the graph property Π if every g′ : [n]× [d]→ [n]∪{⊥} that represents a graph
in Π differs from g on more than an ǫ fraction of the domain (i.e., Pr(v,i)∈[n]×[d][g(v, i) 6=g′(v, i)] > ǫ).

In the new model, the vertex-set of the graph is arbitrary, and the tester is given a sampling
device that returns vertices in the graph according to some distribution D. In addition, the tester
is given oracle access to the incidence function of the graph, G = (V,E), which has the (analogous)
form g : V × [d] → V ∪ {⊥}. As before, the tester has to accept (whp) in case the graph has the
property, and reject (whp) if the graph is far from the property, but here distances are measured
according to D; that is, g is considered ǫ-far from the graph property Π if, for every g′ : V × [d]→
V ∪ {⊥} that represents a graph in Π, it holds that Prv←D,i∈[d][g(v, i) 6=g′(v, i)] > ǫ.

1A third model, called the general graph model (introduced in [31, 26] and reviewed in [14, Chap. 10]), was also
studied.

2Actually, in all these models, it is postulated that the vertex-set consists of [n] = {1, 2, ..., n}, where n is a natural
number that is given explicitly to the tester, enabling it to sample [n] uniformly at random.
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We stress that, unlike in the standard presentations of the bounded-degree graph model, the
tester is not given a description of the vertex-set. Such a description is implicit in the standard
presentations, which provide the tester with the size parameter n (while postulating that the vertex-
set equals [n]). As discussed in [15], a more flexible model may provide the tester with (1) a device
that samples the vertex-set uniformly at random, along with (2) partial information regarding the
vertex-set, ranging from a full specification of the vertex-set to nothing. Here, we chose the latter
option, because it seems most compatible with the settings that are envisioned above (where the
vertex-set may not be known).

The foregoing model may be called a distribution-free version of the bounded-degree graph
testing model. Note, however, that the distribution on the domain of the incidence function is not
arbitrary; it is rather a product of an arbitrary distribution D over the vertex-set and the uniform
distribution over [d]. For this reason, we use the (more cumbersome) term vertex-distribution-free,
abbreviated VDF.

The dense graph model. Analogously, we present a vertex-distribution-free version of the
dense graph testing model. Again, the vertex-set of the graph is arbitrary, and the tester is given a
sampling device that returns vertices in the graph according to some distribution D. In addition,
the tester is given oracle access to the adjacency predicate g : V × V → {0, 1} of the graph,
G = (V,E). The tester has to accept (whp) in case the graph has the property, and reject (whp)
if the graph is far from the property, but here distances are measured according to D; that is, g is
considered ǫ-far from the graph property Π if, for every g′ : V ×V → {0, 1} that represents a graph
in Π, it holds that Pru,v←D[g(u, v) 6= g′(u, v)] > ǫ. (Note that the standard model corresponds to
the special case in which D is guaranteed to be uniform over V = [n], and the tester is also given
n.)3

We stress that the distribution induced on the domain of the adjacency predicate is not arbitrary,
but is rather the Cartesian product of an arbitrary distribution D with itself. We mention that
this model was briefly discussed by Goldreich, Goldwasser, and Ron [18, Sec. 10.1], where it was
viewed as a restricted case of distribution-free testing (which was briefly discussed in the subsequent
paragraph in [18, Sec. 10.1]).

Focus: Query complexity that only depends on the proximity parameter. In this work,
we focus on testers having query complexity that only depends on the proximity parameter ǫ. We
refer to such testers as strong testers.4 Note that in the standard testing models this means that the
complexity is independent of the size of the graph (and in [14] the term “size-oblivious complexity”
is used), but in the VDF testing models this also means that the complexity is independent of the
vertex-distribution D. We stress that strong testability does not exhaust the scope of property
testing, and that going beyond strong testability is of interest also in the vertex-distribution-free
context (see discussion in Section 5.2).

Additional sampling device. We believe that providing the tester with uniformly distributed
vertices, in addition to samples drawn from D, is not compatible with the settings that we envision.

3Again, a more flexible model is discussed in [15].
4In some sources (cf., e.g. [4]), the term “strongly testable” refers only to one-sided error testers of such complex-

ity. In [10], “strong testability” is defined as having a proximity oblivious tester (with linear detection probability
function).
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Still, in light of the fact that some of our lower bounds rely on the tester’s inability to sample
the vertex-set uniformly, we consider also the case that such uniform samples are provided to the
tester. We discuss this secondary model in Section 4.

1.2 Our main results

We first observe that in the vertex-distribution-free (VDF) versions of both the dense and bounded-
degree graph models, strong testability implies strong testability with one-sided error.5 We mention
that this result stands in sharp contrast to the standard models where there are significant gaps
between the complexities of one-sided error and general testers (see, for example, the case of ρ-
Clique in the standard dense graph model [18], and the case of cycle-freeness in the standard
bounded-degree graph model [20]).6

Theorem 1.1 (strong testability in the VDF models implies one-sided error testability):7 If a
graph property is strongly testable in the VDF version of the dense graph model (resp., bounded-
degree graph model), then it is strongly testable with one-sided error in the same model. Fur-
thermore, in the case of the dense graph model (resp., bounded-degree graph model), the query
complexity of VDF testing with one-sided error is at most polynomial (resp., exponential) in the
complexity of VDF testing with two-sided error.

Since the standard testing models (for dense and bounded-degree graphs) are (essentially) special
cases of the VDF models, it follows that only graph properties that are strongly testable with one-
sided error in the standard model are strongly testable in the corresponding VDF model. A natural
question is whether the necessary condition for strong testability in the VDF models is a sufficient
one.8 We show that this is not the case.

Theorem 1.2 (strong testability with one-sided error in the standard model does not suffice for
strong testing in the VDF model):9 There are graph properties that are strongly testable with one-
sided error in the standard dense graph model (resp., bounded-degree graph model), but are not
strongly testable in the VDF version of the dense graph model (resp., bounded-degree graph model).

Theorem 1.2 is manifested by natural properties such as Connectivity. In light of Theorem 1.2, we
confine ourselves to showing that some natural classes of graph properties that are strongly testable
with one-sided error in the standard model are strongly testable in the corresponding VDF model.
In the case of the dense graph model, we consider two such classes.

5A tester is said to have one-sided error if it always accepts objects that have the property (rather than accept
them with high probability.

6Recall that, in the standard dense graph model, the sets of n-vertex graphs having a clique of size ρ · n has a
poly(1/ǫ)-query tester (with two-sided error) but no o(n)-query testers with one-sided error. Likewise, in the standard
bounded-degree graph model, cycle-freeness has a poly(1/ǫ)-query tester (with two-sided error) but no o(

√
n)-query

testers with one-sided error.
7The “dense graph model” part (resp., “bounded-degree graph model” part) of Theorem 1.1 appears as Theo-

rem 2.3 (resp., Theorem 3.3).
8We mention that a characterization of the class of “natural” graph properties that are strongly tested with

one-sided error in the standard dense graph model was provided in [5].
9The “dense graph model” part (resp., “bounded-degree graph model” part) of Theorem 1.2 is established both

by Proposition 2.9 and Proposition 2.11 (resp., both by Proposition 3.5 and Proposition 3.6).
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Theorem 1.3 (classes that are strongly testable in the VDF dense graph model):10 The following
properties are strongly testable in the VDF version of the dense graph model.

1. Any general graph partition problem that is strongly testable with one-sided error in the stan-
dard dense graph model.

2. Any subgraph-freeness property.

Furthermore, in the case of general partition problems as well as in the case that the subgraph is
bipartite, the complexity is polynomial in 1/ǫ.

The framework of graph partition problems was introduced in [18], where it was shown that all
these properties are strongly testable (possibly with two-sided error). The subclass that admits
strong testers with one-sided error was characterized in [24], and it contains problems such as
k-coloring. (Actually, we consider a natural extension of the framework and the aforementioned
results, presented recently in [29].) Subgraph-freeness properties were first considered in [3], where
it was shown that all these properties (e.g., triangle-freeness) are strongly testable with one-sided
error.

In the case of the bounded-degree graph model, our results are more sporadic in nature. This is
an artifact of starting with less rich body of results regarding the standard model. Specifically, our
starting point is provided by the few strong testing results obtained in [20], and the fact (established
in [9]) that a minor-free property is strongly testable with one-sided error if and only if the minor
is cycle-free (i.e., is a forest).11

Theorem 1.4 (properties that are strongly testable in the VDF bounded-degree graph model):12

The following properties are strongly testable in the VDF version of the bounded-degree graph model.

• Subgraph-freeness, degree-regularity, and being Eulerian.

• For every k ≥ 1, containing no tree with k leaves.13

A begging question is whether the strong testability results (asserted in Theorem 1.4) can be
extended to other tree (and forest) minors, which are all strongly testable in the standard model
(see [9]). We refrain from studying this question here, since the corresponding analyses of the
strong testers in the standard model are already fairly complex.

Additional results. The foregoing overview does not cover all results presented in this work.
Notable omissions include:

• A study of two classes of graph properties that are easy to test in the standard dense graph
model (see Section 2.4). We show that one class, which is trivial to test with one-sided error
in the standard model, is hard to test in the current VDF model, whereas for the other

10The first (resp., second) part of Theorem 1.3 appears as Theorem 2.7 (resp., Theorem 2.8).
11The fact (establshed in [7]) that all minor-free properties are strongly testable (in the standard bounded-degree

graph model) is irrelevant here, since we need strong one-sided error testers.
12The VDF-testability of the various properties is established in Sections 3.2–3.4.
13Each of these properties correspond to a minor-freeness property, where the minor is a k-star (i.e., a (k+1)-vertex

tree with k leaves). Ditto with respect to having no k-path, where the minor is a k-path (i.e., a path of k edges),
which is covered by the prior item (i.e., subgraph-freeness).
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class (which consists of properties of sparse graphs) the situation is mixed. In particular, we
establish the hardness of testing (in the VDF model) whether a graph consists of two stars
each containing at least one third of the graph’s vertices (see Proposition 2.11), and show that
any minor-free graph property can be strongly tested in the VDF model (see Theorem 2.13).

• A study of a generalized version of the VDF bounded-degree graph model that is briefly
discussed at the end of Section 1.4. The bottom-line is that the positive results of the VDF
(bounded-degree graph) model extend to the generalized model (see Section 3.5).

• A study of the secondary models mentioned at the end of Section 1.1. The most important
take-home message is that the relation to one-sided error testing does not extend to these
models (see Section 4).

1.3 Techniques

Throughout the paper, we denote by D both a distribution over a vertex-set and a device that

outputs samples drawn from this distribution. We also use the notation D(v)
def
= Prx←D[x=v]. (As

usual, throughout the paper, ǫ denotes the proximity parameter.)

1.3.1 Strong testability and one-sided error

Theorem 1.1 is proved by transforming any VDF tester into one that operates with one-sided error.
The resulting (VDF) tester takes a sample of O(s2) vertices, where s = s(ǫ) is the sample complexity
of the original tester, and invokes the original tester on each possible choice of a sub-sample (of
size s) and coins for the original tester, ruling by majority. Note that the resulting tester makes no
random choices, and its randomization is due to the choice of the vertex-sample it uses. Indeed,
in addition to obtaining samples, both the original and resulting tester issues queries, but these
queries must refer to vertices that were already seen (in prior samples (or answers to prior queries
in the bounded-degree graph model)). Hence, for the dense graph model the query complexity of
the resulting (VDF) tester is O(s2)2, and for the bounded-degree graph model the resulting (VDF)
query complexity is exp(O(s)).

The key observation is that each sample of O(s2) vertices for the resulting tester gives rise to
a distribution over O(s2) vertices (i.e., the uniform distribution over this sample), and the one-
sided feature follows by the hypothesis that (with probability at least 2/3) the original tester rules
correctly on any distribution. Hence, for any yes-instance and any sample of O(s2) vertices of
any vertex-distribution D, the majority vote (over all s-sized sub-samples) is in favor of accepting,
and hence the resulting tester always accepts (i.e., it has one-sided error).14 The claim that the
resulting tester rejects no-instances (w.h.p.) is proved by using the fact that the original VDF
tester must reject these instances (w.h.p.) when getting a sample of D. Indeed, we use the fact
that (with very high probability) a random invocation of the original tester uses a sample of D
(i.e., s elements drawn independently from D, where the difference is due to the difference between
selecting s elements with and without repetition among O(s2) elements).

We mention that a similar argument was employed in the proof of [23, Thm. 7.2], which re-
ferred to a different setting (i.e., sample-based testers that obtain “labeled samples” but make no

14Here we used the fact that the original VDF tester accepts (whp) when given s samples drawn uniformly from
any multi-set of size O(s2).
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queries).15 The resulting tester there did not invoke the original tester, but rather ruled according
to whether the labeled-sample viewed by it is consistent with a object that has the predetermined
property. We cannot afford this option here, since the size of the vertex-set is not a priori known
to the testers in the current model. Furthermore, the time complexity of the testers we derive is
independent of the size of the tested object, and seems typically smaller than that size.

The argument is abstracted and generalized in the appendix, which clarifies that it applies to
any promise problem that is solved in a “distribution free” manner by machines that have oracle
access to the input as well as to a sampling device. This abstraction generalizes both parts of
Theorem 1.1 (as well as of [23, Thm. 7.2]).

Theorem 1.2 (i.e., “insufficiency of the necessary condition”) can be proved by using properties
that are trivial to test in the standard models; see Propositions 2.9 and 3.5, respectively. Specifically,
such properties do not contain the empty graph, but do contain some graph with very few edges
(e.g., O(n) edges in case of the dense graph model, and O(

√
n) edges in case of the bounded-degree

graph model). The impossibility of strongly testing in the VDF models relies on the fact that the
tester does not know the size of the graph and cannot distinguish between a sample taken from an
empty graph and a sample taken from a distribution that is concentrated on an independent set (or
an isolated set) in a larger graph. This raises the question of what happens if we either provide the
VDF tester with the size of the graph (which is not compatible with the settings that we envision)
or restrict the standard-model testers in a similar manner (as done in [5]); the second option is
discussed in Section 5.1. An alternative proof of the dense graph model part of Theorem 1.2, which
does not rely on the testers’ obliviousness of the size of the graph, is presented in the proof of
Proposition 2.11.

1.3.2 Strong testability in the VDF dense graph model

Theorem 1.3 asserts strong tester for the VDF dense graph model for specific properties that have
a strong tester in the standard dense graph model. The basic idea that underlies its proof is
emulating an execution of these strong testers (for the standard model) on an auxiliary graph
that is a suitable (generalized) blow-up of the input graph, where the varying amount of blow-
up is determined by the vertex-distribution. Specifically, given query access to the input graph
G = (V,E) and samples from the vertex-distribution D, we consider an auxilary graph in which
each vertex v ∈ V is replaced by a cloud of size proportional to D(v), and edges are replaced by
complete bipartite graphs (between the corresponding clouds). This idea, which originates in [18,
Sec. 10.1], works well provided that the same vertex is not sampled twice (equiv., the collision
probability of D is o(1/q2), where q = q(ǫ) is the number of queries made by the original tester).
But we have to deal with the general case (in which the same vertex may be sampled twice). This
raises different problems in the two parts of Theorem 1.3.

In Part 1 (i.e., when testing generalized graph partition properties), the problem is whether or
not to put an edge between copies of the same vertex. Not putting an edge will do when testing
k-colorability, but in general an oblivious decision will not do (since in the specific graph k-partition
property that we handle some parts may mandate internal edges and other parts may mandate no
internal edges). To solve this problem, we first find (by sampling) all vertices that are likely to
appear more than once in our main sample (i.e., all vertices v such that D(v) = Ω(1/q(ǫ/O(1))2)).

15That is, when testing an object represented by a function f : D → R, the tester obtains labeled samples of the
form (x, f(x)), where x is drawn from a distribution over D.
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Loosely speaking, assuming we found t such “heavy” vertices, we invoke 2t copies (of an error-
reduced version) of the original tester such that in the ith copy we place edges between copies of
the jth heavy vertex if and only if the jth bit in the binary extension of i equals 1. We accept if
and only if at least one of these 2t copies accepted.

In Part 2 (i.e., when testing subgraph freeness), the problem is that we should consider only
subgraphs (of the blown-up graph) in which the vertices belong to different clouds (and so cor-
respond to different vertices of the original graph). This is not a problem when the subgraph is
a clique (and we place no internal edges in the emulated clouds), since in this case the subgraph
cannot contain two vertices from the same cloud, but for other subgraphs we do have a problem.
The problem is resolved by extending the original tester to the setting of r-colored graphs (studied
in [2]); this task is undertaken in Claim 2.8.4, which builds on [27, Thm. 1.18] (which generalizes
Szemerédi’s regularity lemma [34] to the setting of r-colored graphs).16 We then reduce the problem
of finding subgraphs with at most one vertex in each cloud to finding 2-colored cliques in a suitable
2-colored version of the blown-up graph (in which all pairs of clouds are connected by edges, and
the colors of these edges indicate whether or not the corresponding edges existed in the uncolored
version of the blown-up graph).

Another problem that arises when testing subgraph freeness is relating the weighted distance
of the input graph from being subgraph-free to the distance of the blow-up graph (from the same
property). The relevant lower bound is proved in Claim 2.8.1.

Lastly, we mention that when proving the furthermore part of Theorem 1.3, which refers to
testing H-freeness when H is bipartite, we cannot just rely on the fact that the blow-up is far
from being H-free, since this may be the case even if the tested graph has no copies of H (e.g., an
edge connecting two heavy vertices yields a complete bipartite graph with many edges). Instead,
we distinguish edges that connect light vertices from the other edges, and deal with each case
separately and differently. Edges that connect light vertices can be dealt with by a reduction to
the standard case (since the sample is unlikely to hit the corresponding clouds twice), whereas the
number of heavy vertices is small (and so enumerating all relevant configurations is feasible). A
similar strategy is employed in the proof of Theorem 2.13, which refers to testing minor-freeness
(in the VDF dense graph model).

1.3.3 Strong testability in the VDF bounded-degree graph model

The strong testers asserted in Theorem 1.4 are obtained by adaptations of the algorithms (and
the analyses) that are used in the standard model. A common theme in all the original testers is
starting several searches at random vertices. Here, depending on the property, we sometimes start
these searches not at a vertex obtained from the vertex-sampling device but rather at a related
vertex (e.g., a uniformly selected neighbor of the sampled vertex). The reason for this modification
is that, in the analysis, the cost of omitting or adding an edge is related to the probability weight
of both its endpoints, whereas the violation of a tested condition may occur only when starting the
search at one of these endpoints.

For example, the distance from having no vertex of degree d′ is not proportional to the weight of
such vertices, but is rather proportional to the weight of these vertices and their neighbors. Hence,
the tester should not be confined to checking the degree of sampled vertices; it should rather check
also the degree of random neighbors of sampled vertices.

16Given [27, Thm. 1.18] leaves us with the task of generalizing the rest of the analysis of the subgraph tester (cf.,
e.g., [14, pp. 190-194]).
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We note that modifying the starting point of the search may not suffice. In some cases, the
search itself is modified: For example, in the case of testing k-path freeness, rather than conducting
a single k-step random walk, we conduct two random walks of total length summing up to k.

In general, the fact that the analysis refers to the probability weight of certain vertices rather
than to their number complicates the analysis of almost all testers. For example, unlike in the
standard model (cf., [14, Exer. 9.5]), it does not hold that if a graph is close to being connected and
to being Eulerian, then it is close to a connected Eulerian graph (see Footnote 59).

1.4 Discussion

The (standard) study of testing property of graphs, as reviewed in [14, Chap. 8-10], is extremely
idealized. It postulates that the vertex-set of the graph equals a set of the form [n], where n is
known a priori (i.e., is given as an explicit input to the tester). This is the case both in the dense
graph model (introduced in [18] and reviewed in [14, Chap. 8]), and in the bounded-degree graph
model (introduced in [20] and reviewed in [14, Chap. 9]).17 But it is hard to imagine any realistic
setting in which the vertex-set is actually of this form (or can be easily put in 1-1 correspondence
to this form).

Addressing this concern, it was suggested (by the author [15]) to relax the model and only
require that the tester be given the size of the vertex-set as well as a sample of uniformly (and
independently) distributed elements in this set, and it was shown that this model is essentially
equivalent to the standard one.18 Here, we take an additional step towards realistic applications,
by waiving the requirement that the samples of the vertex-set be uniformly distributed in it.

As hinted at the very beginning of Section 1.1, the models suggested in this paper are motivated
by settings in which uniformly sampling the vertex-set of the graph of interest is not feasible.
Instead, it is feasible to obtain random vertices drawn according to some distribution D (and, in
addition, obtain answers to the usual graph-queries). This is because some process (or application)
of interest refers to (or embeds or emulates) a huge graph; in particular, the process generates
random vertices according to the distribution D, and answers adjacency (or incidence) queries
regarding the graph. We would like to know whether this huge graph has some predetermined
property or is far from having the property, where the distance that is relevant here is one that is
induced by the vertex-distribution D.

Indeed, the vertex distribution represents the “importance” of the various vertices from the
application’s point of view; that is, the application encounters vertices according to the distribution
D, and the relative “importance” of a vertex (to the application) is captured by the probability
that it is encounted (by he application). Hence, the distance of a graph to the property represents
the relative importance of the “part of the graph” that violates the property. When the application
supports adjacency queries (to a dense graph), it is reasonable to postulate that the importance
of an edge/non-edge is proportional to the product of the (probability) weights of its endpoints.
When the application supports incidence queries (to a bounded-degree graph), it is reasonable to
postulate that the importance of an edge/non-edge is proportional to the sum of the (probability)
weights of its endpoints.

17The same holds also in the general graph model (introduced in [31, 26] and reviewed in [14, Chap. 10]).
18Actually, the foregoing is just one incarnation of a more general framework suggested in [15]. In general, the

tester may be given some partial information about the vertex-set rather than its exact size. Other examples may
include an approximation to the size of the vertex-set or nothing.
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The discrepancy between these two cases reflects the discrepancy between the two types of
models (equiv., queries): In the dense graph model one encounters a edge/non-edge by visiting
both its endpoints, whereas in the bounded-degree graph model an edge/non-edge is encountered
when visiting one of its two endpoints. Indeed, in the dense graph model we envision applications
that refer to a symmetric relation, represented as a graph, whereas in the bounded-degree graph
model we envision a network with a bounded number of “ports” at each site (vertex). We do not
claim that our definition of distance (equiv., level of importance of edges/non-edges) is the only
reasonable one, but rather than it is a reasonable one. (Still, a generalization of the definition of
importance of edges/non-edges, for the bounded-degree graph model, is presented below.)

We stress that we seek universal testers for the setting envisioned above; that is, testers that
perform well for any vertex-distribution D (rather than testers that are tailored to a specific dis-
tribution D). We call such testers vertex-distribution-free (abbrev., VDF), and would welcome
suggestions for a less cumbersome term (which led us to use the abbreviation in most places).

Note that, in our models, the tester is not given the size of the vertex-set as an explicit input.
This is quite natural given the foregoing motivation. Furthermore, it seems that in natural cases,
the VDF testers are unlikely to benefit from knowledge of the size of the vertex-set.

A generalized version of the bounded-degree graph model. We have motivated the defini-
tion of the importance of an edge/non-edge in our (bounded-degree graph VDF) model by implicitly
referring to the probability (under D) that one of its endpoints is encountered by the application.
This presumes that the application encounters vertices only by generating them at random ac-
cording to the distribution D. However, in the bounded-degree graph setting, the application can
encounter a vertex also by selecting a neighbor of a previously encountered vertex. Postulating
that the application takes walks of length at most t, we suggest the t-removed VDF model in which
the importance of a vertex v is defined as proportional to the sum of the probabilities of all vertices
that are at distance at most t from v. We extend our positive results regarding the VDF bounded-
degree graph model to the t-removed VDF model, incurring an overhead that is exponential in t.
For details see Section 3.5.

1.5 Organization

The core of this work is presented in Sections 2 and 3. In these sections we formally define vertex-
distribution-free (VDF) versions of the dense and bounded-degree graph models, and initiate their
study. Specifically, the VDF dense graph model is treated in Section 2, and the VDF bounded-
degree graph model is treated in Section 3.

In contrast to this core, Sections 4 and 5 present auxiliary material: Section 4 studies secondary
models, in which the tester is given additional power, and Section 5 discusses subsequent work and
future directions. The appendix presents an abstraction that generalizes both parts of Theorem 1.1,
clarifying that the argument applies to any promise problem that is solved in a “distribution free”
manner by machines that have oracle access to the input as well as to a sampling device.

2 The Dense Graph Model

In this section, we generalize the notion of property testing in the dense graph model (a.k.a. the
adjacency predicate model, which was introduced in [18] and is reviewed in [14, Chap. 8]). The
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generalized model is called the vertex-distribution-free (VDF) dense graph model.
In this model, a graph of the form G = (V,E) is represented by its adjacency predicate g :

V × V → {0, 1}; that is, g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).
Indeed, since g represents a (simple) graph, it holds that g(u, v) = g(v, u) and g(v, v) = 0 for every
u, v ∈ V .

The tester is given oracle access to the representation of the input graph (i.e., to the adjacency
predicate g) as well as to a device, denoted D, that returns identically and independently distributed
elements in the graph’s vertex-set. This distribution is also denoted D. In addition, the tester gets
the proximity parameter, ǫ, as explicit input. Following [15], we consider the case that the tester
does not obtain any information about V as explicit input; this means that the tester better query
the graph only on pairs of vertices that have been provided before by the sampling device D (see
Proposition 2.2).

Distance between graphs is measured in terms of their foregoing representation and with ref-
erence to the distribution D; that is, the distance between the graphs that are represented by the
adjacency predicates g : V × V → {0, 1} and g′ : V × V → {0, 1} is defined as

δD(g, g′)
def
= Pru,v←D[g(u, v) 6= g′(u, v)] (1)

Note that the distance also accounts for the reflexive pairs (i.e., (v, v) for v ∈ V ),19 which means
that δD(g, g′) < 1 holds whenever both g and g′ represent simple graphs. For a graph property
Π and a graph represented by the adjacency predicates g : V × V → {0, 1}, we let δΠ

D(g) denote
the minimum of δD(g, g′) taken over all adjacency predicates g′ : V × V → {0, 1} that represent
graphs in Π. (We assume for simplicity that Π contains some graphs with vertex-set V ; otherwise,
one may define δΠ

D(g) > 1.) When G is the graph represented by g, we may write δΠ
D(G) instead

of δΠ
D(g). When the property Π is clear from the context, we may omit it from the notation (and

write δD(·) instead of δΠ
D(·)).

Definition 2.1 (VDF testing in the dense graph model): Let Π be a property of graphs. A VDF
tester for the graph property Π (in the dense graph model) is a probabilistic oracle machine T that is
given access to two oracles, an adjacency predicate g : V ×V → {0, 1} and a device (denoted D) that
samples in V according to an arbitrary distribution D, and satisfies the following two conditions
(for all sufficiently large V ):20

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every
g : V × V → {0, 1} representing a graph in Π (and ǫ > 0), it holds that Pr[T g,D(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any graph G = (V,E) that is ǫ-far from Π, the tester rejects
with probability at least 2/3; that is, if g : V × [d]→ V ∪{⊥} satisfies δΠ

D(g) > ǫ, then it holds
that Pr[T g,D(ǫ)=0] ≥ 2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : V × V → {0, 1} representing a graph in Π (and every ǫ > 0), it holds that Pr[T g,D(ǫ)=1] = 1.

19This convention is also used in many other sources that refer to the standard dense graph model; see discussion
in [14, Sec. 8.2.1].

20This relaxation, which allows the tester to fail on some tiny graphs, was not made in the first posting of this
work [16]. It allows discarding small exceptional input graphs, which are of no interest to us anyhow (per our
motivation). Such provision is unnecessary in the standard model, since there the tester obtains the size of the graph
(and can afford to retrieve the entire graph in case it is small). The relaxation can be captured within the framework
of [15, Def. 1.1], by providing as partial information a bit indicating whether or not the graph is large enough.
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Definition 2.1 was outlined by Goldreich, Goldwasser, and Ron [18, Sec. 10.1], where it was viewed
as a restricted case of truly distribution-free testing. That is, the conceptual focus and starting
point of relevant paragraph of [18, Sec. 10.1] is the distribution on vertex-pairs, whereas our focus
and starting point is the distribution on vertices. Hence, in [18, Sec. 10.1] the foregoing definition is
viewed as special case in which the distribution on pairs is a product of some distribution with itself
(and the tester gets samples of that product distribution). In contrast, we view the distribution on
vertices as the pivot of the definition, and derive the distance measure from it.

The query complexity of a tester accounts for the total number of queries made to both the
graph G and the sampling device D. This complexity is measured in terms of the proximity
parameter ǫ > 0 and label-invariant parameters of the distribution D (e.g., its support-size, its
collision probability, its min-entropy, etc).21 Indeed, the latter parameters replace the number of
vertices of the graph, which is used as a size parameter in the standard model. We shall focus on
testers having query complexity that depends only on ǫ; we tentatively call such testers strong.

As hinted above, it makes little sense for the tester to query the graph on pairs of vertices that
have not been provided before by the sampling device D. In fact, we may assume, without loss of
generality, that the tester makes queries only to pairs of vertices that appeared as answers of the
sampling device.

Proposition 2.2 (avoiding illegal queries in the VDF dense graph model): Suppose that Π can be
tested by making at most s sampling requests and at most q queries to the graph, where both com-
plexities depend on the proximity parameter and on label-invariant parameters of the distribution.
Then, Π can be tested by making at most 3s sampling requests and making only queries to pairs of
vertices that appear in these samples.

The specific query complexity bound, denoted q, is immaterial here; what matters is that the
query complexity (like the sampling complexity) depends only (on the proximity parameter and)
on label-invariant parameters of the distribution.

Proof: Let T be a tester as in the hypothesis. We construct a tester T ′ that, on input g′ : V ′×V ′ →
{0, 1} and D′, invokes T on related inputs g : V ×V → {0, 1} and D, which are generated on-the-fly
based on g′ and V ′. Specifically, T ′ generates on the fly a random bijection π of V ′ ⊎ [100q · |V ′|]
to [(1 + 100q) · |V ′|], while defining V = π(V ′)

def
= {π(v′) : v′ ∈ V ′} and g(π(v′), π(w′)) = g′(v′, w′)

and D(π(v′)) = D′(v′). It essentially emulates an execution of T with oracles g and D as follows.

• When T asks for a sampled vertex, T ′ obtains v′ ← D′ and answers with π(v′) if π is defined
on v′ (which means that v′ did not appear as an answer to some previous sampling request),
and with a random unused value otherwise. That is, if U denotes the set of vertices used so
far and π(v′) ∈ U , then the answer is π(v′); otherwise, the answer v is selected uniformly at
random in [(1 + 100q) · |V ′|] \ U , and π(v′) = v is added to U .

• When T makes the query (u,w), we return g′(π−1(u), π−1(w)) if the relevant π−1-values are
defined (which means that the values v and w appeared as answers to previous sampling
requests), and return a special error symbol otherwise (indicating that (u,w) is not in the
domain of g). We may assume that T rejects in such a case. (Alternatively, we can define T ′

to reject in this case.)

21A parameter p of (discrete) distributions is called label-invariant if for every distribution D over {0, 1}∗ and every
bijection π of {0, 1}∗ to itself it holds that p(D) equals p(π ◦ D). In other words, the parameter is a function of the
histogram of the distribution, where the histogram of D is the multi-set {D(e) : D(e) > 0}.
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For the sake of the analysis, we assume that when the emulation is completed, the undefined values
of π are selected at random (among the unused ones).

The key observation is that, on input g′ and D′, with very high probability (over the choice of
π), algorithm T ′ emulates an execution of T on input g and D (which are defined via a random
bijection π such that D(v) = D′(π−1(v)) and g(u,w) = g′(π−1(u), π−1(w))). The deviation is due
to the case that a query (u,w) was made (by T ) although some v ∈ {u,w} was not obtained as a
sample and yet π−1(v) ∈ V ′ (whereas T ′ behaved as if v 6∈ π(V ′)). The probability of this event is
at most 2q · |V |/(100q|V |). It follows that the probability that T ′ accepts a graph G′ is sandwiched
between p− 0.02 and p, where p denotes the probability that T accepts the random homomorphic
copy G = π(G′) of G′.

Note that T ′ never makes a query to a pair of vertices that were not provided by the sampling
device. Using mild error reduction to compensate for the additional error of 0.02, the claim follows.
(Indeed, invoking T ′ three times and ruling by majority will do.)

Organization of the rest this section. We first show that it is possible to transform testers
for the VDF version of the dense graph model into ones that have one-sided error, while incurring
an overhead that is much lower than what is possible in the standard (dense graph) model. Using
lower bounds on the complexity of testing with one-sided error in the standard model, this yields
lower bounds on the testability in the VDF model. Next, focusing on properties that are strongly
testable with one-sided error in the standard (dense graph) model, we try to extend these testers
to the VDF model. Specifically, in Section 2.2, building on the results of [18], we present strong
testers for the relevant subclass of the graph partition problems (e.g., k-colorability). Likewise, in
Section 2.3, building on results of [3], we present strong testers for subgraph-freeness properties
(e.g., triangle-freeness). Put together, these results establish (the two parts of) Theorem 1.3. Lastly,
in Section 2.4, we study two classes that are easy to test in the standard model, using some of them
to establish the “dense graph model” part of Theorem 1.2 (i.e., strong testability with one-sided
error in the standard model does not suffice for strong testing in the VDF model).

2.1 One-sided error in the VDF model

In contrast to the situation in the standard model (see, e.g., the gap between the complexities of
general versus one-sided error testing of ρ-clique [18]), one-sided error comes almost for free in the
VDF model. This is the case since any strong tester in the VDF model can be transformed into
a one-sided error tester (for this model) while at most squaring the sample complexity. For sake
of simplicity, we state the transformation for the case of strong testers, but the assertion holds for
general testers (with complexity that may depend both on ǫ and on some natural parameters of
the vertex distribution such as support size).

Theorem 2.3 (one-sided error VDF testing reduces to general VDF testing): Let Π be a graph
property that can be tested using s(ǫ) (vertex) samples in the VDF dense graph model, where ǫ de-
notes the proximity parameter. Then, Π has a one-sided error tester of sample complexity O(s(ǫ)2)
in the VDF dense graph model.

Theorem 2.3 implies that properties that do not have a strong one-sided error tester in the standard
model cannot be strongly tested in the VDF model (see Corollary 2.4).
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Proof: Let T be a (general) tester of sample complexity s(ǫ) for Π in the current (VDF) model.
Recall that by Proposition 2.2, we may assume, without loss of generality, that T does not query
the graph on unsampled vertices. Relying on this fact, we present a one-sided error tester for Π
in the current model. On input parameter ǫ > 0, and oracle access to a graph G = (V,E) and a
sampling device D, the claimed tester operates as follows.

1. The tester obtains t = O(s(ǫ)2) samples, denoted v1, ..., vt, from the distribution D.

Note that the vi’s need not be distinct; that is, we may have vi = vj for some i 6= j.

2. Letting s = s(ǫ), for every sequence (i1, ..., is) over [t] and every possible random-pad r of T ,
the algorithm invokes T (ǫ) on randomness r and oracle access to G, while providing vij as the
jth sampled vertex (i.e., as an answer to the jth sampling request). That is, T is invoked on
input ǫ, and provided access to G, but its randomness is set to r and the s samples it expects
to receive from the sampling device are set to vi1 , ..., vis .

3. The algorithm accepts if and only if a majority of the invocations performed in Step 2 accept.

Since T only queries pairs of vertices that are provided by its sampling device, our algorithm queries
the graph on pairs of vertices that have appeared in its own sample, v1, ..., vt. Hence, the sample
complexity of our algorithm is t = O(s(ǫ)2) and its query complexity is

(t
2

)
= O(s(ǫ)4). (Note that

no claim is made regarding the time complexity of our algorithm, which is indeed exponential in
the sample and randomness complexities of T .) We now show that this algorithm constitutes a
one-sided error tester for Π in the current model.

Suppose that G ∈ Π. Note that our algorithm performs no random choices, and the probability
space of its possible executions consists solely of the t samples drawn from D. Hence, we have
to show that, under each such choice, our tester accepts. Fixing such a sequence of samples
v = (v1, ..., vt), we consider the distribution, denoted U(v), defined by selecting uniformly i ∈ [t]
and outputting vi. By the hypothesis regarding T , we have Pr[TG,U(v)(ǫ)=1] ≥ 2/3. Note that the
probability space here consists of all possible choices of s samples drawn (with repetitions) from
U(v) (which correspond to all choices of (i1, ..., is) ∈ [t]s) and all possible random-pads of T . Hence,
at least two third of the invocations performed in Step 2 are accepting, and our algorithm accepts.

We now turn to the case that G = (V,E) is ǫ-far from Π (with respect to the distribution D),
and consider the execution of our algorithm when given samples drawn from D. By the hypothesis
regarding T , we have Pr[TG,D(ǫ)=1] ≤ 1/3. Assuming that t ≥ 100 · s(ǫ)2, it follows that selecting
s = s(ǫ) random samples (with repetitions) from a random t-sequence of samples drawn from D
yields a distribution that is 0.01-close to the distribution obtained by selecting s random samples
from D, since the first (resp., second) case corresponds to selecting uniformly at random a multi-set
of size s in [t] (resp., a set of size s in [t]).22 Hence,

Expv1,...,vt←D

[
Pr[TG,U(v1,..,vt)(ǫ)=1

]
≤ Pr[TG,D(ǫ)=1] + 0.01 < 0.35.

(This observation originates from the proof of [18, Cor. 7.2].) An averaging argument implies that

Prv1,...,vt←D

[
Pr[TG,U(v1,...,vt)(ǫ)=1] > 0.5

]
≤ 0.7.

22In the first case, we select v1, ..., vt ← D and i1, ..., is ∈ [s] and output vi1 , ..., vis , whereas the second case may
be viewed as selecting v1, ..., vt ← D and outputting vi′

1
, ..., vi′s

such that i′1, .., i
′
s are s distinct elements selected

arbitrarily in [t].
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Hence, for at most 70% of the samples obtained in Step 1, more than half of the invocations
performed in Step 2 are accepting, which implies that our algorithm accepts with probability at
most 0.7. Using moderate error reduction, the theorem follows.

Using Theorem 2.3 towards establishing lower bounds in the VDF model. As noted
above, Theorem 2.3 implies that properties that do not have a strong one-sided error tester in the
standard model cannot be strongly tested in the VDF model.

Corollary 2.4 (lower bounds via reduction from one-sided error testing): Let Π be a graph property
that can be tested using s(ǫ) vertex samples in the VDF dense graph model, where ǫ denotes the
proximity parameter. Then, Π has a one-sided error tester of query complexity poly(s(ǫ)) in the
standard dense graph model. The claim holds even if the VDF model tester is given the size of the
graph as auxiliary input. Furthermore, if the sample complexity of the VDF tester depends also on
the support size and has the form s(m, ǫ), where m is the size of the support, then Π has a one-sided
error tester of query complexity maxi∈[n] poly(s(i, ǫ)) in the standard dense graph model, where n
denotes the number of vertices in the tested graph.

Hence, lower bounds on the complexity of one-sided error testers in the standard dense graph model
yield lower bounds on testers in the VDF (dense graph) model.

Proof: Theorem 2.3 yield one-sided error tester for Π in a variant of the standard model in
which the tester obtains uniformly distributed samples of the vertex-set (rather than being given
a succinct description of the vertex-set). The discrepancy between this tester and the standard
model is that in the standard model the tester is given n (and ǫ) as explicit inputs as well as oracle
access to G = ([n], E), but does not get access to a sampling device for U([n]). Nevertheless, given
n, one can easily emulate a sampling device for U([n]), obtaining a tester in the standard model.

The furthermore-part is proved by first observing that Theorem 2.3 can be extended to testers
of sample complexity that depends both on the support size and the proximity parameter. The key
observation is that the support size of the distribution U(v1, ..., vt), where t = maxi∈[n]{O(s(i, ǫ)2)},
is at most n (i.e., the support size of D = U([n]), which in turn is the number of vertices in the
graph). Furthermore, letting m denote the support size of U(v1, ..., vt), it holds that m ≤ n and
O(s(m, ǫ)2) ≤ t follows.

Concrete lower bounds. Combining the furthermore-part of Corollary 2.4 with the linear lower
bound on the complexity of one-sided error testing of ρ-Clique and ρ-CUT in the standard dense
graph model (see [18, Sec. 10.1.6]), we get the following

Corollary 2.5 (lower bounds on testing ρ-Clique and ρ-CUT): Testing ρ-Clique and ρ-CUT in
the VDF dense graph model requires query complexity that is polynomially related to the size of the
graph, even for ǫ = 0.1.

A similar lower bound hold for all non-trivial graph partition problems that do not satisfy the
conditions of Theorem 2.7. Similarly, stepping beyond the class of graph partition problems, we
obtain

Corollary 2.6 (lower bounds on testing degree-regularity) Testing degree-regularity in the dense
graph VDF model requires query complexity that is polynomially related to the size of the graph,
even for ǫ = 0.1.
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2.2 Testing graph partition properties

Definition 2.1 was outlined by Goldreich, Goldwasser, and Ron [18, Sec. 10.1], who observed
that some of their results extend to this model. Specifically, they claimed that their tester of
k-Colorability extends to the current setting, and sketched a proof of this claim.23 We show that
the claimed result (regarding testing k-Colorability) can be extended to any graph k-partition
problem that is strongly testable with one-sided error in the standard (dense graph) model.

Loosely speaking, a graph partition problem calls for partitioning the graph into a specified
number of parts such that the sizes of the parts fit the specified bounds and ditto with respect
to the number of edges between parts. More specifically, each graph partition problem (resp.,
property) is specified by a number k ∈ N and a sequence of intervals (which serve as parameters of
the problem). A graph G = (V,E) is a yes-instance of this problem (resp., has the corresponding
property) if there exists a k-partition, (V1, ..., Vk), of V such that

1. For each i ∈ [k], the density of Vi fits the corresponding interval (specified in the sequence of
parameters).

2. For each i, j ∈ [k] (including the case i = j), the density of edges between Vi and Vj fits the
corresponding interval.

This framework was presented in [18], where only absolute density bounds were considered (e.g.,
|Vi|
|V | ≤ 0.1 and

|E(Vi,Vj)|
|V |2 ≥ 0.1). Here, following [14, Sec. 8.3] and [29], we consider also relative

edge-density bounds (e.g.,
|E(Vi,Vj)|
|Vi|·|Vj|

≥ 0.8).

Recall that each graph partition problem can be tested within query complexity poly(1/ǫ) in
the standard dense graph model (see [18], extended by [29]). However, as shown in [29] (which
extends [24, Thm. 3]), only some of these properties can be strongly tested with one-sided error in
the standard dense graph model (i.e., can be tested with one-sided error within query complexity
that depends only on ǫ). Our result refers to this class, which consists of sets of graphs that can be
k-partitioned such that each part is either required to be a clique or an independent set, and each
pair of parts is either required to have all possible edges or have no edges at all or be arbitrary.
(This class is effectively defined in the hypothesis of Theorem 2.7; it consists of all the properties
Πα,β defined there.)

Theorem 2.7 (testing a subclass of graph partition problems): Let k ∈ N. For α = (αi)i∈[k] ∈
{0, 1}k and β = (βi,j)i<j ∈ {0, 1, 2}(

k
2), let Πα,β denote the set of all graphs G = (V,E) such that

V can be partitioned into k (possibly empty) parts, denoted V1, .., Vk, that satisfy the following
conditions:24

1. For each i, if αi = 1 then the subgraph of G induced by Vi is a clique, and otherwise (i.e., if
αi = 0) it is an independent set.

23They also claimed that the results regarding ρ-Clique and ρ-Cut can be similarly extended, but it seems that the
properties that they referred to are weighted versions of ρ-Clique and ρ-Cut (which refer to the weights of cliques
and cuts with respect to the probability distribution D). That is, these properties depends on the distribution over
the vertex-set, whereas in Definition 2.1 the graph property is fixed, regardless of the said distribution. Note that
Corollary 2.4 implies that the positive result does not extend to the unweighted versions of ρ-Clique and ρ-Cut.

24If for some i ∈ [k] the set Vi is empty, then the corresponding conditions are considered satisfied regardless of the
values of αi and the βi,j ’s.
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2. For every i < j, the set of edges connecting Vi and Vj is empty if βi,j = 0, contains all edges
if βi,j = 1, and is arbitrary otherwise (i.e., if βi,j = 2).

Then, Πα,β can be tested in the VDF dense graph model in query complexity poly(1/ǫ) and time
complexity exp(poly(1/ǫ)) (with one-sided error).

We stress that the foregoing graph properties (along with the two trivial properties)25 are the only
graph partition properties that are strongly testable with one-sided error in the standard dense
graph model (see [29], which extends [24, Thm. 3]). Furthermore, the stated complexities match
the best results known in the standard dense graph model.

Proof: We reduce testing Π = Πα,β in the VDF dense graph model to testing Π in the standard
dense graph model. The reduction is basically the one outlined in [18, Sec. 10.1]; that is, in the case
of k-Colorability, it suffices to check that a sample of poly(1/ǫ) vertices drawn from D induces a
k-colorable subgraph. As shown next, this strategy works in the case of arbitrary Π, provided that
the collision probability of D is o(Q(ǫ/2)−2), where Q is the query complexity (or rather the sample
complexity) of the original tester, and needs to be somewhat revised otherwise (i.e., to handle the
case of arbitrary D).

By [24, Thm. 2], we may assume (w.l.o.g.) that the standard model tester, denoted T , takes a
sample of q = O(Q(ǫ/2)) vertices and decides according to the (unlabeled) subgraph that is induced
by these vertices. Now, when given access to a graph G = (V,E) and a vertex-sampling device D,
our tester takes a sample of q vertices from D, queries G on the corresponding

(
q
2

)
vertex pairs,

and invokes the residual decision procedure of T on the corresponding q-vertex subgraph. (This
description presumes that no vertex appears twice in the sample.)

To analyze the behavior of our tester, we consider a graph G′ that is obtained by replacing each
vertex v of G with a set (or a “cloud”) Cv of ⌊D(v) ·N⌉ vertices, for a sufficiently large N (e.g.,
N = 4|V |/ǫ), and placing a complete bipartite graph between Cu and Cv if u and v are connected
in G. (Indeed, if u and v are not connected, then no edges are placed between Cu and Cv.) Note
that we avoided specifying the subgraph induced by the individual Cv’s; it will be either a clique
or an independent set.

Assuming that no vertex of G has appeared twice in the sample of q vertices (drawn from D),
our tester emulates an execution of T on G′, since the subgraph of G′ induced by a sample of q
uniformly distributed vertices is distributed identically to the subgraph of G induced by a sample
of q vertices drawn from D (with no repetitions). It remains to show that the distance of G from
Π (under D) equals the distance of the best G′ from Π (up to an additive term of ǫ/2). (That is,
at this point, we consider all possible G′ that fit the foregoing definition; that is, for each set Cv,
we let Cv be either a clique or an independent set.)

Claim 2.7.1 (relating the distances of G and G′ to Π): For every σ ∈ {0, 1}V , we let G′σ denote
the graph obtained from G by replacing each vertex v with a ⌊D(v) ·N⌉-vertex set Cv such that
the subgraph of G′σ induced by Cv is a clique if σv = 1 and is an independent set otherwise, and
replacing each edge {u, v} in G with a complete bipartite graph between Cu and Cv. Then, the
following hold.

1. If G ∈ Π, then for some σ ∈ {0, 1}V it holds that G′σ ∈ Π.

25The trivial graph properties are the property consisting of all graphs and the empty property.
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2. In general,

δΠ
D(G) = min

σ∈{0,1}V
{δΠ
D′(G′σ)} ±

(
|V |
N

+
∑

v∈V

D(v)2

)
(2)

where D′ denotes the uniform distribution over V ′
def
= ∪v∈V Cv. Furthermore, for every σ ∈

{0, 1}V , it holds that

δΠ
D(G) ≤ 7k · δΠ

D′(G′σ) +
|V |
N .

(3)

Hence, assuming that the collision probability of D is small (i.e.,
∑

v∈V D(v)2 ≤ ǫ/4) and that N
is sufficiently large (i.e., N ≥ 4|V |/ǫ), the deviation in Eq. (2) is upper-bounded by ǫ/2. We stress
that the upper-bound in Eq. (3) is independent of the collision probability of D. (Although the
factor of 7k lost in this upper-bound is immaterial, we wonder if it can be avoided (or at least be
replaced by a factor independent of k).)

Proof: Suppose that G ∈ Π and let (V1, .., Vk) be a k-partition (V1, ..., Vk) that witnesses this fact.
Then, for every i ∈ [k] and v ∈ Vi, setting σv = αi we infer that G′σ ∈ Π by using the corresponding
k-partition of V ′ (i.e., V ′i =

⋃
v∈Vi

Cv for every i ∈ [k]), where αi is the ith intra-part parameter of

Π = Πα,β. Applying the same argument to the partition that witnesses the value of δΠ
D(G), shows

that there exists σ ∈ {0, 1}V such that δΠ
D′(G′σ) ≤ δΠ

D(G) + |V |/N , where the error term is due to
rounding errors (that arise in determining the sizes of the Cv’s). Hence, we focus on establishing
the opposite inequality; that is, for any σ ∈ {0, 1}G, we upper-bound δΠ

D(G) in terms of δΠ
D′(G′σ).

Fixing σ and a k-partition (V ′1 , ..., V ′k) that witnesses the value of δΠ
D′(G′σ), consider a random

k-partition of V , denoted (X1, ...,Xk), obtained by assigning each vertex v ∈ V to the ith cloud
with probability |V ′i ∩ Cv|/|Cv |. Letting X ′i =

⋃
v∈Xi

Cv, observe that the expected number of
vertex-pairs in the k-partition (X ′1, ...X

′
k) that belong to different Cv’s and violate the constraints

of Π equals the number of vertex-pairs in the k-partition (V ′1 , ...V
′
k) that belong to different Cv’s and

violate the constraints of Π.26 This ignores the contribution of pairs of vertices that belong to the
same Cv, which is at most

∑
v∈V |Cv |2. Hence, there exists a partition (X1, ...,Xk) that supports

the claim δΠ
D(G) ≤ δΠ

D′(G′σ)+ |V |/N +
∑

v∈V D(v)2, where the |V |/N term is due to rounding errors.
The alternative bound of Eq. (3) is proved by first modifying the partition (V ′1 , ..., V ′k) such

that, for every v ∈ V and i ∈ [k], either |Cv ∩ V ′i | ≥ |Cv|/3k or |Cv ∩ V ′i | = 0. The modification
is performed by distributing, for every v ∈ V , the elements of the Cv ∩ V ′i ’s that violate the
claim (i.e., i’s such that |Cv ∩ V ′i | < |Cv|/3k) among the V ′j ’s that satisfy the claim (in proportion
to the sizes of these Cv ∩ V ′j ’s). This may increase the number of violations of the partition

(V ′1 , ..., V ′k) by a factor of at most (1 + 1/3
2/3 )2 = 9/4. Next, we consider the random assignment

performed in the previous paragraph, and observe that the expected contribution of pairs of vertices
that belong to the same Cv to violations w.r.t (X ′1, ...,X

′
k) is at most 3k times larger than their

contribution to violations w.r.t (V ′1 , ..., V ′k), since the expected contribution of pairs in Cv is at

most
∑

i∈[k]
|Cv∩V ′

i |
|Cv|

· |Cv|2 ≤ 3k · ∑i∈[k] |Cv ∩ V ′i |2. (Indeed, here we use the fact that either

26For every distinct u, v ∈ V , the expected contribution of the pairs in Cu × Cv to violations wrt (X ′
1, ..., X

′
k)

equals the number of violations wrt (V ′
1 , ..., V ′

k). Specifically, fixing u and v, let γi,j ∈ {0, 1} indicate whether the
density constraint regarding parts i and j (or regarding part i = j) is violated by the edge relation between u and v
(e.g., γi,j = 1 if {u, v} ∈ E and βi,j = 0), the latter number equals

P

i,j∈[k]:γi,j=1 |Cu ∩ V ′
i | · |Cv ∩ V ′

j | whereas the

expectation equals
P

i,j∈[k]:γi,j=1 piqj · |Cu| · |Cv|, where pi = |Cu ∩ V ′
i |/|Cu| and qj = |Cv ∩ V ′

j |/|Cv|.
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|Cv ∩ V ′i | ≥ |Cv|/3k or |Cv ∩ V ′i | = 0.)27 Hence, δΠ
D(G) ≤ 9

4 · 3k · δΠ
D′(G′σ) + |V |/N , and the claim

follows.

The assumption that no vertex of G appears twice in the sample (which holds when the collision
probability of D is o(1/q2)) was crucial to asserting that our tester emulates the execution of T on
G′, regardless of the choice of the subgraph (of G′) induced by individual Cv’s, since under this
assumption each Cv is hit at most once (in the q trials). In contrast, when obtaining two samples
of the same vertex v, our emulation should return two random elements of Cv, and the problem
is that we should also tell T whether these vertices are adjacent or not. We solve this problem by
trying both possibilities for each vertex v that may appear multiple times in a sample of q vertices.
This requires figuring out the list of relevant (i.e., heavy) vertices, and ignoring executions of T
in which vertices that are not in this list occur more than once. Details follow (starting with the
following easy claim).

Claim 2.7.2 (listing all high probability vertices): There exists an algorithm that given t ∈ N

and a sampling device D, works in Õ(t) time and outputs a list that, with probability at least 0.99,
contains all elements in {v : D(v) ≥ 1/t}.

The algorithm just takes O(t log t) samples and outputs the set containing all of them. (Alterna-
tively, it may output all elements that appeared more than once.) Furthermore, intending to use
the bound provided by Eq. (3) (rather than the one of Eq. (2)), we set q = O(Q(ǫ/8k)) (rather
than q = O(Q(ǫ/2))). Our revised tester proceeds as follows.

Algorithm 2.7.3 (given oracle access to the adjacency predicate of a graph G and to a corre-
sponding vertex-sampling device D):

1. Letting q = O(Q(ǫ/8k)) and t = 100q2, we invoke the algorithm of Claim 2.7.2, and denote
the obtained list by L. Note that |L| = Õ(q2).

2. We run, in parallel, 2|L| copies of an amplified version of the tester T , where each amplified
version runs |L| sequential copies of T , while using the same sequence of |L| · q samples in all
the parallel copies. The parallel copies are associated with different τ ∈ {0, 1}L. In the copy
associated with a fixed τ , we connect multiple occurrences of a vertex v ∈ L in the sample
if and only if τv = 1, and discard executions (of T ) in which a vertex not in L is sampled
multiple times. Specifically:

• We view the sample of |L| · q = Õ(q3) vertices drawn from D as consisting of t′ = |L|
samples, denoted S1, ..., St′ , each of size q. The sample Si (viewed as a multi-set) is
called good if only vertices that appear in L occur multiple times in Si. We let I denote
the set of i’s such that Si is good.

• For every τ ∈ {0, 1}L and i ∈ I, we invoke the residual decision procedure of T on a q-
vertex graph obtained as follows: The vertices of this graph are the q samples in Si, edges
connect occurrences of the same vertex v ∈ L if and only if τv = 1, and edges connect
occurrences of different vertices u, v ∈ Si if and only if these vertices are connected in
G.

If for some τ ∈ {0, 1}L, all |I| invocation of T accepted, then we accept. Otherwise, we reject.

27Indeed, either way |Cv ∩ V ′
i | · |Cv | ≤ 3k · |Cv ∩ V ′

i |2 holds.
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Note that the query complexity of Algorithm 2.7.3 is Õ(t) + t′ ·
(q
2

)
= Õ(q4), whereas its time

complexity is 2t′ · |I| · Time(T ), which equals exp(Õ(q2)) · exp(O(q)) (since the time complexity of
T is exponential in its sample complexity [18, 29]).

We next observe that if G ∈ Π, then Algorithm 2.7.3 accepts with probability 1, since there
exists a correct choice τ ∈ {0, 1}L that yields a corresponding graph G′ = G′τ ∈ Π that is being
emulated in our invocations of T . (The string τ is determined by the location of the vertices of L
in a good k-partition of G; that is, a k-partition that testifies for G ∈ Π.)

Lastly, we get to the case that G is ǫ-far from Π, and assume that the list L generated in Step 1
contains all vertices v such that D(v) ≥ 1/t. In this case, by Eq. (3), each possible G′ = G′τ is
ǫ/8k-far from Π, which implies that each of the parallel executions accepts with probability at most
0.35|I|, since considering only good samples biases the distribution on an execution by at most a
0.01 amount (because a sample is good with probability at least 1 −

(q
2

)
/t > 0.99). Furthermore,

with overwhelmingly high probability, it holds that |I| > 0.9t′. We conclude that our tester rejects
G with probability at least 0.99 − 2t′ · 0.350.9t′ > 0.98.

2.3 Testing subgraph-freeness properties

Corollary 2.4 guides us in the search for additional classes of properties that can be strongly tested
in the VDF model: We should look at properties that are strongly testable with one-sided error in
the standard dense graph model. We have already used a class of such properties in Section 2.2,
and in this section we consider another such class – the class of subgraph-freeness properties, for
which a strong tester with one-sided error (for the standard dense graph model) was presented
in [3]. Adapting their result, we shall present a strong VDF-model tester for any subgraph-freeness
property.

Actually, we present proximity oblivious testers (cf. [22]) for these properties, where the defini-
tion of proximity oblivious tester for a property Π is adapted to the VDF setting by requiring that
the tester (makes a constant number of queries G and D, and) rejects any graph G not in Π with
probability that is related to δΠ

D(G), and always accepts graphs in Π. Specifically, the tester rejects
with probability at least dpf(δΠ

D(G)), where dpf : (0, 1] → (0, 1] is called the detection probability
function. (Recall that δΠ

D(G) = minG′∈Π{δD(G,G′)}, where δD is define in Eq. (1).)

Theorem 2.8 (testing subgraph-freeness properties): For any fixed graph H = ([h], F ), let ΠH

denote the set of H-free graphs; that is, graphs that do not contain a copy of H as a subgraph. Then,
ΠH has a proximity oblivious testers, in the VDF dense graph model, with a detection probability
function dpf(δ) = 1/T(poly(1/δ)) such that T(m) is a tower of m exponents. Furthermore, if H is
bipartite, then the detection probability function is poly(δ).

Proof: Assuming, without loss of generality, that H has no isolated vertices, we reduce testing
Π = ΠH in the VDF (dense graph) model to testing Π in the standard dense graph model.28 The
reduction is similar to the one used in the proof of Theorem 2.7, but its analysis is different.

Recall that, on input G, the proximity oblivious tester T of [3] selects uniformly a set of h
vertices and accepts if and only if the subgraph of G induced by this set does not contain a copy of
H. Our tester will do just the same, except that it will use h samples obtained from D; that is, given
access to a graph G and a vertex-sampling device D, our tester takes a sample of h vertices from

28Recall that by Definition 2.1 (see also Footnote 20), we assume that the tested graph has at least h vertices.
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D, queries G on the corresponding vertex pairs, and accepts if and only if the subgraph observed
contains no copy of H.

Clearly, our tester always accepts any H-free graph (i.e., it never rejects G ∈ Π), and so we focus
on lower-bounding the probability that our test rejects G = (V,E) as a function of δ = δΠ

D(G) > 0.
Suppose that

∑
v∈V D(v)2 < dpf(δ/h2)/2h2, where dpf is the detection probability function of the

proximity oblivious tester in the standard dense graph model. Then, we consider a graph G′ that
is obtained by replacing each vertex v of G with an independent set Cv of ⌊D(v) ·N⌉ vertices, for
a sufficiently large N (e.g., N = h2|V |/δ or better N = h2|V |/minu:D(u)>0{D(u)}2), and placing
a complete bipartite graph between Cu and Cv if u and v are connected in G. (Indeed, if u and v
are not connected, then no edges are placed between Cu and Cv.)

Assuming that no vertex of G has appeared twice in the sample of h vertices (drawn from
D), our tester emulates an execution of T on G′, since in this case a sample of h vertices drawn
from D with no repetitions is distributed identically to a sample of h vertices drawn uniformly
from V ′ =

⋃
v∈V Cv such that at most one vertex is selected from each Cv. As shown next (in

Claim 2.8.1), δΠ
D′(G′) ≥ δΠ

D(G)/h2, where D′ is the uniform distribution on V ′ =
⋃

v∈V Cv, and it
follows that our tester rejects G (under D) with probability at least

dpf(δΠ
D(G)/h2)−

∑

v∈V

D(v)2 > dpf(δΠ
D(G)/h2)/2, (4)

where the second term (in the l.h.s of Eq. (4)) accounts for the case that the sample (of D) contain
two occurrences of the same vertex, and the inequality relies on the postulated upper bound on∑

v∈V D(v)2.

Claim 2.8.1 (relating the distances of G and G′ to Π): Let G and G′ be as above. Then, δΠ
D′(G′) ≥

δΠ
D(G)/h2.

A loss factor that is proportional to the number of edges in the subgraph H is inherent in our
argument, and in the first posting of this work [16] we asked whether this can be avoided. In
subsequent work, Gishboliner and Shapira answered this question positively, and actually obtained
a more general result (see [12, Lem 2.2]).29

Proof: We first assume for simplicity that all D(v)’s are multiples of 1/N . Let P ′ ∈ Π be a graph
closest to G′; that is, P ′ witnesses the value of δ′ = δΠ

D′(G′). We consider a graph P obtained from

G by omitting each edge {u, v} such that at least |Cu| · |Cv |/
(h
2

)
edges are missing in the bipartite

graph that connects Cu and Cv in P ′. Since the number of (directed) edges that are missing in
such bipartite graphs in P ′ is at most δ′ · |V ′|2, it follows that the relative distance between G and
P (under D) is at most

(h
2

)
· δ′.

We next claim that P ∈ Π, and it follows that δΠ
D(G) ≤

(h
2

)
· δ′. This claim is proved by

contradiction. Suppose that the subgraph of P induced by {v1, ..., vh} contains a copy of H, and
observe that Cvi

6= ∅ for each i ∈ [h] (because D(vi) > 0 for each i ∈ [h]).30 Then, we select

29A related question arose in [19] and was addressed in [32], but there the l.h.s (i.e., δΠ
D′(G′)) is replace by the

distance to the set of graphs that are (equal-factor) blow-ups of graphs in Π (in which all clouds have the same
size). On the other hand, the question in [19, 32] is more general: It refers to any property Π, not only to the
subgraph-freeness ones.

30Here we use the fact that H does not contain isolated vertices. Using this fact, it follows that vi is not an isolated
vertex in P . But, on the other hand, we may assume, without loss of generality, that P contains no edges that are
incident at the set Z = {v : D(v) = 0}, since we can omit all edges incident at Z at no cost. It follows that vi 6∈ Z
for each i ∈ [h].
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{r1, ..., rh} at random such that ri is uniformly distributed in Cvi
. For every i, j ∈ [h] such that

{vi, vj} is an edge in P , it holds that {ri, rj} is an edge in P ′ with probability exceeding 1−
(h
2

)−1

(since otherwise the edge {vi, vj} would have been omitted from G). Using a union bound, it follows
that with positive probability the subgraph of P ′ induced by {r1, ..., rh} contains a copy of H, and
it follows that P ′ 6∈ Π (contradicting our hypothesis).

Having established δΠ
D′(G′) ≥ δΠ

D(G)/
(
h
2

)
in the case that all D(v)’s are multiples of 1/N , we

note that in general it holds that δΠ
D′(G′) > 2h−2 · δΠ

D(G) − |V |/N . Using a sufficiently large N
(e.g., N = h2|V |/δΠ

D(G)), the claim follows.

As stated above, combining Eq. (4) and Claim 2.8.1, it follows that our tester finds a copy
of H in G (under D) with probability at least dpf(δΠ

D′(G′)) −
(h
2

)
·∑v∈V D(v)2, which is at least

dpf(δΠ
D(G)/h2)/4. Note that the upper bound on the collision probability of D (i.e.,

∑
v∈V D(v)2 <

dpf(δ/h2)/2h2) is crucial to asserting that finding a copy of H in G′ implies finding a copy of H in
G (see Eq. (4)). In contrast, when obtaining two samples of the same vertex v, it is no longer the
case that a copy of H (in G′) that contains several vertices in Cv yields a copy of H in G. This
implication still holds in case H is a h-clique, since in this case a copy of H cannot contain several
vertices in the same independent set Cv, and so the theorem has just been established for that case
(with a somewhat improved bound)31, but we wish to handle the general case.

Towards this end, we reduce the problem of testing whether G′ contains a copy of H that
touches h different Cv’s to the following generalization of the subgraph freeness problem. In this
generalization, for some constant r, each edge is colored by one of r colors, and the (fixed) forbidden
graphs are similarly colored and called spots. The analogous property consists of r-colored graphs
that do not contain one of the spots as a r-colored subgraph. In our application, we consider a
2-colored graph similar to G′ except that we place edges between each pair of the vertices that
reside in different Cv’s, and color the edge red if it is in G′ and black otherwise. The spots, in our
application, are 2-colored h-vertex cliques that contain a copy of H colored red. Following is the
general definition (which generalizes the definition studied in [2]).32

Definition 2.8.2 (spot freeness): For r, h ∈ N, consider a set of r-colored h-vertex graphs, denoted
S1, ..., St and called spots; that is, each Si consists of the vertex-set [h] and a set of edges Ei along
with their r-coloring χi : Ei → [r]. A colored graph is called {Si : i ∈ [t]}-free if it contains
no colored subgraph that equals any of the Si’s. Distance between colored graphs is defined as the
fraction of the vertex pairs on which the graphs differ either in the existence of an edge or in the
color of an edge that appears in both graphs.33

Actually, the special case in which all spots are colored cliques suffices for our application (as stated
next).

Claim 2.8.3 (testing H-freeness and spot-freeness): Let the Cv and G′ = (V ′, E′) be as above,
and let G′′ = (V ′, E′′) be a 2-colored graph such that E′′ = ∪u 6=v(Cv × Cu) and an edge of E′′ is

31In this case we can apply the improved graph removal lemma of Fox [11], which avoids Szemerédi’s regularity
lemma [34].

32Alon et. al. [2] considered the case in which the spots are (the r) monochromatic (h-vertex) cliques. They studied
the extremal question regarding r-colored graphs and these spots (i.e., the maximum number of r-colorings of some
n-vertex graph such that this coloring contains none of the foregoing spots).

33Actually, the distance of a colored graph X to being S-free equals its distance to a colored graph X ′ that is S-free
and is obtained by omitting the minimum number of edges from X; that is, the minimum distance to being S-free is
obtained by only omitting edges.

21



colored 1 if the edge is in E′ (and colored 2 otherwise). Let S consists of the set of all 2-colored
h-cliques that contain a subgraph colored 1 that is isomorphic to H. Then, the distance of G′ to
the set of graphs that contain no copy of H = ([h], F ) that intersects h different Cv’s equals the
distance of 2-colored G′′ from being S-free, where both distances refer to the uniform distribution
on V ′ (equiv., to the fraction of vertex pairs that should be modified).

Claim 2.8.3 follows by observing that a set of h vertices in G′ contains a copy of H that intersects
h different Cv’s if and only if this set of vertices in G′′ contains a spot that belongs to S. Observing
that the proof of Claim 2.8.1 actually reduces testing testing H-freeness under distribution D to
the testing problem regarding copies of H that intersect h of the Cv’s, we reduce the testing H-
freeness under D to testing spot-freeness. Turning to the problem of testing spot-freeness (under
the uniform distribution U = U(V ′)), we show that the ideas used to test subgraph freeness (under
U) extend and suffice.

Claim 2.8.4 (testing spot-freeness): For any finite set of spots S, the set of S-freeness colored
graphs has a proximity oblivious testers with a detection probability function dpf(δ) = 1/T(poly(1/δ)).

Proof: We show that the ideas underlying the analysis of the natural tester for subgraph-freeness
(which inspects the subgraph induced by h random vertices) extend to testing spot-freeness. The
original analysis is pivoted at Szemerédi’s regularity lemma [34], and here we use the generalization
of the regularity lemma to r-colored graphs (presented in [27, Thm. 1.18], see also [2, Lem. 2.4]).
This generalization asserts a partition of the graph (as in the original version) that is regular with
respect to each of the r graphs that arise from the r sets of colored edges; that is, for graph
G = (V,E) and an r-coloring χ : E → [r], we get a partition that is regular for each of the graphs
Gi = (V, {e∈E : χ(e)= i}).

The next step is a generalization of the rest of the analysis of the subgraph-freeness tester (cf.,
e.g., [14, pp. 190-194]). Specifically, letting δ denote the distance of the input graph from being
H-free, the original analysis uses a poly(δ)-regular partition of the input graph, and demonstrates
the existence of many copies of H in the graph. The argument proceeds in a few simple steps,
which we mimic here.

Assuming that the colored graph G = (V,E) is δ-far from being S-free, we focus on some S ∈ S
such that the colored graph is δ/|S|-far from being S-free. (Note that, w.l.o.g., the cheapest way
to make the graph satisfy these properties is obtained by omitting edges from the graph.) Now,
using a poly(δ)-regular partition, denoted (V1, ..., VT ), of the colored graph G, we

1. omit all edges that are internal to some Vi;

2. omit all edges that connect pairs of Vi’s that violate the regularity condition with respect to
any of the r colors; and

3. omit all edges colored c ∈ [r] among pairs (Vi, Vj) such that the density of the edges connecting
Vi and Vj that are colored c is small.

That is, for each pair (Vi, Vj), we only omit edges that (connect Vi and Vj and) have a specific
color such that the number of edges with that color (that connect Vi and Vj) is small.

As in the original argument, since the total number of omitted edges is smaller than δ · |V |2, we
obtain a (colored) graph R that contains the spot S and is a (colored) subgraph of the input graph.
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Without loss of generality (see [14, p. 191]), we may assume that this spot intersects h different
parts34, denoted V1, .., Vh. Viewing this spot as determining a subgraph over U =

⋃
i∈[h] Vi of the

(colored) input graph, we argue exactly as in the original analysis, except that the subgraph we
consider is different here. Whereas in the original analysis this subgraph consists of the subgraph
of R induced by U , here it contains only the edges that agree with the colors of the spot S. That
is, for every i 6= j (in [h]), if the edge {i, j} is colored χi,j in S, then we keep the edges between
Vi and Vj that are colored χi,j in R. At this point we have h independent sets (i.e., the Vi’s) such
that each pair (Vi, Vj) is regular and contains many edges if {i, j} is colored χi,j in S. This yields
many subgraphs with the same colors (by following the original argument).

Conclusion and the case of bipartite H. Combining Claims 2.8.1 and 2.8.3 with Claim 2.8.4, we
establish the main claim of the theorem. Turning to the furthermore claim (and forgetting about the
foregoing colored graphs and spots), we consider the case that H = ([h], F ) is bipartite. Specifically,
suppose that H = ([h], F ) is a subgraph of Kt,h−t, for some t ∈ [h− 1], and let δ = δΠ

D(G) > 0.
We warn that, unlike in the standard setting (cf. [1, Lem. 2.1]), here it is not the case that the

fact that the set of all edges has weight at least δ (w.r.t D) implies that the graph contains a copy
of Kh,h, let alone Ω(δh2

) such copies (assuming, of course, that h > 1).35 Indeed, our argument
uses the value of δ = δΠ

D(G), and not merely the (implied) lower bound on the weight (w.r.t D) of
all edges in G = (V,E).

Loosely speaking, we distinguish the case in which much of δΠ
D(G) is due to edges connecting

light vertices from the complimentary case. In the former case we can argue as in the standard
setting (where D = U(V )), whereas in the latter case we can find the heavy vertices by sampling
D and detect a copy of H in a natural manner. The latter case is easy when a copy of H resides
on heavy vertices only, but in general the copies of H may contain both heavy and light vertices.
The key observation is that a noticeable fraction of the distance to being H-free is due to copies of
H that reside on s ≤ h of the heavy vertices. Furthermore, clustering the light vertices according
to their heavy neighbors, a noticeable fraction of the latter distance is due to a sequence of h − s
such clusters. Assuming the latter clusters are distinct, we conclude by observing that a sample of
h vertices hits these s heavy vertices and h − s clusters with noticeable probability. Extra care is
required for handling the case that the h− s clusters are not distinct. Details follow.

For γ = Θ(δh2/4), we let L = {v ∈ V : D(v) ≤ γ} denote the set of light vertices, and
consider two cases regarding the weight of the edges that connect light vertices; that is, the edges
in EL = {{u, v}∈E : u, v ∈ L}.

Case 1: EL carries much weight (i.e.,
∑
{u,v}∈EL

D(u) · D(v) ≥ δ/4). In this case, we consider the

graph G1 = (V,EL) and a corresponding blow-up graph G′ = (V ′, E′) as in the main claim;
that is, the vertices of V are replaced by clouds Cv’s of size proportional to D(v), and the
edges of EL are replaced by complete bipartite graphs between the corresponding clouds. We
shall only use the fact that G′ has Ω(δ · |V ′|2) edges, which follows from the hypothesis of the
current case, and the fact that

∑
v∈LD(v)2 ≤ γ.

As shown by Alon [1, Lem. 2.1], the edge density of G′ implies that the graph G′ contains at
least Ω(δt·(h−t)) · |V ′|h copies of Kt,h−t. Hence, with probability p = Ω(δh2/4), the subgraph

34Actually, in case the spots are colored cliques (as in our application), the spot must intersect h different parts.
35Consider, for example the case that D(v) = 1/2 for two vertices v and the graph consisting of a single edge

between these two vertices. There are indeed many copies of Kh,h in the corresponding blow-up graph G′, but all
these copies intersect two clouds of G′ (and so yield no copy of Kh,h in G).
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of G′ induced by h random vertices in V ′ contains a copy of H, whereas the probability that
two of these vertices reside in the same cloud Cv for v ∈ L is at most

(h
2

)
·∑v∈LD(v)2, which

is upper-bounded by
(h
2

)
· maxv∈L{D(v)} < h2 · γ. By an appropriate choice of the hidden

constant in the definition of γ, it follows that with probability at least p/2, a random choice
of h vertices in V ′ contains a copy of H that intersects h different clouds.

Hence, when drawing h samples from D, with probability at least p/2 = Ω(δh2/4), these
vertices induce a copy of H in G1 (and so a copy of H in G).

Case 2: EL carries little weight (i.e.,
∑
{u,v}∈EL

D(u) · D(v) < δ/4). In this case, we consider the graph

G2 = (V,E \ EL), and note that δΠ
D(G2) ≥ δ/2 and that (in G2) vertices in L only neighbor

vertices in V \ L. Noting that each copy of H (in G2) uses at most h vertices in V \ L, we
identify a subset of V \ L of size at most h that “contributes” most to δΠ

D(G2), and use the
fact that |V \L| ≤ 1/γ = poly(1/ǫ). Only the copies of H that hit this subset of V \L will be
used to establish the claim (that a random set of h vertices hits a copy of H with probability
poly(ǫ)).

Letting h′ = min(h, |V \L|)≪ 1/γ (where “typically” h′ = h), for every h′-subset S ⊆ V \L,
we consider the subgraph of G2, denoted GS,L, that contains only edges of E \EL with both
endpoints in S ∪ L. Then, there exists an h′-subset S ⊆ V \ L such that

δΠ
D(GS,L) ≥ δ/2

(1/γ
h′

) > δ · γh, (5)

since a copy of H uses at most h′ vertices of V \ L.

Next, we cluster the vertices in L according to their adjacency relation with S such that the
cluster LS′ contains all vertices in L that neighbor each vertex in S′ but neighbor no vertex in
S \S′; that is, v ∈ LS′ iff v ∈ L and the neighbor-set of v in GS,L equals S′. (Jumping ahead,
we mention that in the graph GS,L vertices in L may only neighbor vertices in S, and so the
vertices in LS′ are effectively identical.) Letting β = δ · γh/2h+1, we discard all vertices that

resides in clusters having weight smaller than β; that is, we let FS
def
= {S′ ⊆ S : D(LS′) > β},

where D(X) =
∑

x∈X D(x), and consider L′
def
=
⋃

S′∈FS
LS′ . Given that the edges that are

incident at L \ L′ have weight at most D(L \ L′) ≤ 2h′ · β and using Eq. (5), it follows that

δΠ
D(GS,L′) > 2h+1 · β − 2h′ · β ≥ 2h′ · β. (6)

(Indeed, GS,L′ denotes the subgraph of G2 that contains only edges of E \ EL with both
endpoints in S ∪ L′.)

Foreseeing the need to partition each cluster in FS to parts of sufficient weight, we “trim”
the clusters so to enable such a partition. Specifically, for every S′ ∈ FS , we denote by
L′S′ = {v ∈LS′ : D(v) < β/4h} the set of vertices of very low weight. We consider residual
clusters obtained by discarding vertices of very low weight (i.e., vertices in L′S′) in case
their total weight is small (i.e., D(L′S′) ≤ β/2). Specifically, if D(L′S′) ≤ β/2, then we let
L′′S′ = LS′ \L′S′ and otherwise L′′S′ = LS′ . Either way, D(L′′S′) > β/2, since D(LS′) > β. Using
Eq. (6), we have

δΠ
D(GS,L′′) > 2h′ · β − 2h′ · β

2
>

β

2
> 0, (7)
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where L′′
def
=
⋃

S′∈FS
L′′S′ (and, again, GS,L′′ denotes the subgraph of G2 that contains only

edges of E \ EL with both endpoints in S ∪ L′′).

We use the fact that GS,L′′ contains a copy of H, and denote the (h different) vertices on
which this copy resides by v1, ..., vh. Suppose that v1, ..., vs ∈ S and vs+1, ..., vh ∈ L′′, and
assume first (for simplicity) that vs+1, ..., vh appear in different residual clusters denoted
L′′s+1, ..., L

′′
h. Then, for every (us+1, ..., uh) ∈ L′′s+1 × · · · × L′′h, the subgraph of G2 induced by

v1, ..., vs, us+1, ..., us contains a copy of H, since the subgraph (of G2) induced by {v1, .., vh}
is isomorphic to the subgraph (of G2) induced by {v1, .., vs, us+1, ..., uh}. This is the case
because, for each i ∈ {s + 1, ..., h}, by virtue of being in the same cluster L′′i , the vertex ui

neighbors the same vertices of S as vi, whereas (in G2) neither ui nor vi neighbors any vertex
in L ⊇ L′′. It follows that h vertices drawn from D contain a copy of H with probability at
least (

s∏

i=1

D(vi)

)
·
(

h∏

i=s+1

D(L′′i )

)
> γs · (β/2)h−s. (8)

Recalling that γ = Θ(δh2/4) and β = δ · γh/2h+1, we lower-bound Eq. (8) by Ω((δγh)h) =
Ω(δh4

).

The foregoing argument presumes that vs+1, ..., vh appear in different residual clusters. To
handle the case that several vi’s occur in the same residual cluster, we partition these clusters
to an appropriate number of parts such that each part has weight at least β/4h and contains
at most one vi. This is possible since, for each S′ ∈ FS , either L′′S′ = LS′ \L′S′ , which implies
D(v) > β/4h for every v ∈ L′′S′ , or D(L′S′) ≥ β/2, which implies that L′S′ can be h-partitioned
so that each part has weight at least β/4h (by distributing the vertices of L′S′ , which have
each weight smaller than β/4h, among the h parts). Considering all ui’s in the parts in which
vi ∈ L′′i resides yields a probability lower bound of γs · (β/4h)h−s (rather than γs · (β/2)h−s),

which is also Ω(δh4
).

Having completed the treatment of both cases, the (furthermore) claim follows.

2.4 On two classes that are easy to test in the standard model

In this section, we consider two classes of properties that are very easy to test in the standard dense
graph model (cf. [14, Sec. 8.2.2]). We shall see that one class, which is trivial to test with one-sided
error in the standard model, is hard to test in the current VDF model, whereas for the other class
the situation is mixed.

2.4.1 On properties that are trivial in the standard model

Recall that we have already seen, in Section 2.1, that only properties that have a strong tester
of one-sided error in the standard model may be strongly testable in the current model. Hence,
only properties of the former class are of interest to us here. One natural question is whether this
necessary condition is a sufficient one.

We answer this question negatively by considering a class of properties that are trivial to test
(with one-sided error) in the standard dense graph model, and showing that they are not strongly
testable in the VDF version.
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Proposition 2.9 (triviality in the standard model does not imply strong testability in the VDF
model): Suppose that the graph property Π satisfies the following two conditions:

1. For every n, the property Π does not contain the empty n-vertex graph (i.e., a graph with no
edges).

2. There exists a constant c ∈ (0, 2) such that for all sufficiently large n ∈ N and every n-vertex
graph G = (V,E) there exists an n-vertex graph G′ = (V,E′) in Π such that the symmetric
difference between E and E′ is at most nc.

Then, Π is not strongly testable in the VDF dense graph model.

The foregoing class of properties includes Connectivity, Hamiltonicity, and being Eulerian (but not
empty). Recall that properties covered by Proposition 2.9 are trivial to test (with one-sided error)
in the standard model by accepting without making any queries if ǫ > n−(2−c) (and querying all
n2 ≤ (1/ǫ)2/(2−c) vertex pairs otherwise; see [14, Prop. 8.3]).36 Hence, Proposition 2.9 establishes
the “dense graph model” part of Theorem 1.2. The following proof relies on the fact that in the
VDF model the tester does not obtain the size of the tested graph. An alternative proof of the
dense graph model part of Theorem 1.2, which does not rely on the testers’ obliviousness of the
size of the tested graph, is used in establishing Proposition 2.11.

Proof: Using Theorem 2.3, it suffices to show that Π is not strongly testable with one-sided error
in the VDF model. Actually, the only aspect of the VDF model that we use here is the fact that the
tester does not obtain the size of the tested graph. (Hence, the proof extends to a corresponding
version of the standard model considered in [15], which may be viewed as a restriction of the VDF
model to the case that the distribution is uniform over the vertex-set.)

Fixing a sufficiently small ǫ > 0, we let n = (1/ǫ)1/(2−c), and consider (one of) the sparsest n-
vertex graph in Π, which by Condition 2 has at most nc edges. Denoting this graph by G = (V,E),
observe that G contains an independent set S of size n′ = n(2−c)/2, since the expected number of
edges in a subgraph induced by n′ random vertices is at most

(n′

2

)
· n−(2−c) < 1.

Now, assume that Π has a one-sided error strong tester, denoted T . Then, on the one hand, T
(having one-sided error) must always accept G (under any vertex-distribution D and any value of
ǫ > 0), which implies that T accepts G even when all sampled vertices fall in S. The latter event
occurs with positive probability, provided D(S) > 0, and in particular when the vertex-distribution
D is uniform over V . Note that, in this case, T sees a subgraph that is an independent set. But, this
implies that T always accepts the empty n′-graph, (i.e., the n′-vertex graph that contains no edges),
although (by Condition 1) this graph is (1/n′)2-far from Π under the uniform distribution on its
vertex-set. Recall that this holds for any value of ǫ, and in particular for ǫ = n−(2−c) = (1/n′)2 (as
set above). This contradicts the hypothesis that T is a tester of Π.

2.4.2 On properties of sparse graphs

Although any property of sparse graphs is easy to test in the standard (dense graph) model, many
of these properties are not strongly testable in the current VDF model. The source of trouble is
that the relevant testers in the standard model are typically not of the one-sided error type. In

36The point is that in the standard model every n-vertex graph is n−(2−c)-close to the property, and so we may
accept any graph if ǫ > n−(2−c), which is the typical case. This justifies the view that these properties are trivial to
test.
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fact, we shall show that for many of these properties strong testing (even in the standard model)
requires two-sided error.

Proposition 2.10 (properties of sparse graphs that are hard to test in the VDF model): For any
unbounded f : N → N such that f(n) < n/2 for all n > 3, suppose that Π is a graph property that
satisfies the following two conditions for infinitely many n’s.

1. Π contains an n-vertex graph that contains a cliques of size f(n).

2. Π contains no n-vertex graph that contains more than 0.5 ·
(n
2

)
edges.

Then Π is not strongly testable in the VDF model.

Note that, when Condition 2 is made more stringent (e.g., n-vertex graphs in Π contain at
most n2−Ω(1) edges), Π is strongly testable (with two-sided error) in the standard model (cf. [14,
Prop. 8.4]). This holds also if Condition 1 is dropped.

Proof: Using Corollary 2.4, it suffices to show that Π is not strongly testable with one-sided
error in the standard model. This is the case, since when f(n)/2 exceeds the query complexity of
the tester, which happens when n is large enough (whereas the query complexity only depends on
the proximity parameter), the tester sees less than f(n) vertices. Being a one-sided error tester,
it must accept if the induced subgraph that it sees is a clique (since, by Condition 1, such an
f(n)-clique may be part of an n-vertex graph in Π). But this implies that the tester always accepts
the complete n-vertex graph, although this graph is 0.4-far from Π (by Condition 2).

Yet another negative result. Proposition 2.10 refers to properties that are strongly testable
in the standard model but not with one-sided error, and the negative result regarding testing in the
VDF model follows (by Corollary 2.4). A more interesting negative result (for the VDF model)
refers to properties of sparse graphs that are strongly testable with one-sided error in the standard
model, but are not strongly testable in the VDF model. One such example is presented next.

Proposition 2.11 (on the “dense graph model” part of Theorem 1.2): Let Π be the set of graphs
consisting of two stars, each holding at least one third of the vertices (i.e., an n-vertex graph is in
Π if it consists of two connected components of size at least n/3, each being a tree with a single
internal vertex). Then, Π is strongly testable with one-sided error in the standard dense graph
model, but is not strongly testable in the VDF model. Furthermore, the lower bound holds even if
the tester is given the size of the graph as auxiliary input.

Proof: We first show that Π is strongly testable with one-sided error in the standard model. On
input parameters n and ǫ > 0 and oracle access to the graph G = ([n], E), the proposed tester
behaves as follow: If ǫ ≤ 5/n, then the tester queries all

(n
2

)
= O(ǫ−2) vertex-pairs, and decides

accordingly. Otherwise (i.e., ǫ > 5/n), the tester selects m = O(1/ǫ) random vertices and rejects if
and only if the induced subgraph contains more than 2m edges. Observe that an m-vertex graph
that contains more than 2m edges, must contain at least three vertices of degree greater than one,
which means that this tester never rejects graphs in Π. Now, suppose that G = ([n], E) is ǫ-far
from Π and ǫ > 5/n. Then, G has more than ǫ ·

(
n
2

)
−n > 0.5ǫ ·

(
n
2

)
edges, because otherwise obtain

a graph in Π by omitting all edges of G and then inserting the two stars (at an extra cost of n− 2
edges). Using n < 0.5ǫ ·

(
n
2

)
(which holds if ǫ > 5/n for n > 5), it follows that the expected number
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of edges in a subgraph induced by m random vertices is at least 0.5ǫ ·
(m

2

)
> 2.3m, provided that

m ≥ 10/ǫ. Hence, with high probability, a random set of m ≥ 10/ǫ vertices induces a subgraph
with more than 2m edges.

Using Theorem 2.3, it suffices to show that Π is not strongly testable with one-sided error in
the VDF model. We first observe that a one-sided error tester must always accept when it sees a
subgraph consisting of a single star, because such a view may occur when accessing a graph in Π
(e.g., when the vertex distribution is uniform over [n] and we sample m vertices, this occurs with
probability exp(−Ω(m)) > 0). But this means that such an alleged tester will accept (wvhp) an
n-vertex graph that consists of a single n-vertex star when coupled with a vertex distribution D
that assigns the center of the star probability 1/2 (and uniform distribution on the other n − 1
vertices). However, this n-vertex graph is Ω(1)-far from Π under the vertex distribution D, which
means that this alleged tester fails (although n was fixed, and so is “known” to the tester).

A positive result. While a global bound on sparsity does not guarantee strong testability in the
current model (cf. Propositions 2.10 and 2.11), a local bound – in the form of bounded degree –
does guarantee it, when augmented with two natural conditions.

Theorem 2.12 (testing properties of bounded-degree graphs (in the VDF dense graph model)):
Suppose that Π is a graph property that satisfies the following conditions.

bounded degree: The exists a constant d such that each graph in Π has vertices of degree at most
d.

hereditary: For every G ∈ Π, every induced subgraph of G is also in Π.

paddability: For every G ∈ Π, the graph obtained by augmenting G with an isolated vertex is also
in Π.

Then, Π is testable in the VDF dense graph model with query complexity Õ(1/ǫ2).

In particular, for any d ≥ 1, the set of all graphs of maximal degree at most d is testable in the
VDF dense graph model with query complexity Õ(1/ǫ2).

Proof: The key observation is that, in this case (i.e., for graphs in Π), the total probability weight
of edges that have at least one endpoint of small weight is small. More generally, for any graph G =
(V,E) in Π, any set V ′ ⊆ V , and any distribution D on V , it holds that

∑
{u,v}∈E:u∈V ′ D(v) · D(u)

is upper-bounded by d ·maxu∈V ′{D(u)}, where d is the degree bound of Π. This claim is proved by
letting Γ(v) denote the set of neighbors of vertex v in G, and observing that

∑

{u,v}∈E:u∈V ′

D(v) · D(u) ≤
∑

v∈V

D(v) ·
∑

u∈V ′∩Γ(v)

D(u) (9)

≤
∑

v∈V

D(v) · |Γ(v)| ·max
u∈V ′
{D(u)}

≤ d ·max
u∈V ′
{D(u)} (10)

where the first inequality holds since each edge in the l.h.s of Eq. (9) is counted at least once in
the r.h.s of Eq. (9). Hence, in our analysis, we can ignore edges with a light endpoint (e.g., edges
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that are incident at {u ∈ V : D(u) ≤ ǫ/2d}). This observation is only used in the analysis; the
tester itself proceeds as follows: On input parameter ǫ, and access to the graph G and the sampling
device D, the tester obtains a sample of m = Õ(1/ǫ) vertices from D, and accepts if and only if the
induced subgraph is in Π.

We first observe that, by the hypothesis that Π is hereditary, any induced subgraph of a graph
in Π is itself in Π, and so the foregoing tester always accepts graphs in Π. Turning to the case that
G = (V,E) is ǫ-far from Π under the distribution D, we shall show that the tester rejects with high
probability. Letting H = {v∈V : D(v) > ǫ/2d} denote the set of heavy vertices, we consider two
cases regarding the subgraph of G induced by H, denoted GH .

Case 1: GH 6∈ Π. In this case, with very high probability, the subgraph induced by the sample is
not in Π (and the tester rejects). This is the case, because, with very high probability, the
sample hits all vertices of H, which implies that subgraph induced by the sample is not in Π
(since otherwise GH ∈ Π by the hypothesis that Π is hereditary).

Case 2: GH ∈ Π. In this case, we start by considering the graph G′ = (V,E′) such that E′ =
{{u, v} ∈ E : u, v ∈ H}; that is, G′ consists of GH and |V \ H| isolated vertices. Hence,
by the paddability of Π, it follows that G′ ∈ Π, which implies that G is ǫ-far from G′. Since
the difference between these two graphs is due to edges that have at least one end-point in
V ′ = V \H, it holds that ∑

{u,v}∈E:u∈V ′

D(v) · D(u) > ǫ. (11)

Indeed, Eq. (11) does contradict Eq. (9)–(10); it only implies that G 6∈ Π, which we know
anyhow (since this is implied by our starting hypothesis that G is ǫ-far from Π). Our aim is
showing that the tester will observe this contradiction; indeed, we shall show that (whp) the
subgraph seen by the tester coupled with the empirical vertex-distribution induced by the
sample (i.e., the distribution D′ defined below) violates Eq. (9)–(10), and it follows that this
subgraph is not in Π (and so the tester rejects).

Denoting the vertices that the tester’s samples by z1, ..., zm, while noting that the zi’s are not
necessarily distinct, we observe that for every i 6= j it holds that the random variable that
indicates whether or not the event {zi, zj}∈E & u∈V ′ holds is an unbiased estimator of the
l.h.s of Eq. (11); that is, letting ζi,j = 1 if {zi, zj} ∈E & u ∈ V ′ and ζi,j = 0 otherwise, we
have Exp[ζi,j] =

∑
{u,v}∈E:u∈V ′ D(v) · D(u). Hence, with high probability over the choice of

the sample, ∑

i∈[m]

∑

j∈[m]\{i}

ζi,j > 0.9ǫ ·m · (m− 1). (12)

Likewise, with high probability over the choice of the sample, each vertex in V ′ occurs at
most 0.6ǫ ·m/d times in the sample, since V ′ = {v ∈ V : D(v) ≤ 0.5ǫ/d}. Hence, Eq. (12)
conflicts with Eq. (9)–(10), indicating that the subgraph induced by the sample is not in Π.
Specifically, defining D′ to be uniform over the sample (i.e., D′(v) = |{i ∈ [m] : zi = v}|/m
denotes the frequency of occurrences of the vertex v in the sample), we get

∑

{u,v}∈E:u∈V ′

D′(v) · D′(u) > 0.9ǫ. (13)
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We conclude that the subgraph of G induced by the sample is not in Π, since otherwise we
reach contradiction (because, by Eq. (9)–(10), if this subgraph were in Π, then

∑
{u,v}∈E:u∈V ′ D′(v)·

D′(u) ≤ d ·maxu∈V ′{D′(u)} ≤ 0.6ǫ would hold, where the last inequality is due to V ′ ⊆ {v∈
V : D′(v) ≤ 0.6ǫ/d}). It follows that the tester rejects (w.h.p.) also in this case.

This completes the analysis of the foregoing tester, and establishes the theorem.

Another positive result. We next show that, in some cases, the degree bound (condition of
Theorem 2.12) can be relaxed to an arboricity bound (i.e., being covered by a bounded number of
forests); in particular, this condition holds for minor-free properties (which always have bounded
arboricity [28]). Recall that a graph property Π is called minor-free if there exists a finite set of
graphsM such that G is in Π if any only if it does not contain a minor inM, where a minor of G
is a graph obtained from G by edge and vertex deletions as well as edge-contractions. Note that, in
light of Proposition 2.11, assuming only bounded arboricity does not suffice (since even properties
of forests may not be strongly testable in the VDF model). (On the other hand, minor-free graphs
do satisfy the other two conditions of Theorem 2.12.)

Theorem 2.13 (testing minor-free properties (in the VDF dense graph model)): Every minor-free
property Π is testable in the VDF dense graph model with query complexity poly(1/ǫ).

In particular, planarity is testable in the VDF dense graph model with query complexity poly(1/ǫ).
The degree of the polynomial in Theorem 2.13 is determined by the property Π and essentially
equals 2d + 2, where d ≥ 1 is the corresponding arboricity bound. (Recall that the complexity
bound established in Theorem 2.13 is Õ(1/ǫ2).)

Proof: Analogously to the proof of Theorem 2.12, we use the fact that (for graphs in Π) the
total probability weight of edges that connect vertices of small weight is small. This is related but
incomparable to the fact established in the proof of Theorem 2.12: On the one hand, here we only
know that the graph is minor-free, which implies that it has bounded arboricity (but not necessarily
bounded degree). On the other hand, here we upper-bound the total weight of edges with both
endpoints in the set of light vertices (rather than edges with at least one endpoint in this set). More
generally, we claim that, for any graph G = (V,E) in Π, any set V ′ ⊆ V , and any distribution D
on V , it holds that

∑
{u,v}∈E:u,v∈V ′ D(v) · D(u) is upper-bounded by d ·maxu∈V ′{D(u)}, where d is

the arboricity bound of Π. This claim is proved by letting Pi(v) denote the parent of v in the ith

forest in a decomposition of G (while fictitiously defining Pi(v) = ⊥ 6∈ V if v is a root in the ith

forest), and observing that

∑

{u,v}∈E:u,v∈V ′

D(v) · D(u) =
∑

v∈V ′

D(v) ·
∑

u∈V ′∩{Pi(v):i∈[d]}

D(u) (14)

≤
∑

v∈V

D(v) · d ·max
u∈V ′
{D(u)}

= d ·max
u∈V ′
{D(u)}, (15)

where the equality holds since each edge with both endpoints in V’ is counted once on both sides on
Eq. (14). Hence, in our analysis, we can ignore edges that connect light vertices. Again, this obser-
vation is only used in the analysis; the tester itself proceeds as follows: On input parameter ǫ, and
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access to the graph G and sampling device D, the tester obtains a sample of s = poly(1/ǫ) vertices
from D, and accepts if and only if the induced subgraph is in Π. The degree of the aforementioned
polynomial will be determined by the property Π (as detailed in the analysis).

We first observe that, since Π is hereditary, any induced subgraph of a graph in Π is itself in
Π, and so the foregoing tester always accepts graphs in Π. Turning to the case that G = (V,E) is
ǫ-far from Π under the distribution D, we shall show that the tester rejects with high probability.
Letting H = {v∈V : D(v) > ǫ/4d}, we consider the graphs G′ = (V,E′) and G′′ = (V,E \E′) such
that E′ = E \ {{u, v} : u, v ∈ V \ H} is the set of edges incident at H. That is, G′ contains the
edges of G that have at least one heavy endpoint (i.e., are incident at H), whereas G′′ contains the
edges of G that have no heavy endpoints (i.e., have both endpoints in V \H). We first prove the
following claim.

Claim 2.13.1 Either the subgraph G′ is ǫ/2-far from Π or, with high probability, a random sample
of Õ(1/ǫ) vertices induces a subgraph of G′′ that is not in Π.

Note that in the first case it follows that H 6= ∅, whereas in the second case the foregoing tester
rejects G with high probability.

Proof: The key observation is that if G′ is ǫ/2-close to Π, then G′′ must be ǫ/2-far from the
empty graph (i.e., the total weight of the E \E′ exceeds ǫ/2), which implies that (whp) a random
sample of vertices induces a subgraph of G′′ that violaltes Eq. (14)–(15). The latter implication is
prove analogously to the argument used in Case 2 of the proof of Theorem 2.12. Specifically, we
consider the subgraph of G′′ that is induced by a random sample of vertices along with the empirical
distribution defined by this sample, and show that (whp) this subgraph along with this distribution
violaltes Eq. (14)–(15). (Even more specifically, we define V ′ as the set of all vertices that occur in
the sample with frequency at most ǫ/3, observe that (whp) V ′ ⊆ V \H and that (whp) the total
weight of edges in the subgraph exceeds ǫ/3, and note that this combination violaltes Eq. (14)–(15).)

Using Claim 2.13.1, we may focus on the case that G′ is ǫ/2-far from Π (and use H 6= ∅).
Following is an outline of the rest of the proof. As when establishing (Case 2 of) the furthermore

claim of Theorem 2.8, we cluster the vertices in V ′
def
= V \ H according to their adjacency to

vertices in H. Here we have no degree bound, but we can easily treat vertices that have more
than d neighbors in H (where d is the arboricity bound). Specifically, a subgraph of G′ that
contains all vertices of H and sufficiently many vertices of V ′ of degree exceeding d violates the
arboricity bound. We cluster the vertices of V ′ that have degree at most d in G′ according to their
neighborhood and use the fact that these vertices are interchangeable. Using am upper bound on
the number of vertices in V ′ that are essential towards forming a forbidden minor in G′, we shall
show that a sample of poly(1/ǫ) vertices does contract to a forbidden minor. With this outline in
mind, we turn to the actual proof.

We start by treating vertices that have more than d neighbors in H. For every v ∈ V ′, we
denote by ΓG′(v) ⊆ H the set of neighbors of v in G′. Letting S′ = {v ∈ V ′ : |ΓG′(v)| > d} and

ǫ′ = ǫ
8(d+1)·|H| , we distinguish S′′

def
= {v ∈ S′ : D(v) ≤ ǫ′} from S′ \ S′′, and consider two cases:

Claim 2.13.2 Either D(S′′) ≤ ǫ/4 or, with high probability, a random sample of Õ(1/ǫ′) vertices
induces a subgraph of G′ that is not in Π.
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In the first case we can afford to omit all edges adjacent to S′′, whereas in the second case the
foregoing tester rejects G with high probability.

Proof: Suppose that D(S′′) > ǫ/4. Then, we can partition the vertices of S′′ into t = ǫ/4
2ǫ′ =

(d + 1) · |H| sets S′′1 , ...., S′′t such that D(S′′i ) > ǫ′ for each i ∈ [t]. With high probability, a random

sample of Õ(1/ǫ′) vertices hits each vertex in H and each set S′′i , and it follows that this samples
contains a set with |H|+t = (d+2)·|H| vertices and at least (d+1)·t = (d+1)2 ·|H| > d·(d+2)·|H|
edges, since each vertex in S′′ ⊆ S′ has degree at least d + 1. But this induced subgraph violates
the arboricity bound of Π. Hence, the sample contains an induced subgraph that is not in Π, which
(by the hereditary feature of Π) implies that the subgraph induced by the sample is not in Π.

Using Claim 2.13.2, we may focus on the case that D(S′′) ≤ ǫ/4. In this case, we just ignore
the set S′′ (or rather omit the edges incident at it), and obtain a graph G′′ that is ǫ/4-far from Π.
For sake of simplicity, from this point onwards, we assume that G′′ = G′ and S′′ = ∅, and so that
all vertices v ∈ S′ satisfy D(v) > ǫ′. In this case, with high probability, the sample taken by the
foregoing tester hits each vertex in H ∪ S′, whereas the residual graph G′ being tested is ǫ/4-far
from Π. We may assume that the subgraph induced by H ∪ S′ does not have a forbidden minor,
since otherwise we are done (i.e., the tester rejects).

Next, we cluster the vertices of V ′ \ S′ according to their neighborhood in H; that is, for each
H ′ ⊆ H of size at most d, we let SH′ = {v ∈ V ′ : ΓG′(v) = H ′} denote the set of vertices in
V ′ = V \H that neighbor each vertex in H ′ but no vertex in H \H ′. We get rid of clusters that
have small weight (or rather omit the edges incident at them); that is, we redefine SH′ ← ∅ if

D(SH′) ≤ ǫ/8
|H|d

, which means that we gave-up on a total weight of at most ǫ/8 edges. Denoting the

resulting subgraph of G′ by G′′, we note that G′′ is not minor-free. (Actually, G′′ is ǫ/8-far from
being minor-free.)

Foreseeing the case that the minor is obtained by contracting several vertices from some cluster,
we upper-bound the number of such vertices. Specifically, we show that, without loss of generality,
the number of vertices of a cluster SH′ that appear in a contracted subgraph that yields a forbidden
minor is at most

(d
2

)
+ O(1) = O(d)2 = O(1). This is the case since each of these vertices either

remains uncontracted (as one of the O(1) vertices of the minor) or is contracted into a vertex of
H. (Recall that vertices in V ′ neighbor only vertices in H.) But the latter contraction makes sense
only if it adds an edge between two vertices of H, whereas the number of possible edges that can
be formed by contracting vertices in SH′ is at most

(
d
2

)
(or rather

(
d′

2

)
, where d′ is the degree of a

generic vertex in SH′).
The key obervation is that the subgraph of G′′ (and of G) that is contracted to a forbidden

minor contains vertices of H ∪ S′ as well as B
def
= O(1) vertices of each SH′ , where H ′ ⊆ H and

|H ′|≤d. Recalling that D(v) ≥ ǫ′ for each v ∈ H ∪ S′ and D(SH′) ≥ ǫ/8|H|d for each such H ′, we
are almost done. Specifically, we would be done if the foregoing subgraph (which yields a forbidden
minor) had at most one vertex from each of the foregoing SH′ ’s. In that case, with high probability,
a sample of Õ(ǫ/|H|d) vertices would contain all vertices of H ∪ S′ as well as a vertex from each of
the relevant SH′ ’s, where the vertices of SH′ are interchangeable.

The foregoing assumption is removed by further partitioning the sets SH′ , analogously to the
way this was done when establishing (Case 2 of) the furthermore claim of Theorem 2.8. Specifically,

for each relevant set H ′ ⊆ H, we let S′′H′
def
= {v ∈ S′ : D(v) ≤ ǫ′′}, where ǫ′′ = ǫ

32B·|H|d
. Next,

let S′H′ = SH′ \ S′′H′ if D(S′′H′) < ǫ/16|H|d, and S′H′ = SH′ otherwise. Note that in both cases
D(S′H′) > ǫ/16|H|d and that S′H′ either contains only vertices of weight at least ǫ′′ or can be
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partitioned to B parts such each part has weight at least ǫ′′. We conclude that, with high probability,
a sample of Õ(ǫ/|H|d) vertices contains all vertices of H ∪ S′ as well as an adequate number of
vertices from each of SH′ ’s (i.e., a number that at least equals the number of vertices of SH′ in the
subgraph that yields the forbidden minor). Hence, the foregoing tester rejects, since the sample it
takes induces a subgraph that yields a forbidden minor. The theorem follows, where the size of the
sample is s = Õ(1/ǫ′′) = Õ(|H|d/ǫ) = Õ(ǫ−(d+1)).

3 The Bounded-Degree Graph Model

In this section, we generalize the notion of property testing in the bounded-degree graph model
(a.k.a. the bounded incidence lists model, which was introduced in [20] and is reviewed in [14,
Chap. 9]).

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2.
In this model, a graph G = (V,E) of maximum degree d is represented by the incidence function
g : V × [d]→ V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ 6∈ V
if v has less than j neighbors.37

As in the dense graph model, the tester is given oracle access to the representation of the input
graph (i.e., to the incidence function g) as well as to a device, denoted D, that returns identically
and independently distributed elements in the graph’s vertex-set. This distribution is also denoted
D. Following [15], we consider the case that the tester does not obtain any information about V
as explicit input.

Distance between graphs is measured in terms of their foregoing representation and with ref-
erence to the distribution D; that is, the distance between the graphs that are represented by the
incidence functions g : V × [d]→ V ∪ {⊥} and g′ : V × [d]→ V ∪ {⊥} is defined as

δD(g, g′)
def
= Prv←D,i∈[d][g(v, i) 6= g′(v, i)] (16)

=
∑

v∈V

D(v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|
d

where D(v) denotes the probability that an element drawn from D equals v. For a graph property
Π and a graph represented by the incidence function g : V × [d] → V ∪ {⊥}, we let δΠ

D(g) denote
the minimum of δD(g, g′) taken over all incidence functions g′ : V × [d] → V ∪ {⊥} that represent
graphs in Π. (We assume for simplicity that Π contains some graphs with vertex-set V ; otherwise,
one may define δΠ

D(g) > 1.) When G is the graph represented by g, we may write δΠ
D(G) instead

of δΠ
D(g). When the property Π is clear from the context, we may omit it from the notation and

write δD(·) instead of δΠ
D(·).

Definition 3.1 (VDF testing in the bounded-degree graph model): For a fixed d ∈ N, let Π be a
property of graphs of degree at most d. A VDF tester for the graph property Π (in the bounded-degree
graph model) is a probabilistic oracle machine T that is given access to two oracles, an incidence
function g : V ×[d]→ V ∪{⊥} and a device (denoted D) that samples in V according to an arbitrary
distribution D, and satisfies the following two conditions (for all sufficiently large V ):38

37For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{j ∈ [d] : g(v, j) 6= ⊥}| denotes the degree of v in G.

38This relaxation, which allows the tester to fail on some tiny graphs, was not made in the first posting of this
work [16]. See Footnote 20 for further discussion.
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1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every
g : V × [d] → V ∪ {⊥} representing a graph in Π and every D (and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any G = (V,E) and D such that δΠ
D(G) > ǫ, the tester rejects

with probability at least 2/3; that is, for every ǫ > 0 and distribution D, if g : V ×[d]→ V ∪{⊥}
satisfies δΠ

D(g) > ǫ, then it holds that Pr[T g,D(ǫ)=0] ≥ 2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [d] → V ∪ {⊥} representing a graph in Π (and every D and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] = 1.

The definition of a proximity oblivious tester [22] is revised analogously. Specifically, a proximity
oblivious tester is not given a proximity parameter (i.e., ǫ), it always accepts graphs in Π, and it
rejects graphs G not in Π with probability that is related to δΠ

D(G). Specifically, the tester rejects
with probability at least dpf(δΠ

D(G)), where dpf : (0, 1] → (0, 1] is called the detection probability
function.

As in the dense graph model, we may assume, without loss of generality (see Proposition 3.2),
that the tester only makes queries that refer to vertices that appeared as answers to prior queries
(i.e., either as samples provided by the sampling device or as answers to incidence queries). Note,
however, that (unlike in the dense graph model) this does not mean that the number of queries can
be upper-bounded in terms of the number of sample requests. On the other hand, whenever we
only mention the query complexity, it is to be understood that the number of samples is similarly
upper-bounded (since we may assume, with little loss of generality, that the tester makes some
queries about the incidence relation of each sampled vertex).39

Proposition 3.2 (avoiding illegal queries in the bounded-degree graph model): Suppose that Π
can be tested by making at most s sampling requests and at most q queries to the graph, where both
complexities depend on the proximity parameter and on label-invariant parameters of the distribu-
tion. Then, Π can be tested by making at most 3s sampling requests and at most 3q queries, while
making queries only to vertices that occurred as answers to previous queries.

An analogous statement holds with respect to proximity oblivious tester, where one can establish
the asymptotic preservation of the detection probability function.

Proof: Mimicking the proof of Proposition 2.2, we let T be a tester as in the hypothesis. We
consider a tester T ′ that, on input g′ : V ′ × [d] → V ′ ∪ {⊥} and D′, invokes T on related inputs
g : V × [d]→ V ∪{⊥} and D, while constructing on-the-fly a random bijection π of V ′⊎ [100q · |V ′|]
to [(1 + 100q) · |V ′|], and setting V = π(V ′). Specifically, when T asks for a sampled vertex, we
obtain v′ ← D′ and answer with π(v′), where if π is not defined on v′ then it is set at random
(among the unused values). When T makes the query (v, i), algorithm T ′ proceeds as follows.

• If π−1 is not define on v, then it return a special error symbol (indicating that (v, i) is not in
the domain of g).

39The distinction between the sample and query complexity is reminiscent of [6]. However, in the current context,
we envision the tester as making more queries than the number of samples, whereas the model in [6] envisions making
less queries than the number of samples. Indeed, the possibility of making queries regarding elements that did not
appear in the sample arises naturally in the bounded-degree graph model, but is not that natural in the settings
envisioned in [6] (let alone in the dense graph model).
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• Otherwise, if g′(π−1(v), i) = ⊥ , then it returns ⊥.

• Lastly, letting w
def
= g′(π−1(v), i) 6= ⊥, the algorithm returns π(w), where if π is undefined

on w (indicating that w did not occur as a previous answer), it is set at random (among the
unused values).

The key observation is that, on input g′ and D′, with very high probability (over the choice of
π), algorithm T ′ emulates an execution of T on input g and D defined via a random bijection
π such that D(v) = D′(π−1(v)) and g(v, i) = π(g′(π−1(v), i)). The deviation is due to the case
that a query (v, i) was made although v was not obtained as an answer to a previous query and
π−1(v) ∈ V ′ (although we behaved as if v 6∈ π(V ′)). The rest of the argument proceeds as in the
proof of Proposition 2.2.

Organization of the rest this section. We first show that, as in the case of the dense graph
model, it is possible to transform testers of the VDF version of the bounded-degree graph model
into ones that have one-sided error, while incurring an overhead that is much lower than in the
standard model. Again, this yields lower bounds on the testability in the current VDF model. Next,
focusing on properties that are strongly testable with one-sided error in the standard (bounded-
degree graph) model, we try to extend these testers to the VDF model. Specifically, building on
the presentation in [14, Sec. 9.2], we present relatively simple testers for subgraph freeness, degree
regularity, and being Eulerian. These poly(1/ǫ)-query testers are based on conducting a small
number of very local searches, but the parameters of these searches and their goals vary from one
case to another. Likewise, building on results of [9], we study the testability of minor-freeness,
focusing on cycle-free minors. Lastly, in Section 3.5, we present the t-removed VDF model (briefly
discussed in Section 1.4), and extend our positive results regarding the VDF bounded-degree graph
model to the t-removed VDF model, while incurring an overhead that is exponential in t.

3.1 One-sided error in the VDF model

In contrast to the situation in the standard model (see, e.g., the gap between the complexities of
general versus one-sided error testing of cycle-freeness [20]), one-sided error comes at a low cost in
the current model. This is the case since any strong tester in the VDF model can be transformed
into a one-sided error tester (for this model) while maintaining query complexity that only depends
on ǫ.

Theorem 3.3 (one-sided error testing reduces to general testing): Let Π be a graph property
that can be tested using q(ǫ) queries in the VDF bounded-degree graph model, where ǫ denotes the
proximity parameter.40 Then, Π has a one-sided error tester of query complexity exp(O(q(ǫ))) in
the current model.

Theorem 3.3 implies that properties that do not have strong testers of one-sided error in the
standard model cannot be strongly tested in the VDF model (see Corollary 3.4).

Proof: We follow the strategy used in the proof of Theorem 2.3. Let T be a (general) VDF tester
of query complexity q(ǫ) for Π. Recall that by Proposition 3.2, we may assume, without loss of
generality, that T does not query the graph on vertices that did not appear as answers to prior

40Recall that by our convention, the query complexity also accounts for invocations of the sampling device.
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queries (or sample requests). We present a one-sided error tester for Π in the current model. On
input parameter ǫ > 0, and oracle access to a graph G = (V,E) and a sampling device D, the
claimed tester operates as follows.

1. The tester takes t = O(q(ǫ)2) samples, denoted v1, ..., vt, from the distribution D. Note that
the vi’s need not be distinct; that is, we may have vi = vj for some i 6= j.

2. Letting s = q(ǫ), for every sequence (i1, ..., is) over [t] and every possible random-pad r of T ,
the algorithm invokes T (ǫ) on randomness r and oracle access to G, while providing vij as the
jth sampled vertex (i.e., as an answer to the jth sampling request). That is, T is invoked on
input ǫ, and provided access to G, but its randomness is set to r and the s samples it expects
to receive from the sampling device are set to vi1 , ..., vis .

3. The algorithm accepts if and only if a majority of the invocations performed in Step 2 accept.

Since T only queries vertices that are provided as answers to prior queries, our algorithm queries
the graph on vertices that are at distance at most q(ǫ) − 1 from one of the sampled vertices.41

Hence, the sample complexity of our algorithm is t = O(q(ǫ)2) and its query complexity is smaller
than t · dq(ǫ) = exp(O(q(ǫ))). The rest of the proof (i.e., showing that this algorithm constitutes a
one-sided error tester for Π in the VDF model) is as in the proof of Theorem 2.3.

Using Theorem 3.3 towards establishing lower bounds in the current model. As noted
above, Theorem 3.3 implies that properties that do not have strong testers of one-sided error in the
standard (bounded-degree graph) model cannot be strongly tested in the current (VDF bounded-
degree graph) model.

Corollary 3.4 (lower bounds via reduction from one-sided error testing): Let Π be a graph property
that can be tested using q(ǫ) queries in the VDF bounded-degree graph model, where ǫ denotes the
proximity parameter. Then, Π has a one-sided error tester of query complexity exp(O(q(ǫ))) in the
standard bounded-degree graph model. The claim holds even if the VDF model tester is given the
size of the graph as auxiliary input.

Hence, lower bounds on the complexity of one-sided error testers in the standard bounded-degree
graph model yield lower bounds on testers in the current model. In particular, this implies that
testing cycle-freeness in the current model cannot be performed within complexity that only depends
on the proximity parameter ǫ. Actually, the same holds for testing H-minor freeness for any H
that contains a cycle (cf. [9]).

Beyond Corollary 3.4. As in the case of the dense graph model, also in the bounded-degree
graph model strong one-sided error testing in the standard model does not suffice for strong testa-
bility in the VDF version.

Proposition 3.5 (on properties that are trivial in the standard model): Suppose that the graph
property Π of bounded-degree graphs satisfies the following two conditions:

41Here, unlike in Steps 1 and 2 of the foregoing algorithm, we use q(ǫ) as an upper bound on the number of queries
to the graph. Indeed, in Step 2, s = s(ǫ) equals the sample complexity of the original tester, whereas in Step 1
t = O(s2). Hence, the sample complexity of the resulting one-sided error tester is O(s2), whereas its actual query
complexity is O(s2) · dq(ǫ) = exp(O(q(ǫ) + log s)).
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1. For every n, the property Π does not contain the empty n-vertex graph (i.e., a graph with no
edges).

2. There exists a constant c ∈ (0, 1) such that for all sufficiently large n ∈ N and every n-vertex
graph G = (V,E) there exists an n-vertex graph G′ = (V,E′) in Π such that the symmetric
difference between E and E′ is at most nc.

Then, Π is not strongly testable in the current VDF model.

Note that properties covered by Proposition 3.5 are trivial to test (with one-sided error) in the stan-
dard (bounded-degree graph) model by accepting without making any queries if ǫ > n−(1−c) (and
querying the neighborhoods of all n ≤ (1/ǫ)1/(1−c) vertices otherwise). The foregoing (contrived)
class contains the set of bounded-degree n-vertex graphs that contain a connected component of
size at least

√
n. Anyhow, Proposition 3.5 establishes the “bounded-degree graph model” part of

Theorem 1.2.

Proof Sketch: We follow the strategy used in the proof of Proposition 2.9, while setting n =
(1/dǫ)1/(1−c) and using a bounded-degree graph G ∈ Π that has n vertices and at most nc edges.
Fixing a set S of n′ = n1−c < n− 2nc isolated vertices in G, we observe that a potential one-sided
error tester of Π must accept when seeing n′ isolated vertices, since this view may occur when
testing G ∈ Π. But this means that this alleged tester (which is not given the size of the graph)
must accept the empty n′-vertex graph, although this graph is 1/dn′-far from Π (under the uniform
vertex-distribution). Contradiction follows, since ǫ = 1/n1−cd = 1/n′d.

The foregoing proof capitalizes on the tester’s obliviousness of the size of the tested graph.
The same holds with respect to the following proof, which uses a natural property for establishing
the “bounded-degree graph model” part of Theorem 1.2. However, unlike Proposition 3.5 which
becomes invalid when the tester obtains a rough estimate of the size of the graph (since such an
estimation allows to distinguish large and small values of ǫ), the following result remains valid even
if the tester obtains a very good estimate of this number (but not the exact value).42

Proposition 3.6 (on the difficulty of Connectivity in the VDF model): Connectivity is not
strongly testable in the VDF bounded-degree graph model.

Proof: By Theorem 3.3 it suffices to show that Connectivity cannot be strongly tested with
one-sided error in the VDF model. This is shown by observing that an alleged (strong) tester
(with one-sided error for the VDF model) must always accepts when seeing a single connected
component, since this connected component may be the entire graph. On the other hand, consider
a graph consisting of such a connected component along with additional vertices (on top of such a
connected component), when the distribution is concentrated uniformly on the former component
(and assigns negligible probability to all other vertices). Specifically, consider an n-vertex graph
with a connected component of size k < n such that, for positive η ≪ 1/k, each of the vertices
of this component is assigned weight (1 − η)/k (and the rest of the weight (i.e., η) is partitioned
arbitrarily among the other n − k vertices). Then, this graph is 1/2dk-far from being connected,
where d is the degree bound, but an alleged tester that makes q = q(1/2dk) queries accepts it with

42As shown in Section 4.2.1, the exact value is used to distinguish the case that the tester has visited all the vertices
of the graph G = (V, E) from the case that it has not visited some of the vertices. Typically, this matters only when
minv∈V {D(v)} < ǫ < 1/|V |.
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probability at least 1−q ·η ≈ 1, where the approximation holds provided that η is sufficiently small
as a function of k. (Indeed, we capitalized on the fact that the contribution of each edge to the
distance is proportional to the weight of each of its endpoints, and so it is large even if only one of
the endpoints has large weight. We note that the argument holds both for n = k + 1 and n≫ k.)

3.2 Testing subgraph freeness

Testing subgraph freeness (e.g., triangle-freeness), when the subgraph is not bipartite, is quite a
challenge in the dense graph model. Recall that even testing triangle-freeness (in that model)
involves the invocation of the Regularity Lemma. In contrast, we will present a relatively simple
tester for the same properties in the current model (i.e., the VDF bounded-degree graph model).
Recall that, for a fixed graph H, a graph G is called H-free if G contains no subgraph that is
isomorphic to H.

We shall focus on the case that H is connected, although the general case can be handled
similarly (yielding similar, but not identical results).43 Let rd(H) denote the radius of H; that is,
rd(H) is the smallest integer r such that there exists a vertex v in H such that all vertices in H
are at distance at most r from v. Such a vertex v is called a center of H, and indeed H may have
several centers (e.g., consider the case that H is a clique).

Theorem 3.7 (testing subgraph freeness (in the VDF bounded-degree graph model)): Let H =
([t], F ) be a fixed (connected) graph of radius r = rd(H). Then, H-freeness has a (one-sided error)
proximity-oblivious tester of query complexity 2dr+1 and linear detection probability. Furthermore,
the time complexity of this tester is at most (2d)rt.

Proof: The tester presented in [14, Sec. 9.2.1] selects a start vertex, explores is r-neighborhood,
and accept if and only if this subgraph is H-free. In the analysis it is shown that a center of a copy
of H is selected with probability that is linearly related to the distance of the graph from being
H-free, but this analysis is based on the fact that the cost of omitting an edge is the same for all
edges. The argument could be extended to the case that the cost of omitting an edge is related to
the minimum of the weights of its endpoints, but in our model the cost is related to the sum of
these weights. This leads to the following revision of the original tester.

Algorithm 3.7.1 (testing H-freeness): On input parameter d, given oracle access to the incidence
function of a graph G = (V,E), which has maximum degree d, and to a vertex-sampling device D,
the algorithm proceeds as follows.

1. Selects a vertex s ∈ V according to D (i.e., s ← D). If s is an isolated vertex, then accept.
Otherwise, set v = s with probability 1/2, and let v be a random neighbor of s otherwise.

2. Conducts a BFS of depth at most r starting from v.

3. Accept if and only if the explored subgraph is H-free.

Step 2 is implemented by querying the incidence function, and so the query complexity of this
algorithm is upper-bounded by d +

∑r
i=0 di · d < 2dr+1. Step 3 can be implemented by checking

43Cf. [14, Exer. 9.3], which refers to the case that D is uniform over V .
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all possible mappings of H to the explored graph, and so the time complexity of Algorithm 3.7.1
is upper-bounded by

(2dr

t

)
· (t!) < (2d)rt.

Algorithm 3.7.1 never rejects a graph that is H-free, since H-freeness is preserved by subgraphs
of the original graph. (Algorithm 3.7.1 can be modified to check induced subgraph freeness, while
noting that this property is preserved by induced subgraphs of the original graph.) It is left to
analyze the detection probability of Algorithm 3.7.1.

Claim 3.7.2 (the detection probability of Algorithm 3.7.1): Algorithm 3.7.1 rejects the graph G
with probability at least δD(G)/2, where δD(G) denotes the distance (according to D) of G from
being H-free.

Proof: A vertex v ∈ V is called detecting if it is a center of a copy of H that resides in G. Letting
Γ(v) denote the set of neighbours of vertex v, we observe that

δD(G) ≤
∑

v is detecting

∑

u∈Γ(v)

(D(v)

d
+
D(u)

d

)
(17)

≤
∑

v is detecting


D(v) +

∑

u∈Γ(v)

D(u)

d


 (18)

since omitting all edges incident at detecting vertices makes the graph H-free. On the other hand,
in our algorithm, a BFS is started at (a detecting) vertex v with probability at least

D(v)

2
+
∑

s∈Γ(v)

D(s)

2d

where the first term is due to selecting v is Step 1 (i.e., v = s) and the second term is due to selecting
a neighbor of v (i.e., selecting s and moving to v). Hence, the probability that the algorithm rejects
is at least

∑

v is detecting


D(v)

2
+
∑

s∈Γ(v)

D(s)

2d


 ≥ δD(G)/2,

where the inequality is due to Eq. (17)–(18). The claim follows.

This completes the proof of the theorem.

3.3 Testing degree regularity

Degree-regularity cannot be strongly tested in the current model, since the tester (which is not given
the number of vertices in the graph) cannot distinguish a graph G = (V,E) with an even number
of vertices that are each of the same odd degree (i.e., |V | ≡ 0 (mod 2) and |Γ(v)| = |Γ(u)| ≡ 1
(mod 2) for all u, v ∈ V ) from a graph that is obtained from G by adding an isolated vertex,
whereas the latter graph is 1/2d-far from regular, where in both cases the distribution is uniform
over V . Furthermore, even when guaranteed that the number of vertices is even, the tester cannot
distinguish the graph G from a graph obtained from G by adding at most d isolated vertices.44

44Indeed, this stands in contrast to the statement of Theorem 3.8 in the first posting of this work [16].
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(The argument mimics the proof of Proposition 3.6, and involves referring to ǫ = 1/2d|V | and to a
distribution that is uniform over V and assigns the isolate vertices very small weight.)45

In light of the foregoing, we relax the definition of testing degree regularity so to allow for
arbitrary verdict in case the graph has few exceptional vertices. That is, for every d′ ≤ d, we let
Π′d′ denote the set of graphs in which at most d′ vertices have degree different from d′, and let
Π′ =

⋃
d′∈{0,1,...,d}Π

′
d′ . A relaxed tester of degree regularity is required to accept every regular graph

and reject (w.h.p) every graph that is far from Π′. The definition of a relaxed POT is adapted
accordingly (see next).

Theorem 3.8 (relaxed testing of degree regularity (in the VDF bounded-degree graph model)):46

In the VDF bounded-degree graph model, with degree bound d, degree regularity has a relaxed (one-
sided error) proximity-oblivious tester of (query and) time complexity O(log(d + 1)) and linear
detection probability; that is:

1. The relaxed tester accepts every regular graph with probability 1.

2. The relaxed tester rejects every graph that is at distance δ from Π′ with probability Ω(δ).

Proof: The tester presented in [14, Sec. 9.2.2] selects uniformly two vertices and compares their
degrees. In the analysis it is shown that if the tester rejects a graph with small probability, then
the graph is close to being regular. Specifically, this is shown by relating the fraction of incidences
(i.e., arguments to the incidence function) that need to be modified to the rejection probability.
Noting that, in the current context, difference incidences have different weight, we need to relate
the weight of modified incidences to the probability that (the degree of) the corresponding vertices
were checked. Hence, in the following algorithm, the vertex v is not selected according to D, but
rather according to a related probability that enables the aforementioned analysis.

Algorithm 3.8.1 (testing degree regularity): On input parameter d, oracle access to the incidence
function of a graph G = (V,E), which has maximum degree d, and to a vertex-sampling device D,
the algorithm proceeds as follows.

1. Selects u ∈ V arbitrarily (e.g., u ← D) and select v by drawing s ← D and taking a lazy
random walk of length one from s (i.e., let v = s with probability 1/2 and let v be a random
neighbor of s otherwise).

2. Determines the degrees of u and v.

3. If the degrees of u and v are different, then the algorithm rejects. Otherwise, the algorithm
accepts.

Step 2 is implemented by a binary search on the incidence list of each selected vertex, and so the
query (and time) complexity of this algorithm is 2 · ⌈log2(d + 1)⌉. Evidently, Algorithm 3.7.1 never
rejects a regular graph.

45Note that G is regular, whereas the augmented graph is ǫ-far from regular (because some isolated vertex must be
connected to some vertex in V ). The argument extends to the case that the exceptional vertices are inter-connected
in an arbitrary manner.

46This corrects the statement of Theorem 3.8 in the first posting of this work [16].
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The analysis of Algorithm 3.7.1 is based on generalizing the claim that the “distance” of G
to Π′ is upper bounded in terms of the difference between its own degrees, where in the standard
formulation (see [14, Clm. 9.5.1]) the distance and the difference refer to the case that D is uniform
on V . Here we generalize this local-vs-global claim to arbitrary D, except that we refer to Π′

rather than to degree regularity proper. (Consequently, our argument is simpler than the proof
of [14, Clm. 9.5.1], which is merely a reformulation of [14, Clm. 8.5.1] (although the two claims are
employed in different settings, which is the reason for the reformulation).)

Claim 3.8.2 (local-vs-global distance to degree regularity): Let dG(v) ≤ d denote the degree of
vertex v in the graph G = (V,E). Let p(v) denote the probability that a lazy random walk of length
one that starts at s ← D reaches v. For any d′ ∈ {0, 1, ..., d}, if

∑
v∈V :dG(v)6=d′ p(v) ≤ B, then

δ
Π′

d′

D (G) ≤ (4d + 2) ·B.

Proof: We modify G in two stages, while keeping track of the “cost” of these modifications.47 In
the first stage we reduce all vertex degrees to at most d′, by scanning all vertices and omitting

at most dG(v) − d′ edges incident at each vertex v ∈ H
def
= {u : dG(u) > d′}. The cost of this

modification is at most

Prv←D[v ∈ H] · (d− d′)/d + Expv←D[|{u ∈ H : {u, v} ∈ E}|]/d, (19)

where the first term in Eq. (19) is due to removing edges from the incidence list of vertices in H,
and the second term is due to effect of these removals at the other endpoint. Letting H ′ = Γ(H)
denote the set of neighbors of H in G, we upper bound Eq. (19) by Prv←D[v ∈ H]+Prv←D[v ∈ H ′].
Hence, δD(G,G′) ≤ Prv←D[v ∈ H] + Prv←D[v ∈ H ′]. Furthermore, denoting the resulting graph by
G′ and the degree of v in G′ by dG′(v) ≤ d′, we have

Prv←D[dG′(v) < d′] ≤ Prv←D[dG(v) < d′] + Prv←D[v ∈ H ′], (20)

since dG′(v) < d′ ≤ dG(v) only if v neighbors a vertex of H (which means that v ∈ H ′).
In the second stage, we insert an edge between each pair of vertices that are currently non-

adjacent and have both degree smaller than d′. Thus, we obtain a graph G′′ such that {v :
dG′′(v) < d′} is a clique in G′′ (and dG′′(v) ≤ d′ for all v). The cost of this modification is at most
Prv←D[dG′(v) < d′]. Note that G′′ ∈ Π′d′ (although it may not be regular).48 The total cost of all
modifications is δD(G,G′) + δD(G′, G′′), and so

δD(G,G′′) ≤ δD(G,G′) + δD(G′, G′′)

≤ Prv←D[v ∈ H] + Prv←D[v ∈ H ′] + Prv←D[dG′(v) < d′]

≤ Prv←D[dG(v) > d′] + Prv←D[dG(v) < d′] + 2 · Prv←D[v ∈ H ′]

=
∑

v:dG(v)6=d′

D(v) + 2 ·
∑

v∈Γ(H)

D(v)

where the third inequality uses Eq. (20). Observing that p(v) ≥ D(v)/2 and p(v) ≥ D(s)/2d if
v ∈ Γ(s), we conclude that δD(G,G′′) ≤ 2 ·∑v:dG(v)6=d′ p(v) + 2 · 2d ·∑s∈H p(s), and the claim
follows.

47The proof of [14, Clm. 9.5.1] (or rather [14, Clm. 8.5.1]) uses three stages, where the third stage (omitted here)
is most complex.

48Hence, the third stage in the proof of [14, Clm. 9.5.1] (or rather [14, Clm. 8.5.1]) is omitted here.
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The lower bound on the rejection probability of Algorithm 3.7.1 follows from Claim 3.8.2. Specifi-
cally, let d′ denote the degree of the first vertex (i.e., u) selected in Step 1 of the algorithm. Then,
the probability that the second vertex selected in Step 1 (i.e., v) has degree that differs from d′ is
at least δΠ′

D (G)/6d. The theorem follows.

Testing whether a graph is Eulerian. Recall that a graph is called Eulerian if all its vertices
have even degree. (Note that we do not require here that the graph be connected.) We can easily
test if a graph is Eulerian by sampling a random vertex (according to D) and determining its
degree, but again the analysis is not trivial because we need to preserve the degree bound (and the
simplicity) of the graph. Actually, this is a problem only for odd d, since otherwise we can just
pair all vertices of odd degree and flip the adjacency relation of each of these pairs. However, in
case d is odd, we may have odd vertices of degree d, and these vertices may be nonadjacent (and
so we cannot connect them while maintaining the degree bound). Actually, by proceeding as in
the case of even d, we may reach a situation in which all vertices of odd degree are nonadjacent
(and have degree d). Considering two such vertices, u and v, we observe that their neighbors must
have even degree (or else we can proceed with the aforementioned process). If u neighbors u′ and v
neighbors v′, then we omit the edges {u, u′} and {v, v′} and flip the adjacency relation of the pair
(u′, v′) (assuming that u′ 6= v′, and do nothing otherwise). Observing that we have also modified
the incidences of vertices of even degree that neighbor vertices of odd degree, we need to modify the
tester so that it checks not only the degree of the sampled vertex but also the degree of a random
neighbor of the sampled vertex.

3.4 Testing minor-freeness

We first recall that strongly testing cycle-freeness in the VDF (bounded-degree graph) model is not
possible. The same holds for strongly testing H-minor freeness for any H that contains a cycle.49

This follows by combining Corollary 3.4 with the fact that in the standard VDF (bounded-degree
graph) model these properties have no strong tester with one-sided error tester (see [9, Thm. 6.1]).

Recalling that, for every H that is cycle-free, strongly testing H-minor freeness is possible in the
standard (bounded-degree graph) model with one-sided error tester (see [9, Sec. 7]), we ask whether
this is also possible in the current model. We answer this question positively in two natural extreme
cases: the cases of H of maximal and of minimal diameter (i.e., a path and a star, respectively).
Given that the general case is complex enough in the standard model, we refrain from addressing
it here, leaving it to future research.

Testing that the graph contains no simple k-long path. The existence of a simple k-long
path is equivalent to having a Pk-minor, where Pk denotes the k-long path. A natural proximity
oblivious tester, analyzed in [9, Sec. 7.2], consists of searching for such a path at random. Specifi-
cally, in the standard setting, one may select uniformly a random start vertex, take a random k-step
walk from it, and reject if and only if the walk corresponds to a simple path. This simple solution
does not quite work in the current setting, since the vertex distribution D may be concentrated on
vertices that are at the internal vertices of k-length paths; indeed, consider the case that the graph
consists of a collection of isolated k-long paths.

49Recall that C3-minor freeness is a special case, which is equivalent to cycle-freeness, where C3 denotes the 3-vertex
cycle.
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The source of the problem is a possible imbalance between the (probability) weights of the
endpoints of “violating” edges. Specifically, in the foregoing example all edges are heavy, due to
the weight of at least one of their endpoints, but the k-path can only be detected when starting
the search at a leaf, whereas the leaves may have tiny weight. Nevertheless, a simple variation on
the foregoing algorithm does work.

Algorithm 3.9 (a Pk-minor freeness tester): On oracle access to a graph G = (V,E) and a vertex
sampling device D, the tester proceeds as follows.

1. Obtains a sample from D; that is, v ← D.

2. Select uniformly i ∈ [k];

3. Take two random walks from v, one of length i and the other of length k − i.

4. Reject if and only if joining these walks yields a simple k-long path.

Clearly, this tester never rejects a Pk-minor free graph, and so it is left to analyze the probability
that this tester rejects graphs that are far from being Pk-minor free.

Claim 3.10 (analysis of Algorithm 3.9): Suppose that G = (V,E) is at distance δ from being Pk-
minor free with respect to the distribution D. Then, Algorithm 3.9 rejects with probability at least
δ/ exp(O(k)), where the O-notation hides a dependence on the degree bound d.

Note that Algorithm 3.9 yields a proximity oblivious tester (for the VDF model) of complexity
exp(O(k)) and linear detection probability, matching the query complexity bound of Theorem 3.7.

Proof: We follow the strategy used in the proof of [9, Clm. 7.3], but our actual analysis is
different.50 We call an edge {u, v} bad if it resides on a simple path of length k. Let ρ denote
the total probability, under D, of bad edges in G, where the probability of an edge {u, v} is
(D(u) + D(v))/d, just as it is (implicitly) in Definition 3.1. Then, on the one hand, we reject G
with probability at least ρ/(kdk−1), since an endpoint of a bad edge {u, v} is selected in Step 1 with
probability D(u) +D(v) and the corresponding path is viewed with probability at least 1/(k · dk).
On the other hand, ρ ≥ δ, because omitting all bad edges from G results in a graph that has no
simple k-long paths.

Testing that the graph contains no tree with k leaves. The existence of a tree with (at least)
k leaves is equivalent to having a k-star as a minor, where a k-star, denoted Sk, is a (k + 1)-vertex
tree that has k leaves and a single vertex of degree k, called its center.

A natural tester, used in [9, Sec. 7.3], consists of searching for such a tree at random. Specifically,
in the standard setting, one may select uniformly a random start vertex, start a BFS from it and
suspend the search if either a layer with at least k vertices is found or more than O(k/ǫ) vertices
where encountered (where ǫ > 0 is, as usual, the proximity parameter). In the first case the test
rejects, and in the second case it (tentatively) accepts (where actual acceptance requires O(1/ǫ)

50In particular, recall that the algorithm analyzed in [9, Clm. 7.3] actually fails. In addition, our notion of “badness”
refers to edges rather than to vertices, since otherwise one cannot relate the weight of bad objects to the cost (in
terms of distance) of omitting them from the graph.
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trials). This simple solution does not quite work in the current setting, since the vertex distribution
D may be concentrated on the leaves of isolated k-stars, where here we assume that k ∈ {2, ..., d}
(although the following argument can be extended to general k).

As in the case of simple k-long paths, the source of the problem is a possible imbalance between
the weights of the endpoints of “violating” edges. Specifically, in the foregoing example, all edges
of the k-star are heavy, due to the weight of their leaves, but a k-star may be detected only when
starting the search at its center, which may have tiny weight. We fix the problem by starting the
BFS either at the sampled vertex or at one of its neighbors, selected at random. Also, for k = O(1),
we use a slightly deeper BFS (i.e., Õ(1/ǫ) rather than O(1/ǫ) layers).51

Following [9, Sec. 7.3], the key observation here is that a graph G = (V,E) is Sk-minor free if
and only if for every set S such that the subgraph induced by S is connected it holds that the set
S has less than k neighbors (in V \ S). As shown in the proof of Claim 3.12, this implies that if
for every connected set S of size at most O(ǫ−1 log(k/ǫ)), the set S has less than k neighbors in
V \ S, then the graph is ǫ-close to being Sk-minor free. (This is the case because the (small-cuts)
hypothesis allows for removing a set of edges of total weight at most ǫ/2 so to partition the graph
into connected components that are each Sk-minor free.)

Algorithm 3.11 (a Sk-minor freeness tester): On input ǫ > 0, and oracle access to a graph
G = (V,E) and a sampling device D, the tester performs the following steps O(1/ǫ) times.

1. Obtain a sample from D; that is, v ← D. With probability 1/2, the tester sets s = v, and
otherwise it lets s be a uniformly selected neighbor of v.

2. Perform a BFS starting at s and stopping as soon as either t = 5ǫ−1 ln(k/ǫ) layers were
explored or a layer with at least k vertices was encountered.

Note that it may happen that the BFS terminates before either of these conditions hold; this
can only happen if s resides in a connected component of size smaller than t · k.

3. If the explored subgraph contains a Sk-minor, then the test rejects.

If none of the foregoing trials rejected, then the tester accepts.

Clearly, Algorithm 3.11 never rejects a Sk-minor free graph, and its query complexity is at most
O(1/ǫ) · t · k · d = Õ(k/ǫ2). Thus, all that is left is to prove the following claim.

Claim 3.12 (analysis of Algorithm 3.11): Suppose that G = (V,E) is ǫ-far from being Sk-minor
free with respect to the distribution D. Then, each of the O(1/ǫ) trials performed by Algorithm 3.11
rejects with probability at least ǫ/4d.

Proof: We follow the strategy used in the proof of [9, Clm. 7.5], but our actual analysis is more
complex because we have to deal with weights of edges and vertices rather than with their number.

We call a vertex s bad if there exists a set S such that (i) in the subgraph of G induced by S
all vertices are at distance smaller than t = 5ǫ−1 ln(k/ǫ) from s, and (ii) the set S has at least k
neighbors in V \S (i.e., |{{v,w}∈E : (v,w) ∈ S× (V \S)}| ≥ k). Letting GS denote the subgraph
of G induced by S and its neighbors, we observe that Condition (ii) implies that GS contains a
Sk-minor, whereas Condition (i) implies that a BFS of GS started at v is completed after exploring
at most t layers.52 Hence, if a bad vertex is chosen in Step 1 (equiv., serves as a start vertex s for

51Actually, the hidden dependence of the depth on k is lesser (i.e., it is logarithmic rather than linear), due to our
more refined analysis.

52Condition (i) also implies that GS is connected and that s ∈ S.
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Step 2), then Algorithm 3.11 rejects in Step 3, because either a (t− 1)-step BFS of G starting at
s reaches a layer with at least k vertices or it reaches all vertices in the set S (whereas contracting
S yields a vertex with at least k neighbors). Denoting the set of bad vertices by B, we infer that
the probability that a trial (performed by Algorithm 3.11) rejects is at least

ρ
def
=

1

2
· Prs←D[s ∈ B] +

1

2
· 1
d
· Prv←D[∃s ∈ B : {v, s} ∈ E].

We next show that G must be (2d · ρ + (ǫ/2))-close to Sk-minor free, and so ρ > ǫ/4d follows.
Let G(0) denote the graph obtained from G by omitting all the edges that are incident at bad

vertices. Then, the distance (wrt D) of G(0) from G is at most

∑

{u,w}∈E:u∈B

D(u) +D(w)

d
≤ 1

d
·
(
∑

u∈B

|{w : {u,w}∈E}| · D(u) +
∑

w∈V

|{u ∈ B : {u,w}∈E}| · D(w)

)

≤ 1

d
· (d · Prs←D[s ∈ B] + d · Prw←D[∃s ∈ B : {w, s}∈E])

≤ 2d · ρ.

It remains to show that G(0) is ǫ/2-close to being Sk-minor free. The rest of our analysis proceeds
in iterations. We shall construct a sequence of graphs G(0), G(1), G(2), ... such that each G(i) is
ǫ/2-close to G(0) and the last graph in the sequence is Sk-minor free.

If the current graph G(i−1) is Sk-minor free, then we are done. Otherwise, we pick an arbitrary
connected component that contains a Sk-minor, and let h(i) be the heaviest vertex in this component
(w.r.t probability weights assigned byD). Since h(i) is not bad, this Sk-minor of G(i−1) must contain
vertices of distance greater than t + 1 from h(i). This is because, otherwise, contracting all edges
in the subgraph that yields this Sk-minor, except for the k edges incident at the leaves of this
Sk-minor, yields a set S that witnesses the badness of h(i).

Now, consider as a mental experiment, executing a BFS on G(i−1) starting at the vertex h(i),
and suspending the execution once we reach a layer such that the total weight of all vertices in
previous layers is at least 2/ǫ times larger than the total weight of all vertices in the current and
next layers (see more precise definition below). That is, for j = 0, ..., t, let Lj denote the set of
all vertices that are at distance j from h(i) in G(i−1); indeed, L0 = {h(i)} and |Lj | < k (since
otherwise contracting L0, ..., Lj−1 yields a set that witnesses the badness of h(i)). We suspend the
BSF at layer j ∈ {0, 1, ..., t} if D(

⋃
j′∈{0,...,j}Lj′) ≥ (2/ǫ) · D(Lj ∪ Lj+1). Assuming that the BFS

is not suspended in layer j (equiv., when encountering layer j + 1), it holds that D(Lj ∪ Lj+1) >
(ǫ/2) · D(

⋃
j′∈{0,...,j}Lj′). This implies that

D




⋃

j′∈{0,...,j+1}

Lj′


 = D




⋃

j′∈{0,...,j−1}

Lj′


+D(Lj ∪ Lj+1)

>
(
1 +

ǫ

2

)
· D




⋃

j′∈{0,...,j−1}

Lj′




≥
(
1 +

ǫ

2

)⌊j/2⌋
· D(L0)
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and it follows that

D(Lj ∪ Lj+1) > (ǫ/2) · D




⋃

j′∈{0,...,j}

Lj′


 > (ǫ/2) · (1 + (ǫ/2))⌊(j−1)/2⌋ · D(L0).

Since D(L0) = maxv∈
S

j∈{0,...,t} Lj
{D(v)} and |Lj | < k, it follows that 2k · D(L0) > (ǫ/2) · (1 +

(ǫ/2))⌊(j−1)/2⌋ · D(L0), which implies that this imaginary BFS must be suspended before encoun-
tering layer j +1 such that j < 2+2 · log1+(ǫ/2)(4k/ǫ), whereas log1+(ǫ/2)(4k/ǫ) =≈ 2ǫ−1 ln(4k/ǫ) <

0.5t − 1. Letting S(i) =
⋃

j′∈{0,...,j+1}Lj′ , note that S(i) ∋ h(i) is connected and contains vertices

that are at distance at most t from h(i). We now obtain G(i) by omitting from G(i−1) the edges
of the cut (S(i), V \ S(i)), while observing that the weight of these edges is at most ǫ/2 times
the weight of S(i), since upon suspending the imaginary BFS at layer j we have D(Lj ∪ Lj+1) ≤
(ǫ/2) ·D(

⋃
j′∈{0,...,j}Lj′) = (ǫ/2) ·D(S(i)), whereas the cut edges are a subset of the edges that have

both endpoints in Lj ∪ Lj+1. Furthermore, G
(i)

S(i) is Sk-minor free (and S(i) will not intersect with

any future S(i′)).
When the process ends, we have a Sk-minor free graph, G′. During this process, we omitted

edges of total weight at most ǫ/2, and so we conclude that G(0) is ǫ/2-close to G′, which establishes
our claim (that G(0) is ǫ/2-close to being Sk-minor free), and completes the entire proof.

On testing F -minor freeness, for general forests F : As stated in the beginning of this
section, the strong one-sided error testers known for F -minor freeness in the standard bounded-
degree graph model, when F is an arbitrary forest [9], beg the question of whether such results can
be obtained in the vertex-distribution-free setting. Given the complexity of the original analyses,
we refrain from addressing this question here.

3.5 The t-removed VDF model

In continuation to the discussion in Section 1.4, we now present the t-removed VDF model. Recall
that we envision processes that, in addition to selecting vertices according to some distribution D,
may also take walks of length at most t (from any of these selected vertices). In this setting, the
importance of a vertex v is defined as proportional to the sum of the probabilities of all vertices
that are at distance at most t from v. Specifically, fixing a graph G = (V,E) of degree bound d,
we let ΓG

t (v) denote the set of vertices that are at distance at most t from v in the graph G. For

a distribution D over V , we let DG
t (v) =

∑
w∈ΓG

t (v)D(w), and DG
t (v) = DG

t (v)/
∑

u∈V DG
t (u). We

define the (t-removed) distance of a graph G, represented by g : V × [d] → V ∪ {⊥} to a graph
represented by g′ : V × [d]→ V ∪ {⊥} as

δt,D(g, g′)
def
=
∑

v∈V

DG
t (v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d. (21)

Note that δt,D(g, g′) does not necessarily equal δt,D(g′, g), since DG
t does not necessarily equal DG′

t ,

unless t = 0. Indeed, in the case of t = 0, it holds that DG
t ≡ DG

0 ≡ D and δt,D(g, g′) = δD(g, g′)
follows. Lastly, note that

1 ≤
∑

v∈V

DG
t (v) ≤ max

v∈V
{|ΓG

t (v)|} ≤
t∑

i=0

di < 2 · dt.
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For a graph property Π and a graph represented by the incidence function g : V × [d]→ V ∪{⊥}, we
let δΠ

t,D(g) denote the minimum of δt,D(g, g′) taken over all incidence functions g′ : V ×[d]→ V ∪{⊥}
that represent graphs in Π. (We assume for simplicity that Π contains some graphs with vertex-set
V ; otherwise, one may define δΠ

t,D(g) > 1.) The following definition is identical to Definition 3.1,

except that in the second item δΠ
D(G) is replaced by δΠ

t,D(G).

Definition 3.13 (VDF testing in the t-removed model): For fixed d, t ∈ N, let Π be a property
of graphs of degree at most d. A VDF tester for the graph property Π in the t-removed model is a
probabilistic oracle machine T that is given access to two oracles, an incidence function g : V ×[d]→
V ∪ {⊥} and a device (denoted D) that samples in V according to an arbitrary distribution D, and
satisfies the following two conditions (for all sufficiently large V ):

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every
g : V × [d] → V ∪ {⊥} representing a graph in Π and every D (and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any G = (V,E) and D such that δΠ
t,D(G) > ǫ, the tester rejects

with probability at least 2/3; that is, for every ǫ > 0 and distribution D, if g : V ×[d]→ V ∪{⊥}
satisfies δΠ

t,D(g) > ǫ, then it holds that Pr[T g,D(ǫ)=0] ≥ 2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [d] → V ∪ {⊥} representing a graph in Π (and every D and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] = 1.

The definition of a proximity oblivious tester is revised analogously. Definition 3.1 (and its proximity
oblivious version) are obtained when setting t = 0.

Theorem 3.14 (reducing the t-removed model to the VDF model): For every t ∈ N, if a graph
property Π is strongly testable in the VDF bounded-degree graph model, then Π is strongly testable in
the t-removed model. Specifically, if the VDF tester has sample complexity s and query complexity
q, then the t-removed tester has sample complexity s′ and query complexity q′ such that s′(ǫ) =
s(exp(−t) · ǫ) and q′(ǫ) = q(exp(−t) · ǫ) + t · s′(ǫ). Furthermore, one-sided error is preserved.

A natural question is whether or not the overhead of the reduction can be decreased in general,
and if not then which additional conditions allow for such a decrease.

Proof: Given a VDF tester T , we present the following tester for the t-removed model. On input
ǫ and access to a graph G = (V,E) and sampling device D, we invoke T on input ǫ′ = (d + 1)−t · ǫ
(and access to G), and emulate a sampling device to the following distribution D′.

Distribution D′: A sample of D′ is generated by selecting v ← D, taking a t-step random walk on
the graph G′ obtained by adding self-loops to G, and outputting the last vertex reached in this
walk.

Hence, for every v ∈ V , it holds that

∑

w∈ΓG
t (v)

(d + 1)−t · D(w) ≤ D′(v) ≤
∑

w∈ΓG
t (v)

D(w).
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On the other hand, letting g represent G and g′ represent any other bounded-degree graph over V ,
we have

δt,D(g, g′) =
∑

v∈V

DG
t (v)∑

u∈V DG
t (u)

· |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

≤
∑

v∈V

∑

w∈ΓG
t (v)

D(w) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

≤
∑

v∈V

(d + 1)t · D′(v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

= (d + 1)t · δD′(g, g′),

where the first inequality is due to
∑

u∈V DG
t (u) ≥ 1 and DG

t (v) =
∑

w∈ΓG
t (v)D(w), and the second

inequality is due to
∑

w∈ΓG
t (v)(d + 1)−t · D(w) ≤ D′(v). Hence, δΠ

t,D(g) > ǫ implies δΠ
D′(g) >

(d + 1)−t · ǫ = ǫ′, and the theorem follows since T is emulated w.r.t vertex distribution D′ (and
with proximity parameter ǫ′).

Discussion. Note that the tester establishing Theorem 3.14 takes longer walks than the applica-
tion that was envisioned in motivating the t-removed model. This is reminiscent of the fact that
canonical derandomizers (introduced in [30] and reviewed in [13, Sec. 8.3]) are more powerful than
the randomized algorithms that they fool.

4 Secondary models

In this section, we re-examine the reductions and negative results obtained in the prior sections
with a focus on the question of whether or not they rely on the postulate that the tester only
accesses the graph via the sampling device D and the corresponding representation of the graph
(i.e., via either an adjacency predicate or an incidence function).

Throughout this section, for any finite set S, we denote by U(S) the uniform distribution over
S. The testers we consider here are defined as in the previous sections, except that in addition to
oracle access to a graph G = (V,E) and a (vertex) sampling device D, the tester has access also
to a device that samples U(V ). We stress that distances are still measured with respect to D, as
defined in the previous sections. At times, we may also consider providing the tester with |V | as (an
additional) explicit input. Hence, we actually consider three different types of secondary models –

The main secondary models: Here, when testing the graph G = (V,E), the tester is also provided
with a sampling device U(V ).

The full-fledged secondary models: Here, when testing the graph G = (V,E), the tester is provided
both with a sampling device U(V ) and with the (explicit) auxiliary input |V |.

The weak secondary models: Here, when testing the graph G = (V,E), the tester is provided with
the (explicit) auxiliary input |V |.

We first note that, in all three types of models (just as in the primary VDF models), we may
assume, without loss of generality, that the tester never queries the graph on a vertex that did not
appear in as an answer to a prior query.
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More importantly, as stated explicitly in Corollaries 2.4 and 3.4, the reduction of one-sided error
testing to general testing holds also in the weak secondary models. In contrast, this reduction does
not hold in the other two types of the secondary models. In particular, there exists properties that
can be strongly tested in the main secondary models, although they are not strongly testable with
one-sided error in the corresponding standard models.

In light of our view of the secondary models, which is reflected in the term we chose to name
them, we do not venture into an extensive study of their power. Still, we provide one negative result
for the dense graph model and a couple of positive results for the bounded-degree graph model.
In particular, we show that Connectivity is strongly testable in the weak secondary (bounded-
degree graph) model, although it is not strongly testable in the corresponding VDF model (see
Proposition 3.6).

4.1 The Dense Graph Model

In contrast to Theorem 2.3 and Corollary 2.4, we show that properties that are strongly tested in
the main secondary (dense graph) model are not necessarily strongly testable with one-sided error
in the corresponding standard (and VDF) models. We demonstrate this fact by considering the set
of graphs having a clique of density ρ, which is not strongly testable with one-sided error in the
standard (dense graph) model (cf. [18, Sec. 10.1.6]).

Theorem 4.1 (strongly testing ρ-Clique in the main secondary model) For every ρ ∈ (0, 1), the
set of graphs having a clique of density ρ is strongly testable (with poly(1/ǫ) queries) in the main
secondary (dense graph) model.

Needless to say, the asserted tester has two-sided error probability.

Proof Sketch: Recall that ρ-Clique is strongly testable in the standard dense graph model; specifi-
cally, the query complexity of this tester is polynomial in the reciprocal of the proximity parameter,
but it has two-sided error probability. The basic idea is to just use this (standard model) tester
while relying on the fact that if the graph is far from ρ-Clique with respect to an arbitrary vertex
distribution, then it is also far from ρ-Clique under the uniform vertex distribution. Specifically,
we claim that for every ǫ > 0 and all sufficiently large graphs, if G = (V,E) is ((1− ρ) · ǫ2/4)-close
to ρ-Clique under U(V ), then it is ǫ-close to ρ-Clique under any distribution D (over V ).

To prove this claim, let ǫ′ = (1 − ρ) · ǫ2/4 and consider a graph G′ = (V,E′) that is ǫ′-close to
G under the uniform distribution and has a clique of density ρ, denoted C. Fixing a distribution

D over V , let H
def
= {v ∈ V : D(v) > 2

(1−ρ)·ǫ · |V |−1} denote the set of relatively heavy vertices, and

note that |H| < (1−ρ)·ǫ
2 · |V |. Consider a graph G′′ = (V,E′′) that is obtained by modifying G as

follows:

• Make C ′
def
= C \H be a clique in G′′.

We claim that the cost of this modification under D is at most ǫ′ · 2
(1−ρ)·ǫ = ǫ/2. Recalling

that C ′ is a clique in G′, we observe that the modifications of G applied in order to make C ′ a
clique (in G′) are counted in the distance between G and G′, which is at most ǫ′ under U(V ).
On the other hand, C ′ only contains vertices whose weight under D is at most 2/((1− ρ) · ǫ)
times their weight under U(V ). The claim follows.
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• Pick the |C ∩ H| lightest vertices in V \ C and connect each of these vertices to all other
vertices. (Actually, it suffices to connect each of these light vertices to all other light vertices
as well as to C \H = C ′.)

The average weight of each of these vertices (under D) is D(V \C)
|V \C| ≤ 1

(1−ρ)·|V | . Hence, the cost

of this modification (under D) is at most |C∩H|· 1
(1−ρ)·|V | ≤

|H|
|V | ·(1−ρ)−1 < (1−ρ)·ǫ

2 ·(1−ρ)−1 =

ǫ/2.

Hence, C is a clique in G′′ (i.e., G′′ has a ρ-clique), whereas G′′ is ǫ-close to G under the distribution
D.

When given proximity parameter ǫ and a sampling device D, the desired tester for the secondary
model is obtained by invoking the tester of the standard model with a proximity parameter set to
(1− ρ) · ǫ2/4. Recall that the latter tester uses the size of the vertex-set only in order to generate
uniformly distributed vertices, which we can provide it via U(V ).

Digest. Note that the foregoing tester (establishing Theorem 4.1) does not use the sampling
device D. It uses only the sampling device U(V ) (as well as oracle access to the tested graph
G = (V,E)). The analysis is based on the observation that, for this specific property, distance
from the property with respect to an arbitrary distribution can be upper-bounded in terms of the
distance with respect to the uniform distribution. Needless to say, the latter feature is not generic;
it is based on the fact that the graph can be made to satisfy the property without modifying the
adjacency relation of any specific (“adversarially selected”) set of few of its vertices (in particular,
the heavy vertices).53

Recall that Corollary 2.4, which is based on Theorem 2.3, was used to obtain negative results
regarding testing graph properties in the VDF model (i.e., the model of Definition 2.1). In light of
Theorem 4.1, we can no longer take this road. Turning to the specific negative results in Section 2,
we note that a variant of Proposition 2.10, which uses a smaller edge density bound, holds also in
the (full-fledged) secondary model. Specifically, we have

Proposition 4.2 (on properties of sparse graphs): Suppose that Π is a graph property that satisfies
the following two conditions for some functions f and g such that f(n) ∈ [ω(1), g(n)] and g(n) =
o(f(n) · n)1/2.

1. Π contains an n-vertex graph that contains a clique of size f(n).

2. Π contains no n-vertex graph that contains more than g(n)2 edges.

Then, Π is not strongly testable in the (full-fledged) secondary model.

Recall that Π is strongly testable (with two-sided error) in the standard (dense graph) model.54

Proof Sketch: We consider the following two input-cases (when n is sufficiently large).

53The feature does not hold in case of k-Colorability: If the graph contains a k-clique of heavy vertices, then we
need to omit at least one of the edges in this clique.

54On input parameters n and ǫ, if ǫ > (2g(n)/n)2, the tester estimates the edge density using O(1/ǫ2) queries and
decides accordingly (i.e., accepting if and only if the number of edges is estimated to be at most g(n)2). Otherwise
(i.e., when ǫ ≤ (2g(n)/n)2, which implies that n2 ≤ q(ǫ) for some function q : (0, 1] → N), the tester explores the
entire graph and decides accordingly.
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1. The n-vertex graph is a graph G = ([n], E) ∈ Π containing an f(n)-vertex clique, and the
distribution D is uniform on the clique vertices.

2. The n-vertex graph G = ([n], E) consists a 2g(n)-vertex clique and n−2g(n) isolated vertices,
and the distribution D is uniform on the clique vertices.

Note that δΠ
D(G) > 1/3, since G contains at least

(2g(n)
2

)
> (2 − o(1)) · g(n)2 edges that are

each of weight 2 · (2g(n))−2.

We complete the proof by letting h(n) =
√

f(n) · n/g(n) = ω(1), where here we use g(n) =
o(f(n) · n)1/2, and showing that an algorithm that takes s = o(min(f(n)1/2, h(n))) samples (from
both D and U([n])) cannot distinguish the two foregoing cases. Specifically, we shall show that in
both cases, the vertices sampled from U([n]) are likely to look isolated (in the subgraph induced
by both samples).

Denote the s samples obtained from D by v1, ..., vs, and the s samples obtained from U([n])
by u1, ..., us. We shall show that, whp, in both cases, the 2s-vertex subgraph of G induced by
these samples consists of an s-clique and s isolated vertices. First note that, in both cases, all
vi’s reside in the clique, and, whp, the samples are distinct, since the collision probability of D
(and U([n])) is at most 1/f(n) and

(
s
2

)
= o(f(n)). Next, note that, in the first case, it holds that

Prv←D,u←U([n])[{u, v} ∈ E] is at most |E|
f(n)·n ≤

g(n)2

f(n)·n = h(n)−2 = o(1/s2). Last, note that, in the

second case, with probability at least 1 − (s/2g(n)) = 1− o(1), all the ui’s are isolated in G. The
claim follows.

4.2 The Bounded-Degree Graph Model

Again, in contrast to Theorem 3.3 and Corollary 3.4, we show that properties that are strongly
tested in the main secondary (bounded-degree graph) model are not necessarily strongly testable
with one-sided error in the corresponding standard (and VDF) models. We demonstrate this fact
by considering the set of bounded-degree graphs that have relatively many edges, while noting that
this set is not strongly testable with one-sided error in the standard (bounded-degree graph) model.

Theorem 4.3 (strongly testing average degree in the main secondary model) Let d ∈ N denote
the degree bound of the model. For every ρ ∈ (0, 1), the set of graphs of maximal degree d and
average degree at least ρ · d is strongly testable (with poly(1/ǫ) queries) in the main secondary
(bounded-degree graph) model.

Needless to say, the asserted tester has two-sided error probability.

Proof Sketch: Denoting the foregoing set by Π, note that Π is strongly testable in the standard
bounded-degree graph model; specifically, on proximity parameter ǫ, the tester just samples O(1/ǫ2)
vertices (uniformly at random), checks their degrees, and accepts if and only if their average exceeds
(ρ− 0.5ǫ) · d. As in the proof of Theorem 4.1, the basic idea is to just use this tester while relying
on the fact that if the graph is far from Π with respect to an arbitrary vertex distribution, then it
is far from Π under the uniform vertex distribution. Specifically, we prove that for every ǫ > 0 and
all sufficiently large graphs, if G = (V,E) is (ǫ/(1 − ρ))-close to Π under U(V ), then it is ǫ-close
to Π under any distribution D (over V ).

To prove this claim, let ǫ′ = ǫ/(1 − ρ) and suppose that G is ǫ′-close to Π under U(V ). That
is, letting dG(v) denote the degree of v ∈ V in G, we have

∑
v∈V dG(v) ≥ (ρ − ǫ′) · d|V |. Fixing a
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distribution D over V , let H
def
= {v ∈ V : D(v) > 1

1−ρ · |V |−1}, and note that |H| < (1 − ρ) · |V |.
Now, we add at most ǫ′ · d|V |/2 edges to G with both endpoints in V ′

def
= V \H, till obtaining a

graph with average degree at least ρ · d. The cost of this modification is terms of D is at most
1

1−ρ · ǫ′ = ǫ, and the question is whether this modification can be performed while maintaining the
degree bound (of d).

As a sanity check towards a positive answer, note that the desired sum of degrees is ρ · d|V |
and this quantity is upper-bounded by the degree allowance for V ′, which is d|V ′|, where the upper
bound hold since |V ′| > ρ · |V |. A full affirmative answer requires showing that we can increase
the degrees of individual vertices in V ′ (upto d) and do so without using parallel edges. This can
be achieved by a greedy strategy that matches non-adjacent vertices of degree at most d− 1, while
noting that this process may continue as long as there are at least d + 1 vertices of degree at most
d− 1 (because a vertex of degree ≤ d− 1 may not neighbor all other d vertices).55

The rest of this section. In light of Theorem 4.3, we can not use negative results regarding
one-sided error testing in the standard model towards deriving negative results for the secondary
model. We also note that the other negative results of Section 3 do not seem to extend to the
current model. In fact, in the rest of this section, we present strong testers (in the weak and main
secondary models) for two natural properties that are not strongly testable in the VDF model (of
Section 3). Furthermore, these testers have one-sided error.

4.2.1 Testing connectivity

In contrast to Proposition 3.6, which asserts that Connectivity is not strongly testable in the VDF
bounded-degree graph model, we show that this property is strongly testable in either the weak
or the main secondary model. Specifically, it suffices to augment the tester (of the VDF model)
by either providing it with a device that samples uniformly the vertex-set of the tested graph or
handing it the size of that set. Actually, these augmentations are needed only when the size of the
vertex-set exceeds O(1/ǫ). We start by assuming that the vertex-set is of size ω(1/ǫ) (and refer to
the complementary case at the end of the proof of Theorem 4.5).

The tester for Connectivity in the standard bounded-degree graph model is based on the fact
that graphs that have few connected components are close to being connected (see [14, Prop. 9.7]).
Hence, if a graph is far from being connected, then it must have many small connected components.
In the current setting numbers should be replaced by probability weights; that is, we shall show
that if a graph is far from being connected, then the probability weight of its small connected
components must be large, where the probability weight of a set of vertices is the sum of the
probabilities assigned to the vertices in the set.

Proposition 4.4 (distance from connectivity versus the weight of small connected components):
For a degree bound d ≥ 2, let Π denote the set of connected graphs of maximum degree d. For
any k ∈ N, let G be a graph of maximum degree d and S denote the set of vertices of G that

55Hence, we can actually reach a sum of degrees that is (|V ′| − (d + 1)) · d rather than |V ′| · d. The argument can
be completed by using 1 − ρ − o(1) instead of 1 − ρ (in the definition of ǫ′ and H), so that |V ′| > (ρ + o(1)) · |V |
(which implies d|V ′|− (d+1)d > ρ · |V |). Alternatively, we can afford first introducing O(d2) parallel edges, and later
eliminating them as follows. To eliminate an edge between u and v, we indentify an edge {u′, v′} such that u′ (resp.,
v′) is not connected to u (resp., v), and omit the edges {u, v} and {u′, v′}, while adding the edges {u, u′} and {v, v′}.

52



reside in connected components of size at most k. Then, δΠ
D(G) ≤ 2 · D(S) + O(1/k), where

D(S) = Prv←D[v ∈ S].

Proof: Suppose that G has m > 1 connected components and more than k vertices. Ignoring (for
a moment) the fact that we should maintain the degree bound, the basic idea is to connect the m
connected components by m− 1 edges. If all connected components are large (i.e., larger than k),
then we can pick the lightest vertices in each of them to serve as the “connection ports” (so that the
cost of these modifications is at most O(1/k)). As for the small connected components, we bound
the cost of modifying their incidences by their total weight. The degree bound can be maintained
by observing that the problematic case is when all relatively light vertices in a connected component
have degree d, but in this case we omit two of these edges and obtain a situation that allows the
foregoing process. Details follow.

We say that a small connected component is unsaturated if it contains at least two vertices of
degree at most d − 1 (or a vertex of degree at most d − 2). Note that connected components of
size at most d are unsaturated. Furthermore, any other (small) connected component can be made
unsaturated by omitting an edge that does not disconnect it (i.e., an edge that does not reside on a
fixed spanning tree).56 The cost of this omission is at most the weight of the connected component,
and so we make all small component unsaturated at a cost of D(S).

Dealing with large (i.e., larger than k) connected components requires more care. We say that
a vertex is (relatively) light if its probability (under D) is at most ten times the average probability
of vertices in this connected component. Note that at least 90% of the vertices in each connected
component are light. We say that a connected component is unsaturated if it contains at least two
light vertices of degree at most d − 1. (Note that if d = 2, then a connected component can be
made unsaturated by possibly omitting its lightest edge.)57 Focusing on that case of d ≥ 3 and
fixing an arbitrary spanning tree of each connected component, we observe that if the component is
saturated then it contains an non-tree edge that connects two light vertices.58 Omitting this edge,
we make the component unsaturated at a cost of O(p/k), where p is the probability weight of the
connected component. In total, we make all large component unsaturated at a cost of O(1/k).

Now that all connected components are unsaturated, we can connect them by adding edges
(while preserving the degree bound). Specifically, we connect these components by ordering them
arbitrarily, and connecting each pair of consecutive components by a single edge (using relatively
light vertices of degree lower than d). The cost of this modification is the sum of the probability-
weight of the small components and O(1/k), where the latter term accounts for weights of (light
vertices in) the large components.

A straightforward tester and improving it. Proposition 4.4 implies that if a graph is ǫ-
far from being connected (i.e., δD(G) > ǫ), then, with probability Ω(ǫ), a vertex selected from D

56Such an edge must exist in a saturated connected component of size s > d, since the average degree in such a
component is at least (s−1)·d

s
> d− 1 ≥ 2 if d ≥ 3, where the case of d = 2 is even more immediate.

57If this connected component is saturated, then it consists of a cycle of length ℓ > k. In this case, the lightest
edge carries at most 2/ℓ fraction of the weight of the component.

58Assuming towards the contradiction that an s-vertex connected component is saturated but has no non-tree
edges that connect light vertices, we reach contradiction by considering the number of non-tree edges that connect
light and non-light vertices. On the one hand, looking at the light side, the number of such edges is at least
(0.9s − 1) · d − 2(s− 1) = (0.9d − 2)s − (d− 2), whereas (0.9d − 2)s− (d− 2) > (0.9d − 3) · s > 0.1s · d if d ≥ 4 and
(0.9d − 2)s − (d − 2) = 0.7 · s − 1 > 0.1s · d otherwise (i.e., when d = 3). On the one hand, looking at the non-light
side, the number of such edges is at most 0.1s · d.
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resides in a connected component of size O(1/ǫ). Hence, selecting at random O(1/ǫ) vertices,
and conducting a “truncated BFS” from each of them (so that the BFS is suspended once more
than O(1/ǫ) vertices are encountered) yields a tester for Connectivity. The time (and query)
complexity of this tester is O(1/ǫ2), but using “Levin’s economical work investment strategy”
(see [14, Sec. 8.2.4]), we can do better.

Theorem 4.5 (testing connectivity (in the secondary bounded-degree graph model)): Connectivity
has a (one-sided error) tester of time (and query) complexity Õ(1/ǫ) in the (either weak or main)
secondary bounded-degree graph model.

Proof: A closer look at the proof of Proposition 4.4, when applied to the graph G − (V,E),
reveals that the contribution of the connected component C to the distance δD(G) is O(D(C)/|C|).
(Indeed, this refers to the analysis of the large components, but the argument holds for k = |C|.)
Towards a more refined analysis, for every i = 1, ..., ℓ

def
= log(1/ǫ) + O(1), we denote by Si ⊆ V the

set of vertices that reside in connected components of size at least 2i−1 and at most 2i− 1. Letting
R = V \⋃i∈[ℓ] Si, we have

δD(G) ≤
∑

i∈[ℓ]

O(D(Si)/2
i−1) + O(D(R)/2ℓ). (22)

Hence, if δD(G) > ǫ, then there exists i ∈ [ℓ] such that O(D(Si)/2
i−1) > ǫ/2ℓ, and it follows that

Prs←D[s ∈ Si] = Ω(2iǫ/ℓ). This leads to the following tester, where we assume that |V | > 2ℓ.

Algorithm 4.5.1 (tester for the case of |V | > 2ℓ): On input ǫ > 0, given oracle access to G =
(V,E) and D such that |V | > 2ℓ, the tester perform the following steps, for every i = 1, ..., ℓ:

1. Sample O(2−iℓ/ǫ) vertices from the distribution D.

2. For each of these vertices, denoted v, perform a (BFS or DFS) search starting at v, suspending
the execution if 2i vertices were encountered in this search (or if the search scanned the entire
connected component).

3. If any of these searches detected a connected component of size at most 2i, then the tester
rejects.

(Here we rely on 2ℓ < |V |.)

If none of these searches caused rejection (i.e., none detected a connected component that is smaller
than |V |), then the tester accepts.

Note that any linear-time search can be used in Step 2, and in such a case the overall time complexity
of the tester is

∑
i∈[ℓ] O(2−iℓ/ǫ) ·O(2i) = O(ℓ2/ǫ).

By its construction (and the assumption 2ℓ < |V |), the foregoing tester always accepts a con-
nected graph. On the other hand, any graph that is ǫ-far from being connected is rejected with high
probability, because there exists an i ∈ [ℓ] such that D(Si) = Ω(2iǫ/ℓ), which implies that a vertex
residing in a connected component of size at most 2i is selected, w.h.p., in Step 1 (of iteration i),
fully explore in Step 2, and causing rejection in Step 3.
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We stress that the foregoing analysis presumes that |V | > 2ℓ = O(1/ǫ). To handle the case of
|V | = O(1/ǫ), we use one of the two possible augmentations provided by the secondary models.
First, assuming that the tester gets |V | as an auxiliary input, we let it invoke the foregoing tester
(i.e., Algorithm 4.5.1) if |V | > 2ℓ, and start a search from an arbitrary vertex (obtained by sampling
D) otherwise (i.e., if |V | ≤ 2ℓ = O(1/ǫ)). In the latter case, the tester accepts if and only if the
search encountered |V | vertices. Hence, we obtained a tester in the weak secondary model.

Next, we turn to the main secondary model (in which the tester is also provided with a device
sampling U(V ), but not with the value of |V |). In this case, the tester invokes Algorithm 4.5.1
(whose analysis presumes V > 2ℓ) in parallel to invoking the following algorithm:

Algorithm 4.5.2 (tester for the case of |V | ≤ 2ℓ = O(1/ǫ)): On input ǫ > 0, given oracle access
to G = (V,E) and U(V ), the tester proceeds as follows.

1. Start a search at an arbitrary vertex (obtained by sampling either D or U(V )), suspending the
execution if more than 2ℓ vertices were encountered in this search (or if the search scanned
the entire connected component). If the search encountered more than 2ℓ vertices, then halt
and abstain from judgment (i.e., let Algorithm 4.5.1 decide).

(We proceed to Step 2 only when encountering a connected component with at most 2ℓ

vertices, which may or may not be the entire graph.)

2. Select uniformly at random m = O(1/ǫ) vertices (by sampling U(V )). If all these vertices
reside in the subgraph scanned in Step 1, then accept, else reject.

Hence, the combined tester accepts when either Algorithm 4.5.2 accepts (in Step 2) or when Al-
gorithm 4.5.2 abstains (in Step 1) and Algorithm 4.5.1 accepts. We break the analysis to four
cases.

Case 1: G is connected and |V | ≤ 2ℓ. In this case Algorithm 4.5.2 always reaches Step 2 and
accepts (in Step 2). (Indeed, it has explored the entire graph in Step 1, and therefore encounter
no new vertex in Step 2.)

Case 2: G is connected and |V | > 2ℓ. In this case Algorithm 4.5.2 always halts and abstains
(in Step 1), and Algorithm 4.5.1 always accepts.

Case 3: G is ǫ-far from being connected and |V | ≤ 2ℓ. In this case Algorithm 4.5.2 rejects
(w.h.p.), since it always reaches Step 2 whereas G has several connected components (and
Step 2 detects this fact w.h.p.). Specifically, Step 2 select a vertex that was not visited in
Step 1 with probability at least 1− (1−|V |−1)m ≥ 1− (1−2−ℓ)m > 2/3, provided m = O(2ℓ)
is sufficiently large.

(Indeed, here we only used the hypothesis that G is not connected and |V | ≤ 2ℓ.)

Case 4: G is ǫ-far from being connected and |V | > 2ℓ. In this case Algorithm 4.5.1 rejects
(w.h.p.), whereas Algorithm 4.5.2 either abstains or rejects (w.h.p., as in Case 3).

The theorem follows.

On testing k-connectivity: The strong one-sided error testers known for k-edge-connectivity
and k-vertex-connectivity in the standard bounded-degree graph model (see [20] and [35], resp), beg
the question of whether Theorem 4.5 can be extended to these properties. Given the complexity of
the original analyses, we refrain from addressing this question here.
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4.2.2 Testing whether a graph is connected and Eulerian

In the standard setting, one can reduce testing whether a graph is connected and Eulerian to testing
that it has each of these properties separately. This relied on the fact that if a graph is ǫ-close to
each of the properties, then it is O(ǫ)-close to their intersection (cf., [14, Exer. 9.5]). Unfortunately,
this fact does not hold in the current setting: A graph can be connected and very close to being
Eulerian, but far from any connected Eulerian graph.59 Fortunately, the specific testers we have
used “interact” better that generic testers for the two properties. Specifically, the tester for Eulerian
graphs outlined at the end of Section 3.3 is based on the observation that if odd degree vertices
and their neighbors are assigned total probability ǫ, then the graph is O(ǫ)-close to be Eulerian.
Likewise, the tester asserted for Connectivity in Theorem 4.5 is based on the fact that if for every
i ∈ [log(1/ǫ) + O(1)] the total probability weight of vertices that reside in connected components
of size ≈ 2i is O(2iǫ/ log(1/ǫ)), then the graph is O(ǫ)-close to a connected graph. We adapt the
proof of the latter fact so that the transformation preserves the Eulerian property.

Theorem 4.6 (testing the set of connected Eulerian graphs (in the secondary bounded-degree
graph model)): The set of connected and Eulerian graphs has a (one-sided error) tester of time
(and query) complexity Õ(1/ǫ) in the (either weak or main) secondary bounded-degree graph model.

We note that this property is not strongly testable in the VDF bounded-degree graph model. This
fact can be proved by mimicking the argument used in the proof of Proposition 3.6.

Proof Sketch: Again, we focus on the case of |V | = ω(1/ǫ), handling the complementary case as
in the proof of Theorem 4.5 (where here we also check that the connected component is Eulerian,
in case this connected component was fully explored).

The tester (for the case of |V | = ω(1/ǫ)) consists of running both the aforementioned testers (on
proximity parameter ǫ′ = ǫ/O(1)) and accepting if both accept. Clearly, this tester always accepts
connected graphs that are Eulerian, and so we focus on showing that graphs that are accepted with
high probability are close to having this property.

Indeed, suppose that G is accepted with high probability. Then, its odd degree vertices and their
neighbors are assigned total probability at most ǫ′, since the degrees of these vertices are checked
by the Eulerian tester (which selects O(1/ǫ′) vertices according to D and checks their degrees and
the degrees of their neighbors). In that case, by the analysis outlined at the end of Section 3.3, G
is O(ǫ′)-close to an Eulerian graph G′, which satisfies the same degree bound as G. Looking at the
connected components of G′, we pick in each component an edge with the lightest weight (equiv.,
weight of its endpoints) and omit it from G′, observing that this omission does not disconnect the
component (because this edge resides on an Eulerian cycle). The cost of each such modification is
charged to the connected component (of G′) if it was also a connected component in G, and to a

59For example, let d be odd, and consider the n-vertex graph G that consists of n′ def
= n/d cliques, each of size d,

that are connected by a cycle of n′ vertex-disjoint edges such that the endpoints of these edges have weight η = o(1/n)
each whereas each other vertex in the graph has weight (1− 2n′η)/n. That is, we designate two distinct vertices of
weight η in each d-clique, and connect the first designated vertex of the ith clique to the second designated vertex
of the i − 1st clique. Then, G is connected and (2ηn/d2)-close (i.e., o(1/d2)-close) to being Eulerian, since we can
make it Eulerian by omitting the n′ light edges. On the other hand, G is Ω(1/d2)-far from the intersection of both
properties, because it is necessary to change the incidence relation of at least one heavy vertex in each clique in order
to make G Eulerian and connected. (This is the case because vertices in the modified graph must have degree at
most d−1, since d is odd, whereas keeping all the edges of any d-clique leaves no “vacancy” for connecting this clique
to any other vertex.)
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vertex in this component that had odd degree in G otherwise. As in the proof of Proposition 4.4,
the resulting graph G′′ is O(ǫ′)-close to G′. Note that, in the resulting graph G′′, the endpoints of
these light edges are of odd degree (and they are the only vertices of odd degree in G′′). Finally, we
make G′′ connected by adding edges between the light vertices as in the proof of Proposition 4.4,
while observing that these vertices now become of even degree. Hence, G′′ is O(ǫ′)-close to being
connected and Eulerian, and the same holds for G′ and G.

5 Subsequent work and future directions

Section 5.1 refers to strong VDF testability in the sense studied in the core of the current work,
whereas Sections 5.2 and 5.3 discuss possible deviations from that context. The following account
benefits from the subsequent results of Gishboliner and Shapira [12] and Goldreich [17].

5.1 More about strong testability

Propositions 2.9 and 3.5, which establish the two parts of Theorem 1.2, are proved by using prop-
erties that are trivial to test in the standard models. The impossibility of strongly testing these
properties in the VDF models relies on the fact that the tester does not know the size of the graph.
This raises the question of what happens if we either provide the VDF tester with the size of the
graph (which is not compatible with the settings that we envision) or restrict the standard-model
testers in a similar manner (as done in [5]). Recall that the first option was adopted in Proposi-
tion 2.11, which provides an alternative proof of the “dense graph” model part of Theorem 1.2.
Here we focus on the second option.

Recall that Alon and Shapira [5] defined “oblivious testers” as strong testers (operating in the
standard dense graph model) that obtain a uniformly distributed sample of vertices, query the
corresponding vertex pairs, and decide according to the (unlabeled) subgraph that they see. The
point is that both the size of the sample and the final decision are independent of the size of the graph.
We call such testers size-oblivious and observe that this definition is a special case of Definition 2.1;
spercifically, they are obtained by restricting Definition 2.1 such that the sample complexity is
a predetermined function of ǫ (i.e., the tester is required to be strong) and the sampling device
samples the vertex-set uniformly (i.e., D = U(V )). We stress that this notion of size-oblivious tester
is also applicable to the bounded-degree graph model, by restricting Definition 3.1 in an analogous
manner.

Alon and Shapira provided a characterization of the class of graph properties that have size-
oblivious one-sided error testers (in the standard dense graph model) [5, Thm. 2]. A natural
question that arises is whether the same class is also strongly testable in the VDF dense graph
model.

Open Problem 5.1 (size-oblivious testing in the standard model vs strong testing in the VDF
model): Is it the case that any graph property that has a size-oblivious one-sided error tester in the
standard dense graph model (resp., bounded-degree graph model) is also strongly testable in the
VDF version of the dense graph model (resp., bounded-degree graph model)?

Note that the converse is obvious; that is, any strong tester in the VDF model can be converted
into one with one-sided error (see Theorem 1.1), whereas the latter tester is size-oblivious (and has
one-sided error in the standard model). On the other hand, a positive resolution of Problem 5.1

57



would have established the main results of Theorems 1.3 and 1.4, since the classes of properties
listed in these theorems have size-oblivious one-sided error testers in the corresponding standard
models, but the the VDF testers deriuved this way could have worse complexities.

5.1.1 In the dense graph model

Following the first posting of this work [16], Gishboliner and Shapira [12] provided a negative
answer to the dense graph model case of Problem 5.1, by characterizing the class of properties
that are strongly testable in the VDF version (and using the aforementioned characterization of [5,
Thm. 2]). Although their main result refers to the variant of Definition 2.1 that appeared in our
first posting of this work [16]60, its ideas can be used to provide a negative answer also to the current
variant (Asaf Shapira, priv. comm.). In light of the foregoing, one may seek an augmentation of
the hypothesis (i.e., size-oblivious one-sided error testability in the standard model) that makes
the conclusion hold (i.e., yields strong testability in the VDF model). Furthermore, it will be nice
to develop transformations of large classes of size-oblivious testers with one-sided error for the
standard model to strong testers for the VDF model.

We note that the testers used to establish Theorems 2.7, 2.8, and 2.12 are fundamentally differ-
ent: The testers establishing Theorem 2.7 invoke exp(poly(1/ǫ)) copies of the standard model tester,
the testers establishing the main part of Theorem 2.8 use a generalization of the standard model
testers (from subgraph-freeness to “colored subgraph freeness”), whereas the testers establishing
Theorem 2.12 (as well as Theorem 2.13) check that a random poly(1/ǫ)-sized induced subgraph has
the property. We mention that the work of Gishboliner and Shapira [12] implies different testers
for all these cases: These alternative testers are derived from the mere fact that all these properties
are hereditary and “extendable” (a generalization of the notion of paddable used in Theorem 2.12).

5.1.2 In the bounded-degree graph model

Turning to the bounded-degree graph model, we note that a positive resolution of Problem 5.1 for
that case would also resolve the following problem, which appears easier to resolve.61

Open Problem 5.2 (additional strong testers in the VDF bounded-degree graph model): Obtain
strong testers in the VDF bounded-degree graph model for the following classes of sets.

(general tree-minor-freedom): For every fixed forest F , the set of F -minor free graphs.

(high connectivity of connected components): For any fixed k > 1, the set of graphs such that each
of their connected components is k-edge connected (resp., k-vertex connected).

Alternatively, prove that some of these properties do not have strong testers in the VDF bounded-
degree graph model.

Recall that the cases of F being either a simple path or a star were established in Theorem 1.4. On
the other hand, the negative result of Proposition 3.6 does not seem to extend to k-connectivity
of connected graphs, since the argument is based on the need and infeasibility of deciding whether
or not the explored subgraph is the entire graph. Also recall that the sets listed in Problem 5.2

60See Footnote 20.
61Needless to say, the more refined question raised in Section 5.1.1 is relevant here too, but it feels premature to

raise it now.
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are known to have size-oblivious testers with one-sided error in the standard bounded-degree graph
model (see [20, 35] and [9], resp).

5.2 Beyond strong testability

In this work, we have focused on (VDF) testers having query complexity that only depends on the
proximity parameter. Nevertheless, it makes sense to also study (VDF) testers that have complexity
that depends on the vertex-distribution.

In the standard graph testing models, the complexity of the tester is measured in terms of
the proximity parameter ǫ > 0 and the size of the graph (e.g., the number of vertices). In the
current (VDF) models, it makes little sense to refer to the size of the graph as a yardstick of
complexity, since the vertex-distribution D may be concentrated on a relatively small part of the
graph. Instead, here it is natural to relate the complexity to label-invariant parameters of the
distribution D, were a parameter is called label-invariant if it remains intact when relabeling the
vertices (cf. [14, Sec. 11.1.3]); that is, if, for every distribution D over {0, 1}∗ and every bijection π
of {0, 1}∗ to itself, it holds that the value of the parameter on D equals its value on π ◦D (i.e., the
distribution obtained by sampling v ← D and outputting π(v)). In other words, a label-invariant
parameter of distributions is a function of the histogram of the distribution, where the histogram
of D is the set of pairs (p, i) ∈ (0, 1] × N such that D assigns probability p > 0 to i > 0 different
elements. Examples of label-invariant parameters (of distributions) include the support-size of D
(i.e., |{v : D(v) > 0}|), the “effective support size” (i.e., being “close” to a distribution with the
specified support-size (cf., [8])62), the collision probability of D (i.e.,

∑
v:D(v)>0D(v)2), the entropy

of D (i.e., Expv←D[log2(1/D(v))]), and the min-entropy of D (i.e., minv:D(v)>0{log2(1/D(v)})).
While the study of the standard dense graph model has focused on strong testers, the study of

the standard bounded-degree graph model also yielded appealing testers that are not strong. An
archetypical example is the tester of Bipartiteness, which has complexity poly(1/ǫ) · √n, where n
denotes the number of vertices. An interesting open problem is to present a Bipartite tester for the
VDF bounded-degree graph model. One may hope for complexity poly(1/ǫ) · √s, where s is the
size of the support of D. Actually, some notion of “effective support size” may be more adequate
here. We mention that, following the first posting of this work [16], the author obtained a result
of this nature [17], but that result refers to an augmented model in which the VDF tester is alsdo
provided with an evaluation oracle to the vertex distribution.

5.3 Providing the VDF tester with the approximate size of the graph

Recall that we have expressed the opinion that providing the VDF tester with the size of the tested
graph is not compatible with our motivation (as detailed in Section 1.4). Nevertheless, providing the
VDF tester with an approximation of this size is not incompatible with this motivation, especially
if this approximation is rather rough. In particular, suppose that for some function f (e.g., f(n) =
O(n) or f(n) = poly(n)), we provide the tester with an auxilay input N such that the number of
vertices in the tested graph is between N and f(N). We encourage a study of this relaxation of
the VDF model, while noting that the proof of Theorem 4.5 extends to this case, except that the
complexity is Õ(f(1/ǫ)).

62Specifically, we may say that D has f-effective support-size n if D is f(n)-close to a distribution of support size n.
Natural choices of the function f : N → (0, 1) include negligible functions (i.e., f < 1/p for any positive polynomial
p) and functions f satisfying only f(n) = o(1/n).
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Appendix: An abstraction that extends Theorems 2.3 and 3.3

In this appendix, we present an abstraction that extends Theorems 2.3 and 3.3. This abstraction
refers to randomized decision procedures that solve an arbitrary promise problem, denoted Π =
(Πyes,Πno), where property testing is a special case (i.e., Πyes is the tested property and Πno is the
set of objects that are ǫ-far from Πyes). The framework refers to decision procedures that get oracle
access to their input, which is viewed as a function over an arbitrary finite set U , and in addition
obtains samples from an arbitrary distribution over a related set V . Indeed, in Theorem 2.3 we use
U =

(V
2

)
, whereas in Theorem 3.3 we use U = V × [d].

The abstraction postulates an upper bound on the number of possible different queries that are
made by the decision procedure when all the sample points it obtains reside in some set S and when
its own randomness is arbitrary. In Theorem 2.3 this upper bound is

(|S|
2

)
, whereas in Theorem 3.3

it is |S| · dq where q = q(ǫ) is the query complexity of the tester and d is the degree bound.

Theorem A.1 (obtaining one-sided error for distribution-free procedures): Let M be a probabilis-
tic oracle machine that solves a promise problem Π = (Πyes,Πno) regarding its oracle, which is
viewed as a function f over a finite set U , where in addition M is given an explicit input parameter
p and a sampling device for an arbitrary distribution D over a set V . Further suppose that for
every value of p and every distribution D, the following holds:

1. For every function f ∈ Πyes (resp., f ∈ Πno) it holds that Pr[Mf,D(p) = 1] ≥ 2/3 (resp.,
Pr[Mf,D(p)=0] ≥ 2/3).

2. For every function f ∈ Πyes ∪ Πno, machine M makes at most s(p) queries to its sampling
device.

3. For every function f ∈ Πyes ∪ Πno and every set S ⊆ V , there exists a set Qf (S) such that
if the samples given to M all reside in S, then for every choice of randomness for M all its
queries reside in Qf (S).

Then, Π can be decided by a one-sided error oracle machine M ′ that takes s′
def
= O(s(p)2) samples

for any distribution D, and has query complexity maxS⊆V :|S|=s{|Qf (S)|}. Furthermore, M ′ is
deterministic, and its error probability refers to the choice of s′ samples according to D.

Theorems 2.3 and 3.3 (as well as [23, Rem. 7.3])63 follow as special cases, where in Theorem 2.3
we have Sg(S) =

(S
2

)
and in Theorem 3.3 the set Qg(S) consists of vertices that are at distance at

most q from S (in the graph represented by g).

Proof Sketch: The proof is analogous to the proofs of Theorems 2.3 and 3.3. Specifically, we
consider a oracle machine M ′ that, given orcale access to f and D, takes s′ samples from D, emulates
all possible executions of M on all s(p)-multisets of this sample and on all possible internal random
choices of M , and decides according to the majority vote.

Denoting the set of s′ samples by S, note that, by the hypothesis, all queries made in these
emulations reside in the set Qf (S), and so the complexity bounds are as stated. When f ∈ Πyes,

63In [23, Rem. 7.3] it holds that V = U and Qf (S) = S, since the machine only queries the function (which does
not necessarily represent a graph) on the sample that it obtains.
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for every S, the majority vote is 1, since Pr[Mf,U(S) = 1] ≥ 2/3, where U(S) denotes the uniform
distribution on S. On the other hand, when f ∈ Πno, it holds that

PrS[Mf,U(S) =1] < Pr[Mf,D=1] + 0.01 < 0.35,

where the first probability refers to a random sample S of size s′ drawn from D and the first
inquality is due to the bounded difference between drawing s(p) samples independently from D and
drawing s(p) samples uniformly and independently from a random sample of size s′ drawn from D.
Hence, the majority vote is 1 on at most 70% of the samples S, and the theorem follows by error
reduction.
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