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Abstract

We initiate a systematic study of a special type of property testers. These testers consist of
repeating a basic test for a number of times that depends on the proximity parameter, whereas
the basic test is oblivious of the proximity parameter. We refer to such basic tests by the term
proximity-oblivious testers.

While proximity-oblivious testers were studied before – most notably in the algebraic set-
ting – the current study seems to be the first one to focus on graph properties. We provide a
mix of positive and negative results, and in particular characterizations of the graph proper-
ties that have constant-query proximity-oblivious testers in the two standard models (i.e., the
adjacency matrix and the bounded-degree models). Furthermore, we show that constant-query
proximity-oblivious testers do not exist for many easily testable properties, and that even when
proximity-oblivious testers exist, repeating them does not necessarily yield the best standard
testers for the corresponding property.
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1 Introduction

In the last decade, the area of property testing has attracted much attention (see, the surveys [12, 26]
as well as the more recent ones [27, 28]). Loosely speaking, property testing typically refers to
sub-linear time probabilistic algorithms for deciding whether a given object has a predetermined
property or is far from any object having this property. Such algorithms, called testers, obtain local
views of the object by performing queries; that is, the object is seen as a function and the testers
get oracle access to this function (and thus may be expected to work in time that is sub-linear in
the length of the object).

The foregoing description refers to the notion of “far away” objects, which in turn presumes
a notion of distance between objects as well as a parameter determining when two objects are
considered to be far from one another. The latter parameter is called the proximity parameter, and
is often denoted ǫ; that is, one typically requires the tester to reject with high probability any
object that is ǫ-far from the property.

Needless to say, in order to satisfy the aforementioned requirement, any tester (of a reasonable
property) must obtain the proximity parameter as auxiliary input (and determine its actions ac-
cordingly). The question, addressed in this work, is what does the tester do with this parameter
(or how does the parameter affect the actions of the tester). A very minimal effect is exhibited by
testers that, based on the value of the proximity parameter, determine the number of times that a
basic test is invoked, where the basic test is oblivious of the proximity parameter. For example, the
celebrated linearity tester of [10] repeats a basic test that consists of selecting two random points,
x and y, and probing the value of the function at the points x, y, and x + y. This basic test is
repeated for a number of times that is inversely proportional to the proximity parameter.

Our focus is on such basic tests (i.e., basic tests that are oblivious of the proximity parameter).
We call such tests proximity oblivious, and note that they are implicit in prior works; most notably
in the context of testing algebraic properties (see, e.g., [29] and [22]) and testing monotonicity
(e.g., [15]). In this work we initiate a general study of proximity oblivious testers, and consider a
variety of questions regarding them, while focusing on testing graph properties (in two standard
models). Specifically, we ask:

• Which properties have proximity oblivious tests (of small query complexity)?

• How does the detection probability of such tests grow as a function of the distance of the object
from the property, and how does this relate to the query complexity of the best (standard)
tester for the corresponding property.

For a precise formulation of proximity-oblivious testers and a summary of our results, see Sections 2
and 3, respectively.

Motivation: Property testing can be thought of as relating local views to global properties, where
the local view is provided by the queries and the global property is the distance to a predeter-
mined set. Proximity-oblivious testing takes this relation to an extreme by making the local view
independent of the distance. In other words, it refers to the smallest local view that may provide
information about the global property (i.e., the distance to a predetermined set). A major moti-
vation for our study is that understanding a natural subclass of testers (i.e., proximity-oblivious
ones) may shed light on property testing at large.
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2 Definitional Treatment

In continuation to the introduction, we consider proximity-oblivious testers, and note that standard
testers (which err with probability at most 1/3)1 may be obtained by repeating these proximity-
oblivious testers for an appropriate number of times.

Definition 2.1 (vanilla version): Let Π be a set of functions over a finite set Ω. A proximity-
oblivious tester for Π is a probabilistic oracle machine T that satisfies the following two conditions:

1. The tester accepts each function in Π with probability 1; that is, for every f ∈ Π it holds that
Pr[T f =1] = 1.

2. For some monotone function ρ : (0, 1] → (0, 1], each function f 6∈ Π is rejected by T with
probability at least ρ(δΠ(f)), where

δΠ(f)
def
= ming∈Π{δ(f, g)} and δ(f, g)

def
= Prx∈Ω[f(x) 6= g(x)]. (1)

The function ρ is called the detection probability of the tester T .

Indeed, we require that ρ(ǫ) > 0 for every ǫ > 0, whereas extending Item 2 to f ∈ Π (while
avoiding contradiction with Item 1) mandates extending ρ so that ρ(0) = 0. The requirement that
ρ is monotone (i.e., monotonically increasing) does not rule out cases where the tight lower bound
is non-monotone (e.g., [7]), because ρ is not required to be tight.2 Also, we may assume, without
loss of generality, that ρ(ǫ) ≤ ǫ.

We note that (as outlined in the introduction), using a proximity-oblivious tester T (as in
Definition 2.1), we can obtain a standard (one-sided error) tester (of error probability at most 1/3).
Specifically, given the proximity parameter ǫ, the standard tester invokes T for Θ(1/ρ(ǫ)) times,
and accepts if and only if all these invocations accept.

Note that it is natural to require one-sided error in (Item 1 of) Definition 2.1, because otherwise
functions in Π may be accepted with probability that is lower than the acceptance probability of
some functions that are not in Π (but are close to Π). This presupposes that Item 2 of Definition 2.1
remains intact. For a discussion of an alternative formulation, which allows two-sided error, see
Section 6.3.

Definition 2.1 does not specify the query complexity of the (proximity-oblivious) tester, and
indeed an oracle machine that queries the entire domain of the function qualifies as a (proximity-
oblivious) tester (with detection probability ρ(ǫ) = 1 for every ǫ > 0). Needless to say, we are

1Analogously to Definition 2.1, a standard tester for a property Π is a probabilistic oracle machine T that satisfies
the following conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every f ∈ Π and every ǫ > 0, it holds
that Pr[T f (ǫ)=1] ≥ 2/3.

2. Given any ǫ > 0 and oracle access to any f that is ǫ-far from Π (i.e., δΠ(f) > ǫ), the tester rejects with
probability at least 2/3 (i.e., Pr[T f (ǫ)=0] ≥ 2/3).

We say that the tester has one-sided error if it accepts each f ∈ Π with probability 1 (i.e., for every f ∈ Π and every
ǫ > 0, it holds that Pr[T f (ǫ)=1] = 1).

2In fact, it suffices to require that for every x > 0 it holds that ρ′(x)
def
= infy≥x{ρ(y)} > 0. Indeed, in such a case,

ρ′ is a monotonically non-decreasing lower bound (of ρ). Furthermore, we may obtain a monotonically increasing

lower bound (of ρ) by defining ρ′′(x)
def
= (1 + x) · ρ′(x)/2.
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interested in (proximity-oblivious) testers that have significantly lower query complexity. To facili-
tate an asymptotic treatment, we refer to infinite families of finite functions, and provide the tester
with the size of the function’s domain.

Definition 2.2 (main version): Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over the

domain [n]
def
= {1, ..., n}, and let ρ : (0, 1] → (0, 1] be monotone. A proximity-oblivious tester with

detection probability ρ for Π is a probabilistic oracle machine T that satisfies the following two
conditions:

1. For every n ∈ N and f ∈ Πn, it holds that Pr[T f (n)=1] = 1.

2. For every n ∈ N and f : [n] → {0, 1}∗ not in Πn, it holds that Pr[T f (n) = 0] ≥ ρ(δΠn(f)),
where δΠn(f) = ming∈Πn{δ(f, g)} (as in Eq. (1)).

Definition 2.2 can be further extended so to cover also (proximity-oblivious) testers that obtain
other parameters of the function being tested (e.g., a degree bound in the case of testing low-degree
polynomials). Note that Definition 2.2 mandates that the detection probability is only a function
of the relative distance to the property; indeed, one may relax this requirement but one should stay
away from the trivial lower bound (which corresponds to only requiring that for every f 6∈ Π there
exists a computation of T f that rejects).

3 Summary of our Results

Recall that the (three-query) linearity test of [10] is actually a proximity-oblivious tester, and that
its detection probability is linear (i.e., ρ(ǫ) = Ω(ǫ)). The same holds also for several known low-
degree tests (see, e.g., [29]), testers of monotonicity (e.g., [15]), and some of the results regarding
locally testable codes (see [19] and the end of Section 6). In this work, we study the existence and
quality (i.e., ρ) of efficient proximity-oblivious testers in other domains, most importantly in the
domain of testing graph properties.

3.1 In the dense graphs model

We start (in Section 4) with the setting of testing properties of graphs in the adjacency matrix model
(introduced in [16]). We consider several natural properties and show constant-query proximity-
oblivious testers of optimal (up to a constant factor) detection probability. For example, we show
that:

1. The set of graphs each consisting of a collection of isolated cliques has a three-query proximity-
oblivious tester of quadratic detection probability (i.e., ρ(ǫ) = Ω(ǫ2)), whereas no constant-
query proximity-oblivious tester of this property can do better (i.e., have detection probability
ρ(ǫ) = ω(ǫ2)). We note that this property has a standard (adaptive) tester of Õ(1/ǫ)-query
complexity [18, Sec. 3].

2. For every integer c ≥ 2, the set of graphs consisting of up to c isolated cliques has a c2-query
proximity-oblivious tester, and the optimal detection probability is ρ(ǫ) = Θ(ǫc/2). We note
that these properties have a standard (non-adaptive) tester of Õ(1/ǫ)-query complexity [18,
Sec. 6].
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In contrast to the aforementioned positive results, we show that the set of bipartite graphs has
no constant-query proximity-oblivious tester, although it does have a standard tester of poly(1/ǫ)-
query complexity [16, 5].

Summarizing the lessons from the foregoing examples, we note that they provide negative
examples to both research projects advocated in the introduction. That is:

• There exist easily testable properties that do not have constant-query proximity oblivious
tests. Indeed, this is demonstrated by the result for bipartiteness.

• For properties that do have constant-query proximity oblivious tests, the standard tester
derived from the best possible proximity oblivious test is significantly inferior to some other
(standard) tester. Indeed, this is demonstrated by the result for the property of being a
collection of c isolated graphs, since the derived standard tester has query complexity Ω(ǫ−c/2)
(whereas this property has a standard Õ(ǫ−1)-query tester).

Addressing the first foregoing research project, we characterize the class of graph properties having
constant-query proximity-oblivious testers.

Theorem 3.1 (loosely stated, cf. Theorem 4.7): A graph property has constant-query proximity-
oblivious testers (in the dense graph model) if and only if it expressible as an induced subgraph
freeness property.3

Indeed, this class is rather restricted when compared to the class of graph properties having a
standard tester of complexity that only depends on ǫ (as characterized in [4]).

We also provide a method for determining the optimal (up to a constant factor) detection
probability function of any property that has a constant-query proximity-oblivious tester (cf. The-
orem 4.8). This method refers to the corresponding family of forbidden (induced) subgraphs, and
the aforementioned tight quantitative results are obtained using it.

3.2 In the bounded-degree graphs model

Next (in Section 5), we turn to testing graph properties in the bounded-degree model (introduced
in [17]). In this model, we also characterize the class of graph properties having constant-query
proximity-oblivious testers. Interestingly, this class is a strict superset of the class of properties
having such testers in the adjacency matrix model. We note that, also in the current model,
the class of properties having constant-query proximity-oblivious testers is rather restricted when
compared to the class of graph properties having a standard tester of complexity that only depends
on ǫ (as explored in [17, 9]).

The characterization of the class of graph properties having constant-query proximity-oblivious
testers in the bounded-degree model gives rise to a generalized notion of subgraph freeness, which
may be of independent interest (see Definition 5.1). This notion generalizes both the notions of
non-induced and induced subgraph freeness, and is more expressive than the latter. For example,
the generalized notion allows to capture non-hereditary properties such as (degree) regularity. Our
characterization refers to an auxiliary condition, which we term non-propagating (see Definition 5.3).

3Loosely speaking, an induced subgraph freeness property is a set of graphs that does not contain certain graphs as
induced subgraphs. That is, such a property is determined by a finite set of finite graphs, denoted F , and it consists
of all graphs G such that no induced subgraph of G is in F .
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Theorem 3.2 (loosely stated, cf. Theorem 5.5): A graph property has constant-query proximity-
oblivious testers (in the bounded-degree graph model) if and only if it expressible as an general
subgraph freeness property that satisfies the non-propagation condition. This class strictly contains
all induced subgraph freeness properties.

Indeed, we do not know whether every general subgraph freeness property satisfies the non-
propagation condition (see Open Problem 5.8).

Focusing on induced subgraph freeness properties (which do have constant-query proximity-
oblivious testers in both models), we note that the detection probability in the bounded-degree model
is a polynomial that depends on the number of connected components in the individual graphs of
the forbidden family (i.e., ρ(ǫ) = Ω(ǫc), where c is the maximum number of connected components
in any forbidden graph). This is very different from the behavior in the dense graphs model, where
even for c = 1 (i.e., connected forbidden subgraphs) the detection probability varies from linear to
quadratic and to super-polynomial (i.e., ρ(ǫ) = ǫ versus ρ(ǫ) = Θ(ǫ2) versus ρ(ǫ) < ǫΩ(log(1/ǫ))).

The technical angle. We comment that the techniques establishing the characterizations in
the two different graph testing models are quite different (as one should expect given the different
nature of the two models). In particular, as hinted above, the analysis of the bounded-degree model
seems more novel.

3.3 Generic observations and discussions

Finally (in Section 6), we present a few generic observations. Specifically, we relate the existence of
constant-query proximity-oblivious testers to the existence of constant-size refutations of member-
ship (or proofs of non-membership) and certain testers that reject based on such refutations. We
also shortly discuss the possibility of allowing proximity-oblivious testers two have two-sided error
probability.

We note that, in the context of locally testable codes (LTCs), proximity-oblivious (codeword)
testers are related to strong codeword tests (as in [19, Def. 2.2]), whereas standard (codeword)
testers are related to the standard definition of codeword tests (termed weak in [19, Def. 2.1]).

4 Testing Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model, an N -vertex graph G = ([N ], E) is represented by the Boolean
function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and only if u and v are adjacent in G (i.e.,
{u, v} ∈ E). Distance between graphs is measured in terms of their aforementioned representation
(i.e., as the fraction of (the number of) different matrix entries (over N2)), but occasionally we
shall use the more intuitive notion of the fraction of (the number of) edges over

(N
2

)
.

Notation. For a fixed graph G = ([N ], E), we denote the set of neighbors of vertex v ∈ [N ] by

Γ(v); that is, Γ(v)
def
= {u : {u, v} ∈ E}.

4.1 A few illustrative results

We start with the simple case of testing whether a graph is a clique.
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Proposition 4.1 Clique has a single-query proximity-oblivious tester with detection probability
ρ(ǫ) = ǫ, where Clique is the set of all graphs consisting of a single clique.

Proof: The claim follows by considering the straightforward tester that uniformly selects two
random vertices, and accepts if and only if there is an edge between them.

Proposition 4.2 BiClique has a three-query proximity-oblivious tester with detection probability
ρ(ǫ) = ǫ, where BiClique is the set of all graphs consisting of a single bi-clique (i.e., a complete
bipartite graph).

The following proof may serve as a very simple demonstration of the “enforce and test” technique
(see [28, Sec. 4]), which underlies the design and analysis of many testers in the dense graph model
(e.g., the ones of [16]).

Proof: Consider a tester that sets s ∈ [N ] as an arbitrary vertex, selects v, u ∈ [N ] uniformly, and
accepts if and only if the subgraph induced by {s, u, v} has an even number of edges.4

Clearly, if G is a bi-clique then this test always accepts, because either all vertices reside on the
same side (and so (s, u), (s, v), and (u, v) are all non-edges) or a single vertex is in solitude (and is
thus adjacent to the other two vertices, which in turn are non-adjacent).

To analyze what happens when G = ([N ], E) is ǫ-far from being a bi-clique, observe that s
induces a partition of the graph to its neighbors and non-neighbors (i.e., the 2-partition (Γ(s), [N ]\
Γ(s))). Note that if G were a bi-clique then every vertex w ∈ Γ(s) (resp., w ∈ [N ]\Γ(s)) would have
satisfied Γ(w) = [N ] \ Γ(s) (resp., Γ(w) = Γ(s)). However, since G is ǫ-far from being a bi-clique,
the sum of the number of edges in (Γ(s) × Γ(s)) ∪ (([N ] \ Γ(s)) × ([N ] \ Γ(s))) and the number
of non-edges in Γ(s) × ([N ] \ Γ(s)) must exceed ǫ · N2, and we call the corresponding vertex pairs
bad. Thus, the probability that a pair (u, v) is bad is greater than ǫ, whereas each bad pair causes
our tester to reject (because in the subcase that (u, v) ∈ E ∩ (Γ(s) × Γ(s)) the induced subgraph
has three edges and in the other two subcases (i.e., (u, v) ∈ E ∩ (([N ] \ Γ(s)) × ([N ] \ Γ(s))) and
(u, v) ∈ (Γ(s) × ([N ] \ Γ(s))) \ E) the induced subgraph has a single edge).

Proximity-oblivious testers with ρ(ǫ) = o(ǫ). So far, we considered proximity-oblivious testers
with a linear detection probability (i.e., ρ(ǫ) = Ω(ǫ)). We now turn to cases where ρ is polynomial
but not linear. Such a natural case is provided by the graph property that corresponds to graphs
that consist of a fixed number of isolated cliques. Specifically, for any fixed integer c ≥ 1, consider
the set of graphs, denoted CC≤c, that consist of at most c isolated cliques. Note that Proposition 4.1
refers to CC≤1, whereas Proposition 4.2 refers to graphs that are closely related to CC≤2 (i.e., a
graph is in CC≤2 if and only if its complement graph is a bi-clique). The following result refers to
the case of c ≥ 3.

Proposition 4.3 For every constant c ≥ 3, the property CC≤c has a
(c+1

2

)
-query proximity-

oblivious tester with detection probability ρ(ǫ) > ǫc+1+o(1). On the other hand, CC≤c has no
constant-query proximity-oblivious tester with detection probability ρ(ǫ) = ω(ǫc/2).

We note that Section 6.2 of the companion paper [18] provides a standard (non-adaptive) tester
for CC≤c having query complexity Õ(1/ǫ) and constant error probability. This standard tester is

4We mention that in Section 6.1 of the companion paper [18] we considered a standard tester that selects O(1/ǫ)
random pairs of vertices (in addition to an arbitrary s as above).
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superior to the one obtained by repeating any proximity-oblivious tester for an adequate number
of times (since for any c ≥ 3 the number of repetitions must be Ω(ǫ−c/2)). We mention that the
lower bound on ρ(ǫ) provided by Proposition 4.3 can be improved (see Proposition 4.11).

Proof: The lower bound on ρ follows from the analysis of the CC≤c-tester that is provided in
[18, Sec. 6.2]. Specifically, we refer to the fact that the analysis in [18] establishes that (with high
probability) a sample of Õ(1/ǫ) vertices (from any graph that is ǫ-far from CC≤c) induces a subgraph
not in CC≤c. (The said analysis actually establishes something much stronger, but the foregoing
suffices here.)5 Note that any graph G′ that is not in CC≤c contains an induced subgraph of at
most c + 1 vertices that is not in CC≤c, because G′ either has at least c + 1 connected components
(which yields an independent set of size c + 1) or has a connected component that is not a clique
(which yields three vertices that miss some edge among them). It follows that the said Õ(1/ǫ)-
vertex sample contains such c + 1 vertices. Thus, the proximity-oblivious tester that selects c + 1
uniformly distributed vertices and accepts if and only if the induced graph is in CC≤c has detection

probability at least Ω(1)/
( eO(1/ǫ))

c+1

)
> ǫc+1+o(1).

For the impossibility claim (or rather the upper bound on ρ), consider a random graph consisting
of c small cliques, each of size

√
2ǫ · N , and a large clique of size (1 − c

√
2ǫ) · N . This graph is

ǫ-far from CC≤c, but the probability that any k vertices induce a subgraph that is not in CC≤c is
upper-bounded by

(k
c

)
·
√

2ǫ
c
, because only subsets that contain representatives from each of the

small cliques yield a subgraph not in CC≤c. Recalling that we refer to constant-query proximity-
oblivious testers (which must accept if the induced subgraph is in CC≤c), the upper bound follows
(since

(k
c

)
·
√

2ǫ
c
= O(ǫc/2) for constant k).

Proximity-oblivious testers with detection probability that is even smaller are provided by [1].

Proposition 4.4 (implicit in [1]): Triangle-Freeness has a three-query proximity-oblivious
tester with detection probability ρ(ǫ) that is the reciprocal of a tower of poly(1/ǫ)-many exponents.
On the other hand, Triangle-Freeness has no constant-query proximity-oblivious tester with de-
tection probability ρ(ǫ) = poly(ǫ).

We note that [1] actually established that every constant-query proximity-oblivious tester for
Triangle-Freeness must have detection probability ρ(ǫ) < ǫΩ(log(1/ǫ)).

Easily testable properties having no proximity-oblivious testers. While bipartiteness can
be tested with query-complexity that is polynomial in the reciprocal of the proximity parameter [16],
this property has no constant-query proximity-oblivious tester. That is:

Proposition 4.5 Bipartiteness has no constant-query proximity-oblivious tester.

Proof: For every ǫ > 0, consider a graph G that consists of t
def
=
√

1/2ǫ sets, denoted V0, V1, ..., Vt−1,
each of size

√
2ǫ ·N such that there is an edge between a pair of vertices if and only if these vertices

reside in “adjacent” sets; that is, {u, v} is an edge if and only if for some i ∈ {0, ..., t − 1} it
holds that u ∈ Vi and v ∈ V(i+1) mod t. Clearly, for an odd t, the graph G is ǫ-far from being
bipartite, but a proximity-oblivious tester of query complexity less than t cannot reject G (because
any non-bipartite subgraph of G must contain at least t vertices).

5Details are omitted in light of the fact that Proposition 4.11 establishes a stronger lower bound.
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4.2 Connection to induced subgraph freeness

The reader may have noticed that the proximity-oblivious testers presented so far worked by search-
ing for a small “forbidden subgraph” in the input graph (see, e.g., the proof of Propositions 4.1, 4.2
and 4.3). In contrast, the non-existence of constant-query proximity-oblivious testers was demon-
strated by proving the non-existence of constant-size “forbidden subgraphs” in all no-instances (see,
indeed, the proof of Proposition 4.5). We show that this is no coincidence, since there is a close
relationship between the two notions.

Definition 4.6 (induced subgraph freeness): Let F be a set of graphs. A graph G is called F-free
if it contains no induced subgraph that is isomorphic to some graph in F .

Note that Definition 4.6 refers to induced subgraphs, whereas in many works the term F-freeness
means having no subgraph (not necessarily an induced one) that is in F .

Theorem 4.7 (characterization for the dense graphs model): Let Π =
⋃

N∈N
ΠN be a graph prop-

erty such that each ΠN consists of all N -vertex graphs that satisfy Π. Then, Π has a constant-
query proximity-oblivious tester if and only if there exists a constant c and an infinite sequence
F = (FN )N∈N of sets of graphs such that

1. each FN contains graphs of size at most c; and

2. ΠN equals the set of N -vertex FN -free graphs.

Furthermore, if membership in Π is decidable, then a computable proximity-oblivious tester yields
a computable sequence of sets, and vice versa.

Note that the specific detection probability function ρ is irrelevant for the “only if” direction, which
only relies on the fact that ρ(ǫ) > 0 for every ǫ > 0.6 On the other hand, the opposite direction
actually provides a lower bound on the detection probability, albeit a very weak one (i.e., ρ(ǫ) is
the reciprocal of a tower of poly(1/ǫ)-many towers of exponents). Combining both directions, we
conclude that any graph property that has a constant-query proximity-oblivious tester has such
a tester with detection probability function that is lower-bounded by a specific function7 of the
proximity parameter (albeit the reciprocal of a tower of towers of exponents).

Proof: Suppose that Π has a constant-query proximity tester. By [20, Thm. 4.5] (see also [21]),
every one-sided error tester of query complexity q for ΠN can be converted into a one-sided error
canonical tester of query complexity 2q2, where for some GN (which depends only on ΠN and q),
the canonical tester uniformly selects a random set of 2q vertices and accepts the input graph iff
the induced subgraph is in GN . We stress that the proof provided in [20, Sec. 4] maintains the error
probability of the tester, and thus applies also to generalized (one-sided error) testers of arbitrary
error probability. Thus, if Π has a q-query proximity-oblivious tester then for every N there exists
a set of 2q-vertex graphs GN such that a graph is in ΠN iff each of its 2q-vertex induced subgraphs
is in GN . Defining FN as the set of all 2q-vertex graphs that are not in GN , we conclude that ΠN

equals the set of N -vertex graphs that are FN -free.

6Indeed, this holds even if the detection probability function is allowed to depend on N (as long as ρ(N, ǫ) > 0
for every ǫ > 0 and N ∈ N).

7This lower-bounding function is determined based only on the aforementioned constant (number of queries).
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Suppose, on the other hand, that for some constant c and a sequence of sets (FN )N∈N of graphs
it holds that each FN contains graphs of size at most c and ΠN equals the set of N -vertex FN -free
graphs. Our goal is to derive a constant-query proximity tester for Π. The case of identical sets
(i.e., FN = FN+1 for every N) follows almost immediately from [3]. Specifically, [3, Thm. 6.1]
implies that for every set of c-vertex graphs F and for every ǫ > 0, there exist numbers s(ǫ) and
δ(ǫ) for which the following holds: For every graph G that is ǫ-far from being F-free and contains
at least s(ǫ) vertices, with probability at least δ(ǫ) over the choice of a sample of size s(ǫ) the
sample contains an induced copy of some graph in F . It follows that, with probability at least(s(ǫ)

c

)−1 · δ(ǫ), a random set of c vertices (of such a graph G) induces a subgraph that is in F .
The argument extends the general case (of an arbitrary sequence of sets (FN )N∈N), by partitioning
all integers according to the corresponding sets. This yields testers for each of the finitely many
possible sets, and so the final tester will incorporate all these testers, and activate the one that suits
the size of the input graph. Lastly, we note that the functions s and δ provided by [3, Thm. 6.1]
satisfy s(ǫ)/δ(ǫ) = TT(1/ǫ), where TT(n) is a tower of poly(n)-many towers of exponents (with
the polynomial depending only on c).

A special case and a quantitative version. A natural special case of properties having constant-
query proximity-oblivious testers is properties that correspond to sets of F-free graphs, for arbitrary
finite sets F . Indeed, this corresponds to the special case of Theorem 4.7 in which all the sets in
the sequence F are identical (i.e., FN = FN+1 for every N). In this case, the detection probability
of any constant-query proximity-oblivious tester is determined by the quantity ρF defined next.

• For a c-vertex graph F , we denote by µF (G) the fraction of c-vertex subsets that induce the
subgraph F in the graph G.

• For a finite set of graphs F , we denote by ρF (ǫ) the infimum of the value of maxF∈F{µF (G)}
taken over all graphs G that are ǫ-far from being F-free.8

Recall that by Theorem 4.7 (or rather by [3, Thm. 6.1]), for every F , the function ρF is well-defined.
Furthermore, ρF is lower-bounded by the reciprocal of a tower of towers of exponents. The following
result asserts that the detection probability of the best possible constant-query proximity-oblivious
tester for F-freeness is determined by ρF .

Theorem 4.8 Let c be an integer and F be a finite set containing graphs that each has at most
c vertices. Then, F-freeness has a

(
c
2

)
-query proximity-oblivious tester of detection probability

ρF , whereas any constant-query proximity-oblivious tester for F-freeness has detection probability
O(ρF ).

Proof: First note that the straightforward proximity-oblivious tester for F-freeness (which selects
a random set of c vertices and accepts if and only if it is F-free) has detection probability ρF .

In order to justify the upper bound (on the detection probability of any constant-query
proximity-oblivious testers) we recall that, by [20, Thm. 4.5], it suffices to consider constant-query
proximity-oblivious testers that select a random set of c′ = O(1) vertices and accept the input N -
vertex graph iff the induced subgraph is in some adequate set GN . We stress that this GN need not

8Indeed, in the case that F consists of c-vertex graphs, an alternative definition can be based on defining µF (G)
as the fraction of c-vertex subsets that induce in G a subgraph that belong to F . Needless to say, these two definition
are related by a factor of at most |F|.
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complement the set F , and in particular c′ may be different from c. Still, without loss of generality,
we may assume that c′ ≥ c.

Let us first assume that GN does not depend on N (i.e., GN = GN+1 for every N ≥ c′). In this
case, GN = Gc′ must equal the set of c′-vertex graphs that are F-free. The reason being that a
c′-vertex graph G has a unique induced subgraph with c′ vertices, being the graph itself. Now, on
the one hand (by the acceptance criterion of the tester), the input (c′-vertex) graph G is accepted
by the tester if and only if G ∈ Gc′ , whereas on the other hand the tester is required to accept G if
and only if it is F-free.

In the general case, the sequence (GN )N∈N may contain a finite number of possible sets (of
c′-vertex graphs). For each N ≥ c′, consider the smallest integer n such that GN = Gn, and denoted
it by n(GN ); that is, n(G) = min{n ≥ c′ : Gn = G}. Note that n∗ = max{n(GN ) : N ≥ c′} is
a constant, because there are finitely many different sets GN . (Indeed, in the special case (where
GN = GN+1), it holds that n∗ = c′, since n(GN ) = c′ for every N ≥ c′.) Now, consider a tester that,
on input an N -vertex graph, accepts if and only if the subgraph induced by n(GN ) random vertices
is in G′

N , where G′
N consists of the set of all n(GN )-vertex graphs G′ such that every c′ vertices

in G′ induce a subgraph that is in GN . The detection probability of this tester (on any graph)
is lower-bounded by the detection probability of the original tester, whereas the new tester never
rejects graphs that were never rejected by the original tester. Thus, we can apply the analysis
of the special case (of equal GN ’s) here, and conclude that G′

N = G′
n(GN ) must equal the set of

n(GN )-vertex graphs that are F-free.
It follows that the aforementioned tester rejects an input N -vertex graph G if and only if it has

selected a random set of n(GN ) = O(1) vertices such that the induced subgraph is not F-free. The

probability of the latter event is upper-bounded by
∑

F∈F

(n(GN )
|V (F )|

)
·µF (G), where V (F ) denotes the

vertex set of the graph F . Recalling that F is finite and n(GN ) ≤ n∗ = O(1), it follows that this
tester has detection probability O(ρF ).

In light of Theorem 4.8, the study of the detection probability of constant-query proximity-testers
for natural properties that have such testers (i.e., F-freeness), reduces to the study of the corre-
sponding quantities ρF for various F . A few examples follow.

1. The property Clique (see Proposition 4.1) corresponds to the set of {I2}-free graphs, where
I2 denotes an independent set of two vertices. Needless to say, ρ{I2}(ǫ) = ǫ.

Similarly ρ{P2}(ǫ) = ǫ, where P2 denotes a single edge (which may be viewed as a path of two
vertices).

2. Denoting by CC (standing for Clique Collection) the set of graphs consisting of a collection of
(any number of) isolated cliques, we note that CC equals the set of {P3}-free graphs, where
P3 denotes a three-vertex graph with exactly two edges (i.e., a path of three vertices). We
show (in Proposition 4.10) that ρ{P3}(ǫ) = Θ(ǫ2).

3. Recall that CC≤c is the set of graphs consisting of a collection of at most c isolated cliques
(see Proposition 4.3). Note that CC≤c equals the set of {P3, Ic+1}-free graphs, where Ic+1

denotes an independent set of c + 1 vertices. Combining Theorem 4.8 and Proposition 4.3,9

it follows that ρ{P3,Ic+1}(ǫ) = O(ǫc/2) for every c ≥ 3. We show (in Proposition 4.11) that

ρ{P3,Ic+1}(ǫ) = Ω(ǫc/2).

9Actually, the proof of Proposition 4.3 directly implies upper (and lower) bounds on ρ{P3,I
c+1}.
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Note that Proposition 4.2 implies that ρ{P3,I3}(ǫ) = Ω(ǫ), because BiClique consists of graphs

whose complement graph is in CC≤2. Clearly, ρ{P3,I3}(ǫ) = O(ǫ).

4. Recall that Proposition 4.4 refers to Triangle-Freeness, which corresponds to {C3}-freeness
where C3 is the three-vertex cycle. Recall that [1] established that ρ{C3} is a super-polynomial
function, whereas ρ{C3} was known to be lower-bounded by the reciprocal of a tower of
exponents.

We mention that the work of [6] provides a characterization of the class of graphs F for which ρF

is lower-bounded by a polynomial (i.e., ρF (ǫ) ≥ poly(ǫ)). In particular, their results imply that
ρF is lower-bounded by a polynomial only for at most seven graphs (i.e., the graphs P2, P3, P4, C4

and their complements). The foregoing discussion begs to try to extend their study to finite sets
of graphs; that is, for every finite set of graphs F , determine the behavior of ρF . In particular:

Open Problem 4.9 Determine the class of sets of graphs F for which ρF is lower-bounded by a
polynomial.

4.3 The detection probability of Clique Collection (i.e., ρ{P3}(ǫ) = Θ(ǫ2))

Recall that (by Theorem 4.7) CC has a constant-query proximity-oblivious tester, since CC cor-
responds to {P3}-freeness. Furthermore, by Theorem 4.8, the detection probability of the best
possible constant-query proximity-oblivious tester for CC equals Θ(ρ{P3}).

Proposition 4.10 (the best detection probability for CC): ρ{P3}(ǫ) = Θ(ǫ2).

Proposition 4.10 follows from Section 4 in the companion paper [18]; specifically, the upper bound
(on ρ{P3}) uses the graphs of [18, Sec. 4.1] (which are ǫ-far from CC), whereas the lower bound
follows from the basic parts of Claims 4.3.1 and 4.3.2 in [18, Sec. 4.2]. For sake of self-containment,
we provide a full proof below (where the aforementioned basic parts appear as Claims 4.10.1
and 4.10.2, respectively). We note that the following proof is significantly simpler than the analysis
in [18, Sec. 4].

We mention that the constant-query proximity-oblivious tester resulting from Proposition 4.10
yields a standard (non-adaptive) tester of query complexity O(ǫ−2), which improves over the Õ(ǫ−2)
bound of [6, Thm. 2] (which, in turn, is based on inspecting the subgraph induced by a random
set of O(ǫ−1 log(1/ǫ)) vertices). However, in [18, Sec. 4.2] we present an alternative (non-adaptive)
tester of query complexity Õ(ǫ−4/3), and in [18, Sec. 3] we present an adaptive tester of query
complexity Õ(ǫ−1).

Proof: The proof adapts ideas from the study of non-adaptive testers for CC, conducted in the
companion paper [18]. For the upper bound consider an N -vertex graph G consisting of (6ǫ)−1

connected components, each being a bi-clique with 3ǫN vertices on each side. The graph G is
ǫ-far from CC, but µ{P3}(G) ≤ (6ǫ)2, because a copy of P3 must contain three vertices in the same
connected component.

For the lower bound we consider an arbitrary graph G = ([N ], E) that is ǫ-far from CC. Let
G′ = ([N ], E′) be a graph in CC that is closest to G, and let (V1, ..., Vt) be its partition into cliques.
For the sake of simplicity, we shall refer to the Vi’s as cliques, even though they are not (necessarily)
cliques in G, and we shall refer to the partition (V1, ..., Vt) as the best possible partition for G. Two
main observations regarding this partition follow.
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Observation 1: For every i ∈ [t] and every S ⊆ Vi, it holds that |E∩(S×(Vi \S))| ≥ |S×(Vi \S)|/2,
since otherwise replacing the clique Vi by two cliques, S and Vi \ S, yields a better partition
for G.

Observation 2: For every i 6= j ∈ [t], it holds that |E ∩ (Vi × Vj)| ≤ |Vi × Vj |/2, since otherwise
replacing the two cliques Vi and Vj by a single clique Vi ∪ Vj yields a better partition for G.

Now, since G is ǫ-far from CC, either G misses at least ǫ
2 ·
(N

2

)
edges within these Vi’s or G has at

least ǫ
2 ·
(N

2

)
superfluous edges between distinct Vi’s. We show that in either case, with probability

at least Ω(ǫ2), three uniformly selected vertices induce the subgraph P3. We call such a triplet a
witness.

The pivot of the analysis is relating the fraction of bad vertex pairs (i.e., either missing “internal”
edges or superfluous “external” edges) to the fraction of witnesses. Specifically, we shall show
that the existence of ǫ

2 ·
(N

2

)
missing internal edges (resp., ǫ

2 ·
(N

2

)
superfluous “external” edges)

implies the existence of Ω(ǫ2N3) witnesses. The following notation will be useful: for every i ∈ [t]
and v ∈ [N ] (not necessarily in Vi), we denote by Γi(v) the set of neighbors of v in Vi, and

Γi(v)
def
= Vi \ (Γi(v) ∪ {v}).

We first consider the case in which at least ǫ
2 ·

(N
2

)
internal edges are missing (i.e.,∑

i∈[t]

∑
v∈Vi

|Γi(v)| > ǫ ·
(N

2

)
). Note that every triple (v, u,w) such that u ∈ Γi(v), w ∈ Γi(v)

and {u,w} ∈ E is a witness. Using Observation 1, we have for each v ∈ Vi:

1. |Γi(v)| ≥ |Γi(v)|; and

2. the density of edges between Γi(v) and Γi(v) is at least 1/2.

Thus, for v ∈ Vi, the number of witnesses that contain v is at least |Γi(v)| · |Γi(v)|/2 ≥ |Γi(v)|2/2.
It follows that the total number of witnesses is lower-bounded by

1

2
·
∑

i∈[t]

∑

v∈Vi

|Γi(v)|2 ≥ 1

2
· N ·

(∑
i∈[t]

∑
v∈Vi

|Γi(v)|
N

)2

(2)

which is lower-bounded by Ω(ǫ2N3) as desired. For sake of reference, we highlight the following
claim, which was established above.

Claim 4.10.1 For every v ∈ Vi, the number of witnesses containing v is Ω(|Γi(v)|2).

We now turn to the case in which there are at least ǫ
2 ·
(
N
2

)
superfluous “external” edges; that

is, in this case
∑

v∈[N ] |Γ′(v)| > ǫ ·
(
N
2

)
, where for every v ∈ Vi we define Γ′(v)

def
=
⋃

j 6=i Γj(v). In this

case, we shall show that the number of witnesses that contain each specific v ∈ [N ] is Ω(|Γ′(v)|2),
and the claim (regarding the total number of witnesses) will follow as in the previous case. Thus,
it is left to establish the following.

Claim 4.10.2 The number of witnesses containing v is Ω(|Γ′(v)|2).

Proof: In addition to the notations Γi(v) = Γ(v) ∩ Vi, Γi(v) = Vi \ (Γ(v) ∪ {v}), and Γ′(v) =
⋃

j:v 6∈Vj
Γj(v), we shall use the notation E(V ′, V ′′)

def
= {(v′, v′′) ∈ (V ′ × V ′′) : {v′, v′′} ∈ E}. The

proof will proceed via a case analysis, which refers to an arbitrary i ∈ [t] and v ∈ Vi.
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Case 1: Much of Γ′(v) is contained in a single Vj; that is, there exists an index j such that |Γj(v)| >
|Γ′(v)|/10. Fixing such an index j, we distinguish two subcases regarding the fraction of Vj that is
not covered by Γ′(v) (i.e., the relative density of Γj(v) in Vj).

Case 1.1: |Γj(v)| ≥ |Vj |/10. In this case the claim follows by considering most of the possible
choices of u ∈ Γj(v) and w ∈ Γj(v). Specifically, by Observation 1, |E(Γj(v),Γj(v))| is

lower-bounded by |Γj(v)| · |Γj(v)|/2, and so at least half of the triples in Tv
def
= {(v, u,w) :

(u,w) ∈ Γj(v) × Γj(v)} are witnesses (i.e., (u,w) ∈ E and (v, u) ∈ E, but (v,w) 6∈ E),
whereas |Tv| = |Γj(v)| · |Γj(v)| = Ω(|Γ′(v)|2) (because |Γj(v)| ≥ |Vj |/10 ≥ |Γj(v)|/10 and
|Γj(v)| > |Γ′(v)|/10).

Case 1.2: |Γj(v)| ≤ |Vj |/10 (i.e., |Γj(v)| ≥ 0.9|Vj |). We first note that |Vi| > |Γ′(v)|/20, because
otherwise we would obtain a better partition by moving the vertex v from Vi to Vj (since
|Γi(v)| ≤ |Vi| whereas |Γj(v)|− |Γj(v)| ≥ 0.8|Vj | and |Vj| ≥ |Γj(v)| ≥ |Γ′(v)|/10). We consider
two subcases regarding the cardinality of the set Γi(v):

1. If |Γi(v)| ≥ 0.9 · |Vi|, then the claim follows by considering a constant fraction of the
possible choices of u ∈ Γj(v) and w ∈ Γi(v). Specifically, using Observation 2, it holds
that

|E(Γj(v),Γi(v)| ≤ |E(Vj , Vi)| (3)

≤ 1

2
· |Vj | · |Vi| (4)

≤ 1

2
· |Γj(v)|

0.9
· |Γi(v)|

0.9
(5)

< 0.7 · |Γj(v)| · |Γi(v)|, (6)

where the second inequality uses |Γj(v)| ≥ 0.9|Vj | and |Γi(v)| ≥ 0.9|Vi|. We obtain at
least (1 − 0.7) · |Γj(v)| · |Γi(v)| pairs (u,w) ∈ (Γj(v) × Γi(v)) \ E (and the correspond-
ing triples (v, u,w) are witnesses). Using |Γj(v)| ≥ |Γ′(v)|/10 and |Γi(v)| ≥ 0.9|Vi| =
Ω(Γ′(v)|), we lower-bound the said number by Ω(|Γ′(v)|2).

2. If |Γi(v)| ≤ 0.9 · |Vi|, then we have many missing internal edges inside Vi with v as an
endpoint (i.e., |Γi(v)| = Ω(Γ′(v)|)), and we invoke the corresponding analysis (as in the
case of

∑
i∈[t]

∑
v∈Vi

|Γi(v)| ≥ ǫ ·
(N

2

)
). Specifically, we obtain 1

2 · |Γi(v)| · |Γi(v)| witnesses

(corresponding to edges {u,w} such that u ∈ Γi(v) and w ∈ Γi(v)), and using the subcase
hypothesis (and Observation 1) this number is lower-bounded by 1

2 ·0.5|Vi| ·0.1|Vi|, which
is lower-bounded by Ω(|Γ′(v)|2) (since |Vi| > |Γ′(v)|/20 holds in Case 1.2).

This completes the treatment of Case 1.2.

Case 2: No single Vj contains much of Γ′(v); that is, for every j ∈ [t] it holds that |Γj(v)| ≤ |Γ′(v)|/10.
As in Case 1, we consider two subcases regarding the relative part of Vj covered by Γ′(v), but in

the current case we consider a partition of the set J
def
= {j : |Γj(v)| ≥ 1} and distinguish cases

regarding the intersection of Γ′(v) with the sets Vj in each part. Specifically, we let J ′ def
= {j :

|Γj(v)| > 0.9|Vj |}, and consider the following two subcases.
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Case 2.1:
∑

j∈J ′ |Γj(v)| ≥ 0.5 · |Γ′(v)|. In this case J ′ has cardinality at least five (since |Γj(v)| ≤
0.1 · |Γ′(v)| for every j). Let Cv =

⋃
j∈J ′ Γj(v), and note that the vertices in Cv belong

to several cliques Vj. We shall show that the case hypothesis implies that there are many
missing edges between pairs of vertices in Cv. Intuitively this holds because Cv essentially
covers

⋃
j∈J ′ Vj , whereas (by Observation 2) for any j1 6= j2 there are many non-edges in

Vj1 × Vj2 . This ensures that we have many witnesses of the form (v, u,w), where u,w ∈ Cv

and {u,w} 6∈ E. Details follow.

For every j1 6= j2 ∈ J ′, by Observation 2 (and since |Γj(v)| > 0.9|Vj | for every j ∈ J ′), it
holds that

|E(Γj1(v),Γj2(v))| ≤ 1

2
· |Vj1 | · |Vj2| < 0.7 · |Γj1(v)| · |Γj2(v)| . (7)

Therefore the number of non-edges between pairs in Cv is lower-bounded by

∑

j1 6=j2∈J ′

(1 − 0.7) · |Γj1(v)| · |Γj2(v)| (8)

= 0.3 ·




∑

j1,j2∈J ′

|Γj1(v)| · |Γj2(v)| −
∑

j∈J ′

|Γj(v)|2

 (9)

≥ 0.3 ·
(
(0.5 · |Γ′(v)|)2 − 0.1 · |Γ′(v)|2

)
(10)

where the last inequality is due to the case hypotheses (i.e.,
∑

j∈J ′ |Γj(v)| ≥ 0.5 · |Γ′(v)| and

|Γj(v)| ≤ 0.1 · |Γ′(v)|). Thus, |(Cv × Cv) \ E| > 0.04 · |Γ′(v)|2, and the claim follows.

Case 2.2:
∑

j∈J\J ′ |Γj(v)| ≥ 0.5 · |Γ′(v)|. Let J ′′ def
= J \ J ′ = {j : 1 ≤ |Γj(v)| ≤ 0.9|Vj |}, and note

that for j ∈ J ′′ (as considered in this case) it may be that |Γj(v)| ≪ |Vj | and consequently
for j1 6= j2 ∈ J ′′ it may hold that E(Γj1(v),Γj2(v)) ≈ |Γj1(v)| · |Γj2(v)|. More generally,

redefining Cv
def
=
⋃

j∈J ′′ Γj(v), it may be that |E(Cv , Cv)| ≈
(|Cv|

2

)
, and so the approach of

Case 2.1 may not work in general (although it will work in the first subcase). Thus, letting

J ′′′ def
= {j ∈ J ′′ : |Vj | ≤ |Γ′(v)|/10}, we consider two subcases:

1. If
∑

j∈J ′′′ |Γj(v)| ≥ 0.4 · |Γ′(v)| then we redefine Cv
def
=
⋃

j∈J ′′′ Γj(v) and show that

|E(Cv , Cv)| ≤ 0.99 ·
(|Cv|

2

)
. This is the case because otherwise we obtain a contradiction

to the optimality of the partition (by replacing the sub-partition (Vj)j∈J ′′′ with (Cv, (Vj \
Cv)j∈J ′′′)).Thus, we have reached a situation as in Case 2.1, and we proceed as in that
case.

2. If
∑

j∈J ′′\J ′′′ |Γj(v)| ≥ 0.1 · |Γ′(v)| then we proceed similarly to Case 1.1. Specifically, for

each j ∈ J ′′ \ J ′′′, we note that the density of edges in Γj(v)× Γj(v) is at least one half,
whereas |Γj(v)| ≥ 0.1|Vj | ≥ 0.1 · 0.1 · |Γ′(v)| (by j ∈ J ′′ and j 6∈ J ′′′, respectively). Thus,
the number of witnesses (v, u,w) such that (u,w) ∈ Γj(v) × Γj(v) (and {u,w} ∈ E) is
at least ∑

j∈J ′′\J ′′′

|Γj(v) × Γj(v)|
2

≥
∑

j∈J ′′\J ′′′

|Γj(v)| · |Γ′(v)|
200

(11)

which is Ω(|Γ′(v)|2) by the subcase hypothesis.
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These completes the treatment of Case 2.2.

Thus, a lower bound of Ω(|Γ′(v)|2) was proved in all cases, and the claim follows.

This completes the proof of the entire proposition.

4.4 An improved result for CC≤c (i.e., ρ{P3,Ic+1}(ǫ) = Ω(ǫc/2))

Recall that, for every constant c ≥ 3, Proposition 4.3 established that the property CC≤c has
a constant-query proximity-oblivious tester with ρ(ǫ) > ǫc+1+o(1) (whereas any constant-query
proximity-oblivious tester for CC≤c must satisfy ρ(ǫ) = O(ǫc/2)). In this section we improve the
lower bound on ρ, and in fact obtain a tight result. By Theorem 4.8, it suffices to prove that
ρ{P3,Ic+1}(ǫ) = Ω(ǫ)c/2, since CC≤c corresponds to {P3, Ic+1}-freeness.

Proposition 4.11 (the best detection probability for CC≤c): For every integer c ≥ 3, it holds that
ρ{P3,Ic+1}(ǫ) = Ω(ǫ)c/2.

The proof builds on the first part of the analysis of the CC≤c-tester that is provided in [18, Sec. 6.2].
Actually, we shall modify also this part, and thus we provide a self-contained description of the
entire argument.

Proof: Suppose that G = ([N ], E) is an N -vertex graph that is ǫ-far from CC≤c. As a mental
experiment, we consider a uniformly distributed set of Θ(ǫ−1/2) vertices of G, denoted S. We shall
show that, for a typical S (i.e., for most choices of S) and for a uniformly selected vertex v, with
probability Ω(ǫ), the subgraph induced by S∪{v} is not in CC≤c. In such a case, the said subgraph
contains c+1 vertices that induce a subgraph not in CC≤c. That is, for a typical S, with probability
at least min{|S|−(c+1),Ω(ǫ) · |S|−c} = Ω(ǫ)(c+2)/2 either a sample of c+1 vertices in S or a sample of
c vertices in S and a single vertex v in [N ] yields an induced subgraph that is not in CC≤c (i.e., is not
{P3, Ic+1}-free). Thus, µ{P3,Ic+1}(G) = Ω(ǫ)(c+2)/2, and it follows that ρ{P3,Ic+1}(ǫ) = Ω(ǫ)(c+2)/2.
The proposition will follow by a somewhat more refined analysis.

We think of S as being selected in c + 1 phases, where in phase t, a new uniform sample St,
of Θ(ǫ−1/2) vertices, is selected (recall that c is a constant). Intuitively, the objective of the first
c phases is to yield a partition of all the graph vertices into at most c + 1 subsets in a way that
facilitates finding evidence of the fact that the original graph is not in CC≤c. For example, one
main part of the argument is showing that, with high (constant) probability, it is either the case
that the set of vertices with no neighbors in S is of size O(ǫ1/2 · N) or S contains an independent
set of size c + 1 (and we are done). Let us elaborate on the way this assertion is proved.

Intuitively, with high (constant) probability, if the number of vertices that do not have any
neighbor among the vertices selected so far is relatively big, then we obtain such a vertex in the
next phase. Indeed, if the set of vertices with no neighbors in S is of size Ω(ǫ1/2 · N), then after
each of the first c phases it is the case that the number of vertices that do not have any neighbor
among the vertices selected so far is relatively big. Thus, we should have been quite unlucky not
to obtain such a vertex in each of the following phases. Assuming that we are not unlucky, S
does contain an independent set of size c + 1, and it follows that µ{P3,Ic+1}(G) = Ω(|S|−(c+1)) =

Ω(ǫ)−(c+1)/2. However, a closer look at the situation reveals that we can select such an independent
set (in S) by selecting an arbitrary vertex in S1, and then selecting an adequate vertex in each
St for each t = 2, ..., c + 1 (i.e., a vertex of St that has no neighbors in

⋃t−1
k=1 Sk). It follows that
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µ{P3,Ic+1}(G) = Ω(
∏c+1

t=2 |St|−1) = Ω(ǫ)c/2. Note that the argument applies also if it only holds that

the set of vertices with no neighbors in S≤c def
=
⋃c

k=1 Sk is of size Ω(ǫ1/2 ·N). Let us generalize this
argument further.

Claim 4.11.1 For s > 2c, suppose that a graph G′ = ([s], E′) is not in CC≤c. Then, with probability
greater than s−c/2, a uniformly selected set of c + 1 vertices induces in G′ a subgraph that is not
in CC≤c.

Proof: If G′ contains an induced copy of P3, then three uniformly selected vertices hit it with
probability at least s−3 ≥ s−c, since c ≥ 3. Otherwise (i.e., if G′ 6∈ CC≤c contains no induced copy
of P3), it must be the case that G′ is a collection of at least c + 1 isolated cliques. We arbitrarily
cluster these cliques into c + 1 sets, and consider the probability that a sample of c + 1 vertices
hits a vertex in each of these c + 1 sets. This probability is lower-bounded by

∏c+1
i=1 xi subject to∑c+1

i=1 xi = 1 and xi ≥ 1/s for every i. The minimum is obtained at x1 = · · · = xc = 1/s, and the
claim follows.

We now turn to defining the (c + 1)-partition (of the graph vertices) that arises from the sample
S. For each 1 ≤ t ≤ c + 1, let S≤t =

⋃t
k=1 Sk. If for any 1 ≤ t ≤ c, the subgraph induced by

S≤t is not a collection of at most c cliques, then we are done (by Claim 4.11.1). Otherwise, let
Ct

1, ..., C
t
ct denote the ct ≤ c cliques in the subgraph induced by S≤t. For each 1 ≤ t ≤ c, we define

the following partition of the set of all graph vertices (i.e., [N ]):

V t
j

def
= {v : Γ(v) ∩ S≤t = Ct

j} for 1 ≤ j ≤ ct , (12)

Rt
0

def
= {v : Γ(v) ∩ S≤t = ∅} (13)

Rt
1

def
= V \

(
Rt

0 ∪
( ⋃

1≤j≤ct

Vj

))
. (14)

That is, for 1 ≤ j ≤ ct, the subset V t
j consists of the vertices that neighbor all vertices in Ct

j and

no other vertex in S≤t, the subset Rt
0 consists of all vertices that have no neighbor in S≤t, and

Rt
1 consists of all vertices that either neighbor only some of the vertices in one of the cliques Ct

j ,

but not all, or that have neighbors in more than one of the cliques. Observe that V t+1
j ⊆ V t

j and

Rt+1
0 ⊆ Rt

0 while Rt+1
1 ⊇ Rt

1.
Given the above notation, we make two observations. The first observation is that, for any

1 ≤ t ≤ c, if St+1 contains some vertex in Rt
1, then the subgraph induced by S≤(t+1) is not a

collection of (at most c) cliques, and so we are done (again, by Claim 4.11.1). It follows that if
|Rt

1| > 1
4ǫ1/2N , for some t ≤ c, then we are done (because with high probability St+1 will contain

some vertex in Rt
1). The second observation is that if St+1 contains some vertex in Rt

0, then
ct+1 ≥ ct + 1. Note that as long as |Rt

0| > 1
4ǫ1/2N , the probability that St+1 does not contain any

vertex in Rt
0 is at a small constant. Therefore, either |Rc

0| ≤ 1
4ǫ1/2N , or we are done (because with

high probability St+1 will contain a vertex from each Rt
0 (for t = 1, ..., c), which together with S1

induce a subgraph that is not in CC≤c).
In light of the foregoing paragraph, from this point on, we assume that the subgraph induced

by S≤(c+1) is a collection of at most c cliques, that |Rc
1| ≤ 1

4ǫ1/2N and that |Rc
0| ≤ 1

4ǫ1/2N . To
simplify the notation, we use the shorthand R0 for Rc

0, and R1 for Rc
1, the shorthand c′ for cc, and

the shorthand Vj for V c
j (resp., Cj for Cc

j ). We also denote R0 ∪ R1 by R.
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Recall that G = ([N ], E) is ǫ-far from CC≤c. This means that for every partition of the graph
vertices into at most c subsets, the total number of vertex pairs that “violate the partition” (i.e.,
either both vertices belong to the same subset but do not have an edge between them or they belong
to different subsets but do have an edge between them) is greater than ǫN2. In particular, this
holds for the partition that we shall define next. We consider a partition, denoted (Ṽj)j∈{0,1,...,c′},

where for every j ∈ [c′] it holds that Vj ⊆ Ṽj , while the vertices in R are partitioned as follows.

Each vertex v ∈ R1 is placed in an arbitrary Ṽj such that v has some neighbor in Cj . If c′ < c then

R0 is defined as Ṽ0, and otherwise R0 is placed in Ṽ1 (i.e., in an arbitrary Ṽj).
Note that the total number of vertex pairs in R × R is at most 1

4ǫN2, since |R| ≤ 1
2ǫ1/2N .

Recalling that G is ǫ-far from CC≤c, it follows that (at least) one of the following three events must
hold:

1. There are at least 1
4ǫN2 missing edges between pairs of vertices that belong to the same subset

Ṽj such that these pairs have no element in R0 and at most one element in R1. That is, the

current case refers to pairs (u, v) ∈ ⋃c′

j=1(Ṽj × Ṽj) such that {u, v} 6∈ E and {u, v} ∩ R0 = ∅
and |{u, v} ∩ R1| ≤ 1.

2. There are at least 1
4ǫN2 superfluous edges between pairs of vertices that belong to different

subsets Ṽj and Ṽk and have at most one element in R. That is, the current case refers to

pairs (u, v) ∈ ⋃j 6=k∈{0,1,...,c′}(Ṽj × Ṽk) such that |{u, v} ∩ R| ≤ 1.

3. There are at least 1
4ǫN2 missing edges between pairs of vertices that belong to the same subset

Ṽj but have exactly one endpoint in R0 and no endpoint in R1; that is, pairs in (R0∩ Ṽ1)×V1.

(Recall that R0 was placed either in Ṽ0 or in Ṽ1, whereas V0 = ∅; hence,
⋃c′

k=0((R0 ∩ Ṽk)×Vk)

equals (R0 ∩ Ṽ1) × V1.)

We shall show that in each of these three cases, with probability at least Ω(ǫc/2), a uniformly
selected set of c + 1 vertices induces a subgraph that is not in CC≤c.

Case 1. Recall that this case refers to missing edges within some Ṽj, where j ∈ [c′], such that at
least one endpoint of such an edge is not in R (and none is in R0). In this case, with probability at
least ǫ/4, a uniformly distributed pair (u, v) ∈ [N ]× [N ] hits such a missing edge (i.e., in particular,
(u, v) 6∈ E and u, v ∈ Ṽj for some j ∈ [k]). Assume, without loss of generality, that u ∈ Vj (i.e.,

u 6∈ R), and let w be an arbitrary neighbor of v ∈ Ṽj in Cj (which is guaranteed to exist since

v ∈ Ṽj \ R0, whereas v ∈ R1 is placed in Ṽj only if it has neighbors in Cj). Recall that w is also
a neighbor of u (since u ∈ Vj neighbors all vertices in Cj). Hence, selecting uniformly a vertex in
S, we hit this w with probability 1/|S|. It follows that if we select uniformly and independently

three vertices in [N ], then, with probability ǫ
4 ·

Ω(1)
|S| = Ω(ǫ3/2), we obtain a triple (u, v,w) such that

(u, v) 6∈ E whereas (u,w), (v,w) ∈ E.

Case 2. Recall that this case refers to superfluous edges between some Ṽj and Ṽk, where j 6=
k ∈ {0, 1, ..., c′}, such that at least one endpoint of such an edge is not in R. In this case, with
probability at least ǫ/4, a uniformly distributed pair (u, v) ∈ [N ]× [N ] hits such a superfluous edge
(i.e., in particular, (u, v) ∈ E and (u, v) ∈ ⋃j 6=k(Ṽj × Ṽk)). Assume, without loss of generality, that

u ∈ Vj and v ∈ Ṽk, where v may be in R (and even in R0). If v ∈ Ṽk \ R0 then we let w be an
arbitrary neighbor of v in Ck, and note that w is not a neighbor of u (since u ∈ Vj neighbors no
vertex in Ck). Otherwise (i.e., v ∈ R0), let w ∈ Cj be an arbitrary non-neighbor of v, and note
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that w is a neighbor of u (since u ∈ Vj). Thus, either way, w is a neighbor of exactly one of the two
vertices u and v, and selecting uniformly a vertex in S, we hit w with probability 1/|S|. It follows
that if we select uniformly and independently three vertices in [N ], then, with probability Ω(ǫ3/2),
we obtain a triple (u, v,w) such that (u, v) ∈ E whereas (u,w) 6∈ E if and only if (v,w) ∈ E.

Case 3. Recall that this case refers to missing edges between vertices of R0 and vertices of V1 (i.e.,
the part Vj to which R0 was added). It follows that c′ = c and that |R0| > ǫN/4. Thus, we can
obtain an independent set of size c + 1 by selecting one vertex from R0 and a vertex from each of
the sets C1, ..., Cc. The probability that a uniformly selected sample of c + 1 vertices yields such a
set is at least

Pr[S is good] · ǫ

4
·

c∏

k=1

|Ck|
|S| >

ǫ

5
· min

x1, ..., xc ≥ |S|−1
∑c

k=1 xk = 1

{
c∏

k=1

xk

}
(15)

>
ǫ

6
· |S|−(c−1) (16)

which yields the lower bound of Ω(ǫ)(c+1)/2. To obtain a better bound, we modify the argument a
little.

Suppose that for every j such that |Vj | ≥ ǫ1/2N it holds that
|Cj |
|S| ≥ 1

2 · |Vj |
N . (This assumption

will be justified at the end of the proof.) Then, we modify the construction (of the partition (Ṽj))
such that in the case of c = c′ the set R0 is placed in the smallest set Vj (rather than in an
arbitrary set Vj). Turning back to Case 3, we recall that in this case there are ǫN2/4 missing
edges between R0 and Vj , and it follows that |R0| · |Vj| ≥ ǫN2/4. Recalling that |R0| ≤ ǫ1/2N/4,

we have |Vj | ≥ ǫ1/2N and it follows that |R0|
N · |Cj |

|S| ≥ ǫ
8 (because

|Cj |
|S| ≥ |Vj |

2N ). Note that we can
obtain an independent set of size c + 1 by selecting a pair from R0 × Cj and a vertex from each
of the other c − 1 sets Ck’s, and recall that the largest Ck must have size at least |S|/3c (because
|Ck|/|S| ≥ |Vk|/2N ≥ (1 − ǫ1/2)/2c). The probability that a uniformly selected sample of c + 1
vertices yields such a set is at least

Pr[S is good] · ǫ

8
·
∏

k∈[c]\{j}

|Ck|
|S| >

ǫ

9
· min

x1, ..., xc−2 ≥ |S|−1

xc−1 ≥ 1/3c

{
c−1∏

k=1

xk

}
(17)

>
ǫ

27c
· |S|−(c−2) (18)

which yields the lower bound of Ω(ǫ)c/2.
It remains to deal with the assumption that |Cj |/|S| ≥ |Vj |/2N for every j such that |Vj | ≥

ǫ1/2N . To this end we add one more phase in the choice of S (where we think of this phase as
taking place before phase c + 1 that was used in the foregoing discussion to bound |R|). Let S′

denote the vertices selected in the first c phases and let S′′ be the vertices selected in the additional
phase, where |S′′| = 4|S′|. Let C ′

1, . . . , C
′
c′ be the cliques in the subgraph induced by S′, and for

each 1 ≤ j ≤ c′ let V ′
j be the vertices that neighbor all vertices in C ′

j and no other vertices in S′.
In the sample S′′, let C ′′

j = S′′ ∩ V ′
j . By a multiplicative Chernoff bound, with high probability

over the choice of S′′, it holds that |C ′′
j |/|S′′| ≥ (3/4)|V ′

j |/N for every j such that |V ′
j | ≥ ǫ1/2N .

Assuming that this is in fact the case, we define Cj = C ′
j ∪C ′′

j and Vj = {v : Γ(v)∩(S′∪S′′) = Cj}.
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If there is any new clique in S′′, then it corresponds to a small set of vertices (since the set
of vertices that do not belong to any V ′

j is small).10 Using the fact that S is the union of S′,
S′′ and the sample selected in phase c + 1, we have |S| < (3/2)|S′′| (since |S′′| = 4|S′| and
|S′| = c · (|S| − |S′| − |S′′|)) and |Cj |/|S| ≥ (3/4)|C ′′

j |/|S′′| ≥ (3/4) · (3/4)|V ′
j |/N . Using Vj ⊆ V ′

j ,

we get that |Cj |/|S| > |Vj |/2N for every |Vj | ≥ ǫ1/2N .

5 Testing Graph Properties in the Bounded-Degree Model

The bounded-degree model refers to a fixed degree bound, denoted d ≥ 2. An N -vertex graph
G = ([N ], E) (of maximum degree d) is represented in this model by a function g : [N ] × [d] →
{0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v has less than i
neighbors.11 Distance between graphs is measured in terms of their aforementioned representation
(i.e., as the fraction of (the number of) different array entries (over dN)), but occasionally we shall
use the more intuitive notion of the fraction of (the number of) edges over dN/2.

It turns out that, in the current model, constant-query proximity-oblivious testers exist for all
graph properties that have such testers in the adjacency matrix model. However, in the current
model, the scope of constant-query proximity-oblivious testers extends somewhat beyond the for-
mer. Specifically, while in the adjacency matrix model such testers exist for any “induced subgraph
freeness” property, the current model also allows testing properties that correspond to a general-
ized notion of subgraph freeness, which includes properties that are not hereditary (e.g., the set of
graphs in which each vertex has at least three neighbors).

5.1 Generalized subgraph freeness

The generalized notion of subgraph freeness defined next is pivotal to proximity-oblivious testing in
the bounded-degree model. Intuitively, the definition refers to forbidden patterns that are captured
by graphs that are augmented by a three-way marking of their vertices (where the markings are
“full”, “semi-full’, and “partial”). What is forbidden, is embeddings of these graphs in larger
graphs (i.e., in the graphs to which the property refers) that satisfy certain conditions (depending
on the marking). Firstly, edges (regardless of the marking of their endpoints) in the marked graph
should be mapped (in such an embedding) to edges of the large graph. Secondly, pairs non-adjacent
vertices that are not both marked “partial” must be mapped to non-adjacent vertices (in the large
graph). Finally, any vertex marked “full” must be mapped to a vertex that has no neighbors
outside of the range of the mapping. Thus, while the “partial” and “semi-full” markings imposes
conditions regarding the range of the mapping, the “full” marking imposes conditions that extend
beyond that range. See illustration in Figure 1.

Definition 5.1 (generalized subgraph freeness): A marked graph is a graph with each vertex marked
as either full or semi-full or partial. Such a marked graph F = ([n], EF ) can be embedded in a graph
G = ([N ], EG) if there exists a 1-1 mapping f : [n] → [N ] such that for every v ∈ [n] the following
three conditions hold:

10Indeed, the sizes of the sets V ′
j behave as the sizes of the sets Vj , which were analyzed in the beginning of this

proof.
11We assume here that the neighbors of v appear in arbitrary order in the sequence g(v, 1), ..., g(v,deg(v)), where

deg(v)
def
= |{i : g(v, i) 6= 0}|.
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Figure 1: The 4-vertex marked graph is embedded in the 6-vertex graph such that the full vertex a
is mapped to 1, the semi-full vertex c is mapped to 3, and the partial vertices b and d are mapped
to 2 and 4, respectively.

1. If v is marked full, then f yields a bijection between the set of neighbors of v in F and the set
of neighbors of f(v) in G. That is, in this case ΓG(f(v)) = f(ΓF (v)), where for H ∈ {F,G}
we denote ΓH(x)

def
= {w : {x,w} ∈ EH}, and for S ⊆ [N ] we denote f(S)

def
= {f(u) : u ∈ S}.

2. If v is marked semi-full, then f yields a bijection between the set of neighbors of v in F and
the set of neighbors of f(v) in the subgraph of G induced by f([n]). That is, in this case
ΓG(f(v)) ∩ f([n]) = f(ΓF (v)).

3. If v is marked partial, then f yields an injection of the set of neighbors of v in F to the set
of neighbors of f(v) in G. That is, in this case ΓG(f(v)) ⊇ f(ΓF (v)).

Such f is called an embedding of F in G. The graph G is called F -free if F cannot be embedded in
G (i.e., there is no embedding of F in G). For a set of marked graphs F , a graph G is called F-free
if for every F ∈ F the graph G is F -free.

Indeed, the standard notion of non-induced subgraph freeness is a special case of generalized sub-
graph freeness, obtained by considering the corresponding marked graph in which all vertices are
marked partial. Similarly, the notion of induced subgraph freeness (as in Definition 4.6) is a special
case of generalized subgraph freeness (as in Definition 5.1), obtained by considering the correspond-
ing marked graph in which all vertices are marked semi-full. Introducing vertices that are marked
full adds a new type of constraint; specifically, this constraint mandates the non-existence of neigh-
bors that are outside the marked subgraph. For example, using vertices that are marked full it is
possible to disallow certain degrees in the graph. Thus, the generalized notion of subgraph freeness
includes properties that are not hereditary (e.g., regular graphs), whereas induced and non-induced
subgraph freeness are hereditary.

We mention that the notion of generalized subgraph freeness remains as expressive when disal-
lowing either semi-full or partial markings (see appendix). When allowing the consideration of a
different set of marked graphs (of a constant size) for each size of graphs in the property, we obtain
the following notion.
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Definition 5.2 (local properties): Let Π =
⋃

N∈N
ΠN be a graph property such that each ΠN

consists of all N -vertex graphs that satisfy Π. The property Π is called local if there exists an
integer s and an infinite sequence F = (FN )N∈N such that for every N the following conditions
hold:

1. FN is a set of marked graphs, each of size at most s;

2. ΠN equals the set of N -vertex graphs that are FN -free.

In such a case we say that Π is F-local.

We note that induced subgraph freeness (in the sense of Theorem 4.7) implies locality (in the sense
of Definition 5.2); that is, for every sequence F as in Theorem 4.7, the corresponding property Π
is local.

5.2 The non-propagating condition

Although it may seem that all local properties have a constant-query proximity-oblivious tester
(in the current model), the claim only holds for local properties that satisfy the following non-
propagating condition.

Definition 5.3 (the non-propagating condition): Let F = (FN )N∈N be a sequence of sets of
marked graphs as in Definition 5.2.

• For a graph G = ([N ], E), we say that a subset B ⊂ [N ] covers FN in G if for every marked
graph F ∈ FN and every embedding of F in G, at least one vertex of F is mapped to a vertex
in B.

(Recall that, for F = ([n], E′), an embedding of F in G is a 1-1 mapping f : [n] → [N ] that
satisfies the three conditions in Definition 5.1. The foregoing if-statement asserts that for any
such embedding f there exists v ∈ [n] such that f(v) ∈ B.)

• We say that F is non-propagating if there exists a (monotonically non-decreasing) function
τ : (0, 1] → (0, 1] such that the following two conditions hold.

1. For every ǫ > 0 there exists β > 0 such that τ(β) < ǫ.

2. For every graph G = ([N ], E) and every B ⊂ [N ] such that B covers FN in G, either G
is τ(|B|/N)-close to being FN -free or there are no N -vertex graphs that are FN -free.12

A local property Π is non-propagating if there exists a non-propagating sequence F (as above) such
that Π is F-local.

Intuitively, non-propagation means that the elimination of all possible embeddings of F in G, which
necessarily use vertices in B, does not require modifying G “much beyond” B. For example, the
set of graphs that have no isolated vertices constitutes a local property that is non-propagating
(see the proof of Part 3 of Proposition 5.4). Indeed, it is natural to consider functions τ of the
form τ(β) = O(β), but Definition 5.3 allows arbitrary functions τ (which may depend arbitrarily

12Indeed, it is more natural to disallow the latter possibility in the definition, but this would have made our
exposition somewhat more cumbersome.
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on F). In contrast to what one might naturally conjecture, as shown in Proposition 5.4, not all
sequences of (sets of) marked graphs are non-propagating. On the other hand, the local properties
that correspond to induced subgraph freeness (as in Theorem 4.7) are non-propagating. Indeed, the
question of whether or not every local property is non-propagating remains open (see Section 5.4).
We stress that a property may be local with respect to several different sequences of (sets of)
marked graphs, where some of these sequences may be non-propagating and the other not. We
also note that the issue of non-propagation arises in the (strong) lower bound for testing properties
that can be defined by 3CNF formula [8] as well as in the orientation model for testing (e.g., [14]).

Proposition 5.4 (on satisfying the non-propagating condition):

1. (negative): For every d ≥ 3, there exists a sequence of sets of marked graphs F = (FN )N∈N

as in Definition 5.2 that does not satisfy the non-propagating condition.

2. (positive – induced subgraph freeness): For every sequence of sets of graphs F = (FN )N∈N as in
Theorem 4.7, the property of being F-free13 is local and non-propagating; that is, there exists
a sequence of sets of marked graphs F ′

= (F ′
N )N∈N as in Definition 5.2 such that (1) induced

subgraph freeness w.r.t F is equivalent to generalized subgraph freeness w.r.t F ′
, and (2) F ′

is non-propagating.

3. (positive – non-hereditary properties): There exist non-hereditary properties that are local and
non-propagating. For example, the set of regular graphs constitutes such a property.

Proof: We start by proving Part 1 (i.e., the negative claim). Consider a set F consisting of
⌊d/2⌋ + 1 marked graphs that effectively impose the following two constraints (on F-free graphs):
(1) either there are no isolated vertices or all vertices are isolated, and (2) each non-isolated vertex
has an odd degree. Specifically, the set F consists of the following two types of marked graphs:
(see Figure 2):

F1
F3F2

F4

Figure 2: The forbidden marked graphs for the case d = 7 in Part 1 of the proof of Proposition 5.4.
The graph F1 is of the first type, and the graphs F2, F3, F4 are of the second type.

1. A marked graph consisting of three vertices with a single edge connecting two vertices that
are both marked partial, and an isolated vertex that is marked full. (This forbidden graph
mandates that if the target graph contains any isolated vertex then it cannot contain any
edges.)

13That is, we refer to the set Π =
S

N∈N
ΠN such that each ΠN consists of all N-vertex graphs that are FN -free,

where here we refer to induced subgraph freeness.
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2. For every even i ∈ {2, ..., d}, we have a graph with a single vertex marked full having i
neighbors marked partial and having no other edges. (This set of forbidden graphs mandates
that each non-isolated vertex has an odd degree.)

Note that if N is odd, then the only N -vertex graph that is F-free is a set of N isolated vertices.14

However (for odd N), consider any graph G that consists of a single isolated vertex and N − 1
vertices that have odd degrees (e.g., G may consists of a single isolated vertex and a 3-regular
(N − 1)-vertex graph). Then, G contains only one vertex (i.e., the isolated vertex) that must
appear in the image of any embedding of some F ∈ F in G. Thus, we obtain an infinite sequence
of graphs that are Ω(1)-far from being F-free, whereas only one vertex (in each of these graphs)
must be contained in any embedding of some F ∈ F in this graph. Indeed, this proves that F (or
rather F = (FN )N∈N such that FN = F for every N ∈ N) does not satisfy the non-propagating
condition (because we need τ(1/N) = Ω(1), whereas limN→∞ τ(1/N) must equal zero).

Turning to Part 2 (i.e., the positive claim regarding induced subgraph freeness), we consider
an arbitrary set of (unmarked) graphs F and the set of N -vertex graphs that are F-free (as
per Definition 4.6). As noted before, this property (or set) is local, because induced subgraph
freeness can be emulated by generalized subgraph freeness. Specifically, for each F ∈ F , we
introduce a corresponding marked graph F ′ ∈ F ′ such that the graph F ′ is obtained from F by
marking all vertices as semi-full. It follows that, for every F = (FN )N∈N as in the proposition’s

hypothesis, the corresponding induced subgraph freeness property (i.e., F-freeness) is F ′
-local,

where F ′
= (F ′

N )N∈N is such that F ′
N is obtained from FN by the foregoing procedure.

The main point of Part 2 is proving that the sequence F ′
= (F ′

N )N∈N is non-propagating. Let
G = ([N ], E) and B ⊂ [N ] be as in Definition 5.3 (i.e., B covers F ′

N in G). It follows that the
subgraph of G induced by [N ] \ B, denoted G|[N ]\B , is FN -free (because if G|[N ]\B contains an
induced subgraph that is isomorphic to F ∈ FN , then this isomorphism yields an embedding of
the corresponding F ′ ∈ F ′

N in G such that no vertex of F ′ is mapped to a vertex in B). We may
assume, without loss of generality, that |B| < N − 2ds, where s is the maximum size of a graph
in FN (since otherwise non-propagation holds trivially, assuming N > 4ds). Using the fact that
G|[N ]\B is FN -free, we claim that the subgraph, denoted G′, that results from G by turning B into an
independent set is FN -free. This claim follows by considering an arbitrary s-vertex subset, S, and

noting that if S induces a subgraph of G′ that is in FN then S′ def
= S \B combined with r = s−|S′|

adequate vertices induce the same subgraph in G|[N ]\B : Pick r vertices in [N ] \ (B ∪ S′) such that
in G these vertices constitute an independent set that neighbors no vertex in S′.15 Thus, G is
2(|B|/N)-close to being FN -free (which is the same as being F ′

N -free). It follows that F ′
satisfies

the non-propagating condition (with τ(β) = 2β).
Finally, we turn to Part 3 (i.e., the positive claim regarding non-hereditary properties). Con-

sider, for example, the set of graphs that contain no isolated vertices, which coincides with the set
of graphs that are I-free where I is the marked graph that consists of a single (isolated) vertex
that is marked full. Clearly, this set is not hereditary. To see that {I} is non-propagating, consider

14Note that, for odd N , this set of graphs (i.e., the set of graphs consisting of isolated vertices) is F ′-free with
respect to a non-propagating F ′ that contains a single graph that forbids any edges (i.e., the graph consists of a
single edge with both endpoints marked partial). Thus, the current difficulty can be bypassed by using the general
formalism, which refers to a sequence of sets of forbidden graphs (i.e., we may consider the sequence (FN )N∈N, where
FN = F if N is even and FN = F ′ otherwise).

15Such r vertices exist, because [N ] \ (B ∪S′) contains at least (N − |B|)− (d+1)|S′| vertices that do not neighbor

S′, and such a set contains an independent set of size N−|B|−(d+1)|S′|
d

> r.
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any graph G = ([N ], E) and B ⊂ [N ] as in Definition 5.3 (i.e., every embedding of I in G maps
the single vertex of I to a vertex in B). It follows that [N ] \ B contains no isolated vertices, and
so G is (|B|/dN)-close to being I-free. Thus, {I} satisfies the non-propagating condition (with
τ(β) = β/d).

Lastly, we show that the set of regular graphs, which is also non-hereditary, is local and non-
propagating. To see that this set constitutes a local property, consider a set of marked graphs FN

that forbids two vertices of different degrees; a typical member of this set consists of two vertices
marked full that are connected to a different number of vertices marked partial (in addition to,
possibly, an edge between the two ‘full’ vertices). In addition, if N is odd then we also forbid odd
degrees. To see that this sequence of sets F = (FN )N∈N of marked graphs is non-propagating,
consider any graph G = ([N ], E) and B ⊂ [N ] as in Definition 5.3 (i.e., every embedding of some

F ∈ FN in G maps some vertex of F to a vertex in B). Letting C
def
= B ∪⋃v∈B Γ(v) be the set of

all vertices that are either in B or neighbor it, we note that all vertices in [N ] \ C have the same
degree. Intuitively, G can be made regular by only modifying edges that are incident at C. This
is easy to see if we allow multiple edges, and essentially holds also otherwise.16 It follows that F
satisfies the non-propagating condition (with τ(β) = O(dβ)).

5.3 The characterization

We now turn to the main result of the current section.

Theorem 5.5 (characterization for the bounded-degree graphs model): A graph property Π has a
constant-query proximity-oblivious tester if and only if Π is local and non-propagating.

Unlike in the case of Theorem 4.7 (see Footnote 6), here we rely on the fact that the detection
probability function depends only on the proximity parameter. We stress that the class of properties
having constant-query proximity-oblivious tester is a strict superset of the class of properties that
refer to induced subgraph freeness.

Proof: We start by showing that any non-propagating local graph property Π has a constant-
query proximity-oblivious tester. Suppose that Π is F-local, where F = (FN )N∈N, and let c and
r be upper bounds on the number of connected components and the radius of each connected
component (in each graph in FN ), respectively. We consider the following tester T (for Π):17 on
input an N -vertex graph G, the tester selects at random c start vertices v1, ..., vc ∈ [N ], performs
a BFS of depth r + 1 starting at each vi, and accepts if and only if the subgraph explored in these
c executions of BFS is FN -free. More precisely, T accepts unless there is an embedding of some
F ∈ FN in the said subgraph such that each vertex of F is mapped to a vertex of G that is at
distance at most r from some vi. (The extra level of the BFS is used in order to identify all edges
incident at vertices that reside in level r).18

16Replacing each pair of edges in C × ([N ] \C) by a single edge between the endpoints in [N ] \C, we maintain the
degree of vertices in [N ] \ C while leaving at most one edge in C × ([N ] \ C). Replacing the subgraph induced by C
by an adequate subgraph, we obtain the desired regular graph. Finally, multiple edges can be eliminated as follows.
Suppose that we wish to eliminate an edge that connects u and v. Then, we select an edge (u′, v′) such that (u, u′)
and (v, v′) and not edges, and omit the edges (u, v) and (u′, v′) while adding the edges (u, u′) and (v, v′).

17The foregoing description refers to the case that ΠN 6= ∅; otherwise, T just reject without making any queries.
18Needless to say, we need to identify edges that connect pairs of vertices that reside at level r. Furthermore, we

also need to identify edges that connect vertices at level r with vertices at level r +1, or rather to verify that no such
edges exist for certain vertices. This is important in case the embedding maps a vertex marked full to level r.
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Clearly, T always accepts any N -vertex graph that is FN -free. In the analysis of T ’s detection
probability (of graphs that are not FN -free), we shall consider a more relaxed rejection criterion
that checks, for every F ∈ FN , whether the ith connected component of F can be embedded in the
subgraph explored in the ith BFS such that some vertex of this component is mapped to vi (i.e.,
the ith start vertex). Thus, we refer to an embedding that maps the ith connected component of F
to the r-neighborhood of vi, where the r-neighborhood of a vertex v in G is defined as follows. It is
the graph that is isomorphic to the subgraph of G that contains all the vertices that are at distance
at most r + 1 from v and all edges that are incident at vertices that is at distance at most r from
v. The vertices in this graph are unlabeled, and the vertex corresponding to v is the designated
center of the graph. It will be instructive to consider a function (depending on G) that assigns
each vertex v ∈ [N ] its r-neighborhood.

Towards analyzing the detection probability of T , let us consider the following simplified prop-
erty testing problem referring to functions from [N ] to [m]. The property, denoted P, is defined
by a fixed set of (forbidden) sequences F ⊆ [m]c such that a function f : [N ] → [m] is in P if, for
every v1, ..., vc ∈ [N ], it holds that (f(v1), ..., f(vc)) 6∈ F. We analyze the straightforward tester
that selects uniformly v1, ..., vc ∈ [N ] and accepts if and only if (f(v1), ..., f(vc)) 6∈ F. Suppose that

f is ǫ-far from P (and that ǫN > cm), and let V
def
= {v : Prr∈[N ][f(r) = f(v)] ≥ ǫ/m} denote

the set of (“typical”) points that are assigned values that appear relatively frequently. Then, f
restricted to V is not in P, because otherwise we can modify f on [N ] \ V (using arbitrary values
in {f(v) : v ∈ V }) and obtain a function in P that is ǫ-close to f . It follows that there exist
v1, ..., vc ∈ V such that (f(v1), ..., f(vc)) ∈ F, and it follows that

Pru1,...,uc∈[N ][(f(u1), ..., f(uc)) ∈ F] ≥ Pru1,...,uc∈[N ][(∀i ∈ [c]) f(ui) = f(vi)] (19)

≥
(

min
v∈V

{
Prr∈[N ][f(r) = f(v)]

})c

(20)

which is lower-bounded by (ǫ/m)c.
The foregoing paragraph suggests to define a function f such that f(v) describes the r-

neighborhood of vertex v in G. However, the current situation is more complex because the r-
neighborhoods of the various vertices in G are related, and thus modifying f at one vertex may
require modifying it in many other vertices. This is where the non-propagating condition comes
into play. Indeed, in the following analysis we shall refer to the function τ provided by the non-
propagating condition. We shall also assume that ΠN 6= ∅ (and rely on the convention that if
ΠN = ∅ then T rejects without making any queries).

Fixing any ǫ > 0, let β > 0 be a relatively large number such that τ(β) < ǫ (e.g., β =
supτ(x)<ǫ{x}/2). The number of vertices at distance at most r + 1 from any vertex in a graph

of maximum degree d is at most
∑r+1

i=0 di < 2dr+1. By the definition of the r-neighborhood of a

vertex, the number of values that the r-neighborhood can take is upper bounded by 2(
2dr+1

2 ) · 2dr+1

(where the first term in the product corresponds to the number of (unlabeled) graphs over 2dr+1

vertices, and the second term correspond to the choice of the center vertex). This expression is

upper bounded by 2d3r
. Hence, for m

def
= 2d3r

, in any graph and for every δ ≥ 0, at most a δ fraction
of the vertices have an r-neighborhood that occurs in less than a δ/m fraction of the vertices. Now,
consider any N and any N -vertex graph G = ([N ], E) that is ǫ-far from Π, and let B denote
the set of vertices that have an r-neighborhoods that occurs in less than βN/m vertices. By the
aforementioned observation, |B| ≤ βN . We claim that there exist c vertices v1, ..., vc ∈ ([N ] \ B)
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and a marked graph F ∈ FN that can be embedded in G such that the following holds. For
every i ≤ cF some vertex of the ith connected component of F is mapped to vi, where cF ≤ c
denotes the number of connected components in F . This claim holds because otherwise, for every
F ∈ FN , every embedding of F in G must map some vertex of F to a vertex in B. By the non-
propagating condition this implies that the graph G is τ(|B|/N)-close to ΠN , whereas τ(|B|/N) < ǫ
(in contradiction to G being ǫ-far from ΠN ). Using the claim it follows that some F ∈ FN can
be embedded in G so that for each i the ith connected component of F is mapped inside the r-
neighborhood of some vi ∈ ([N ] \B), and thus T rejects if it selects this sequence (i.e., v1, ..., vc) of
start vertices. Recalling that [N ] \B contains only vertices with an r-neighborhood that occurs in
many (i.e., βN/m) vertices, we proceed as in the foregoing warm-up (regarding generic functions
from [N ] to [m]). Specifically, the probability that c uniformly selected vertices of G have this
specific forbidden sequence of r-neighborhoods (as the aforementioned v1, ..., vc) is at least (β/m)c.
Recalling that T rejects when seeing this sequence of r-neighborhoods, we are done (i.e., we showed
that any graph that is ǫ-far from Π is rejected with probability at least (supτ(x)<ǫ{x}/2m)c).

We now turn to showing that any property that has a constant-query proximity-oblivious tester
is indeed local and non-propagating. We start by providing canonical testers for the current model,
where the canonization process resembles (but is different from) the process applied in the adjacency
matrix model (see Theorem 4.7, which uses [20, Thm. 4.5]). Needless to say, unlike in the latter
model, we have no hope to obtain non-adaptive testers (cf. [25]). Still, we may obtain a relaxed
notion of non-adaptivity (i.e., a notion of “indirect non-adaptivity”), like the one implicit in the
following definition.

Definition 5.5.1 (canonical testers in the bounded-degree model): A probabilistic oracle machine
M is called canonical if, on input N and oracle access to g : [N ] × [d] → {0, 1, ..., N}, the machine
M behaves as follows.

1. For some predetermined function s : N → N, the machines selects uniformly a set S of s(N)
elements in [N ].

2. For some predetermined function ℓ : N → N, the machine conducts a ℓ(N)-step BFS from each
vertex in S. That is, for every v ∈ S, and every t = 1, ..., ℓ(N) and i1, ..., it ∈ [d], the machine

obtains the value g(v, i1, ..., it), where g(v, i1, ..., it)
def
= g(w, it) if w = g(v, i1, ..., it−1) 6= 0 and

g(v, i1, ..., it)
def
= 0 otherwise. Indeed, if w = g(v, i1, ..., it−1) 6= 0, then the value g(v, i1, ..., it)

is obtained by making the query (w, it).

3. The machine M decides according to N and the subgraph of G explored by it. Specifically,
M ’s decision depends on a fixed set of marked graphs, denoted FN , such that M accepts if
and only if no F ∈ FN appears in the explored subgraph of G. That is, G is accepted if there
is no embedding of any F ∈ FN (in G) that maps each vertex of F to a vertex that is at
distance at most ℓ(N) from one of the s(N) start vertices.

Indeed, the tester T presented in the first part of the proof is canonical (with constant s and
ℓ). Our point, however, is that any tester can be converted into a canonical one. Unlike in the
adjacency matrix model (cf. [20]), the current transformation incurs an exponential blow-up in
the query complexity. Since we aim to apply this canonization transformation to (constant-query)
proximity-oblivious testers, we state the transformation for generalized testers allowing arbitrary
rejection probabilities of arbitrary no-instances.
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Claim 5.5.2 Let T be a generalized one-sided error tester of query complexity q for a property Π

of graphs of maximum degree d. Then, Π has a canonical tester of query complexity Q
def
= Õ(dq)

that always accepts any graph in Π and rejects any graph G not in Π with probability that is lower-
bounded by the probability that T rejects G.

Proof: The core of the desired transformation is obtained by an adequate adaptation of the trans-
formation provided in [20, Sec. 4]. Analogously to [20, Sec. 4.1], we first convert T into a tester
T ′ that makes all queries as postulated in Steps 1 and 2 of Definition 5.5.1, while setting s and
ℓ to equal q. After acting as postulated in these two canonical steps, the tester T ′ emulates the
execution of T while answering its queries as follows. When T makes a query (v, i) such that v
did not appear in any prior query or answer, the tester T ′ allocates to v the next unused vertex
u in the initial sample S, and otherwise T ′ just uses the allocation determined before; that is, if v
did not appear before then T ′ defines π(v) = u and otherwise T ′ just uses the value π(v) defined
before. The answer provided by T ′ to the query (v, i) of T is π−1(g(π(v), i)) if the latter is defined,
and otherwise the answer is defined as a new random value r (different from all queries made by
T and all answers given to T ) and π(r) is defined to equal g(π(v), i). If π(r) is in S then (in the
future) it will be considered used.

Note that all the values g(·, ·) used by T ′ in the foregoing process are values that appear in one
of the BFS executions (i.e., we use g(u, i) for either u ∈ S or for some u that appeared as an answer
to some prior query (w, j), i.e., u = g(w, j)). On the other hand, the execution of T ′ on input G
corresponds to an execution of T on a random isomorphic copy of G (where the isomorphism is
provided by the permutation π, which is selected on-the-fly by T ′).

Next, analogously to [20, Sec. 4.2], we note that, without loss of generality, the decision of T ′

is sample-oblivious and label-oblivious; that is, the decision depends only on the edges (and non-
edges) among the explored vertices (i.e., the underlying subgraph explored by the BFS executions),
and not on the actual labels of these vertices in G. This is proved by making T ′ accept with
probability that equals the average of all relevant probabilities (i.e., the acceptance probabilities
that are associated with each of the possible relabellings of the subgraph), and observing that the
probability that the resulting T ′ accepts G equals the probability that the original T ′ accepted a
random isomorphic copy of G. Note that the decision of the resulting T ′ may still depends on
an identification of the s(N) initial vertices (from which the corresponding BFS executions were
started), but it does not depend on the labels of these (or any other) vertices.19

Finally, we use the fact that T ′ has one-sided error in order to make the final decision deter-
ministic as well as invariant under the identification of the s(N) initial vertices. Firstly, as in [20,
Sec. 4.2], we note that if T ′ rejects with non-zero probability when seeing a particular subgraph of
G then it must be the case that G is not in Π, and hence we may modify T ′ such that it rejects
with probability 1 in this case. Similarly, we may extend the rejection criterion by omitting the
identification of the s(N) initial vertices (but maintaining the distinction between vertices whose
neighborhood was fully explored and those discovered in the last step of one of the BFS executions).
That is, if T ′ rejects with one identification of the initial vertices then the resulting tester will re-
ject when seeing the same subgraph with any other possible identification of the initial vertices.
Thus, the final decision of the resulting tester only depends on the marked graph that it sees in its

19Indeed, the identity of the start vertex (of an exploration) need not be uniquely determined by the subgraph
explored in an ℓ-step BFS, even when ℓ is known. Consider, for example, a 4-step BFS yielding the subgraph
that consists of the edges {0, 1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {4, 5}, {5, 6}. Note that the corresponding 4-step BFS
exploration could have been initiated at vertex 0 as well as either at vertex 2 (or 3) or at vertex 6.
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exploration, where vertices are marked partial if and only if they were discovered at the last step
of one of the BFS executions (and are marked full otherwise). Indeed, this tester is canonical, and
the claim follows.

Applying Claim 5.5.2 to any constant-query proximity-oblivious tester for Π, we obtain a canonical
tester of constant query complexity. Letting F = (FN )N∈N be the sequence of sets of marked
graphs used by (Step 3 of) this tester, we claim that, for every N and every N -vertex graph G, it
holds that G ∈ Π if and only if G is FN -free. The claim follows by noting that G ∈ Π if and only if
the canonical tester accepts it with probability 1, which happens if and only if G is FN -free (by the
description of the canonical tester and the definition of generalized subgraph freeness). It follows
that Π is local (and, in fact, it is F-local).

It is left to prove that F is non-propagating. We shall refer to the canonical tester derived
above, and specifically to its detection probability function ρ (which equals the detection probability
function of the constant-query proximity-oblivious tester of the hypothesis). Let us denote the query
complexity of the canonical tester by q. We define τ : (0, 1] → (0, 1] so that τ(β) equals a “relatively
small” α ∈ (0, 1] that satisfies ρ(α) > qβ (e.g., τ(β) = 2 infρ(x)>qβ{x} if ρ(1/2) > qβ and τ(β) = 1
otherwise). Note that, indeed, for every ǫ > 0 there exists β > 0 such that τ(β) < ǫ. We shall show
that F satisfies the non-propagating condition with respect to this function τ . For any N , consider
any graph G = ([N ], E) and any B ⊂ [N ] such that every embedding of any F ∈ FN in G maps
some vertex of F to B. Assume, towards the contradiction, that G is τ(|B|/N)-far from ΠN (while
ΠN 6= ∅), where ΠN denotes the set of N -vertex graphs that are FN -free. Then, the canonical
tester must reject G with probability at least ρ(τ(|B|/N)). On the other hand, the canonical tester
may reject G only if one of the vertices that it visits resides in B. Since each vertex is visited with
probability at most q/N , it holds that ρ(τ(|B|/N)) ≤ q · |B|/N , which contradicts the definition of
τ (i.e., ρ(τ(β)) > qβ).20

A quantitative version. We note that the proof of Theorem 5.5 provides a rather tight relation
between the optimal detection probability of constant-query proximity-oblivious testers and the
function τ used in the definition of the non-propagating condition (cf., Definition 5.3). Specifi-
cally, these two functions are roughly inverses of one another; for example, polynomial detection
probability (i.e., ρ(ǫ) = ǫO(1)) correspond to constant-root functions (i.e., τ(β) = βΩ(1)), whereas
exponential detection probability (i.e., ρ(ǫ) = 2−O(1/ǫ)) correspond to logarithmic functions (i.e.,
τ(β) = O(1/ log(1/β))). A closer look at the proof of Theorem 5.5 also yields the following corollary.

Corollary 5.6 For every sequence of graphs F = (FN )N∈N as in Theorem 4.7, the property of being
F-free has a constant-query proximity-oblivious tester of polynomial detection probability function
(i.e., ρ(ǫ) ≥ poly(ǫ)). Furthermore, the degree of this polynomial equals the maximum number of
connected components in a graph in F .

We note that the said dependency is optimal. Consider, for example, the graph F that consists
of c < d connected components such that the ith component consists of a single vertex marked
full that is connected to i vertices marked partial. Then, the set of {F}-free graphs consists of
graphs whose degree distribution does not contain the entire set [c] (i.e., for any {F}-free graph G
there exists i ∈ [c] such that no vertex in G has degree i). On the other hand, a constant-query
proximity tester for this set has detection probability ρ(ǫ) = O(ǫ)c, because an N -vertex graph that

20Indeed, we assumed that τ (β) < 1, and the claim hold vacuously otherwise.
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is ǫ-far from this set may have ǫN vertices of each problematic degree (whereas we should see all
problematic degrees when rejecting).

Proof: As shown in the proof of Proposition 5.4, this property is local and non-propagating with
τ(β) = O(β). Let c denote an upper bound on the number of connected components in any graph
in F , and let r denote a corresponding bound on the radius of such components. Then, the first
part of the proof of Theorem 5.5 implies that this property has a 2dr+1-query proximity-oblivious
tester with detection probability ρ(ǫ) > (β/ exp(d3(r+1)))c, where β = Ω(ǫ) satisfies τ(β) < ǫ. The
claim follows.

Easily testable properties having no proximity-oblivious testers. While connectivity can
be tested with query-complexity that is inversely proportional to the proximity parameter [17], this
property has no constant-query proximity-oblivious tester. That is:

Proposition 5.7 Connectivity has no constant-query proximity-oblivious tester. Furthermore,
connectivity is not a local property.

Proof: Let F be a set of marked graphs as in Definition 5.1, and suppose that the largest graph
in F has n vertices. We shall show that, for every N ≥ 2n + 4, the set of connected N -vertex
graphs does not coincide with the set of N -vertex graphs that are F-free. Consider, towards the
contradiction, a graph G that consists of two isolated cycles, each of size at least n + 2. If G is
F-free then we are done (since G is not connected). On the other hand, if G is not F-free, then we
consider an embedding of some F ∈ F in G, and note that each cycle contains at least one pair of
adjacent vertices that are not in the image of this embedding (i.e., let (ui, vi) denote such a pair on
the ith cycle). Then, by switching edges between the two cycles, we obtain an N -vertex cycle that
is still not F-free (i.e., replace the edges (u1, v1) and (u2, v2) by the edges (u1, u2) and (v1, v2)),
and so we are done.

5.4 Conclusion

We end this section by explicitly stating the main problem left open.

Open Problem 5.8 (are all local properties non-propagating?) Let F = (FN )N∈N be an arbitrary
sequence of sets of marked graphs as in Definition 5.2. Is it the case that there exists another such
sequence F ′

= (F ′
N )N∈N that is non-propagating and defines the same property (i.e., for every N

and any N -vertex graph G it holds that G is FN -free if and only if G is F ′
N -free)?

Note that F ′
N must depend on N even if FN does not depend on N (i.e., FN = F for a fixed F and

all N).21 Recall that a property may be local with respect to several different sequences of (sets
of) marked graphs, where some of these sequences may be non-propagating and the other not (cf.
the proof of Part 1 of Proposition 5.4).

A related challenge is to determine relatively tight bounds on the function τ corresponding to
various non-propagating local properties. In particular, can τ always be linear?

21Consider the set F used in the proof of Part 1 of Proposition 5.4, and let F ′ be an arbitrary set of marked graphs
such that every graph is F ′-free if and only if it is F-free. Then, a graph G′ with an even number of vertices that are
each of odd degree is F ′-free. On the other hand, augmenting G′ with a single isolated vertex, we obtain a graph G
that is Ω(1)-far from being F ′-free and yet only one vertex (i.e., the isolated vertex) must be contained in the image
of any embedding of any F ′ ∈ F ′ in the graph G.
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6 Concluding Comments

In this section we present some generic observations and discuss a couple of issues.

6.1 Relation to constant-size refutations

An obvious condition for the existence of a constant-query proximity-oblivious tester for a particular
property is the existence of constant-size “refutations” for the property.

Definition 6.1 (refutations): For Π =
⋃

n∈N
Πn as in Definition 2.2, the sequence

((x1, y1), ..., (xq , yq)) is called a refutations for membership in Πn if for every f ∈ Πn there ex-
ists j ∈ [q] such that f(xj) 6= yj. For s : N → N, we say that Π has size-s refutations if for every
n ∈ N and every f : [n] → {0, 1}∗ that is not in Π there exists a sequence x1, ..., xs(n) such that
((x1, f(x1)), ..., (xs(n), f(xs(n))) is a refutations for membership in Πn.

Theorem 6.2 For s : N → N, if a property Π (as in Definition 2.2) has an s-query proximity-
oblivious tester, then it has size-s refutations.

Like in the case of Theorem 4.7 (see Footnote 6), we only rely on the fact that every function
not in Π must be rejected with positive probability (and we don’t require this probability to be
solely a function of the distance of this function from Π). We note that the proof of Proposition 4.5
implicitly used the statement in Theorem 6.2 (for constant s and for the special case of bipartitness),
and Proposition 5.7 could have been proved using the theorem.

Proof: Using ρ(ǫ) > 0 for every ǫ > 0, it follows that the proximity-oblivious tester must reject
any f 6∈ Π with positive probability. Fixing an arbitrary f : [n] → {0, 1}∗ that is not in Πn,
let x1, ..., xq ∈ [n] be a sequence of queries made by the tester when rejecting f . Note that the
one-sided error of the tester implies that ((x1, f(x1)), ..., (xq , f(xq)) is a refutation for membership
in Πn. The theorem follows.

Discussion. We stress that (unlike Theorem 4.7) Theorem 6.2 only establishes a necessary condi-
tion, and recall that this condition is not sufficient (see a dramatic demonstration in [8]).22 Indeed,
the existence of a constant-query proximity-oblivious tester (for property Π) depends not only on
the existence of refutations (for membership in Π) but also on the ability to find such witnesses
with probability related to the distance of the function from the property (while making a constant
number of queries to the function). In the context of testing bounded-degree graphs (cf. Section 5)
these qualities were linked to the non-propagating condition. This link was based on the existence of
a canonical testers in the latter context, whereas such testers may not exist in general. Still, in the
general setting, constant-query proximity-oblivious testers are implied by standard non-adaptive
testers that rely on finding constant-size refutations.

Theorem 6.3 A property Π as in Definition 2.2 has a constant-query proximity-oblivious tester if
Π has a standard tester T (of error probability 1/3) that satisfies the following three conditions:

1. T is non-adaptive;

22Recall that [8] presents a property that has constant-size refutations but no (standard) testers of sub-linear query
complexity (even when fixing a sufficiently small constant value of the proximity parameter). It follows that this
property has no proximity-oblivious testers of sub-linear (let alone constant) query complexity.
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2. T has query complexity, denoted q : (0, 1] → N, that only depends on the proximity parameter;
and

3. For some fixed s ∈ N, the tester T rejects if and only if it finds size-s refutations.

Furthermore, assuming that q is monotonically non-increasing, the resulting proximity-oblivious
tester makes s queries and has detection probability at least ρ(ǫ) = Ω(q(ǫ/2)−s · ǫ).

Indeed, an observation similar to Theorem 6.3 underlies the proof of the positive part of Propo-
sition 4.3. (In the latter proof we use the fact that the standard tester is further restricted and
derived a stronger bound on ρ.) We note that in the case of properties of functions with a constant
size range (e.g., Boolean functions), any adaptive tester can be transformed into a non-adaptive
tester with an exponential blow-up in the query complexity. Hence, a variant of Theorem 6.3 holds
for adaptive testers as well.

Proof: On input n and oracle access to f : [n] → {0, 1}∗, the proximity-oblivious tester, T ′,
proceeds as follows. First, T ′ selects i ∈ {1, ..., ⌈log2 n⌉} at random such that the value i is selected
with probability 2−i, and invokes (the query-generating algorithm of) T with the proximity pa-
rameter 2−i. Thus, T ′ obtains a random set of queries that T issues (non-adaptively, on proximity
parameter 2−i). Denoting this set by Q = {x1, ..., xq(2−i)} ⊂ [n], the proximity-oblivious tester
selects a random s-subset of Q, and queries f on these indices. Finally, T ′ rejects if and only if the
corresponding sequence of s queries and answers constitutes a refutation for membership in Π.

Clearly, T ′ never rejects any f ∈ Π. Towards analyzing the detection probability of T ′, let δ
denote the distance of f : [n] → {0, 1}∗ from Πn. Then, T ′ selected i = ⌈log2(1/δ)⌉ with probability
Ω(δ), and conditioned on this event, with probability at least 2/3, the set of queries Q combined
with the corresponding answers (of f) contains a size-s refutation. In this case, a uniformly selected
set of s elements in Q yields a refutation with probability at least |Q|−s = q(2−i)−s ≥ q(δ/2)−s.

Discussion. Needless to say, Theorem 6.3 is applicable to many property testers, since searching
(non-adaptively) for a refutation is a natural way in which one-sided error testers proceed. Examples
include testers for properties such as d-dimensional Euclidean metrics [23], singletons [24], and
juntas [13], and various clustering problems (cf. [2]). We note that Theorem 6.3 is applicable also
in case the query complexity of the original tester as well as the size of the refutation may depend on
the function’s domain (i.e., [n]), but in this case we obtain a relaxed notion of proximity-oblivious
testing in which the detection probability may depend on the function’s domain. That is, if the
original tester makes q(n, ǫ) to any function over [n] and searches for size-s(n) refutations, then we
obtain a relaxed proximity-oblivious tester that makes s(n) queries and has detection probability
at least ρ(n, ǫ) = Ω(q(n, ǫ/2)−s(n) · ǫ).

6.2 The case of locally testable codes

The notion of proximity-oblivious testing was discussed in the context of locally testable codes
(LTCs), which are error-correcting codes augmented by efficient codeword testers (i.e., testers for
the property of being a codeword). Specifically, proximity-oblivious (codeword) testers (with linear
detection probability function) correspond to the definition of strong codeword tests as in [19,
Def. 2.2], whereas a restricted form of standard (codeword) testers correspond to the standard
definition of codeword tests (called weak in [19, Def. 2.1]). We mention that while the main
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results of [19] refer to strong codeword tests, most subsequent work (including [11, Sec. 8]) refer
to (weak) codeword tests. It is indeed an open problem whether the parameters of [11, Cor. 8.8]
(i.e., constant query complexity and one-over-polylogarithmic rate) can be obtained with respect
to strong codeword testing. That is:

Open Problem 6.4 Do some error-correcting codes of constant relative distance and one-over-
polylogarithmic rate have constant-query proximity-oblivious codeword testers?

On the other hand, proximity-oblivious testers may provide a setting in which one may establish
inherent limitations on codeword testing. Specifically, it may be the case that error-correcting
codes of constant relative distance that have constant-query proximity-oblivious codeword testers
can not have constant rate.

6.3 Two-sided error probability POT

Throughout this paper we considered proximity-oblivious testers (POTs) that always accept func-
tions having the property. As commented in Section 2, it is easier to define the notion of proximity-
oblivious testers in this setting (i.e., the setting of one-sided error probability). Still, one can also
define a meaningful notion of two-sided error probability proximity-oblivious testers (POTs) by
generalizing Definition 2.2 as follows:

Definition 6.5 (Definition 2.2, generalized): Let Π =
⋃

n∈N
Πn and ρ : (0, 1] → (0, 1] be as in

Definition 2.2. A two-sided error POT with detection probability ρ for Π is a probabilistic oracle
machine T that satisfies the following two conditions, with respect to a constant c ∈ (0, 1]:

1. For every n ∈ N and f ∈ Πn, it holds that Pr[T f (n)=1] ≥ c.

2. For every n ∈ N and f : [n] → {0, 1}∗ not in Πn, it holds that Pr[T f (n)=1] ≤ c − ρ(δΠn(f)),
where δΠn(f) = ming∈Πn{δ(f, g)} (as in Eq. (1)).

The constant c is called the threshold probability.

Indeed, Definition 2.2 is obtained as a special case by letting c = 1. Furthermore, for every c ∈ (0, 1],
every property Π having a one-sided error POT also has a two-sided error POT that accepts every
function in Π with threshold probability c (e.g., consider a generalized POT that activates the
standard POT with probability c and rejects otherwise).

We note that two-sided error POTs exist also for properties that have no standard POT. A
straightforward example is the property of Boolean functions that have at least a τ fraction of
1-values, for a constant τ ∈ (0, 1). A more telling example refers to the set of Boolean function
having a fraction of 1-values that is at least τ1 but at most τ2, for 0 < τ1 < τ2 < 1. Assuming,
without loss of generality, that τ1 + τ2 ≥ 1, this property has a two-sided error POT that selects
uniformly two samples in the function’s domain, obtains the function values on them, and accept
with probability pi if the sum of the answers equals i, where p0 = 0, p1 = 1 and p2 = 2(τ1 + τ2 −
1)/(τ1 + τ2).

Additional results will be reported in a forthcoming work.
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A Alternative Definitions of Generalized Subgraph Freeness

In this appendix we show that the notion of generalized subgraph freeness (as in Definition 5.1)
remains as expressive when disallowing either semi-full or partial markings.

The emulation of partial markings by semi-full markings is analogous to the emulation of non-
induced subgraph freeness by induced subgraph freeness. That is, every graph F = ([n], EF ),
containing a vertex v that is marked partial can be replaced by a collection of graphs F ′ = ([n], E′

F )
such that E′

F contains EF as well as some additional edges incident at v, and v is marked semi-full.
On the other hand, the effect of a marked graph containing semi-full vertices can be emulated

by a set of marked graphs in which the corresponding vertices are marked full but are connected
to some auxiliary vertices marked partial. Specifically, each marked graph F ∈ F is replaced by
a corresponding set of marked graphs such that each F ′ in this set is as follows. (Note that by
the first emulation, we may assume without loss of generality that F contains no vertices marked
partial.) The vertex-set of F ′ consists of the vertices of F , which are all marked full, and a set of
auxiliary vertices, which are all marked partial. All edges of F are edges in F ′, and in addition
F ′ contains some edges with at least one endpoint that is marked partial (representing a vertex
outside F ). Without loss of generality, we only add edges with exactly one endpoint marked partial
(and the other endpoint marked full). Thus, F ′ consists of a copy of F augmented by an arbitrary
bipartite graph with vertices of F (marked full) on one side and auxiliary vertices (marked partial)
on the other side. Without loss of generality, we only include a vertex that is marked partial if it is
adjacent to some vertex marked full. All marked graphs F ′ that can be obtained in the foregoing
manner are included in the derived set of marked graphs F ′. Thus, bearing in mind that all graphs
have maximum degree at most d, we replace each marked graph in F by a finite set of marked
graphs.
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