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Abstract

In this note we show that all sets that are neither finite nor too dense are non-trivial to test
in the sense that, for every ε > 0, distinguishing between strings in the set and strings that are
ε-far from the set requires Ω(1/ε) queries. Specifically, we show that if, for infinitely many n’s,
the set contains at least one n-bit long string and at most 2n−Ω(n) many n-bit strings, then it
is non-trivial to test.

This note refers to the query complexity of property testing (see the textbook [1]). Specifically,
a tester for a set of strings S is explicitly given two parameters, a length parameter n ∈ N and a
proximity parameter ε > 0, as well as query access to an n-bit string x. The tester is required to
distinguish the case that x is in S from the case that x is ε-far from S, where x is ε-far from S if
its Hamming distance from each |x|-bit long string in S is greater than ε · |x|. (By distinguishing
between strings in A and strings in B we mean accepting each string in A with probability at least
2/3 and rejecting each string in B with probability at least 2/3.)

Definition 1 (non-trivial to test): A set of strings S is non-trivial to test if, for every ε > 0 and
infinitely many n ∈ N, the query complexity of testing S, with parameters n and ε, is Ω(1/ε).

Theorem 2 (sufficient condition for non-triviliaty): Suppose that, for infinitely many n’s, the set
S contains at least one n-bit long string and at most 2n−Ω(n) many n-bit strings. Then, S is
non-trivial to test.

Note that the sufficient condition is necessary in general. In particular, a set S that, for every n,
contains 2n−o(n) many n-bit long strings may be trivial to test in the sense that, for every ε > 0
and all sufficiently large n, every n-bit long string is ε-close to S.

Proof: We use a reduction from the special case in which every n-bit long string in S has Hamming
weight at most n − Ω(n). Letting w be an n-bit long string of maximum Hamming weight, we
consider a random variable X obtained from w by flipping each 0-entry in w to 1 with probability
O(ε). We observe that X is ε-far from S and that distinguishing w from X requires Ω(1/ε) queries.
Transforming each instance of the general case to an instance of the special case (by XORing with
a random string) we establish the theorem. Details follow.
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Let c < 1 be a constant such that for infinitely many n’s the set S(n) = S ∩ {0, 1}n is non-
empty and contains at most 2cn strings. For a sufficiently small η = η(c) > 0, we shall first show
that for such n’s there exists r ∈ S(n) such that the relative Hamming weight of each string in
r⊕S(n) = {r⊕s : s ∈ S(n)} is at most 1− η.

The foregoing claim is proved by the probabilistic method. Letting wt(x) = |{i ∈ [|x|] : xi =
1}|/|x| denote the relative Hamming weight of x, we have

Prr∈{0,1}n
[
∃s ∈ S(n) wt(r⊕s) > 1− η

]
≤ |S(n)| · Prr∈{0,1}n [wt(r) > 1− η]

≤ 2c·n ·
∑
i<ηn

(
n

i

)
· 2−n

= 2(c+H2(η)−1)·n < 1,

where H2 denotes the binary entropy function. Hence, there exists an n-bit string r such that

τ
def
= maxs∈S(n){wt(r⊕s)} ≤ 1− η, and let w ∈ r⊕S(n) be such that wt(w) = τ .

For every ε ∈ (0, η/2), let X be a random variable, distributed over n-bit strings, such that if
wi = 1 then Xi = 1 and otherwise Pr[Xi = 1] = 2ε/η independently of all other Xj ’s. Note that
E[wt(X)] = wt(w)+ 2ε

η ·(1−wt(w)) ≥ wt(w)+2ε. Hence, assuming n = ω(η/ε), with high probability,

X is ε-far from r⊕S(n), since Pr[wt(X) > wt(w) + ε] = 1 − o(1) (whereas maxs∈S(n){wt(r⊕s)} =
wt(w)). On the other hand, distinguishing w ∈ r⊕S(n) from X requires Ω(η/ε) = Ω(1/ε) queries,
since Pr[Xi 6=wi] ≤ 2ε/η for every i ∈ [n].

It follows that ε-testing r⊕S(n) (i.e., distinguishing strings in r⊕S(n) from strings that are ε-far
from r⊕S(n)) requires Ω(1/ε) queries. The theorem follows, since ε-testing r⊕S(n) reduces to ε-
testing S(n) (i.e., given an ε-tester for S(n), we obtain an ε-tester for r⊕S(n) by XORing the input
string with r (and observing that the distance of x from r⊕S(n) equals the distance of x⊕r from
S(n))).

Digest. A key observation used in the proof is that shifting a (not too dense) set by XORing its
elements with a random string yields a set of strings such that each string has relative Hamming
weight that is closed to 0.5. Observing that the pairwise distances between strings is preserved and
replacing η by 0.5− ε, we obtain the following result (where n and k = k(n) are viewed as varying).

Proposition 3 (obtaining almost balanced error correcting codes): Let C : {0, 1}k → {0, 1}n be
an error correcting code of relative distance δ, and ε be such that k

n +H2(0.5− ε) is upper-bounded
by a constant that is smaller than 1. Then, with very high probability over the choice of r ∈ {0, 1}n,
it holds that Cr : {0, 1}k → {0, 1}n such that Cr(x) = C(x)⊕r is an error correcting code of relative
distance δ in which all codewords have relative Hamming weight 0.5± ε.

Proof: Analogously to the proof of Theorem 2, we have

Prr∈{0,1}n
[
∃x ∈ {0, 1}k wt(r⊕C(x)) 6∈ [0.5± ε]

]
≤ 2 · 2k ·

∑
i<(0.5−ε)·n

(
n

i

)
· 2−n

= 21+( k
n

+H2(0.5−ε)−1)·n

and the claim follows by the hypothesis that k
n +H2(0.5− ε) is upper-bounded by a constant that

is smaller than 1.
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