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Abstract

While this book focuses on the contributions of Goldwasser and Micali to Cryptography,
their contributions to other areas of computer science are immense too. The current chapter
endeavors to briefly review some of these works.
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While this book focuses on the contributions of Goldwasser and Micali to Cryptography, their
contributions to other areas of computer science are immense too. In particular, while the origi-
nal works reproduced in this book were all motivated by cryptographic considerations and made
significant contributions to the foundations of cryptopgraphy, all of them have had a tremendous
influence also outside of cryptography. In fact, another chapter of this book traces the influences
that these works have had on complexity theory, but the story does not end there.

A different part of the story evolves around works of Goldwasser and Micali that are not
naturally classified as belonging to cryptography. The current chapter endeavors to briefly review
some of these works.1 For each of the selected works, we shall reproduce the original abstract, and
make a few additional comments about the work.

1 An O(
√
|V |·|E|)-time Algorithm for Finding Maximum Matching

in General Graphs

The work of Micali and Vazirani [40] still holds the record for the fastest algorithm known for
finding a maximum matching in general graphs, which is one of the most classical problems in
graph algorithms [19]. (For a brief historical account of the problem, the interested reader is
referred to [40].) The time bound of this algorithm (i.e., O(

√
|V | · |E|)), matches the bound for the

bipartite case [35], which is considerablly simpler. The source of difficulty is the complex “blossom
structure” introduced by Edmonds [18]. The abstract of the conference version of [40] reads as
follows.

In this paper we present an O(
√

|V | · |E|) algorithm for finding a maximum matching
in general graphs. This algorithm works in ‘phases’. In each phase a maximal set
of disjoint minimum length augmenting paths is found, and the existing matching is
increased along these paths.

Our contribution consists in devising a special way of handling blossoms, which enables
an O(|E|) implementation of a phase. In each phase, the algorithm grows Breadth First
Search trees at all unmatched vertices. When it detects the presence of a blossom, it
does not ‘shrink’ the blossom immediately. Instead, it delays the shrinking in such a way
that the first augmenting path found is of minimum length. Furthermore, it achieves
the effect of shrinking a blossom by a special labeling procedure which enables it to find
an augmenting path through a blossom quickly.

While the original publication [40] provided a detailed description of the algorithm, it did not
provide its analysis, and the authors’ intentions of publishing a full analysis at a later stage were
never materialized. A full analysis, which is based on new graph-theoretic structural facts and a
revised definition of blossoms, has been provided by Vazirani [45]. Alternative algorithms meeting
the same time bound as [40] have appeared subsequently to it (see, e.g., [23]).

1The works of Goldreich and Goldwasser [27] and Goldwasser, Kalai, and Rothblum [31] were omitted from our
selection since they will be covered by other surveys in this book (see Chapters 21 and 24, respectively).
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2 Certifying Almost All Primes using Elliptic Curves

The work of Goldwasser and Kilian [32] predated the deteministic primality testers of [2] by almost
two decades. As the following abstract states, at the time, primality testing were either randomized
or relied on unproven conjectures. The randomized tests place the set of primes in coRP; that is,
they always rule that a prime is a prime, but they may rule with small probability that a composite
number is a prime. The randomized procedure provided by [32] efficiently generates (efficiently and
deterministically verifiable) certificates of primality, which always vouches that a prime number is
indeed a prime, for almost all primes. Indeed, on some primes, the procedure may always fail to
produce a certificate, but it never generates false “certificates” for composite numbers. In some
sense, this work asserts that the set of primes is in “average-case RP” (or “typical RP”). The
abstract of the conference version of [32] reads as follows.

This paper presents a new probabilistic primality test. Upon termination the test
outputs “composite” or “prime”, alone with a short proof of correctness, which can
be verified in deterministic polynomial time. The test is different from the tests of
Miller [M], Solovay-Strassen [SS], and Rabin [R] in that its assertions of primality are
certain, rather than being correct with high probability or dependent on an unproven
assumption.

The test terminates in expected polynomial time on all but at most an exponentially
vanishing fraction of the inputs of length k, for every k. This result implies:

• There exist an infinite set of primes which can be recognized in expected polynomial
time.

• Large certified primes can be generated in expected polynomial time.

Under a very plausible condition on the distribution of primes in “small” intervals, the
proposed algorithm can be shown to run in expected polynomial time on every input.
This condition is implied by Cramers conjecture.

The methods employed are from the theory of elliptic cures over finite fields.

The starting point of this work is Pratt’s demonstration [42] that the set of primes is in NP ; that
is, the fact that there exist (efficiently verifiable) certificates of primality, albeit these certificates
may not be easy to find. This is the case, because these certificates are defined recursively such
that the certificate for a prime P consists of a generator G of Z∗

P (i.e., a primitive element modulo
P ), the prime factorization of P −1, and certificates for primality for each of its prime factors. The
prime factorization is used to verify that G has (multiplicative) order P − 1 (in Z∗

P ), which in turn
implies that P must be a prime.

Specifically, a valid certificate has the form ((P1, e1, C1), ..., (Pt, et, Ct), G) such that P − 1 =∏t
i=1 P ei

i , the order of G in Z∗

P is P − 1 (i.e., GP−1 ≡ 1 (mod P ) but G(P−1)/Pi 6≡ 1 (mod P )
for each i), and Ci is a certificante for primality of Pi. The validity of this certificate relies on the
fact that G may have order P − 1 in Z∗

P if and only if P is a prime. More abstractly, primes P
yield groups of predetermined order, denoted ord(P ), whereas composite numbers yield groups of a
different order (i.e., if P is composite, then |ZP | 6= ord(P ) = P − 1). The problem with generating
such certificates is that it calls for factoring P − 1, which seems hard.
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Suppose, instead, that given a prime P and random choices ω, we can define a group RP,ω,
of order ord(P,ω) = P ± o(P ) such that the function ord and the group operation are easy to
compute. If we can efficiently generate (possibly at random) an element of order ord(P,ω) in that
group, and if for composite P the “order” of the “structure” RP,ω disagrees with ord(P,ω), then
the foregoing reasoning would apply here too. The benefit is that, now, generating a certificate for
P calls for factoring ord(P,ω) rather than factoring P − 1, and if ord(P, ·) is random enough then
we are in business. Specifically, if ord(P, ·) is uniformly distributed in a sufficiently large interval
around P , then we can factor ord(P, ·) often enough, since in such a case with probability at least
Ω(1/ log P ), it holds that ord(P, ·) = 2Q for a prime Q. This is essentially what happens when
using (suitably) random Elliptic Curves mod P , and the complication arise because the relevant
interval has size

√
P (rather than, say P/poly(log P )).

Hence, the reviewed work asserted that the set of primes is in “average-case RP” (or “typical
RP”), and this begged the challenge of showing that the set of primes is actually in RP . The
challenge was met by Adleman and Huang [1]. Fifteen years later, Agrawal, Kayal, and Saxena [2]
showed that the set of primes is actually in P.

3 Private Coins versus Public Coins in Interactive Proof Systems

The work of Goldwasser and Sipser [34] predated the discovery of the vast power of interactive proof
systems, and, in particular, the IP = PSPACE Theorem [38, 44]. The starting point of [34] is the
fact that Babai [5] defined Arthur-Merlin games as a restricted form of interactive proof systems,
which were defined before by Goldwasser, Micali, and Rackoff [33], where the restriction is that the
verifier is only allowed to make uniformly selected queries (a.k.a use public coins). This difference is
not surprising given that Goldwasser, Micali, and Rackoff sought to capture the most general notion
of a proof system (with efficient verification) [33], whereas Babai sought a minimal extension of the
class NP (in order to place some specific computational problem in it) [5]. Surprisingly, Goldwasser
and Sipser [34] showed that the aforementioned restriction does not weaken the expressive power of
the system; put differently, asking random questions is as good as asking cleverly selected questions
(i.e., questions that are the result of an arbitrary probabilistic polynomial-time computation, whose
coins are not revealed to the prover but may be re-used when examining the prover’s answers). The
abstract of the conference version of [32] reads as follows.

An interactive proof system is a method by which one party of unlimited resources, called
the prover, can convince a party of limited resources, called the verifier, of the truth of
a proposition. The verifier may toss coins, ask repeated questions of the prover, and run
efficient tests upon the provers responses before deciding whether to be convinced. This
extends the familiar proof system implicit in the notion of NP in that there the verifier
may not toss coins or speak, but only listen and verify. Interactive proof systems may
not yield proof in the strict mathematical sense: the “proofs” are probabilistic with an
exponentially small, though non-zero chance of error.

We consider two notions of interactive proof systems. One, defined by Goldwasser,
Micali and Rackoff [GMR] permits the verifier a coin that can be tossed in private, i.e.,
a secret source of randomness. The second, due to Babai, [B] requires that the outcome
of the verifiers coin tosses be public and thus accessible to the prover.
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Our main result is that these two systems are equivalent in power with respect to
language recognition.

The notion of interactive proof system may be seen to yield a probabilistic analog to
NP much as BPP is the probabilistic analog to P. We define the probabilistic, nonder-

ministic, polynomial time Turing machine and show that it is also equivalent in power
to these systems.

We stress that the result actually shown is stronger: The authors showed that any r-round inter-
active proof system can be emulated by an (r + 3)-round interactive proof system of the public-
coin type. We comment that the mere fact that interactive proof system can be emulated by
interactive proof system of the public-coin type follows from the subsequent demonstration that
IP = PSPACE , because the original demonstration actually shows that any set in PSPACE has a
public-coin interactive proof system [38, 44] (whereas IP ⊆ PSPACE , where IP denotes the class
of sets having (general) interactive proof systems).

The fact that private coins are of no real help came as a surprise, especially in light of the
interactive proof system presented around the same time for Graph Non-Isomorphism, since that
proof system makes essential use of private coins [29]. In that proof system, the verifier selects
at random one of the two graphs, sends a randomly permuted (or relabeled) version of it to the
prover, and accepts if and only if the prover identifies correctly which graph was chosen. In this
specific case, the public-coin proof system derived by [34] amounts to proving a lower bound on the
size of automorphism group of the graph consisting of both graphs (and an upper bound on the
size of of automorphism groups of each of the individual graphs).2

In general, a key ingredient of the construction of [34], is a public-coin protocol, known as
the lower bound protocol, that allows one party to prove to another that the size of a set exceeds
some given number (provided that the set is in NP).3 This protocol, which is closely related to a
“random selection” protocol, was used extensively in subsequent works.

4 An Optimal Randomized Protocol for Synchronous Byzantine

Agreement

The work of Feldman and Micali [21] presents a constant-round randomized Byzantine Agreement
protocol for a synchronous communication model with private channels. As in [10], the private-
channel model allows to abstract away intractability assumptions and cryptographic tools, although
implementing this clean model on a network of insecure channels does require such assumptions
and tools. The protocol improved over a prior protocol of Bracha [15] that used logarithmically
many rounds (and intractability assumptions). The conference version of [21] had no abstract, and
the abstract of the journal version reads as follows.

Broadcasting guarantees the recipient of a message that everyone else has received the
same message. This guarantee no longer exists in a setting in which all communication
is person-to-person and some of the people involved are untrustworthy: though he may

2An upper bound on the size of automorphism group of a graph G follows by a lower bound on the number of
different graphs that are obtained by relabeling the vertices of G.

3In the general case, when claiming a lower bound of N , the prover is confined to an 1/N fraction of the original
set. Hence, if the set is smaller than N , then the prover may be confined to an empty subset of it.

4



claim to send the same message to everyone, an untrustworthy sender may send different
messages to different people. In such a setting, Byzantine agreement offers the “best
alternative” to broadcasting. Thus far, however, reaching Byzantine agreement has
required either many rounds of communication (i.e., messages had to be sent back and
forth a number of times that grew with the size of the network) or the help of some
external trusted party.

In this paper, for the standard communication model of synchronous networks in which
each pair of processors is connected by a private communication line, we exhibit a
protocol that, in probabilistic polynomial time and without relying on any external
trusted party, reaches Byzantine agreement in an expected constant number of rounds
and in the worst natural fault model. In fact, our protocol successfully tolerates that up
to 1/3 of the processors in the network may deviate from their prescribed instructions in
an arbitrary way, cooperate with each other, and perform arbitrarily long computations.

Our protocol effectively demonstrates the power of randomization and zero-knowledge
computation against errors. Indeed, it proves that “privacy” (a fundamental ingredient
of one of our primitives), even when is not a desired goal in itself (as for the Byzantine
agreement problem), can be a crucial tool for achieving correctness.

Our protocol also introduces three new primitives – graded broadcast, graded verifiable
secret sharing, and oblivious common coin – that are of independent interest and may
be effectively used in more practical protocols than ours.

Byzantine Agreement, introduced by Pease, Shostak, and Lamport [41], is considered the archetyp-
ical problem of processor coordination, which is a central theme in Distributed Computing [37].
Here, we consider randomized protocols for Byzantine Agreement in the synchronous model, since
those bypass the linear (in the number of parties) lower bounds on the round complexity of de-
terministic protocols in this model.4 The protocol of Feldman and Micali [21] runs for a constant
number of rounds and satisfies the following conditions: (1) in each possible execution, each of the
parties either terminates with the same value v or terminates with failure, and if all honest parties
enter with the same value, then v equals this value; and (2) with constant probability, over all
possible executions, no party terminates with failure.

We comment that the private channels used by [21] are essential for a constant-round randomized
Byzantine Agreement protocol in the full-fledged malicious model considered by [21]: In fact, even
in weaker (adaptive) models with no private channels, a number of rounds that grows roughly as the
square root of the number of parties is necessary [8]. On the other hand, the full-fledged without
private channels does allow for randomized Byzantine Agreement protocols with a sublinear number
of rounds [17].5

4In the asynchronous model, deterministic protocols face an impossibility result, whereas randomized protocols
do exist. But our focus here is on the synchronous model.

5The models considered in [17, 21, 8] are adaptive in the sense that an external adversary may adaptively select
parties to corrupt during the execution of the protocol (and control their actions). In contrast, in non-adaptive

models, the faulty parties are determine (arbitrarily) before the execution starts. A randomized Byzantine Agreement
protocols with a logarithmic number of rounds was later shown in the non-adaptive malicious model with no private
channels [11].
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5 PCPs and the Hardness of Approximating Cliques

The work of Feige, Goldwasser, Lovász, Safra, and Szegedy [20] pioneered the study of (what
become later known as) “probabilistically checkable proofs” and its relation to the study of approx-
imation problems. A probabilistically checkable proof system for a set S is defined via a probabilistic
polynomial-time oracle machine, called a verifier, that satisfies the following completeness and
soundness conditions: For every x ∈ S there exists a proof π such that Pr[V π(x)=1] = 1, whereas
for every x 6∈ S and every π it holds that Pr[V π(x) = 1] ≤ 1/2. For functions r, q : N → N,
we let PCP [r, q] denote the class of sets that have a (non-adaptive) probabilistically checkable
proof system of randomness complexity r and query complexity q. The reviewed work [20] shows
that NP ⊆ PCP [Õ(log), Õ(log)], which is a “scale down” of a prior result [6] asserting that
NEXP = PCP [poly,poly]. Feige, Goldwasser, Lovász, Safra, and Szegedy [20] also showed that
deciding sets in PCP [r, q] is reducible in poly(2t·(r+q))-time to approximating the largest clique in
a 2t·(r+q)-vertex graph up to a factor of 2t. The abstract of the conference version of [20] reads as
follows.

We consider the computational complexity of approximating ω(G), the size of the largest
clique in a graph G. We show that

1. If there is an approximation algorithm in P for ω(G) within some constant factor,
then NP ⊆ DTIME(nO(log log n)).

2. If there is an approximation algorithm in P̃ (= ∪k>0DTIME(nlogk n)) for ω(G)

within a factor of 2log1−ǫ n (for some ǫ > 0), then NP ⊆ P̃.

We conclude that if such approximation procedures exist, then EXPTIME = NEXP-
TIME and NP̃ = P̃.

This work uses the theorem of Babai, Fortnow and Lund that NEXPTIME has multi-
prover interactive proofs. For our purpose, we scale down [BFL90]’s protocol to the
NP level, and improve its efficiency. Of independent interest is our simpler proof of
correctness for the multi-linearity test.

We mention that independently of [20], Babai, Fortnow, Levin, and Szegedy [7] showed that NP =
PCP [O(log),poly(log)]. Their results were stated in terms of what became later known as PCPs
for promiximity (cf., e.g., [12]); specifically, they showed a PCP for proximity for NP-complete sets
(which encode standard NP-sets) in which the verifier runs in polylogarithmic time.

Subsequent work of Arora, Lund, Motwani, Safra, Sudan and Szegedy [4, 3] resulted in the
celebrated PCP Theorem asserting that NP = PCP [O(log), O(1)]. A vast amount of research
followed. Most of it has been directed towards extending and utilizing the PCP-to-inapproximabilty

connection, often while optimizing some parameter of the PCP system that governs the quality of
the said connection. This type of research is the focus of Chapter 22. In addition, much research has
been devoted to exploring various aspects of the PCP Theorem and providing various versions of it,
while envisioning these systems as being actually applied to verify the correctness of computations.
In such settings, the proof length seems a dominant parameter (and the interested reader is referred
to [26, Chap. 13]).

We conclude this review with two comments. First, we note that employing the PCP-to-
inapproximabilty connection may call for optimizing parameters significantly differently than when
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seeking to apply the PCP system for actual verification. For example, the PCP-to-clique connection
used in [20] motivated the authors of [20] to minimize the value of r + q (using the setting r(n) =
q(n) = Õ(log n)), whereas the application to actual verification motivated the authors of [7] to
minimize r first and only then minimize q (using the setting r(n) = (1+ ǫ) · log n for arbitrary small
constant ǫ > 0, and q(n) = poly(log n)).6 Second, we mention that [7, 20] used the formulation
of probabilistically checkable proofs, which was shown by Fortnow, Rompel, and Sipser [22] to be
equivalent to the formulation of multi-prover interactive proofs, which in turn was introduced by
Ben-Or, Goldwasser, Kilian, and Wigderson [9]. However, the aforementioned works [22, 7, 20]
refer to these proof systems by the generic term “oracle machine” (which refers to the syntax of the
corresponding verifier). The term “probabilistically checkable proofs” was introduced in [4], and
used ever since, although the term “locally verifiable (or testable) proofs” might have been much
more appropriate (cf. [26, Sec. 13.2.2]).

6 Computationally Sound Proofs

The work of Micali [39] presented the notion of computationally-sound proof systems with relatively
efficient proving procedures, termed CS-proofs. The notion of computationally-sound proofs (a.k.a
arguments) was proposed before by Brassard, Chaum, and Crépeau [16], but in CS-proofs it is
coupled with a relative-efficiency requirement (which refers to the completeness condition). Specif-
ically, it is required that the complexity of proving valid statements be (polynomially) related to
the complexity of determining the validity of the statement by one’s own (i.e., without a proof).
The abstract of the conference version of [39] reads as follows.

This paper put forward a computationally-based notion of proof and explores its impli-
cations to computation at large.

In particular, given a random oracle or a suitable cryptographic assumption, we show
that every computation possesses a short certificate vouching its correctness, and that
under a cryptographic assumption, any program for a NP-complete problem is checkable
in polynomial time.

In addition, our work provides the beginnings of a theory of computational complexity
that is based on “individual inputs” rather than languages.

The construction presented by Micali [39] is similar to a previous construction of Kilian [36], but
the fact that (unlike in [16, 36]) the notion of computational-soundness and the construction were
de-coupled from zero-knowledge aspects helped focus attention on the notion and the construction.

Micali [39] also highlights the fact that CS-proof remain meaningful even if P = NP and/or
also when applied to decision problems in P. Indeed, CS-proofs are related to doubly-efficient argu-
ments, which are the computationally-sound variant of doubly-efficient interactive proof systems,
which were introduced a decade and a half later by Goldwasser, Kalai, and Rothblum [31].

6The point is that the proof length is closely related to the randomness complexity: Specifically, a PCP of
randomness complexity r and query complexity q uses proofs of (“effective”) length at most 2r · q.
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7 Property Testing and its Connection to Learning and Approxi-

mation

The work of Goldreich, Goldwasser, and Ron [28] initiated a general study of Property Testing,
while focusing on testing of graph properties (in the adjacency matrix representation). Property
testing emerged, implicitly and before, in the work of Blum, Luby, and Rubinfeld [14]. The earlier
line of work, focusing on algebraic properties, culminating in the work of Rubinfeld and Sudan [43],
where the approach was abstracted and captured by the notion of a robust characterization, which
corresponds to a special type of testers (i.e., non-adaptive testers of one-sided error probability).
The work of Goldreich, Goldwasser, and Ron [28] advocated viewing property testing as a new type
of computational problems, rather than as a tool towards program checking [13] (as viewed in [14])
or towards the construction of PCP systems (as in [6, 7, 20]). The abstract of the conference version
of [28] reads as follows.

We study the question of determining whether an unknown function has a particular
property or is ǫ-far from any function with that property. A property testing algorithm
is given a sample of the value of the function on instances drawn according to some
distribution, and possibly may query the function on instances of its choice.

First, we establish some connections between property testing and problems in learn-
ing theory. Next, we focus on testing graph properties, and devise algorithms to test
whether a graph has properties such as being k-colorable or having a ρ-clique (clique of
density ρ w.r.t the vertex set). Our graph property testing algorithms are probabilistic
and make assertions which are correct with high probability, utilizing only poly(1/ǫ)
edge-queries into the graph, where ǫ is the distance parameter. Moreover, the property
testing algorithms can be used to efficiently (i.e., in time linear in the number of ver-
tices) construct partitions of the graph which correspond to the property being tested,
if it holds for the input graph.

As started in the original abstract, the main results of [28] are testers for a variety of graph
partition problems all having query complexity that is independent of the size of the graph (but
rather depending only on the proximity parameter).

In general, instances of the testing problems were viewed as descriptions of actual objects; that
is, objects that arise from some application. Consequently, the representation of these objects
as functions became a non-obvious step, which required justification. For example, in the case of
testing graph properties, the starting point is the graph itself, and its representation as a function is
an auxiliary conceptual step. In [28] graphs are represented by their adjacency relation (or matrix),
which is not overly redundant when dense graphs are concerned, but in some subsequent works
other alternatives were considered (see [26, Chap. 9-10]).

As hinted upfront, the notion of a tester presented in [28] allows for adaptive queries and two-
sided error probability, while viewing non-adaptivity and one-sided error probability as special
cases. While the bulk of their work [28, Sec. 5–10] focuses on testing graph properties, the paper
also contains general results (see [28, Sec. 3-4]) and its definitional treatment (see [28, Sec. 2])
foresaw some directions that were pursued only in subsequent works. For more details on property
testing see a recent textbook [26].
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8 Pseudo-Deterministic Algorithms

The starting point of the work of Gat and Goldwasser [24] is the observation that probabilistic
algorithms that solve search problem may output different solutions in different executions. That
is, even if on input x the algorithm outputs a correct solution with high probability (say with
probability at least 2/3), it may be that no solution appears as output with significant probability
(let alone with probability at least 2/3). Hence, their paper [24] initiates a study of search problems
that may be solved in probabilistic polynomial-time by algorithms that, on each input x, output
the same solution with probability at least 2/3. The abstract of their paper reads as follows.

In this paper we introduce a new type of probabilistic search algorithm, which we
call the Bellagio algorithm: a probabilistic algorithm which is guaranteed to run in
expected polynomial time, and to produce a correct and unique solution with high
probability. We argue the applicability of such algorithms for the problems of verifying
delegated computation in a distributed setting, and for generating cryptographic public-
parameters and keys in distributed settings. We exhibit several examples of Bellagio
algorithms for problems for which no deterministic polynomial time algorithms are
known. In particular, we show such algorithms for:

• Finding a unique generator for Zp, when p is a prime of the form kq + 1 for q is
prime and k = polylog(p). The algorithm runs in expected polynomial in log p
time.

• Finding a unique q’th non-residues of Zp for any prime divisor q of p−1, extending
Lenstra’s algorithm for finding unique quadratic non-residue of Zp. The algorithm
runs in expected polynomial time in log p and q. The tool we use is a new variant of
the Adleman-Manders-Miller probabilistic algorithm for taking q-th roots, which
outputs a unique solution to the input equations and runs in expected polynomial
time in log p and q.

• Given a multi-variate polynomial P 6= 0, find a unique (with high probability) x
such that P (x) 6= 0. Alternatively you may think of this as producing a unique
polynomial time verifiable certificate of inequality of polynomials.

More generally, we show a necessary and sufficient condition for the existence of a
Bellagio Algorithm for relation R: R has a Bellagio algorithm if and only if it is deter-
ministically reducible to some decision problem in BPP.

In later works (e.g., [30]) such algorithms were called pseudodeterministic, and the solution that
they output, with high probability, was called canonical.

We stress that although most research in complexity theory refers to decision problems, search
problems are at least as important. Recall that search problems are associated with binary relations,

R ⊆ {0, 1}∗ × {0, 1}∗, and each element of R(x)
def
= {y ∈ {0, 1}∗ : (x, y) ∈ R} is called a solution

to x (and if R(x) = ∅ then ⊥ is considered the only solution). Saying that R can be solved by
a randomized algorithm A means that, for every x that has a solution, it holds that Pr[A(x) ∈
R(x)] ≥ 2/3 (and Pr[A(x)=⊥] ≥ 2/3 if R(x) = ∅). Algorithm A is called pseudodeterministic if for
every x there exists a (canonical) solution sx such that Pr[A(x)=sx] ≥ 2/3.

The foregoing result of [24] asserts that R can be solved by a pseudodeterministic polynomial-
time algorithm if and only if solving R is deterministically reducible in polynomial-time to some
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decision problem in BPP . In contrast, it was shown in [25] that for every R that is recognizable in
probabilistic polynomial-time, solving R is deterministically reducible in polynomial-time to some
promise problem in the promise class corresponding to BPP. Hence, the difference between general
randomized algorithms and pseudodeterministic algorithms is reflected in the difference between
standard complexity classes (which refer to decision problems) and classes of promise problems.

We mention that the study of pseudodeterministic algorithms was recently extended to RNC;
in particular, finding perfect matchings in bipartite graphs (a problem known to be in RNC (but
not in NC)) was shown to have a pseudodeterministic NC algorithm [30].
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