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Abstract

Interactive proofs of proximity (IPPs) offer ultra-fast approximate verification of assertions
regarding their input, where ultra-fast means that only a small portion of the input is read
and approximate verification is analogous to the notion of approximate decision that underlies
property testing. Specifically, in an IPP, the prover can make the verifier accept each input in
the property, but cannot fool the verifier into accepting an input that is far from the property
(except for with small probability).

The verifier in an IPP system engages in two very different types of activities: interacting
with an untrusted prover, and querying its input. The definition allows for arbitrary coordina-
tion between these two activities, but keeping them separate is both conceptually interesting
and necessary for important applications such as addressing temporal considerations (i.e., at
what time is each of the services available) and facilitating the construction of zero-knowledge
schemes. In this work we embark on a systematic study of IPPs with proof-oblivious queries,
where the queries should not be affected by the interaction with the prover. We assign the
query and interaction activities to separate modules, and consider different limitations on their
coordination.

The most strict limitation requires these activities to be totally isolated from one another;
they just feed their views to a separate deciding module. We show that such systems can be
efficiently emulated by standard testers.

Going to the other extreme, we only disallow information to flow from the interacting module
to the querying module, but allow free information flow in the other direction. We show that
extremely efficient one-round (i.e., two-message) systems of such type can be used to verify
properties that are extremely hard to test (without the help of a prover). That is, the complexity
of verifying can be polylogarithmic in the complexity of testing. This stands in contrast the
MAPs (viewed as 1/2-round systems) in which proof-oblivious queries are as limited as our
isolated model.

Our focus is on an intermediate model that allows shared randomness between the querying
and interacting modules but no information flow between them. In this case we show that 1-
round systems are efficiently emulated by standard testers but 3/2-round systems of extremely
low complexity exist for properties that are extremely hard to test. One additional result about
this model is that it can efficiently emulate any IPP for any property of low-degree polynomials.
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1 Introduction

This paper initiates a systematic study of a natural type of interactive proofs of proximity, a
notion which is a hybrid of interactive proofs and property testing. Specifically, interactive proofs
of proximity (IPPs) combine the paradigm of verifying delegated computation with the paradigm
of ultra-fast computation that refers to an approximate version of the actual input. Since any
proof system is defined in terms of its verification procedure, which in turn presumes a model of
computation, we start from the model of computation underlying property testing (see, e.g., the
textbook [14]).

1.1 From property testing to interactive proofs of proximity

Loosely speaking, property testing typically refers to sub-linear time probabilistic algorithms for
deciding whether a given object has a predetermined property or is far from any object having
this property. Such algorithms, called testers, obtain local views of the object by making adequate
queries; that is, the object is seen as a function and the testers get oracle access to this function (and
thus may be expected to work in time that is sub-linear in the size of the object). In particular, one
often seeks testers of extremely low query complexity (e.g., query complexity that is polylogarithmic
in the size of the object).

Needless to say, such low level of complexity for testing cannot be achieved for all problems
of interest, which leads to the natural question of whether traditional (non-interactive) proofs or
interactive proofs can assist us in such cases. That is, viewing low query complexity as our base line,
we are considering non-interactive and interactive proof systems in which the verifier makes few
queries and reads short proofs (resp., short messages from the prover). Indeed, we are talking about
“NP” and “IP” analogs of property testing (viewed as an analogue of “P”). Such analogs, termed
MA-proofs of proximity (MAPs)1 and interactive proofs of proximity (IPPs), were introduced and
studied in [20] and [23], respectively.2

The seemingly innocuous analogy between the well-known complexity classes MA and IP
and the “property testing versions” termed MAP and IPP ignores the question of orchestrating
the two activities of the verifier (i.e., querying the oracle and interacting with the prover). The
trivial answer is that these two activities are performed by the same entity concurrently with free
information flow from one activity to the other. But is this concurrency and free information flow
essential?

The foregoing question is not merely interesting per se. There may be settings in which such
concurrency is not possible or that a free information flow is not desirable. For example, it may be
that query access to the input is only available at one time, whereas the interaction with the prover
is only available afterwards. Alternatively, as outlined at the end of Section 1.2, having queries
that are oblivious of the prover’s messages seems a first step towards obtaining a natural notion of
zero-knowledge IPPs (cf. [4]). Indeed, our focus is on IPPs that employ proof-oblivious queries.

We mention that proof-oblivious queries were considered before, both in the context of MAPs
(cf. [20, Def. 2.2]) and in the context of IPPs (cf. [23, Fn. 2] and [18, Sec. 5]). In particular, it was

1Note that in a randomized setting, as is inherent for algorithms that read small parts of their input, alleged
(non-interactive) proofs are verified probabilistically. Hence, such verification is actually analogous to MA rather
than to NP.

2Actually, the work of [23] predated [20], and both were predated by [9], which presents an extremely general
framework that contains both IPPs and PCPPs as a special case.
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shown that MAPs with proof-oblivious queries can be efficiently emulated by a standard tester [20,
Thm. 4.2]: If the former use proofs of length p and q queries, then the tester has query complexity
O(p·q). This should be contrasted with the fact that there are MAPs (with proof-dependent queries)
of extremely low complexity for properties that are extremely hard to test (see [20, Thm. 1.1]). We
interpret these facts as saying that proof-oblivious queries severely limit the power of MAPs. But
is it so also for IPPs?

Before answering the foregoing question, we observe that, in the context of IPPs, the notion of
proof-oblivious queries may have several different natural interpretations (which all coincide in the
context of MAPs).3 In fact, we initiate a systematic study of proof-oblivious queries (PO-queries)
in the context of IPPs. Jumping ahead, we telegraphically highlight the following results (which
will be properly reviewed in Section 1.3):

� Under the most strict interpretation of IPPs with proof-oblivious queries (i.e., the “isolated”
model), these systems can be efficiently emulated by a standard tester.

� Under the most liberal interpretation of IPPs with proof-oblivious queries (i.e., the “general”
model), there exist such systems of extremely low complexity for properties that are extremely
hard to test. This holds even for 1-round systems (in which a single message by the verifier
followed by a single message by the prover), in contrast to MAPs (which are 1/2-round IPPs).

� Under an intermediate (and natural) interpretation of IPPs with proof-oblivious queries (i.e.,
the “pre-coordinated” model), it holds that 1-round systems are efficiently emulated by testers
but 3/2-round systems of extremely low complexity exist for properties that are extremely
hard to test.

We now turn to a more detailed account of the underlying definitions and results.

1.2 Defining IPPs and types of IPPs with PO-queries

An interactive proof of proximity is a two-party protocol for parties called verifier and prover. The
verifier has oracle access to a function f : [n]→ Σ, and also gets explicit inputs n and ϵ > 0, where
ϵ is called the proximity parameter. The prover gets f as explicit input, and its aim is to convince
the verifier that f is in some predetermined set Πn, called the property. In analogy to the definition
of interactive proof systems [16], we require that the prover can convince the verifier to accept any
f in Π (w.h.p.), but cannot fool the verifier into accepting f that is ϵ-far from Πn (except for with
low probability). Indeed, the main deviation from the definition of a (standard) interactive proof
system is that the soundness requirement is made only for inputs that are ϵ-far from Πn, where
f is ϵ-far from Πn if for every g ∈ Πn it holds that |{i ∈ [n] : f(i) ̸= g(i)}| > ϵ · n. The actual
definition refers to an optimal prover strategy, denoted P , and focuses on the communication and
query complexities of the system.

Definition 1.1 (interactive proofs of proximity systems (IPPs) [23]):4 Let Π =
⋃

n∈NΠn such
that Πn is a set of functions over [n]. A randomized and interactive oracle machine, denoted V ,

3While [18] do not formally define proof-oblivious systems, their claims seem to refer to two different notions. See
Section 1.6.

4As discussed in Section 1.5, we avoid the good convention of specifying a (“honest”) prover strategy for the
completeness condition.
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constitutes a verifier for an interactive proof of proximity for (the property) Π if the following two
conditions hold.

(completeness): On input n, ϵ and oracle access to any f ∈ Πn, after interacting with an optimal
prover P , the verifier accepts with probability at least 2/3.

(soundness): On input n, ϵ and oracle access to any f : [n] → Σ that is ϵ-far from Πn, after
interacting with an optimal prover P , the verifier accepts with probability at most 1/3.

We say that the system has perfect completeness if the verifier accepts each f ∈ Π with probability 1.
The query complexity of V is q : N× [0, 1]→ N if, on input n, ϵ and oracle access to any f : [n]→ Σ,
the verifier makes at most q(n, ϵ) queries to f . The communication complexity of the system is
c : N × [0, 1] → N if, on input n, ϵ and oracle access to any f : [n] → Σ, the parties exchange at
most c(n, ϵ) bits.

Standard testers can be viewed as a special case in which the communication complexity is zero; that
is, effectively there is no prover. MAPs correspond to the special case in which the communication
is unidirectional, with the prover sending a single message (of length at most c).

The general notion of proof-oblivious queries merely asserts that the queries made by the verifier
are oblivious of the messages received from the prover. In order to clarify what this means as well
as discuss alternative notions, we decompose the verifier V into three (randomized) modules: A
querying module denoted Q, which is in charge of querying the oracle, a interacting module denoted
I, which is in charge of interacting with the prover, and a deciding module denoted D, which takes
the final decision based on the information handed to it by the other two modules. Now, the general
notion (or model) of proof-oblivious queries postulates that the interaction from the querying module
Q to the other modules is unidirectional (from Q to I and D). Actually, it suffices to have Q send
a single message to I, which in turn sends a single message to D. (Actually, in this case, we may
combine I and D into a single entity.)

In contrast, the most strict interpretation of proof-oblivious queries means that the querying
and interacting modules are totally uncoordinated; in particular, they do not communicate with
one another nor do they receive any message from the deciding module (since otherwise D may
serve as a subliminal communication channel between Q and I). In the corresponding model, called
the isolated model, the two main modules (i.e., Q and I) are totally isolated from one another. The
only communication between the three modules amount to Q and I sending their view to the
deciding module D; specifically, the querying module sends the answers that it has obtained from
the oracle along with its internal coin tosses, whereas the interacting module sends the messages
that it has obtained from the prover along with its internal coin tosses. Without loss of generality,
each module sends a single message to D. See illustration on the l.h.s of Figure 1.

Note that in the isolated model the two messages received by D (from Q and I, respectively)
are statistically independent. In particular, Q and I each have their own source of randomness,
and these sources are independent of one another. In contrast, in the pre-coordinated model, these
two parties are fed by the same source of randomness, although they are free to use disjoint parts
of it. See illustration at the center of Figure 1. Hence, although the communication pattern (in
the pre-coordinated model) is the same as in the isolated model, the messages that D receives may
be correlated, since Q and I are using the same source of randomness. In particular, I may send
to the prover messages that are related to the queries that Q made to the oracle, but unlike in
the general model (see illustration on the r.h.s of Figure 1) these messages may not depend on the
answers provided by the oracle.

3



Figure 1: The isolated, pre-coordinated, and general models of PO-queries.

Public-coin IPPs. Recall that public-coin interactive proofs (of proximity) are ones in which
each message sent by the verifier is a predetermined subsequence of the randomness of the verifier.
Note that any public-coin IPP that uses PO-queries is, by definition, in the pre-coordinated model,
because its interacting module is not allowed to use the information it might have received from
the querying module in determining its messages to the prover. On the other hand, any IPP of the
isolated model can be emulated by a public-coin IPP of the isolated model.

Obtaining zero-knowledge IPPs. Loosely speaking, IPPs that use proof-oblivious queries,
even in the general sense, may be easily converted into zero-knowledge IPPs (e.g., as defined in [4]).
In case these IPPs (with PO-queries) are of the public-coin type, we just have the (zero-knowledge)
prover send commitments to its original messages, and prove at the very end (in zero-knowledge
manner) that the original verifier would have accepted the corresponding (de-committed) informa-
tion. This does not disrupt the new verifier’s actions, since its queries are proof-oblivious and its
messages to the prover are random. When using general (i.e., private-coin) IPPs (with PO-queries),
one may use secure two-party computation to enable the verifier to (“blindly”) deliver messages
to the prover; these messages are computed based on the verifier’s randomness and the previously
committed messages of the prover, while the prover provides (in secrecy) the corresponding de-
committed values, and the verifier remains ignorant about its own messages. Alternatively, one
may use fully-homomorphic encryptions instead of the commitment, and have the verifier send
encryptions of its own messages.

1.3 Our main results

As stated upfront, our focus is on interactive proofs of proximity (IPPs) that use proof-oblivious
queries (PO-queries). We initiate a systematic study of such systems, obtaining various results that
distinguish the three models that were presented in Section 1.2 and relating them to MAPs and to
standard testers.

When relating the various models, we consider an emulation of one model in a second model to
be efficient if the communication and query complexity in the second model are polynomial in the
complexities in the first model. In contrast, separation results assert at least a sub-exponential gap
between the corresponding complexities. Our first result asserts that IPPs in the isolated model
can be efficiently emulated by standard testers.

Theorem 1.2 (efficient emulation of the isolated model by testers): Suppose that Π is a property
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that can be verified in the isolated model (of IPPs with proof-oblivious queries) using q queries and
c bits of communication. Then, Π has a standard tester of query complexity O((c+ 1) · q).

Theorem 1.2 significantly extends [20, Thm. 4.2], which establishes an analogous emulation of
MAPs with proof-oblivious queries. Recall that MAPs are 1/2-round IPPs (i.e., the “interaction”
is unidirectional with the prover sending a single message to the verifier), and in this case all three
models of proof-oblivious queries coincide. In contrast, in Theorem 1.2 the communication between
the prover and the verifier is only restricted by the total amount of bits communicated.

While the isolated model offers limited advantage over a standard tester, we show that the
general model (of IPPs with proof-oblivious queries) is significantly stronger. In fact, not only is it
stronger than standard testers, it is even not efficiently emulated by general MAPs (i.e., ones that
are not restricted to proof-oblivious queries).

Theorem 1.3 (the general model of PO-queries cannot be efficiently emulated by MAPs): There
exists a property Π that can be verified in the general model (of IPPs with proof-oblivious queries)
using O(1/ϵ) queries and O(ϵ−1 log n) bits of communication, but any MAP for Π that uses a proof
of length p must use at least Ω(n1/2/(p + 1)) queries. Furthermore, the IPP with proof-oblivious
queries uses a single round of communication.

Theorem 1.3 is proved for the property consisting of all permutations over [n], while using the lower
bound established in [18, Lem. 4.3]. For the upper bound we use a proof system different than the
(1-round) IPP presented in [18, Sec. 4.1], since the latter uses proof-dependent queries (i.e., it does
not satisfy the condition of proof-oblivious queries).

The results regarding the model of pre-coordinated (PO-queries) IPPs bridge the two extremes
captured by Theorems 1.2 and 1.3. On the one hand, 1-round IPPs in the pre-coordinated model
can be efficiently emulated by standard testers. On the other hand, 3/2-round IPPs in the pre-
coordinated model are significantly stronger than standard testers. Recall that in 1-round IPP
the communication consists of two messages (i.e., the first message is sent from the verifier to the
prover who responds with a single message), whereas in 3/2-round IPP the communication consists
of three messages (i.e., the prover sends a single message, which is followed by a communication
round as in a 1-round IPP).

Theorem 1.4 (the pre-coordinated model of PO-queries – 1 round vs 1.5 rounds): The following
dichotomy holds regarding IPPs (with proof-oblivious queries) in the pre-coordinated model.

1. Any property that can be verified in the pre-coordinated model, using a 1-round IPP with q
queries and c bits of communication, has a standard tester of query complexity O((c+1) · q).

2. There exists a property Π that can be verified in the pre-coordinated model using a 3/2-round
IPP with O(1/ϵ) queries and O(ϵ−1 log n) bits of communication, but any tester for Π uses
at least Ω(n1/2) queries.

Indeed, Part 1 asserts an efficient emulation at a complexity level that matches the bound in
Theorem 1.2 (which refers to the isolated model), whereas Part 2 provides a separation analo-
gous to Theorem 1.3 (which refers to the general model). Note that Part 1 implies a separation
between 1-round IPPs in the general model (of proof-oblivious queries) and 1-round IPPs in the
pre-coordinated model. On the other hand, the separation in Part 2 is only with respect to testers
(rather than MAPs as in Theorem 1.3). In order to prove the hardness of the emulation of the
pre-coordinated model by general MAPs, we use more rounds of the pre-coordinated model.
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1/2-round (MAP) 1-round 3/2-round O(1)-round ω(1)-round

isolated YES [20, Thm. 4.2] ←− YES (Thm. 1.2)

public-coin ←− YES (Thm. 1.8) NO (Thm. 1.5)

pre-coordinated ↓ YES (Thm. 1.4(1)) NO (Thm. 1.4(2)) −→
general POQ NO (Thm. 1.3) −→

Table 1: Can standrad testers efficiently emulate IPPs that use PO-queries?

Theorem 1.5 (the pre-coordinated model of PO-queries cannot be efficiently emulated by MAPs):
There exists a property Π that can be verified in the pre-coordinated model (of IPPs with proof-
oblivious queries) using poly(ϵ−1 log n) queries and poly(log n) bits of communication, but any MAP
for Π that uses a proof of length p must use at least Ω(n0.999/(p + 1)) queries. Furthermore, the
IPP with proof-oblivious queries uses O(log n) rounds of public-coin communication.

Theorem 1.5 is proved by observing that the proof of [20, Thm. 3.28] uses an IPP that can be
implemented in the pre-coordinated model. Specifically, we observe that the celebrated sum-check
protocol of [22] can be implemented in the pre-coordinated model (see Section 4.3). The general
picture that emerges from the results reviewed so far (and the following Theorem 1.8) is summarized
in Table 1.

A focus on the pre-coordinated model. We find the pre-coordinated model especially ap-
pealing, since it allows the two main modules to operate independently of one another (but based
on the same randomness, which is essential in light of Theorem 1.2). Theorems 1.4 and 1.5 frame
our study of the pre-coordinated model, which is aimed at a finer understanding of what these
proof systems can achieve. We loosely state two positive results and one negative result. The first
result refers to a natural class of (general) MAPs.

Theorem 1.6 (3/2-rounds of IPPs in the pre-coordinated model can efficiently emulate a natural
class of MAPs): Suppose that Π is a property of functions from [n] to [m] that can be verified by
a MAP that uses a proof of length ℓ and makes q non-adaptive and uniformly distributed queries.
Then, Π can be verified in the pre-coordinated model by a 3/2-round IPP that uses q̃ = Õ(q) queries
and total communication O(q̃ · ℓ+ q̃2 · log(nm)).

We stress that the hypothesis only requires that each query of the MAP verifier is uniformly
distributed; their joint distribution, which may also depend on the given proof-string, is arbitrary
(beyond this requirement).5 We comment that the 3/2-round (pre-coordinated model) IPP of
Theorem 1.4 (Part 2) is essentially obtained as a special case of Theorem 1.6. On the other hand,
the result we actually obtain (see Theorem 4.7) is much more general than Theorem 1.6. The next
result refers to a much wider class of IPPs, but restricts the class of properties.

Theorem 1.7 (IPPs in the pre-coordinated model can efficiently emulate general IPPs for any
property of low-degree polynomials): Let Π be a property (equiv., a subset) of m-variate polynomials
of total degree d over a finite field F , and suppose that Π can be verified by an r-round public-coin

5Indeed, we are interested in the case that the original MAP uses proof-dependent queries. In this case, the
dependence on the proof-string is manifested in the dependent between the queries.
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IPP of query complexity q and communication complexity c, and that d ≤ |F |/O(1+log|F| q). Then,
Π can be verified in the pre-coordinated model by a (r + q)-round IPP that uses O(q + d) queries
and total communication O(c)+ q · (d+m) ·O(log(q+ |F|)). Furthermore, if the original IPP uses
non-adaptive queries, then the emulation can be done in r + 1 rounds.

Recall that general r-round IPPs can be efficiently emulated by O(r)-round public-coin IPPs
(see [23], following [17]); hence the result stated in Theorem 1.7 extends to the case that Π can
be verified by any IPP, but the resulting round and communication complexities are increased in
a suitable manner (so to account for the public-coin emulation). On the other hand, the verifier in
the resulting IPP (i.e., in the pre-coordinated model) is not public-coin, and this is inherent because
any property (including ones that have an efficient MAP but are hard to test) can be embedded
in a property of polynomials whereas the following Theorem 1.8 limits the power of public-coin
system.6 Indeed, it follows that IPPs of the pre-coordinated model cannot be efficiently emulated
by public-coin IPPs of the pre-coordinated model (cf. Corollary 1.9).

Theorem 1.8 (efficient emulation by testers of public-coin O(1)-round IPPs in the pre-coordinated
model): Let Π be a property that can be verified by an r-round public-coin IPP in the pre-coordinated
model using q queries and c bits of communication. Then, Π has a standard tester of query com-
plexity (poly(r) · c)r · q.

Recall that any public-coin IPP that uses PO-queries is, by definition, in the coordinated model.
The public-coin restriction in Theorem 1.8 is inherent in light of Theorem 1.4 (Part 2). Indeed,
combining Theorems 1.8 and 1.4, we get.

Corollary 1.9 (private-coin 3/2-round IPPs in the pre-coordinated model cannot be efficiently
emulated by O(1)-round public-coin IPPs in the pre-coordinated model): There exists a property
Π that can be verified in the pre-coordinated model using a 3/2-round IPP with O(1/ϵ) queries and
O(ϵ−1 log n) bits of communication, but any r-round public-coin IPP in the pre-coordinated model
for Π of query complexity q uses at least Ω((n/q2)1/2r) bits of communication.

Indeed, Corollary 1.9 provides yet another natural example of the gap between public-coin and
general interactive proof systems.7

Turning back to Theorem 1.8, we mention that it extends (from public-coin IPPs of the pre-
coordinated model) to IPPs of the pre-coordinated model that use proof-oblivious messages (i.e.,
the messages sent by the verifier are oblivious of the prover’s messages): See Theorem 4.10. On
the other hand, the emulation provided by Theorem 1.8 is relatively tight, since the proof system
of [20, Lem. 3.29] has an r-round version that yields (via this emulation) a tester with almost
optimal query complexity (see Appendix A.3).

6For example, starting from [20, Thm. 1.1], we have a property of functions f : [n] → {0, 1} that has a MAP that
uses a proof of length O(logn) and makes O(1/ϵ) queries, but cannot be tested with n0.999 queries. Associating [n]
with Hm such that |H| = log2 n and considering the low-degree extensions of these functions over a field F of size
O(m·|H|), we obtain a property of degree m·|H| polynomials that has a MAP that uses a proof of length O(logn) and
O(m · |H|/ϵ) = O(ϵ−1 log2 n) non-adaptive queries, and is at least as hard to test as the original property. Note that

the domain of the new functions has size s
def
= |Fm| = o(n2); hence, hardness of testing holds for query complexity

s0.49.
7The best-known gaps were demonstrated in the context of zero-knowledge (cf. [13, Thm. 4.5.11] vs [13, Sec. 4.9.1])

and relatively efficient proving (cf. [24]). Closer to our context are the gaps shown for IPPs in the distribution testing
setting [7, Sec. 6] and in the sample-based setting [11, Sec. 4.2].

7



1.4 Our techniques

Theorems 1.2, 1.4(1), 1.6, 1.7, and 1.8 are proved by emulating one model on another. In particular,
we indicate the limitation of various types of IPPs that use PO-queries by showing that they can
be efficiently emulated by standard testers. In contrast, we illustrate the power of IPPs that use
PO-queries by showing that they can efficiently emulate general IPPs of certain types. We now
review these two different types of emulations.

1.4.1 Emulating IPPs that use PO-queries by standard testers

We indicate the limitation of some types of IPPs (of the isolated and coordinated models) by
showing that they can be efficiently emulated by standard testers. Such emulations are used in
the proof of Theorem 1.2, Part 1 of Theorem 1.4, and Theorem 1.8. These emulations are best
illustrated in the simplest contents of Theorem 1.2, which refers to the isolated model (of IPPs
with PO-queries).

The starting point is the representation of all possible executions of a standard interactive proof
system by a “game-tree” in which internal vertices represents execution prefixes and their children
represent possible moves of the relevant party (cf. [3, Sec. 4] and [12, Apdx C.1]). The value of a leaf
in the tree is the probability that the verifier accepts conditioned on the corresponding sequence
of messages sent during the execution, where the value is either 0 or 1 in the special case that the
sequence of messages fully determines the verifier’s randomness (e.g., when the system is of the
public-coin type). The value of an internal vertex associated with the verifier equals the expected
value of its children, when the expectation is according to the (conditional) probability space that
determines the next message of the verifier.8 The value of an internal vertex associated with the
prover equals the maximal value among the values assigned to its children. Hence, the value of the
root of the game-tree represents the probability that the verifier accepts, which in turn represents
the expected value of the leaf reached in a random execution (with an optimal prover).

We stress that the foregoing description refers to standard interactive proof systems (not to
IPPs). Turning to the isolated model, we observe that the value of a leaf in the tree may be defined
as the probability that the (decision module of the) verifier accepts in a random execution of the
querying module, when (the deciding module is) also fed with the corresponding output of the
interacting module (i.e., the corresponding sequence of messages sent during the execution of the
interacting module). The key observation is this value is a function of the identity of the specific
leaf (corresponding to a specific interaction transcript) and the outcome of a random process that
does not depend on the identity of this leaf. In other words, the same random process (representing
the querying module) is used in all leaves. Hence, all that we need is (constant additive error)
approximations of the values of all leaves, and all these approximations can be obtained based
on the same repeated invocations of the random process. Thus, it suffices to invoke the random
process for a number of times that is logarithmic (rather than linear) in the number of leaves. Using
these approximated values of all leaves, we can compute the approximate value of the root of the
tree, and Theorem 1.2 follows (i.e., the tester invokes the querying module O(c) times, where each
invocation makes q queries, where c denotes the communication complexity of the IPPs and q its
query complexity).

8Note that this selection from a conditional probability space is not necessarily how the real (possibly private-coin)
verifier acts, but this is how we view the effects of its actions in the analysis.
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Turning to the pre-coordinated model, which is the focus of Theorems 1.4 and 1.8, we note
that it is no longer the case that the random execution of the querying module is the same in all
leaves (corresponding to all interaction transcripts). Indeed, the PO-queries condition implies that
these executions do not depend on the prover messages, but they are conditioned by the choices
made by the interacting module, since the querying and interacting modules use the same source of
randomness. In particular, different conditional spaces may lead to different sequences of queries,
and so our goal is to show that it suffices to use much fewer conditional spaces than the number of
leaves. In the case of one-round IPPs (of the pre-coordinated model) this is achieved by observing
that the conditional spaces are oblivious of the last prover message, and that it suffices to sample
a constant number of verifier messages. This leads to establishing Part 1 of Theorem 1.4. In the
case of public-coin IPPs, the verifier messages are also oblivious of the prover messages, and so the
relevant parameter is the product of the number of verifier messages used in each round. Proving
that it suffices to sample poly(r) · c verifier messages for each of the r rounds, allows to establish
Theorem 1.8. In other words, in this case, we prune the game-tree, leaving only poly(r) · c children
in each vertex that corresponds to a verifier move.

1.4.2 Emulating some types of IPPs by IPPs that use PO-queries

We illustrate the power of IPPs in the coordinated model by showing that they can efficiently
emulate general IPPs of certain types. Such emulations are used in the proofs of Theorems 1.6
and 1.7.

Recall that Theorem 1.6 refers to any MAP that uses a proof of length ℓ and makes q non-
adaptive and uniformly distributed queries to a function f : [n] → [m], where these queries may
depend on the proof given to the verifier (i.e., the individual queries may be related in a way that
depends on the given proof). The key idea is to query f at a uniformly distributed point u ∈ [n],
and place u as the ith query of a random execution of the MAP, where i ∈ [q] is selected uniformly
at random, then ask the prover to provide the corresponding execution of the MAP, and accept
if and only if the provided transcript is accepting and matches f(u). That is, our 3/2-round IPP
makes the random query u, and enters an interaction with the prover, who is supposed to send the
MAP-proof as its first message. Denoting this message by π, our verifier selects i ∈ [q] uniformly at
random, and selects a random r such that on randomness r, upon given the MAP-proof π, the ith

query of MAP-verifier equals u. Our verifier sends r (or the corresponding query sequence) to the
prover, who is supposed to respond with the corresponding answers. Letting a = (a1, ..., aq) denote
the actual prover response, the deciding module accepts the value f(u) provided by the querying
module and the transcript (π, r, a) provided by the interacting module if and only if ai = f(u) and
the MAP-verifier would have accepted the proof π, when using randomness r and getting the oracle
answer-sequence (a1, ..., aq). The error is reduced to a constant by repeating the foregoing system
for O(q) times, in parallel.

Turning to Theorem 1.7, recall that we are given an r-round public-coin IPP of query complexity
q and communication complexity c for some property of low degree polynomials. Here, we make
a random query per each query of the original prover, and ask our prover for (the univariate
polynomial that describes) the values of the tested polynomial on the line that connects our random
query and the real query. Specifically, the interacting module first emulates the original public-
coin IPP, while relying on the fact that the verifier’s messages are independent of the verifier’s
queries and the answers to these queries, and later it tries to obtain the answers to these queries
as determined by the corresponding univariate (“line”) polynomials. (Actually, we use low-degree
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curves rather than lines, and, in addition, we also check that the tested function is a low-degree
polynomial.)9 If our prover provides the wrong univariate polynomial (for a line), then the deciding
module catches it with high probability (since we know the value of a random point on this line),
and otherwise it uses the value (of the corresponding query) as determined by this univariate
polynomial. We comment that the foregoing idea was applied quite extensively in the study of
PCPs, starting with [10, 2], but it seems that its first appearance in the context of IPPs with
proof-oblivious queries is due to [18, Lem. 5.4].

1.5 Some comments about our conventions

This section contains brief comments about some of our conventions. We first note that although
many results are stated in terms of properties of functions over [n], one should view n as a generic (or
varying) parameter rather than as fixed; formally, the results should be restated as in Definition 1.1.
Also, whenever we write 0.999 (or 0.99), we actually mean any constant smaller than 1.

On the computational complexity of the strategies. In this work we focus on the commu-
nication and query complexities of IPPs, while ignoring their computational complexities (both for
the verifier and for the prescribed prover). This makes the negative results, which establish the
limited power of certain IPPs (vis-a-vis testers), stronger. We mention that our positive results,
which establish the power of certain IPPs, are actually obtained using relatively low computational
complexity. In particular, with the exception of Theorem 1.6, the verifier strategy we present runs
in time that is almost-linear in its query and communication complexities. In the exceptional case,
the computational complexity of the verifier depends on the complexity of “reversed sampling” (i.e.,
sampling a random-pad that generates a given query), which is low in natural cases. In general,
the computational complexity of IPPs and property testers is a secondary consideration, which is
left for follow-up studies.

Using optimal prover strategies. The foregoing discussion justifies not specifying a prescribed
proof-strategy for the completeness conditions, but rather referring to an optimal prover strategy
both in the completeness and soundness condition. As far as the soundness condition is concerned,
nothing is lost by this convention, but not specifying a prover (i.e., a honest prover) strategy for the
completeness condition hinders the desire to have strategies that posses additional features such
as relative efficiency or zero-knowledge. The gain in the convention adopted in the current work is
that it slightly simplifies the definitions and facilitates some of the proofs; specifically, the accepting
probability of a verifier V on any input can be expressed as a function pV : {0, 1}∗ → [0, 1] that
depends solely on V .

Alphabet (or range of the functions). The properties that we consider are sets of functions
over [n]. Typically, these functions are either Boolean or range over [n], but we also use functions
of the form f : Fm → F for some finite field F . In all cases, the emulations preserve the function,
so the type of queries is the same in both models. Lastly, we mention that one can always represent
function of the form f : [n]→ Σ by Boolean functions over [n′] such that n′ = n ·O(log |Σ|). In this

9We cannot rely on the fact that this test is conducted by the original IPPs, since we have to verify that the tested
function is close to a low-degree polynomial in order to establish the soundness of the emulation.
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case one encodes elements of Σ by codewords (taken from a code with constant relative distance);
this is done in order to preserve relative distances up to a constant factor.

Communication rounds. Our notion of a communication round refers to the exchange of a pair
of messages; hence, for r ∈ N, an r-round IPP refers to the case that each of the two parties sends
r messages, and means that the first message is sent by the verifier. In contrast, an (r− 0.5)-round
protocol starts with the prover sending a message, and the verifier sending only r− 1 messages. In
both cases, the last message is by the prover, who sends a total of r messages.

Non-adaptive queries. When saying that a general IPP uses non-adaptive queries we mean
that the queries are determined based on the verifier’s randomness and on the message it has
received from the prover, but do not depend (directly) on the answers to prior queries. (An
indirect dependence may arise if the verifier leaks information on its queries and the prover’s
messages depend on this information and on the value of the tested function at these queries.)
Needless to say, non-dapative queries in IPPs that use proof-oblivious queries, depend only on the
randomness of the querying module.

1.6 Related works

As mentioned upfront, proof-oblivious queries were considered before, both in the context of MAPs
(cf. [20, Def. 2.2]) and in the context of IPPs (cf. [23, Fn. 2] and [18, Sec. 5]). However, the focus
of these works was elsewhere. Specifically, the focus of [20] was on introducing the MAP model
(of non-interactive proofs of proximity), which is viewed as an NP (or MA) version of property
testing, and demonstrating its power (see, e.g., [20, Thm. 1.1]). Within this context, showing that
MAPs with proof-oblivious queries can be efficiently emulated by standard testers [20, Thm. 1.5]
was viewed as an indication that proof-dependent queries are essential to the power of MAPs.

Likewise, the focus of [23] was on defining IPPs in their full generality and on studying their
power. They mention that in some applications it may be helpful if the verifier’s queries can be
made in advance of interacting with the prover, and note that all protocols in their work have
this “oblivious-queries” feature, but they do not formally define or further study this feature. The
focus of [18] is on separating MAPs (viewed as 1/2-round IPPs) from one-round IPPs (see [18,
Thm. 1.1]). Within this context, showing that one-round IPPs that use “proof oblivious” queries
can be efficiently emulated by standard tester [18, Thm. 1.2] is viewed as indication that proof-
dependent queries are essential for that separation. As noted in Footnote 3, the notion of “proof
oblivious” queries is not formally defined in [18], but it seems that the proof of [18, Thm. 1.2], which
is presented in [18, Sec. 5.1], refers to the isolated model. We mention that a comment made (in
passing) in [18, Sec. 1.1.1], which asserts that the sum-check protocol uses “proof oblivious” queries,
seems to refer to the pre-coordinated model. The same holds for the contents of [18, Sec. 5.2.2].10

The notion of sample-based IPPs (SIPPs), introduced and studied in [11], considers IPPs in
which the verifier can only obtain the value of the input at a sample of uniformly and independent
distributed locations. These SIPPs can be viewed as a special case of our general model (of IPPs
with PO-queries), whereas public-coin SIPPs can be viewed as a special case of our pre-coordination

10Hence, the chasm between public and private coins claimed in [18, Sec. 5.2] seems unsubstantiated, since the
limits of the public coin version seem to be proved only for the isolated model, whereas the protocol for the private
coin version is in the pre-coordinated model.
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model. We mention that [11, Thm. 3.1] asserts that a natural class of standard non-adaptive testers
can be efficiently emulated by SIPPs [11, Thm. 3.1]. The transformation underlying the proof of [11,
Thm. 3.1] is similar to our proof of Theorem 1.6, although the results and the context are different.

We briefly mention one other line of work that has considered limits to the coordination of the
verifier’s activities in an interactive proof. We refer to the work of [6], which is in the streaming
model of interactive proofs [5, 8]. In this model, they make the distinction between protocols in
which the verifier’s messages to the prover may depend on the input, and protocols in which this
is not allowed. The latter is a restriction on the coordination between the verifier’s interaction
and input-examination activities, but it is not of the type we study in this work. We remark
that our pre-coordinated and isolated models do guarantee that the verifier’s interaction with the
prover does not depend on the input (whereas the general PO-query model does not provide this
guarantee).

1.7 Organization

In Section 2 we provide a more formal description of the three models (of IPPs with PO-queries)
studied in this paper. The actual contents of of this paper is presented in Section 3–5: Section 3
deals with the isolated model and contains the proof of Theorem 1.2, which provides a good warm-
up towards the proofs of Part 1 of Theorem 1.4 and Theorem 1.8. The latter proofs are presented in
Section 4, which deals with the pre-coordinated model, and contains also the proofs of Theorems 1.6
and 1.7. The short proof of Theorem 1.3 appears in Section 5, which deals with the general model
of PO-queries.

2 Models and Notation

In order to define the various models of proof-oblivious queries (PO-queries) interactive proofs of
proximity (IPP), we decompose the verifier into three modules, called querying, interacting, and
deciding, and denoted Q, I, and D, respectively. The querying module (i.e., Q) is the only part
that queries the input function, and the interacting module (i.e., I) is the only part that interacts
with the prover. The final decision is made by the deciding module (i.e., D), which is fed with
the outputs of the two other modules. The three models differ by the restrictions imposed on the
coordination between them, where in all models the querying module gets no information from the
other modules.

Recall that in standard interactive proofs, one denotes the output of the verifier by ⟨P, V ⟩(x),
where x is a common input. In extensions that allow private inputs (see, e.g., [13, Def. 4.2.10]),
one uses the notation ⟨P (y), V (z)⟩(x), where z and y are corresponding private inputs.11 Here
we have no real common input, so the output of the interacting module I, which may include its
entire view, is denoted ⟨P (y), I(z)⟩. By default (unless stated otherwise), P will denote the optimal
prover strategy, so there is no need to quantify over all strategies. Note that the prover has free
access to the tested function, denoted f .

The most restricted model – “isolated” modules. Here the querying and interacting mod-
ules are isolated, and feed their respective outputs (which equals their entire views of the execution)

11These extensions are for formulating additional features such as relatively-efficient proving and auxiliary-input
zero-knowledge.
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to the deciding module. Each of these modules has its own randomness; actually, the deciding mod-
ule may be deterministic (since it may use randomness provided to it by one of the other modules).
In this case, we write the random variable that represents the decision of the verifier as

D(Qf (RQ), ⟨P (f), I(RI)⟩), (1)

where RQ and RI are independent random variables representing the randomness of each module.
We refer to systems captured by Eq. (1) as belonging to the isolated model.

The intermediate model – “pre-coordinated” modules. Here the main two modules are
pre-coordinated by their shared randomness. In this case, we write the random variable representing
the decision as

D(Qf (R), ⟨P (f), I(R)⟩), (2)

where R is a random variable representing the shared randomness of both module. Again, without
loss of generality, the deciding module may be deterministic. We refer to systems captured by
Eq. (2) as belonging to the pre-coordinated model.

The least restricted model – general PO-queries. Here, the interacting module gets the
outcome of the querying module. Hence, we can write the random variable representing the decision
as D(⟨P (f), I(Qf (R), R)⟩). Actually, we may omit R from the input to I, since the output of the
querying module may include R. Hence, the random variable representing the decision of the
verifier is written as

D(⟨P (f), I(Qf (R))⟩). (3)

Indeed, in this case, we can combine the interacting and deciding module, or rather integrate the
deciding module in the interacting module (and write the verifier’s decision as ⟨P (f), I(Qf (R))⟩).
We refer to systems captured by Eq. (3) as belonging to the general (PO-queries) model. An
alternative definitional approach to the general PO-queries model is presented in Appendix A.1.

3 Emulating the isolated model by standard testers

In this section we prove Theorem 1.2, which asserts that any property that can be verified in
the isolated model using q queries and c bits of communication, can be tested using O((c + 1) · q)
queries. We mention that this result is quite tight, since emulation cost O((c + 1) · q)0.999 would
contradict [20, Thm. 3.12].12

Proof: The key observation is that, using relatively few queries, we can approximate the probability
that D accepts a fixed function f on a fixed interaction transcript, where the probability space is
merely over the randomness of the querying module (and does not depend on the interaction
transcript). Specifically, for a fixed transcript τ and function f , we define

pfτ
def
= Prω[D(Qf (ω), τ) = 1]. (4)

12Specifically, the proof of [20, Thm. 3.12] presents, for any α ∈ (0, 1), a property Π that cannot be tested with nα

queries such that, for any p > 0, there exists a MAP of Π that uses a proof of length p and makes poly(1/ϵ) ·nα+o(1)/p
PO-queries.
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Note that this value can be approximated up to an ϵ additive term with error probability δ by
invoking Qf for O(ϵ−2 log(1/δ)) times. We stress that these invocations of Qf are oblivious of the

value of τ , and so the same invocations can be used towards approximating several pfτ ’s (while
increasing the error bound by a corresponding factor).

Likewise, we can define the corresponding value also for partial transcripts: When the next
message is by the verifier, and Cτ ′ denotes the set of random choices that are consistent with the
partial transcript τ ′, we have

pfτ ′ = Eω∈Cτ ′

[
pfτ ′,α(ω,τ ′)

]
(5)

where α(ω, τ ′) is the next message sent by the verifier (on partial transcript τ ′) when using ran-
domness ω. When the next message is by the prover, we have

pfτ ′ = max
β

{
pfτ ′,β

}
(6)

where β represents the prover’s message. Indeed, these values (i.e., the pfτ ′ ’s) represent the (con-
ditional) probability that the verifier accepts f , given the partial transcript τ ′. In particular, the

value that corresponds to the empty transcript (i.e., pfλ) represents the probability that the verifier
accepts f , when interacting with an optimal prover strategy.

Another important observation is that the values that correspond to all partial transcripts can
be computed based on the values that correspond to all the full transcripts. This is done using
Eq. (5) and Eq. (6), just as it is done in the case of standard interactive proof systems; indeed, we
may view the process Qf as a last message by the verifier in such an interaction, and average over
it. (Indeed, the computational complexity of scanning Cτ ′ (in the case of a verifier message) and
all possible prover messages (in the case of a prover message) is irrelevant here.)

The crucial point is that we can approximate all pfτ , where τ is a full transcript, up to a constant
additive deviation, using O((log 2c) · q) = O((c + 1) · q) queries to f . The point is that the same

O(c+1) invocations of Qf can be used to approximate all 2c values pfτ ’s. Based on these values, we

can approximate all pfτ ′ for all partial τ ′, including the empty one (i.e., λ). Now, as noted above,

pfλ is the probability that the verifier (Q, I,D) accepts f ; that is,

pfλ = Eτ←⟨P (f),I⟩)

[
Prω[D(Qf (ω), τ)=1]

]
= Prω,ω′ [D(Qf (ω), ⟨P (f), I(ω′)⟩))=1],

where the last equality relies on the definition of the isolated model. Hence, pfλ ≥ 2/3 if f has the

property, whereas pfλ ≤ 1/3 if f is far from the property, and approximating pfλ up to an additive
deviation of 0.1 allows for distinguishing these two cases. We stress that the analysis, which is
rooted at Eq. (4), does not presume that the queries are non-adaptive.

Remark: Note that c can be upper bounded by Õ(ℓ), where ℓ is the total length of the prover’s
messages. To prove the latter claim, we note that an averaging step taken at a node of the
max-averaging game-tree (corresponding to Eq. (5)) can be approximated by sampling poly(ℓ) of
its children, such that with probability at least 1 − exp(−Ω(ℓ2)) the approximation is within an
additive term of 0.01/ℓ. Hence, the number of leaves in the pruned game-tree is poly(ℓ)ℓ, and the
claim follows by applying the union bound. Actually, we can use c = ℓ + O(r · log ℓ), where r
denotes the number of rounds, since in this case the number of leaves in the pruned game-tree is
2ℓ · poly(ℓ)r.
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4 On the power of the pre-coordinated model

Building on the proof of Theorem 1.2, which was presented in Section 3, we first prove Part 1 of
Theorem 1.4, which asserts that standard testers can efficiently emulate one-round IPPs of the
pre-coordinated model. This emulation is presented in Section 4.1, and we shall revisit its ideas
in Section 4.4, when proving Theorem 1.8 (which refers to public-coin systems). But before doing
this revisiting, we present some positive results (i.e., results that illustrate the power of the pre-
coordinated model). Specifically, in Section 4.2 we prove Theorem 1.6 (and its extension (i.e.,
Theorem 4.7)), and in Section 4.3 we prove Theorem 1.7. (Part 2 of Theorem 1.4 is proved in
Section 4.2, and serves as warm-up towards the proofs of Theorems 1.6 and 4.7.)

4.1 Emulating the one-round version by standard testers

The following result implies Part 1 of Theorem 1.4, which referred to the total communication
complexity of the IPP.

Theorem 4.1 (one-round IPPs of the pre-coordinated model are efficiently emulated by standard
testers): Suppose that Π is a property that can be verified in the pre-coordinated model by a one-
round system that uses q queries and a proof-message of length at most ℓ. Then, Π has a standard
tester of query complexity O((ℓ+ 1) · q).

Proof: As stated upfront, the proof builds on the proof of Theorem 1.2, which was presented
in Section 3. Here we consider the one-round version of the pre-coordinated model, in which the
verifier sends a single message answered by a single message of the prover. In this case, we let
msg(ω) denote the verifier’s message (sent by I), when using randomness ω, and P (f, α) denote
the response of the (optimal) prover upon receiving the message α and having input f : [n]→ [m].
Hence, ⟨P (f), I(ω)⟩ can be written as (ω, P (f, msg(ω)). Recalling that ω is part of Qf (ω), we omit
the appearance of ω from ⟨P (f), I(ω)⟩ = (ω, P (f, msg(ω)). Consequently, in this case, we have

(Qf (ω), ⟨P (f), I(ω)⟩) ≡ (Qf (ω), P (f, msg(ω))). (7)

The key observation, which is captured by Eq. (7), is that the verifier’s message does not depend
on f . Hence, conditioning on msg(ω) = α is analogous to considering a uniform probability space
over msg−1(α), where the point is that this probability space does not depend on f (i.e., msg−1(α)
does not depend on P (f, α)).

Analogously to the proof of Theorem 1.2, another key observation is that, for every fixed value
of the verifier-message α (and every f), we can approximate

pfα
def
= max

β

{
Prω

[
D(Qf (ω), β)=1

∣∣∣msg(ω)=α
]}

(8)

by invoking Qf on random choices in {ω : msg(ω) = α}. Specifically, O(ϵ−2 log(1/δ)) invocations

suffice for approximating each pfα,β up to an ϵ additive term with error probability δ, where

pfα,β
def
= Prω[D(Qf (ω), β)=1|msg(ω)=α].

As in Section 3, setting δ = Ω(2−ℓ) allows us to approximate (for each α) all pfα,β’s (up to a

constant term, with high probability) by using O(ℓ + 1) invocations of Qf . The crucial point is
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that, for a fixed α, all pfα,β’s can be approximating by using the same invocations of Qf , because
these invocations refer to sampling uniformly the same set (i.e., {ω : msg(ω) = α}). (Indeed, the
computational complexity of sampling msg−1(α) is irrelevant here.) Hence, for each α, making

O((ℓ+1) · q) queries to f allows to approximate the value of pfα up to an additive deviation of 0.01
with probability at least 0.99.

Lastly, note that

Prω

[
D(Qf (ω), P (f, msg(ω)))=1

]
= Eω

[
pf
msg(ω)

]
(9)

and so it suffices to approximate the r.h.s of Eq. (9) up to a constant deviation, which can be done
by sampling a constant number of ω’s. Specifically, for t = O(1), selecting ω1, ..., ωt ∈ [n] uniformly
at random, with probability at least 0.9 it holds that

Eω

[
pf
msg(ω)

]
=

1

t
·
∑
i∈[t]

pf
msg(ωi)

± 0.1,

which establishes the foregoing claim. Hence, making O((ℓ+1)·q) queries to f allows to approximate
the l.h.s of Eq. (9) up to an additive deviation of 0.11 with probability at least 0.89. Recalling that
the l.h.s of Eq. (9) equals the probability that the verifier (of the pre-coordinated model) represented
by (Q, I,D) accepts f , it follows that Π can be tested within query complexity O((ℓ+1) · q). (Note
that, like in the proof of Theorem 1.2, we do not need to assume that Q is non-adaptive.)

Digest and reflection. We stress that it was necessary and sufficient to approximate pf
msg(ω)

for a constant number of ω’s, and that for each ω the value of pf
msg(ω) can be approximated by

taking O(ℓ + 1) samples from the same probability space (i.e., the uniform distribution over {s :
msg(s)=msg(ω)}). In contrast, trying to extend the argument to 3/2-round interactions would have

required us to approximate pfβ′,msg(ω,β′), where msg(ω, β′) is the verifier’s message (which depends

on the prover’s first message β′), for all possible β′’s. The problem is that each of these β′’s requires
sampling from a potentially different probability space (i.e., the set {s : msg(s, β′) = msg(ω, β′)}),
whereas the different samples may lead to different queries of Qf . As we shall see in Theorem 4.5,
this difficulty is inherent. We observe that these difficulties are avoided if one aims at emulating
3/2-round systems (of the pre-coordinated model) by MAPs (rather than by testers).

Theorem 4.2 (3/2-round IPPs of the pre-coordinated model are efficiently emulated by MAPs):
Suppose that Π is a property that can be verified in the pre-coordinated model by a 3/2-round system
that uses q queries and prover messages of total length ℓ. Then, Π can be verified by a MAP of
query complexity O((ℓ+ 1) · q) and proof-length ℓ.

(In general, for any r ≥ 0, every (r+1)-round IPPs of the pre-coordinated model can be efficiently
emulated by an r-round (general) IPP, but this is interesting only for r ∈ {0, 0.5} because for r ≥ 1
any (r + 1)-round IPP can be efficiently emulate by an r-round IPP.)

Proof Sketch: Building on the proof of Theorem 4.1, we observe that it suffices to approximate
pfβ′ for a single β′ that is sent by the prover (as its first message). That is, the proof in the MAP
system consists of the first message sent by the prover in the 3/2-round system, and the verifier

just approximates pfβ′ exactly as the tester approximated pfλ in the proof of Theorem 4.1.
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Separation of 1-round systems. Considering the set of permutations over [n], denoted PERM,
and using Theorem 4.1, we demonstrate a separation between 1-round systems in the pre-coordinated
model and 1-round system with general PO-queries.

Corollary 4.3 (1-round IPP with general PO-queries vs 1-round IPP in the pre-coordinated
model):

� PERM can be verified by a one-round IPP with proof-oblivious queries, using O(ϵ−1 log n) com-
munication and O(1/ϵ) queries.

� If PERM can be verified in the pre-coordinated model by a one-round system of query complexity
q and a prover message of length ℓ, then (ℓ+ 1) · q = Ω(

√
n).

Proof: As detailed in the proof of Theorem 5.1, the first part follows by using a verifier that
selects uniformly i ∈ [n], queries the function at i, sends the image to the prover, and accepts if and
only if the prover returns i. The second item follows by combining Theorem 4.1 with the (known)
lower bound on the query complexity of testing PERM (see [18, Lem. 4.3], which is also used in the
proof of Theorem 5.1).

MAPs vs 1-round systems of the pre-coordinated type. Recall that MAPs are known to
be stronger than standard testers [20, 15]. Combining this fact with Theorem 4.1, we infer that
MAPs cannot be efficiently emulated by one-round systems in the pre-coordinated model.

Corollary 4.4 (MAP vs 1-round pre-coordinated model): There exists a property Π of n-bit strings
that satisfies the following two conditions.

� Π can be verified by a MAP using a proof of length O(log n) and poly(1/ϵ) queries.

� If Π can be verified in the pre-coordinated model by a one-round system of query complexity
q and a prover message of length ℓ, then (ℓ+ 1) · q = Ω(n0.999).

We comment that the MAP used in the first item uses non-adaptive queries, but it is not the case
that each of these queries is uniformly distributed in [n] (and so Theorem 1.6 does not apply to it).

4.2 Emulating some MAPs by 3/2-rounds of the pre-coordinated model

In contrast to Theorem 4.1, we show that there is a gap between the power of 3/2-round systems
and standard testers. This implies that 3/2 rounds of the pre-coordinated model are significantly
stronger than one round.

Theorem 4.5 (the pre-coordinated model cannot be efficiently emulated by testers): There exists
a property of n-bit strings that can be verified by a 3/2-round IPP in the pre-coordinated model
using O(ϵ−1 log n) communication and O(1/ϵ) queries, but testing it requires Ω(

√
n) queries.

This establishes Part 2 of Theorem 1.4. Theorem 4.5 is proved by transforming a known MAP
for the property into a 3/2-round system in the pre-coordinated model; this transformation il-
lustrates the idea that underlies our emulation of a natural class of MAPs by 3/2-rounds of the
pre-coordinated model (see proof of Theorem 4.6).
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Proof: Consider the following MAP for the set S = {uuvv : uv ∈ {0, 1}n/2}, which is a property
that requires Ω(

√
n) queries for testing.13 The prover sends the length of u, and the verifier checks

(by using adequate queries) that “matching” locations (selected at random) do hold the same value,
where i < j are matching locations if either i ∈ [|u|] and j = |u| + i or i ∈ [2|u| + 1, 2|u| + |v|] and
j = |v| + i. The verifier in our proof system (for the pre-coordinated model) proceeds as follows:
It first queries the input at a random location, denoted i ∈ [n], and the initiates a 3/2-round
interaction with the prover. When the prover sends |u|, the verifier asks it to provide the value of
the input string at location i′, where i′ is selected at random to be either i or the location matched
to i (e.g., if i ∈ [|u|], then i′ is selected uniformly in {i, |u| + i}). When the prover answers, the
verifier accepts if and only if the prover’s answer equals the answer obtained from the oracle.

Note that this procedure can be implemented in the pre-coordinated model using 3 messages,
because the pre-coordinated randomness may include i as well as a bit that is used to select either
i or its matched location. The soundness error is upper-bounded by observing that if the tested
string is ϵ-far from S, then the prover fails with probability greater than ϵ, because the hypothesis
implies that more than 2ϵn locations are matched to a location that holds a different value (where
the matching is according to the first message sent by the prover). Hence, this 3/2-round system has
soundness error less than 1− ϵ, while using one query and a logarithmic amount of communication.

The soundness error can be reduced by parallel repetition, just as in the case of standard
interactive proof systems (where the crucial observation is that the value of an execution in the
pre-coordinated model can be represented by a max-average game-tree (see Appendix A.2)). Note
that the resulting 3/2-round system is in the pre-coordinated model and that it uses O(1/ϵ) queries
and O(ϵ−1 log n) bits of communication.

Generalizing the emulation that underlies the proof of Theorem 4.5. We now apply
the idea underlying the proof of Theorem 4.5 to emulate a natural class of MAPs by 3/2-round
IPPs of the pre-coordinated model. We refer to MAPs that make non-adaptive queries, where
non-adaptivity refers to the indepedence of queries on the answers to prior queries. Furthermore,
we assume that for every (alleged) proof, each of the queries made by the verifier is uniformly
distributed, although there may be dependencies between the queries. For simplicity of exposition,
we shall also assume that these MAPs have perfect completeness (i.e., never err on inputs in the
property). Note that the MAP that was used in the proof of Theorem 4.5 is of this type.

Theorem 4.6 (emulating MAPs that use non-adaptive and uniformly distributed queries): Sup-
pose that a property of functions from [n] to Σ can be verified by a MAP of perfect completeness
that uses a proof of length ℓ and q non-adaptive queries that are each uniformly distributed in [n].
Then, this property can be verified in the pre-coordinated model by a 3/2-round system that uses
O(q) queries and total communication O(q · ℓ+ q2 · (log2 n+ log2 |Σ|)).

We stress that the hypothesis only requires that each query of the MAP verifier is uniformly
distributed; their joint distribution, which may also depend on the given proof-string, is arbitrary
(beyond this requirement). We mention that the resulting 3/2-round IPP uses uniformly and
independently distributed queries (i.e., it is actually sample-based (cf. [11])).

13The lower bound was originally proved in [1] for the context-free set S = {uu⊤vv⊤ : uv ∈ {0, 1}n/2}, but the same
proof applies to the current set. Essentially, in order to distinguish a random string in S from a totally random n-bit
long string, one must query the tested string uuvv at two locations that are at distance |u| or |v| apart.
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Proof: Let V be such a MAP verifier. Denote the (non-adaptive) queries made by V after receiving
the alleged proof π ∈ {0, 1}ℓ by Q1(r, π), ...., Qq(r, π), where r ∈ {0, 1}m is V ’s randomness, and de-
note V ’s final verdict (when given oracle access to f : [n]→ Σ) by V (r, π, f(Q1(r, π)), ...., f(Qq(r, π))).
Now, the (three-message) PO-queries system proceed as follow.

Construction 4.6.1 (the basic system): Using randomness ω = (i, j, ω′) ∈ [n]× [q]×{0, 1}m′, for
some adequate m′, the system proceed as follow.

� The querying module obtains the value of f(i), by querying f at i, and hands (i, f(i)) to the
deciding module.

� The interacting module starts by receiving a message π from the prover; the honest/designated
prover will send the proof sent in the MAP. Next, using its coins ω, it determines a random
r ∈ {0, 1}m such that Qj(r, π) = i, where the selection of r in the set {s∈{0, 1}m : Qj(s, π)= i}
is determined by ω′. The verifier sends q

def
= (Q1(r, π), ...., Qq(r, π)) to the prover, and denotes

the prover’s response by a
def
= (a1, ..., aq). (Needless to say, the honest/designated prover sets

ak = f(Qk) for every k ∈ [q].)

(Hence, the triplet of messages exchanged is (π, q, a), and (π, a) is sent to the deciding module
along with j and r.)

� The deciding module, receiving (i, v) from the querying module and (j, r, π, a1, ..., aq) from the
interacting module, accepts if and only if both aj = v and V (r, π, a1, ...., aq) = 1.

The total (verifier–prover) communication of this system is ℓ+ q · ⌈log2 n⌉+ q · ⌈log2 |Σ|⌉.
Clearly, the completeness error of Construction 4.6.1 is upper-bounded by the completeness

error of the MAP, which we assumed to be zero. We shall show next that the soundness error is
upper-bounded by 1 − (2/3q); hence, we derive a standard IPP (with error 1/3) by repeating the
foregoing system O(q) times, in parallel, and accepting if and only if all invocations accept.

Claim 4.6.2 (soundness claim): If f is ϵ-far from the property, then Construction 4.6.1 rejects
with probability at least 2/3q.

Proof: Recall that for every f that is ϵ-far from the property, and for every π, it holds that

Prr[V (r, π, f(Q1(r, π)), ...., f(Qq(r, π)))=1] ≤ 1/3.

The key observation is that, for every π and j ∈ [q], the following two processes generate identical
distributions:

1. Selecting i ∈ [n] uniformly at random and outputting (Q1(r, π), ..., Qq(r, π)) such that r is
uniformly distributed in {s∈{0, 1}m : Qj(s, π)= i}.

2. Selecting r ∈ {0, 1}m uniformly at random, and outputting (Q1(r, π), ..., Qq(r, π)).

Hence, for any π and any strategy P ′ of answering the verifier’s message (in the IPP), it holds that

Pri,j,r

[
V (r, π, P ′(Q1(r, π), ...., Qq(r, π)))=1

& P ′(Q1(r, π), ...., Qq(r, π))) = (f(Q1(r, π)), ..., f(Qq(r, π)))

∣∣∣∣Qj(r, π)= i

]
≤ 1/3
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which implies

Pri,j,r

[
V (r, π, P ′(Q1(r, π), ...., Qq(r, π)))=0

∨ P ′(Q1(r, π), ...., Qq(r, π)))j ̸= f(Qj(r, π))

∣∣∣∣Qj(r, π)= i

]
≥ 2/3q

because (p1, ..., pq) ̸= (f1, ..., fq) implies Prj [pj ̸=fj ] ≥ 1/q. The claim follows.

Conclusion. Using error reduction (and accepting iff each of the O(q) parallel executions accepts),
the theorem follows.

(Note that the perfect completeness of the MAP was only used in order to employ a consensus
vote for acceptance (i.e., we accepted iff all invocations of Construction 4.6.1 accept).)

A straightforward extension. The argument extends to the case that for every j ∈ [q] the
distribution of Qj(·, π) is oblivious of π. In this case, the querying module selects its query according
to the distributionQj(·, π0), where π0 is an arbitrary fixed ℓ-bit string. That is, the joint randomness
has the form (s, j, ω′) ∈ {0, 1}m × [q]× {0, 1}m′ , and the query i is set to Qj(s, π0). Actually, note
that, without loss of generality, the Qj ’s are identical (i.e., consider permuting the queries at
random); hence, the real point in this extension is that the distribution of Qj(·, π) need not be
uniform, but rather needs to be oblivious of π.

Generalizing Theorem 4.6. Making the foregoing assumption (i.e., Qj(·, π) ≡ Q1(·, π) for
every j and π), we consider the case that all query distributions Q1(·, π) are dominated by a single
distribution. Specifically, we say that a distribution X i s γ-dominated by a distribution Y if for
every z it holds that Pr[X = z] ≤ Pr[Y = z]/γ. (Indeed, this notion is meaningful only for γ < 1,
whereas every distribution is 1-dominated by itself only.)

Theorem 4.7 (emulating MAPs, a more general case): Suppose that a property of functions from
[n] to Σ can be verified by a MAP that uses a proof of length ℓ and q non-adaptive queries such that
all query distributions are γ-dominated by a single distribution; that is, there exists a distribution
Y such that for every j ∈ [q] and π ∈ {0, 1}ℓ the distribution Qj(·, π) is γ-dominated by Y . Then,
this property can be verified in the pre-coordinated model by a 3/2-round system that uses O(q̃/γ)
queries and total communication O(q̃ · ℓ+ q̃2 · (log2 n+ log2 |Σ|)), where q̃ = O(q log q).

Recall that we may assume, without loss of generality, that for every j and π it holds that Qj(·, π) ≡
Q1(·, π).

Proof: By employing error reduction to the MAP, we may assume that it uses q̃ queries and that
the error probabilities (both in the completeness and soundness condition) are upper-bounded by
1/3q̃. Specifically, we invoke the query-based verification of the MAP-proof O(log q) times. (Note
that the proof length (i.e., ℓ) remains intact.) Furthermore, by randomly permuting the queries, we
may assume that, for every π ∈ {0, 1}ℓ, it holds that Qj(·, π) and Q1(·, π) are identically distributed

(and all are γ-dominated by Y ). Letting Xπ
def
= Q1(·, π) be a random variable that represents the

distribution of each query, we consider the following system, which generalizes Construction 4.6.1.

Construction 4.7.1 (the generalized basic system): Let t = ⌈1/γ⌉. Abusing notation, we assume
that the following yi’s are selected according to Y , which is not necessarily uniform over [n]. In
this case, using randomness ω = (y1, ..., yt, ω1, ...., ωt, j, ω

′) ∈ [n]t × ({0, 1}m′)t × [q̃]× {0, 1}m′, for
some adequate m′, the system proceeds as follow.
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� The querying module obtains the value of f(yi), for every i ∈ [t], by querying f at yi, and
hands all (yi, f(yi))’s to the deciding module.

� The interacting module proceeds as follows.

– Upon receiving a message π from the prover, the verifier uses the ωi’s to sub-sample the
yi’s such that each yi is included in the sub-sample with probability

γ · Pr[Xπ=yi]

Pr[Y =yi]
∈ [0, 1],

where the upper bound is guaranteed by γ-domination. If the sub-sample contains no
elements, the interacting module halts while sending a special symbol to the deciding
module (which will cause this module to accept).

– Otherwise, the interacting module selects the first yi in the sub-sample, denoted y, and
continues as in Construction 4.6.1. That is, using its coins ω, it determines a random
r ∈ {0, 1}m such that Qj(r, π) = y, where the selection of r in the set {s ∈ {0, 1}m :

Qj(s, π) = y} is determined by ω′. Next, it sends q
def
= (Q1(r, π), ...., Qq̃(r, π)) to the

prover, and denotes the prover’s respond by a
def
= (a1, ..., aq̃).

Note that each value y is selected as a sample of Y and included in the sub-sample with
probability

Pr[Y =y] · γ · Pr[Xπ=y]

Pr[Y =y]
= γ · Pr[Xπ=y]

and that the sub-sample is empty with probability (1−γ)t ≤ e−1. Furthermore, when the
sub-sample is non-empty, the selected r is uniformly distributed.

(Hence, the triplet of messages exchanged is (π, q, a), and (π, a) is sent to the deciding module
along with j, i and r. Recall that yi = y = Qj(r, π); that is, i is the index of the first query
that was included in the sub-sample.)

� The deciding module, upon receiving (y1, v1), ..., (yt, vt) from the querying module and (i, j, r, π, a)
from the interacting module, where a = (a1, ..., aq̃), accepts if and only if both aj = vi and
V (r, π, a1, ...., aq̃) = 1. (In case the deciding module received a special symbol from the
interacting module, it just accepts.)

Construction 4.6.1 is obtained as a special case when γ = 1 (and in this case t = 1) and Y is the
uniform distribution on [n]. The query complexity of Construction 4.7.1 is t, and the communication
complexity is ℓ+ q̃ · ⌈log2 n⌉+ q̃ · ⌈log2 |Σ|⌉. The completeness error of Construction 4.7.1 is upper-
bounded by the completeness error of the MAP, which is at most 1/3q̃. As shown next, the
soundness error of Construction 4.7.1 is smaller than 1− (0.4/q̃); that is, it rejects ϵ-far functions
with probability at least 0.4/q̃.

Claim 4.7.2 (soundness claim): If f is ϵ-far from the property, then Construction 4.7.1 rejects
with probability at least 0.4/q̃.

Proof sketch: Note that, with probability at least 1− e−1 > 0.6, Construction 4.7.1 “emulates” the
execution of MAP on a random r. Hence, if the prover provides answers according to f , then the
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execution rejects with probability at least 2/3. On the other hand, whenever the prover provides
an answer that does not fit the value of f , it is detected with probability at least 1/q̃. Hence, f is
rejected with probability at least 0.6 · 23 ·

1
q̃ = 0.4/q̃.

Conclusion. Using the fact that the completeness error is smaller than 1/3q̃ and employing error
reduction, the theorem follows. Specifically, we execute Construction 4.7.1 for O(q̃) times, in
parallel, and accept if and only if at least 1− 0.35/q̃ fraction of these executions accept.

MAPs vs 3/2-round systems of the pre-coordinated type. Theorems 4.2 and 4.7 sandwich
the power of 3/2-round IPPs of the pre-coordinated model in terms of MAPs. On the one hand,
these 3/2-round systems are efficiently emulated by MAPs (Theorem 4.2), whereas on the other
hand they can efficiently emulate a natural subclass of MAPs (Theorem 4.7). We conjecture that
not all MAPs can be efficiently emulated by 3/2-round IPPs of the pre-coordinated model.

4.3 On the power of the multi-round version of the pre-coordinated model

One simple but extremely useful observation regarding multi-round IPPs in the pre-coordinated
model is that they can perform the celebrated sum-check protocol of [22]. Recall that this protocol
is used for verifying claims of the form

∑
x∈Hm f(x) = v, where f : Fm → F describes a low-degree

polynomial, H ⊂ F , and v ∈ F is a claimed value. The protocol proceeds in m rounds such that
in the ith round the verifier sends a uniformly distributed ωi ∈ F , and the final query to f is at the
point ω1 · · ·ωm ∈ Fm. Indeed, all checks performed during the execution, can be performed at the
end (by the deciding module). Given these fact, Theorem 1.5 follows by observing that the proof
of [20, Thm. 3.28] refers to this specific property (called Tensor/Sub-cube Sum). For details see
Appendix A.3.

We now move to proving Theorem 1.7, which asserts that any public-coin IPP for any property
of low-degree polynomials can be efficiently emulated in the pre-coordinated model. Specifically,
for a finite field F , number of variables m ∈ N and (total) degree bound d ∈ N, we consider any
subset of the set of all m-variate polynomials of total degree at most d over F .

Theorem 4.8 (the main claim of Theorem 1.7): Let ΠF ,m,d be a property (i.e., a subset of the set)
of m-variate polynomials of total degree at most d over F . Suppose that ΠF ,m,d can be verified by a
r-round public-coin IPP system with query complexity q and communication complexity c, and that
d ≤ |F |/O(1+log|F| q). Then, ΠF ,m,d can be verified in the pre-coordinated model with O(q)+O(d)
queries and O(c) + q · (d+m) ·O(log(q+ |F|)) bits of communication. Furthermore, this IPP uses
r + q rounds.

Note that the tested functions have size n = |Fm|.

Proof: The key idea is to verify the value of a low-degree polynomial, f : Fm → F , at an arbitrary
point of interest, x ∈ Fm, by querying f at a random point, u ∈ Fm, and asking the prover to
provide the univariate polynomial p that describes the value of f on a line (or low degree curve)
that connects the points x and u. The verifier can keep a cheating prover at bay by comparing the
value of p at (the point that corresponds to) u with the value f(u), and use the value of p at (the
point that corresponds to) x. This idea was applied quite extensively in the study of PCPs, starting
with [10, 2], but it seems that its first appearance in the context of IPPs with proof-oblivious queries
is due to [18, Lem. 5.4].
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Turning to our specific context, we apply the foregoing idea to the queries that the original
verifier wishes to make (during its interaction with the prover). We stress that this can be done
only after the original interaction was emulated, because the prover should remain ignorant as to
these queries, whereas the aforementioned line reveals a lot of information about a desired query
x. In fact, such a line reveals log2 |F|m−1 bits of information about x and ditto regarding u (but
the log2 |F| bits of uncertainty regarding u suffice for the verification process). However, since the
original IPP is of the public-coin type, we can emulate the original interaction before asking the
prover to provide the values of the original queries, and establish the correctness of these values later,
as outlined above (i.e., using the fact that the verifier has obtained the values of the polynomial at
some random points).

The foregoing description suffices for the case that the tested function f is a polynomial of
total degree at most d, but this is not necessarily the case in general. Nevertheless, by employing a
low-degree test, we can guaranteed that f is close to a degree d polynomial f ′. (Indeed, our verifier
needs to check that f is a low-degree polynomial; it cannot rely on the fact that the original IPP
may perform such a test anyhow, since the soundness of the emulation relies on f being close to a
low degree polynomial.)

Assuming that f is close to a degree d polynomial f ′ implies that, in expectation, the fraction of
disagreement between f and f ′ on a random line that passes through x equals the global fraction of
disagreement between f and f ′. But, for the soundness analysis, we need the fraction of disagree-
ment (on such a line) to be small with probability at least 1 − o(1/q). While points on a random
line that pass through x are not random enough to support this claim, points on a random curve
of degree t = O(⌈log|F| q⌉) that passes through x are random enough. Hence, we use such curves
rather than lines. On input f : Fm → F , our (pre-coordinated model) IPP proceeds as follows.

� The querying module queries the function f at q random points, denoted u1, ..., uq ∈ Fm.
(These points will be used by the interacting module.)

In addition, it makes O(d) queries that correspond to O(1) random lines in Fm; these queries
will be used by a low-degree test (which will be evaluated by the decision module). This
low-degree test is invoked with proximity parameter set to some small constant (e.g., 0.01).

� The interacting module, denoted I, proceeds in two stages. In the first stage, I emulates
an execution of the original verifier with the prover, while relying on the fact that the veri-
fier’s messages in this interaction are oblivious of the oracle’s answers (per the public-coin
hypothesis).

(We stress that the original verifier may make queries during its interaction with the prover,
and these queries may depend on the prover’s messages, but the original verifier’s messages
are independent of the oracle’s answers (as well as of the prover’s messages).)

In the second stage, I emulates the original verifier’s access to the oracle f . Specifically,
letting xi denote the ith query of the original verifier, I sends the canonical description of a
random degree t curve Ci : F → Fm that connects xi and ui, to the prover, who is supposed
to answer with a degree t · d univariate polynomial that describes the value of f on the curve
Ci. Denoting the prover’s response by Pi, the answer to the query xi is defined to equal the
value of Pi at di such that Ci(di) = xi.

We stress that the query xi is determined by the original verifier’s randomness, the transcript
of the interaction with the prover, and the answers provided to prior queries. Due to the
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latter dependence, the emulation of the q queries takes place in q rounds.

� The deciding module accepts if and only if the following three conditions hold:

1. The values of f provided for the low-degree test (coupled with the description of the
O(1/ϵ) corresponding lines) lead this test to accept.

2. The original verifier would have accepted given the interaction transcript generated in
the first stage and the answers to the queries defined by the polynomials sent by the
prover in the second stage. (Recall that the answer to the ith query (i.e., xi) is defined
to equal the value of the ith polynomial (i.e., Pi) at the adequate point (i.e., di such that
Ci(di) = xi).

3. For every i ∈ [q], the value of the ith polynomial at the adequate point agrees with
the value of f at ui; that is, Pi(ri) = f(ui), where ri is the location of ui on Ci (i.e.,
Ci(ri) = ui).

We stress that it is not important to hide di from the prover, but it is crucial to hide ri from the
prover. (Indeed, we could have defined Ci to be a random degree t curve such that Ci(0) = xi and
Ci(ri) = ui for a random ri ∈ F .)

Evidently, the foregoing system is of the pre-coordinated type, and its completeness follows
from the completeness of the original IPP. As for its query and communication complexities, they
are determined by the two main activities: The querying module makes one query per each original
query and invokes a low-degree test that uses O(d) queries. In the first stage the interacting
module merely emulates the original interaction, and in the second stage it sends a (degree t) curve
per each original query and receives a univariate polynomial (of degree t · d in return). Hence,
the total communication is c + q · ((t + 1) · log2 |Fm| + t · d · log2 |F|). If t > 1, then using
t · log2 |F| = O(log q), we get a communication bound of c + q · (m + d) · O(log q), and otherwise
the bound is c+ q · (m+ d) ·O(log ∥F |).

Turning to the soundness condition, we may assume that f is 0.01-close to a polynomial f ′

of total degree d, because otherwise the low-degree test rejects with high probability. Using the
fact that the points on a random degree t curve that passes through a fixed point are (t− 1)-wise
independent, it follows that with probability at least 1−O(t/|F|)(t−1)/2 = 1−o(1/q) the restriction
of f to such a random (degree t) curve is 0.02-close to the restriction of f ′ to that curve. Thus,
with probability 1−o(1) it holds that, for each i ∈ [q], if the prover provide a univariate polynomial
that does not agree with f ′ on the curve Ci, then the verifier rejects with probability at least
1 − d+0.02·|F|

|F| . On the other hand, by the soundness of the original IPP, for at least two-thirds of
the possible choices of the original verifier, if the prover provides the correct univariate polynomial,
for each i ∈ [q], then our verifier rejects. Hence, our verifier rejects with probability at least

2

3
· (1− o(1)) ·

(
1− d+ 0.02 · |F|

|F|

)
which implies that the soundness error is upper-bounded by 1

3+o(1)+ d+0.02·|F|
|F| < 0.34+0.1+0.02 =

0.46 (rather than by 1/3). Employing error reduction, using O(1) parallel repetitions, we are done.
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Reducing the number of rounds for non-adaptive queries: Establishing the furthermore
claim of Theorem 1.7. If V makes non-adaptive queries (i.e., all its queries are determined
solely by its public-coin interaction with the prover along with its own randomness), then we may
reduce the additive overhead in the number of rounds that the transformation introduces from q
to 1. In this case, the second stage of the interacting module may consist of a single round, in
which the values of all q queries are provided (by the prover) and verified via the ui’s, in parallel.
Specifically, the verifier determines all xi’s, sends canonical descriptions of the q random curves
C1, ..., Cq : F → Fm that connect the xi’s and the ui’s, to the prover, who is supposed to answer
with q (degree t · d) univariate polynomials that describe the value of f on these curves.

Reducing the number of queries. If we assume that V makes non-adaptive queries and that
q · d ≤ |F|/O(log|F| q) (rather than d ≤ |F|/O(log|F| q)), then we can modify the emulation to only
query f at a single point u ∈ Fm chosen uniformly at random. This is done by replacing the q
random (degree t) curves that go through the q different points, by a single curve of degree q + t
that goes through these q points. Specifically, assuming that F is of prime cardinality, we may use
a random (degree q+ t) curve C : F → Fm such that C(i) = xi for every i ∈ [q] and C(j) = u for a
random j ∈ F . The prover will respond with a single univariate polynomial of degree (q+ t) ·d, and
this response will be checked in a corresponding manner. Hence, the query complexity is reduced
(from O(q + d)) to O(d + 1). Note that the communication complexity does not increase; it may
actually decrease to O(c) + q · (d+m) ·O(log |F|).

Digest, abstraction, and generalization. Polynomials of low-degree are the archetypical ex-
ample of codewords of a locally testable and (strongly) locally correctable code, and this is the
actual role they play in Theorem 4.8. Specifically, our proof uses the fact that codewords are
locally correctable in a strong sense based on relatively few non-adaptive queries (to the possibly
corrupted codeword) such that each of the queries is uniformly distributed in the set of locations (in
the codewords). The strong sense, obtained by using low-degree curves, is that the recovered value
is correct with very high probability (i.e., probability 1−o(1/q), where q is as in the theorem), and,
furthermore, that the queried locations induce a code of constant relative distance. Nevertheless,
using the standard notion of local correction (cf., e.g., [19, Def. 3.1]), which only requires that the
recovered value is correct with probability at least 2/3, along with error reduction, would have
sufficed (alas with quantitatively inferior bounds). The key observation is that the value of the
corrected codeword at an arbitrary location x ∈ [n] (i.e., the value wx, where w is the codeword
closest to w)14 can be verified in the pre-coordinated model as follows.

� The querying module queries the input w ∈ Σn at a uniformly selected location u ∈ [n],
obtaining the value wu.

� Letting qcorr denote the query complexity of the local corrector, the interactive module selects
uniformly an index j ∈ [qcorr], and a random r such that on input x ∈ [n] and randomness r,
the jth query of the local corrector equals u. The interactive module sends r (or, equiv., the
sequence of qcorr queries) to the prover.

14Recall that this is required only when w is close enough to the code; otherwise (i.e., when case w is not close
enough to the code), the local tester will reject. Indeed, the local tester will be invoked with a proximity parameter
that is upper-bounded by the correction distance of the local corrector.
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(Here we rely on the hypothesis that the local corrector makes non-adaptive queries that are
each uniformly distributed in [n].)

� The deciding module accepts if and only if the jth answer provided by the prover equals the
value wu. In this case the corrected value of wx is obtained by applying the local corrector
to the sequence of qcorr answers provided by the prover.

Note that if the prover does not provide correct answers (i.e., answers that yield a wrong value
for wx), then the verifier rejects with probability at least 1/qcorr. Hence, invoking this process
for O(qcorr log q) times (and ruling by majority) yields an error probability of o(1/q). Using the
corresponding local tester (for codewords), and plugging this into the proof of Theorem 4.8, allows
us to obtain a corresponding result for any property of the corresponding code (i.e., any subset of
codewords).

Actually, it is more appealing to state the result in terms of holographic interactive proofs,
a notion introduced in [21]. Loosely speaking, these are ordinary interactive proofs for promise
problems that consist of codewords of a predetermined code C ⊂ Σn. That is, fixing the code
C and some set C ′ ⊆ C, the promise problem consists of distinguishing inputs in C ′ from inputs
in C \ C ′, whereas nothing is required with respect to inputs in Σn \ C. Alternatively (as in [21,
Def. 8]), one may consider the set S ⊆ Σk of strings encoded by the code C (viewed as a mapping
from Σk to Σn), and require that encodings of strings in S are always accepted, whereas encoding
of strings in Σk \ S are rejected (with probability at least 2/3).

Theorem 4.9 (generalization of Theorem 4.8, loosely stated): Let C ⊂ Σn be a code that is locally
testable using qtest queries and locally correctable using qcorr non-adaptive queries that are are each
uniformly distributed in [n]. For any C ′ ⊆ C, suppose that C ′ can be verified by a r-round public-
coin holographic interactive proof system with query complexity q and communication complexity
c. Then, C ′ can be verified in the pre-coordinated model with Õ(q) · qcorr + O(qtest) queries and
O(c) + Õ(q) · qcorr2 · log(n+ |Σ|) bits of communication. Furthermore, this IPP uses r+ q rounds.

The complexity bounds can be improved to Õ(q) + O(qtest) and O(c) + Õ(q) · qcorr · log(n + |Σ|)
respectively, if the local corrector is “robust” in the (natural) sense that, when querying an input w
that is sufficiently close to C, then it recovers the value correctly (with high probability) even when
the sequence of answers is adversarially tampered (at a sufficiently constant rate).15 In this case,
if prover provide answers that yield a wrong value for wx, then the verifier rejects with probability
Ω(1) rather than with probability at least 1/qcorr.

4.4 Emulating the public-coin version of the pre-coordinated model

Recall that we couldn’t extend the efficient emulation of the one-round pre-coordinated model (by
a standard tester) even to 3/2-round interaction (see digest in Section 4.1). This is because the
verifier’s message may depend arbitrarily on the prover’s first message, denoted β′. Consequently,
for each possible β′, when we approximate pfβ′,msg(ω,β′) by sampling, we may need to sample from

a different set of random strings that corresponds to the verifier message msg(ω, β′) (i.e, the set
{s : msg(s, β′) = msg(ω, β′)}), whereas different samples may lead to different queries (by Q).

15Note that this extra condition is required. For example, consider a local corrector that makes the same query
twice and outputs a bluntly wrong value if the two answers are different (which will never happen without adversarial
tampering).
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In contrast, as we shall show below, making the assumption that each verifier’s message does
not depend on any of the previous prover messages, allows to extend the emulation to any number
of rounds. The key notion is of proof-oblivious messages, which are defined as verifier’s messages
that are independent of the prover’s (prior) messages. Indeed, public-coin IPPs are an important
special case of using proof-oblivious messages, but the latter notion extends beyond public-coin
interactions (e.g., any one-round IPP constitutes an IPP that uses proof-oblivious messages).

Theorem 4.10 (emulating multi-round IPPs of the pre-coordinated model that use proof-oblivious
messages): Let Π be a property that can be verified by an r-round IPP in the pre-coordinated model
that uses proof-oblivious messages, makes q queries, and receives prover messages of total length ℓ.
Then, Π has a standard tester of query complexity (poly(r) · ℓ)r · q.

Indeed, Theorem 1.8 follows as a special case. We mention that the emulation provided by Theo-
rem 4.10 is relatively tight, since the proof system of [20, Lem. 3.29] has an r-round version that
yields (via this emulation) a tester with almost optimal query complexity (see Appendix A.3).
Specifically, for any r ∈ [o((log n)/ log logn)], there exists a property Π of functions from [n] to
[n1/(r+1)] that cannot be tested within query complexity n/O(log n)r+1 but can be verified by an
r-round public-coin IPP in the pre-coordinated model using O(1/ϵ) · n1/(r+1) queries and prover
messages of total length Õ(n1/(r+1)).

Proof: Recalling that the verifier’s messages in this model depend only on its randomness, denoted
ω, we let msgi(ω) denote the ith message sent by the verifier when using randomness ω. Without
loss of generality (up to a factor of r), we assume that the prover’s messages are of predetermined
length, and let ℓi denote the length of the ith prover’s message. Indeed, ℓ =

∑
i∈[r] ℓi equals the

total length of the prover’s messages.
We denote a generic message of the verifier (resp., prover) in the ith round by αi (resp., βi).

As in Section 3, we denote by pfα1,β1,...,αi,βi
the probability that the verifier accepts f , conditioned

on the partial i-round transcript being α1, β1, . . . , αi, βi. Our tester will estimate pfλ (up to a small
constant deviation, with high probability). Towards this end, it will also be useful to consider

the corresponding notation for (i − 0.5)-round partial transcripts; that is, pfα1,β1,...,αi
denotes the

probability that the verifier accepts f , conditioned on the partial (i − 0.5)-round transcript being
α1, β1, . . . , αi. In particular, the following result will be used with i = 1, while being proved by
reverse induction (starting at i = r).

Lemma 4.10.1 (main lemma): For each i ∈ [r], let ϵi =
r−i+1
10r and δi = O(r2ℓ′)−i · 2−

∑
j∈[i−1] ℓj ,

where ℓ′ = ℓ + r · log2 ℓ. Then, for every f , every i ∈ [r], and every τ = (α1, β1, . . . , αi), one can

estimate pfα1,β1,...,αi
up to an additive deviation of ϵi with error probability at most δi by making

qi
def
= O(r2 · ℓ′)r−i+1 · q

queries to f . Furthermore, the joint distribution of these qi queries depends only on the αj’s
(j ∈ [i]), and is independent of the βj’s (j ∈ [i− 1]).

In particular, for every α1, we can approximate pfα1 up to an additive deviation of 0.1 with proba-
bility at least 0.99 by making O(r2ℓ′)r · q queries. As in Section 4.1, we are done by observing that

it suffices to approximate pfα1 for a constant number of random α1’s (as drawn according to msg1).
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Proof: As stated above, the lemma is proved by (reverse) induction on i. For the base case (i = r),
we fix a (r − 0.5)-round transcript τr = (α1, β1, . . . , βr−1, αr) and observe that

pfτr = max
βr

{
pfτr,βr

}
Now, as for the one-round case (treated in Section 4.1), for this fixed τr, we can approximate all

pfτr,βr
’s (i.e., for all βr’s) using the same invocations of Qf , where Q represents the querying module

of the verifier (whose final decision is based on the transcript of the interaction and on the output
of the querying module).16 This is because these approximations can be obtained by sampling from
the same set {s : msgsr(s) = (α1, α2, . . . , αr)}, where msgsi(ω) = (msgi(ω), msg2(ω), ..., msgi(ω)).
Specifically, by making O(ϵ−2 · log(1/δ)) invocations of Qf , we get an estimate for each individual

pfτr,βr
that has additive deviation at most ϵ with probability at least 1 − δ. Setting ϵ = ϵr and

δ = 2−ℓr · δr, and taking a union bound over all βr ∈ {0, 1}ℓr , we obtain an estimate of pfτr up to
additive deviation ϵr with error probability at most δr using

O(ϵ−2r · log(2ℓr/δr)) · q = O(r2 · log((r2ℓ′)r · 2ℓ)) · q
= O(r2 · (ℓ+ r · log(r2ℓ′)) · q
= O(r2 · (ℓ+ r · log ℓ)) · q
= O(r2 · ℓ′) · q = qr

queries to f . As is evident from the foregoing description, the joint distribution of these qr queries
is independent of the βj ’s (since the randomness fed to Q is sampled from a space that only depends
on the αj ’s).

Turning to the (reversed) induction step, we assume that the claim holds for some i > 1, and
show that it holds for i − 1. Let τi−1 = (α1, . . . , βi−1, αi−1) be some a fixed ((i − 1) − 0.5)-round
transcript, and note that

pfτi−1
= max

βi−1

{
pfτi−1,βi−1

}
(10)

= max
βi−1

{
Eω

[
pfτi−1,βi−1,msgi(ω)

∣∣∣msgsi−1(ω)=(α1, . . . , αi−1)
]}

(11)

where we use the fact that msgi(ω) is only conditioned by the value of msgsi−1(ω).
17 Now, we

take a sample of t = O(ϵ−2 log(1/δ)) independently and uniformly distributed elements of {s :
msgsi−1(s)=(α1, . . . , αi−1)}, denote the resulting t-multiset by S, and observe that, for every βi−1,
with probability at least 1− δ, it holds that

1

t
·
∑
s∈S

pfτi−1,βi−1,msgi(s)
= Eω

[
pfτi−1,βi−1,msgi(ω)

∣∣∣msgsi−1(ω)=(α1, . . . , αi−1)
]
± ϵ. (12)

For every s ∈ S and every βi−1 ∈ {0, 1}ℓi−1 , we invoke the induction hypothesis regarding

pfτi−1,βi−1,msgi(s)
. Taking a union bound over these t · 2ℓi−1 invocations (of the hypothesis), we

16Recall that, in the pre-coordinated model, the verifier is represented by the triple (Q, I,D), and its decision
regarding f is represented by D(Qf (ω), ⟨P (f), I(ω)⟩), where the ith message sent by I(ω) is msgi(ω).

17Indeed, in the special case of a public-key verifier, this conditioning is trivial (i.e., msgi(ω) is independent of the
previous messages).
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infer that with error probability at lesat 1 − t · 2ℓi−1 · δi, all of the relevant pfτi−1,βi−1,msgi(s)
’s were

estimated up to an additive deviation of ϵi. Combining Eq. (10)&(11) and Eq. (12), it follows that,

with probability at least 1− 2ℓi−1 · t · δi + δ, we estimate pfτi−1 up to additive deviation of at most
ϵi + ϵ. The main claim will follow by using an adequate setting of ϵ and δ, but before doing so we
show that the query complexity is t · qi.

The latter claim relies on the observation that, for every βi−1 and each sample point s ∈ S, the
value of pfτi−1,βi−1,msgi(s)

is estimated using a distribution of queries that depends only on α1, ..., αi−1

and msgi(s). This observation relies on the induction hypothesis (for i), and implies the same fact

for the value of pfτi−1 . Hence, the query complexity at the i − 1st level is t · qi, which equals qi−1,
provided that t = O(r2 · ℓ′).

Turning to the quantitative analysis, we observe that using ϵ = 1/10r and δ = 2−O(ℓ′), it follows
that ϵi + ϵ = r−i+1

10r + 1
10r = ϵi−1 and t = O(r2 · ℓ′), whereas the error probability (at the i − 1st

level) is upper-bounded by

2ℓi−1 · t · δi + δ = 2ℓi−1 ·O(r2ℓ′) ·O(r2ℓ′)−i · 2−
∑

j∈[i−1] ℓj + 2−O(ℓ′)

= O(r2ℓ′)−(i−1) · 2−
∑

j∈[i−2] ℓj

which equals δi−1. The claim follow.

Conclusion. As stated upfront, Lemma 4.10.1 implies that, for every α1, we can approximate pfα1

up to constant deviation of 0.1 with error probability at most 0.01 by making

q′
def
= O(r2 · ℓ′)r · q = O(r2 · (ℓ+ r · log ℓ))r · q = O(r3 · ℓ)r · q

queries. Furthermore, we can estimate pfλ, which represents the probability that the verifier accepts
f , up to an additive deviation of 0.01 with probability 0.99, by the average of a constant number
of pfα1 ’s (for random α1’s). Combining these two facts, it follows that pfλ can be estimated up to an
additive deviation of 0.11 with probability at least 0.98 using O(q′) queries to f . This allows for

distinguishing between the case of pfλ ≥ 2/3 and the case of pfλ ≤ 1/3.

5 On the power of the general model

In this section we prove Theorem 1.3 asserting that the general model of PO-queries cannot be
efficiently emulated by MAPs. Specifically, we show that a natural property that is extremely hard
to verify by (general) MAPs can be verified by 1-round IPP that uses proof-oblivious queries. The
property, denoted PERM, consists of the set of all permutations over [n].

Theorem 5.1 (PERM is hard for MAPs but easy for the general model of PO-queries): PERM can
be verified in the general model (of IPPs with proof-oblivious queries) using O(1/ϵ) queries and
O(ϵ−1 log n) bits of communication, but any MAP for Π that uses a proof of length p must use at
least Ω(n1/2/(p+1)) queries. Furthermore, the IPP with proof-oblivious queries uses a single round
of communication.

Proof: The hardness of PERM for MAPs was established in [18, Lem. 4.3] and contrasted with
a 1-round IPP presented in [18, Sec. 4.1], but this IPP uses proof-dependent queries (i.e., it does
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not satisfy the PO-queries condition).18 Instead, we present the following simple IPP: The verifier
queries the tested function f : [n] → [n] at a random point ω ∈ [n], sends f(ω) to the prover, and
accepts if and only if the prover answers with ω.

Clearly, the verifier always accept when f is a permutation. On the other hand, if f is ϵ-far
from being a permutation, then there are more than ϵn points i ∈ [n] such that f−1(f(i)) is not a
singleton. If the verifier happens to select such a point i, then the prover’s answer leads the verifier
to accept with probability at most 1/|f−1(f(i))| ≤ 1/2. Repeating the process O(1/ϵ) times, in
parallel, yields the desired IPP.

18Their IPP selects a random point ω ∈ [n], sends ω to the prover, and queries f on the prover’s answer, denoted
v. That is, the prover is suppose to answer with v ∈ f−1(ω), and the verifier accepts iff f(v) = ω. We stress that the
verifier queries f at a point provided by the prover.
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Appendices

A.1 An alternative definition of the general PO-queries model

Our definitional approach is based on decomposing the verifier into three modules, called querying,
interacting and deciding, and postulates models based on the interaction between these modules.
In particular, the general model of proof-oblivious queries only postulates that the querying module
gets no information from the other modules.

Inspired by [20, Def. 2.2], which refers to MAPs only, one can take a different approach towards
defining the general PO-queries model, an approach that does not rely on the decomposition of the
verifier into modules. To present this alternative definition, we first define the query set of an IPP
verifier.

Definition A.1 (the verifier’s query set): Let V be an IPP verifier. For an integer n ∈ N,
proximity parameter ϵ > 0, input f : [n]→ [m], randomness ω, and arbitrary prover strategy P , we

define the corresponding query set, denoted Qf
V,P (n, ϵ, ω), as the set of locations (in [n]) queried by

V when using randomness ω in its interaction with the prover P and while querying the input f .

We stress that Qf
V,P (n, ϵ, ω) is well-defined also in case V makes adaptive queries to f ; this is the

reason that f appears in the notation.
Since n is implicit in f and ϵ remains invariant in our discussion, we omit both of them from the

notation; that is, we replace Qf
V,P (n, ϵ, ω) by Q

f
V,P (ω). Also, without loss of generality, we assume

that P is a deterministic strategy, and so for a fixed ω, the query set of V is fully determined. We
now present the alternative definition,

Definition A.2 (alternative definition of the general PO-queries model): Let V be an IPP verifier.
We say that V makes proof-oblivious queries if for every n ∈ N, ϵ > 0, and f , and every fixed ω, it
holds that Qf

V,P1
(ω) = Qf

V,P2
(ω) for any pair of prover strategies P1 and P2.

We show that this definition is, in fact, equivalent to the definition of the general PO-queries model
based on the decomposition into module (as captured in Eq. (3)).

Proposition A.3 (equivalence of the two definitions): For every IPP verifier V , the following two
conditions are equivalent.

1. V satisfies Definition A.2.

2. V can be decomposed into three modules Q, I and D that satisfy the conditions of the general
proof-oblivious queries model; that is, for every prover strategy P and for every ω, it holds
that D(⟨P (f), I(Qf (ω))⟩) = ⟨P (f), V f (ω))⟩).

Proof: Starting from Condition 2, let Q, I and D denote the modules that V is composed of.
Fixing n, ϵ, f , and a random string ω, consider any two prover strategies P1 and P2. Since Q is
the only module of V that queries f , and since Q does not interact with the prover (nor obtains
any information about the prover’s answers from any other module), it follows that Q’s queries are
independent of Pi, and Condition 1 follows.

Turning to the opposite direction and assuming that Condition 1 holds, we derive three modules
(Q, I,D) that satisfy the requirements of the general PO-queries model and perfectly emulate V .
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Querying module (Q): Let P0 be an arbitrary prover strategy (e.g., the prover that always re-
sponds with a string of zeros). Then, on input n, ϵ, ω and oracle access to f , the module Q
emulates an execution of ⟨P0, V

f (n, ϵ;ω)⟩, while using its oracle access to f to answer queries
of V .

Note that Q does not communicate with a prover, but rather emulates P0 by itself.

Interacting module (I): Recall that on input n, ϵ, the module I receives the output of the query-
ing module, which consists of the randomness ω and the sequence of answers provided by f
to queries of Qf . Let us denote the latter sequence by a. The module I interacts with the
actual prover, denoted P , by invoking a copy of V on input n, ϵ and randomness ω, relaying
messages between this copy and P , and providing V with answers to its queries (according
to the record in a).

The point is that, by Condition 1, when using randomness ω, the queries of V during the
interaction with P are identical to its queries during an interaction with P0, whereas these
are exactly the queries made by Q on randomness ω. Hence, the answers are recorded in a,
and I uses these answers when V issues these queries.

Deciding module (D): Recall that on input n, ϵ, the module D receives the output of the in-
teracting module, which consists of the randomness ω, the sequence of answers (denoted a)
provided to the queries made to f , and the sequence of messages (denoted β) sent by the
prover. The module D invokes a copy of V , on input n, ϵ and randomness ω, and emulates
its interaction with the prover (by using β) as well as the oracle’s answers (according to the
record in a). Once V outputs its decision, D outputs it as is.

Again, D’s emulation of the execution of V is perfect, and so its output is exactly the one
that V would have given on the same randomness.

Hence, for every ω, it holds that D(⟨P (f), I(Qf (ω))⟩) = ⟨P (f), V f (ω))⟩), which establishes Condi-
tion 2.

A.2 On parallel repetition of IPPs

We prove that, in the pre-coordinated model, parallel repetition reduces error as expected. Essen-
tially, this is the case since the execution of systems in this model can be represented by max-average
game-trees, just as in the case of standard interactive proof systems (cf. [3, Sec. 4] and [12, Apdx
C.1]). Actually, this holds also for general IPPs, but the proof is more confusing in that context.
We stress that, in all cases, we consider general interactive proof systems that may not be of the
public-coin type and may not have perfect completeness.

Game-trees of standard interactive proof systems. Fixing an input to such an interactive
proof system, we consider the tree of all possible executions, and associate a value to each vertex
in such a tree. The children of an internal vertex correspond to possible messages that the relevant
party may send at the corresponding step. The verifier selects one of these children at random,
according to some distribution that is not necessarily uniform, and the value of the corresponding
vertex equals the expected value of its children. (Note that this selection from a conditional
probability space is not necessarily how the real (possibly private-coin) verifier acts, but this is how
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we view the effect of its actions in the analysis.) An optimal prover selects a child of maximal value,
and this is the value of the parent vertex. The value of a leaf in the tree is the probability that the
verifier accepts conditioned on the corresponding sequence of messages sent during the execution,
where the value is either 0 or 1 in the special case that the sequence of messages fully determines
the verifier’s randomness (e.g., if the verifier sends its entire randomness as its last message). Note
that the value of the root of the game-tree represents the probability that the verifier accepts, which
in turn represents the expected value of the leaf reached in a random execution (with an optimal
prover).

Looking at t parallel executions of such a system, we consider an analogous game-tree, but
define the value of a leaf in this tree as the average of the values of the corresponding t leaves in the
game-tree of the original system. That is, this value is the average of the acceptance probability
in the t executions, not the probability of accepting in the t-way parallel execution, which we did
not define (i.e., we did not say when the parallel execution accepts). We define the value of an
internal vertex in the tree of t executions analogously to the way it was defined for the game-tree
of a single execution. The reader can easily verify that the value of each vertex in the tree that
describes the t-way parallel execution equals the average of the t corresponding vertices in game-tree
of a single execution.19 Furthermore, going over the argument, it follows that the value of a leaf
reached in a random execution of the t-way parallel system (with an optimal prover) is the average
of t independent random variables such that each random variable represent the value of a random
execution of the original system.

19This can be proven by induction from the leaves of the tree. Denoting the value of a vertex v in the game-tree
of a single execution by val(v), and the value of a vertex v in the tree that describes a t-way parallel execution by
val(v), we prove that val(v1, ..., vt) =

∑
i∈[t] val(vi)/t, by assuming that equality holds in each child of (v1, ..., vt).

In the case of a verifier step, letting R(v) be the distribution on vertices representing possible messages used by the
verifier at vertex v (of the original game-tree), we use the fact that

val(v1, ..., vt) = E(c1,...,ct)←(R(v1),,,.,R(vt))

[
val(c1, ...., ct)

]
= E(c1,...,ct)←(R(v1),,,.,R(vt))

1

t
·
∑
i∈[t]

val(ci)


=

1

t
·
∑
i∈[t]

Eci←R(vi)[val(ci)]

=
1

t
·
∑
i∈[t]

val(vi).

Likewise, in the case of a prover step, letting C(v) denote the set of vertices representing possible messages used by
the prover at vertex v (of the original game-tree), we use the fact that

val(v1, ..., vt) = max
(c1,...,ct)∈C(v1)×···×C(vt)

[
val(c1, ...., ct)

]
= max

(c1,...,ct)∈C(v1)×···×C(vt)

1

t
·
∑
i∈[t]

val(ci)


=

1

t
·
∑
i∈[t]

max
ci∈C(vi)

[val(ci)]

=
1

t
·
∑
i∈[t]

val(vi).
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Claim A.4 (main claim): Let X be a random variable that represents the value of random leaf
in the tree corresponding to t parallel executions of the original system, when the prover strategy
aims at maximizing this value. Then, X = 1

t ·
∑

i∈[t] Zi such that the Zi’s are independent random
varaibles each representing the value of random leaf in the tree corresponding to an execution of the
original system, when the prover strategy aims at maximizing this value.

This can be seen by fixing the first i executions, and looking at the i+1st execution. The key point
is that maximizing the average of unrelated values calls for maximizing each of the values.

Game-trees of systems in the pre-coordinated model. As stated upfront, we merely observe
that the same considerations can be applied to the game-tree that corresponds to an IPP system
in the pre-coordinated model. Specifically, we view the querying process as taking place after the
entire interaction is completed. Hence, fixing an input f , the value of a leaf in this game-tree is
defined as the probability that the verifier accepts conditioned on the corresponding sequence of
messages sent during the execution, where this probability is determined by the answers (of f) to
the (random) queries made by the verifier. (That is, again, we look at the verifier’s action as if it
draws its randomness from a conditional probability space, although it actually behaves differently.)
Hence, we established the following fact.

Proposition A.5 (parallel repetition of the pre-coordinated model): Let V be an IPP in the pre-
coordinated model. When running t executions of ⟨P (f), V f ⟩ in parallel, the number of accepting
executions is the sum of t independent 0-1 random variables that are each 1 with probability that
equals the probability of accepting in a single execution of ⟨P (f), V f ⟩.

Hence, error reduction by independent (parallel) executions is available just as in the case of
ordinary randomized algorithms. Specifically, if we need to distinguish the case of rejecting with
probability at most 1/3q from the case of rejection with probability at least 0.4/q, then O(q)
repetitions suffice.

Game-trees of systems in any interactive proof of proximity. Although it may be con-
fusing, the same considerations can be applied to the game-tree that corresponds to a general IPP
system. In this case, for a fixed f , the conditional distributions from which the verifier draws its
messages depend on f . The fact that the real verifier may not know f is irrelevant to the analysis,
which is looking at the execution from a “know all” view point. Furthermore, the same holds with
respect to the queries made by the verifier. Hence, we actually have.

Theorem A.6 (parallel repetition of general IPP systems): Let V be an arbitrary IPP. When
running t executions of ⟨P (f), V f ⟩ in parallel, the number of accepting executions is the sum of
t independent 0-1 random variables that are each 1 with probability that equals the probability of
accepting in a single execution of ⟨P (f), V f ⟩.

A.3 The IPP for tensor/sub-cube sum, generalized and revised

We review the celebrated sum-check protocol of [22], viewing it as applied to an input function
f : Fm → F , and observing that in this case this protocol is implementable by a public-coin IPP
in the pre-coordinated model.
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Recall that the sum-check protocol is used for verifying claims of the form
∑

x∈Hm f(x) = v,
where f : Fm → F describes (or is claimed to describe) a low-degree polynomial, H ⊂ F , and
v ∈ F is a claimed value. Using the standard setting of m = |F|

Θ(log |F|) and n = |F|m, this yields

a system of poly(log n) complexity for a property (called Tensor/Sub-cube Sum) that cannot be
tested with n0.999 queries (cf. [20, Thm. 3.28]). Observing that this IPP can be implemented in
the pre-coordinated model establishes Theorem 1.5. A more general trade-off, obtained by setting
m = r, yields the relative tightness of the emulation (of public-coin r-round IPPs of the pre-
coordinated model) captured by Theorem 4.10. The tightness is further narrowed by using an
auxiliary observation.

The actual property: Tensor/Sub-cube sum. For a finite field F , a subset H ⊂ F and an

integer m ∈ N satisfying m · 2(|H| − 1) < |F|
10 , we consider the Subcube-Sum property that consists

of the set of m-variate polynomials f over F of individual degree at most d
def
= 2 · (|H| − 1) that

sum to 0 on the sub-cube Hm: ∑
x1,...,xm∈Hm

f(x1, . . . , xm) = 0

By [18, Cor. 3.16], the query complexity of testing Subcube-sum is Ω(|H|m/ log |F|). On the other
hand, the sum-check protocol takes m rounds, where in each round the parties reduce the number
of variables in the sum (by one unit), by communicating d+1 < 2|H| field elements. Details follow.

A generic round in the sum-check protocol. The parties enter the ith round with a claim
of the form ∑

xi,...,xm∈Hm

f(ω1, ..., ωi−1, xi, . . . , xm) = vi−1 (13)

where ω1, ..., ωi−1 and vi−1 were determined in prior rounds (and v0 = 0). In the ith round, the
prover is supposed to send the univariate (degree d) polynomial

pω1,...,ωi−1(z)
def
=

∑
xi+1,...,xm∈Hm

f(ω1, ..., ωi−1, z, xi+1, . . . , xm)

and the verifier replies with a uniformly chosen ωi ∈ F . Assuming that the prover responded with
p̃i, the verifier checks that

∑
x∈H p̃i(x) = vi−1. Both parties then set vi ← p̃i(ωi). After the last

iteration, the verifier queries f at the point ω = (ω1, ..., ωm), and accepts if and only if f(ω) = vm.
The foregoing description suffices for the case that f is guaranteed to be a polynomial of

individual degree d. Otherwise, this property has to be tested first; the verifier can do this by
itself (by using O(1/ϵ) ·md queries). The sum-check analysis is then applied to the corresponding
polynomial f ′ that is ϵ-close to f .

Observe that the resultingm-round IPP is of the public-coin type and that it can be implemented
in the pre-coordinated model, because all checks can be relegated to the decision module. The
query complexity of this IPP is 1+O(dm/ϵ), and the total communication is m · (d+1) · log2 |F| =
O(m|H| log |F|). The fact that the overall query complexity is larger than m|H| suggests to avoid
the last round and instead let the verifier check

∑
x∈H f(ω′, x) = vm−1, where ω′ = (ω1, ..., ωm−1).
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Actually, we query f on the entire axis-parallel line (ω1, ..., ωm−1, ·), and also reject if the values do
not fit a univariate polynomial of degree d. (In the analysis, we use that fact that if f is ϵ-close to
an m-variate polynomial of individual degree d, then, with probability at least 0.9, it holds that f
disagrees with f ′ on at most 10ϵ · |F| points on a random axis-parallel line.)

On the relative tightness of Theorem 4.10. We shall demonstrate the relative tightness of
Theorem 4.10 by using the foregoing version of the IPP for Subcube Sum. For any number of rounds
r ≤ 0.5 log2 n/ log2 log2 n, we set m = r + 1 and n = |F|m, which implies |F| = n1/m ≥ (log2 n)

2.
We choose H as big as possible; that is, |H| = Θ(|F|/m). Applying Theorem 4.10 to the foregoing
protocol yields a tester of query complexity

O(cr · q) = O(m|H| log |F|)m−1 · (O(m|H|/ϵ) + |F|)

< O(1/ϵ) · O(|F| log |F|)m

log |F|

= O(1/ϵ) · O((1/m) · log n)m

log |F|
· n,

whereas the aforementioned lower bound (of [18, Cor. 3.16]) on query complexity of testing is

Ω(|H|m)

log |F|
=

Ω(|F|/m)m

log |F|

=
Ω(1/m)m

log |F|
· n.

Hence, the emulation is tight up to a factor of O(1/ϵ) ·O(log n)r+1.
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