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ON THE EXISTENCE OF PSEUDORANDOM GENERATORS*
ODED GOLDREICHT, HUGO KRAWCZYK?, anp MICHAEL LUBY?

Abstract. Pseudorandom generators (suggested and developed by Blum and Micali and Yao) are efficient de-
terministic programs that expand a randomly selected &-bit seed into a much longer pseudorandom bit sequence that
is indistinguishable in polynomial time from an (equally long) sequence of unbiased coin tosses. A fundamental
question is to find simple conditions, as the existence of one-way functions, which suffice for constructing pseudoran-
dom generators. This paper considers regular functions, in which every image of a k-bit string has the same number
of preimages of length k. This paper shows how to construct pseudorandom generators from any regular one-way
function.
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1. Introduction. Inrecentyears, randomness has become acentral notion in the theory of
computation. It is used heavily in the design of sequential, parallel, and distributed algorithms,
and is, of course, crucial to cryptography. Once so frequently used, randomness itself has
become a resource and economizing on the amount of randomness required for an application
has become a natural concemn. It is in this light that the notion of pseudorandom generators
was first suggested and the following fundamental result was derived: the number of coin
tosses used in any practical application (modeled by a polynomial time computation) can be
decreased to an arbitrarily small power of the input length.

The key to the above informal statement is the notion of a pseudorandom generator
suggested and developed by Blum and Micali [BM] and Yao [Y]. A pseudorandom generator
is a deterministic polynomial time algorithm that expands short seeds into longer bit sequences,
such that the output ensemble is polynomially indistinguishable from the uniform probability
distribution. More specifically, the generator (denoted G) expands a k£-bit seed into a longer,
'say 2k-bit, sequence so that for every polynomial time algorithm (distinguishing test) T', any
constant ¢ > 0, and sufficiently large £

|ProblT (G (X)) = 1] — Prob[T (X)) = 1]} < k7%,

where X, is arandom variable assuming as values strings of length », with uniform probability
distribution. It follows that the strings output by a pseudorandom generator G can substitute
the unbiased coin tosses used by any polynomial time algorithm A, without changing the
behavior of algorithm 4 in any noticeable fashion. This yields an equivalent polynomial time
algorithm, 4’, which randomly selects a seed, uses G to expand it to the desired amount, and
then runs 4 using the output of the generator as the random source required by 4. The theory
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of pseudorandomness was further developed to deal with function generators, and permuta-
tion generators, and additional important applications to cryptography have emerged [GGM],
[LR]. The existence of such seemingly stronger generators was reduced to the existence of
pseudorandom (string) generators.

In light of their practical and theoretical value, constructing pseudorandom generators
and investigating the possibility of such constructions is of major importance. A necessary
condition for the existence of pseudorandom generators is the existence of one-way functions
(since the generator itself constitutes a one-way function). On the other hand, stronger versions
of the one-wayness condition were shown to be sufficient. Before reviewing these results, let
us recall the definition of a one-way function.

DEFINITION 1. A function f : {0, 1}* — {0, 1}* is called one-way if it is polynomial time
computable, but not “polynomial time invertible.” Namely, there exists a constant ¢ > 0 such
that for any probabilistic polynomial time algorithm A4, and sufficiently large &

Prob[A(f(x), 1%) & f71(f(x)] > k¢, (),

where the probability is taken over all x’s of length & and the internal coin tosses of 4, with
uniform probability distribution.

(Remark. The role of 1* in the above definition is to allow Algorithm 4 to run for time
polynomial in the length of the preimage it is supposed to find. Otherwise, any function that
shrinks the input by more than a polynomial amount would be considered one-way.)

1.1. Previous results. The first pseudorandom generator was constructed and proved
valid by Blum and Micali, under the assumption that the discrete logarithm problem is in-
tractable on a nonnegligible fraction of the instances [BM]. In other words, it was assumed
that exponentiation modulo a prime (i.e., the 1-1 mapping of the triple (p, g, x) to the triple
(p, 8, g mod p), where p is prime and g is a primitive element in Z7), is one-way. Assuming
the intractability of factoring integers of the foorm N = p - g, where p and g are primes
and p = g = 3 mod 4, a simple pseudorandom generator exists [BBS], [ACGS]." Under
this assumption the permutation, defined over the quadratic residues by modular squaring, is
one-way.

Yao has presented a much more general condition, which suffices for the existence of
pseudorandom generators; namely, the existence of one-way permutations [Y].?

Levin has weakened Yao’s condition, presenting a necessary and sufficient condition for
the existence of pseudorandom generators [L]. Levin’s condition, hereafter referred to as one-
way on iterates, can be derived from Definition 1 by substituting the following line instead of
line(*)

(Vi, 1 <0 < K )Prob[A(SP (), 19 & £~ (SO n] > k¢,

where /) (x) denotes f iteratively applied i times on x (as before the probability is taken
uniformly overall x’s of length k). Clearly, any one-way permutation is one-way on its iterates.
It is also easy to use any pseudorandom generator in order to construct a function that satisfies
Levin’s condition.

Levin’s condition for the construction of pseudorandom generators is somewhat cumber-
some. In particular, it seems hard to test the plausibility of the assumption that a particular

'A slightly more general result, concerning integers with all prime divisors congruent to 3 mod 4, also holds
{CGG].

2In fact, Yao’s condition is slightly more general. He requires that f is 1-1 and that there exists a probability
ensemble IT, which is invariant under the application of f and that inverting f is “hard on the average” when the
input is chosen according to IT.
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function is one-way on its iterates. Furthermore, it has been an open question whether or not
Levin’s condition is equivalent to the mere existence of one-way functions.

1.2. Our results. In this paper, we consider “regular” functions, in which every element
in the range has the same number of preimages. We show how to construct pseudorandom
generators from any regular one-way function.

DEFINITION 2. A function [ is called regular if there is a function m () such that for every
n and for every x € {0, 1}” the cardinality of f~(f(x)) N {0, 1}" is m(n).

Clearly, every 1-1 function is regular (withm (n) = 1, Vr). Ourmain resultis the following
theorem.

MAIN THEOREM. [f there exists a regular one-way function, then there exists a pseudo-
random generator.

A special case of interest is of 1-1 one-way functions. The sufficiency of these functions
for constructing pseudorandom generators does not follow from previous works. In particular,
Yao’s result concerning one-way permutations does not extend to 1-1 one-way functions.

Regularity appears to be a simpler condition than the intractability of inverting on the
function’s iterates. Furthermore, many natural functions (e.g., squaring modulo an integer)
are regular and thus, using our result, a pseudorandom generator can be constructed assuming
that any of these functions is one-way. In particular, if factoring is weakly intractable (i.e.,
every polynomial time factoring algorithm fails on a nonnegligible fraction of the integers)
then pseudorandom generators do exist. This result was not known before. (It was only
known that the intractability of factoring a special subset of the integers implies the existence
of a pseudorandom generator.) Using our results, we can construct pseudorandom generators
based on the (widely believed) conjecture that decoding random linear codes is intractable,
and on the assumed average case difficulty of combinatorial problems as subset-sum.

The main theorem is proved essentially by transforming any given regular one-way func-
tion into a function that is one-way on its iterates (and then applying Levin’s result [L]).

It is interesting to note that not every (regular) one-way function is “one-way on its
iterates.” To emphasize this point, we show (in Appendix A) that from a (regular) one-
way function we can construct a (regular) one-way function, which is easy to invert on the
distribution obtained by applying the function twice. The novelty of this work is in presenting
a direct way to construct a function that is one-way on its iterates from any regular one-way
Sfunction (which is not necessarily one-way on its iterates).

1.3. Subsequent results. Recent results of Impagliazzo, Levin, and Luby [ILL] and
Hastad [H], inspired by the current work, has resolved the problem of equivalence of existence
of one-way functions and pseudorandom generators, in the affirmative. However, in light of
the inefficiency of their construction, some of the ideas presented in the current work may be
useful in future attempts to construct more efficient pseudorandom generators from one-way
functions.

2. Main result.

2.0. Preliminaries. In the sequel, we make use of the following definition of strongly
one-way function. (When referring to Definition 1, we shall call the function weak one-way
or simply one-way.)

DEFINITION 3. A polynomial time computable function f : {0, 1}* — {0, 1}* is called
strongly one-way if for any probabilistic polynomial time algorithm A4, any positive constant
¢, and sufficiently large &,

Prob[A(f(x), 1% € fH(f@)] < k7,
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where the probability is taken over all x’s of length k& and the internal coin tosses of 4, with
uniform probability distribution.

THEOREM (Yao (Y)). There exists a strong one-way function if and only if there exists
a (weak) one-way function. Furthermore, given a one-way function, a strong one can be
constructed.

It is important to note that Yao’s construction preserves the regularity of the function.
Thus, we may assume without loss of generality, that we are given a function f, which is
strongly one—vs/ay and regular.

For the sake of simplicity, we assume f is length preserving (i.e., forall x, | f(x)| = |x]).
Our results hold also without this assumption (see §2.6).

Notation. For a finite set S, the notation s € 'S means that the element s is randomly
selected from the set S with uniform probability distribution.

2.1. Levin’s criterion: A modified version. The proof of the Main Theorem relies on
the transformation of a function, which is one-way and regular into a function, which satisfies
a variant of Levin’s one-way on iterates condition. The modified condition relates to functions,
which leave the first part of their argument unchanged. It requires that the function is one-way
on a number of iterates, which exceeds the length of the second part of its argument. (Levin
requires that the function is one-way on a number of iterations exceeding the length of the
entire argument. )

More precisely, we consider functions F (-, -) defined as

F(h,x) = (h, Fo(h, x)).

That is, F applies a function F; on its arguments and concatenates the first argument # to this
result. We prove the following condition.

LEMMA 1. A sufficient condition for the existence of a pseudorandom generator is the
existence of a function F of the form

F(h, x) = (h, Fy(h, x)),

such that F is strongly one-way for |x| + 1 iterations.

Before proving Lemma 1, let us recall the Blum—Micali scheme for the construction of
pseudorandom generators {BM]. This scheme uses two basic elements: the first, a (strongly)
one-way function f, and the second, a Boolean predicate b(-) called a “hard-core” of the
function f. (Roughly speaking, a Boolean function b(-) is a hard-core predicate of f if it is
polynomial time computable, but no polynomial time probabilistic algorithm given f(x), for
randomly selected x, can compute the value of b(x) with a probablility significantly better
than %.) A pseudorandom generator G is constructed in the following way. On input x (the
seed), the generator G applies iteratively the one-way function f(-) on x for ¢ (= poly(|x|))
times (i.e., f(x), f@x), ..., f@(x)). In each application of f, the predicate b( /) (x)) is
computed and the resultant bit is output by the generator; that is, G outputs a string of length
t. Blum and Micali show that the above sequence of bits is unpredictable when presented
in reverse order (i.e., b( ¥ (x)) first and 5( SV (x)) last), provided that the Boolean function
b(-) is a hard-core predicate on the distribution induced by the iterates /@, 0 < i < t. The
unpredictability of the sequence is proved by showing that an algorithm, which succeeds to
predict the next bit of the sequence with probability better than one-half can be transformed
into an algorithm for “breaking” the hard-core of the function f. Finally applying Yao’s
Theorem [Y] that unpredictable sequences are pseudorandom, we get that the above G is
indeed a pseudorandom generator.

The crucial ingredient in the proof of Levin’s condition, as well as of our modified version,
is the existence of a hard-core predicate for any (slightly modified) one-way function. A recent
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result of Goldreich and Levin [GL] greatly simplifies the original proof in [L]. This result
states that any function f'(x,r) = (f(x),r), where |[x| = |r| has a hard-core predicate for
the uniform distribution on r and any distribution on x for which f is strongly one-way. This
hard-core predicate is the inner product modulo 2 of r and x (viewed as vectors over Z3).

Finally, we recall the following notable property of pseudorandom generators: in order
to have a generator that expands strings to any polynomial length, it suffices to construct a
generator that expands strings of length £ into strings of length & + 1. This generator can be
iteratively applied for polynomially many times without harming the pseudorandomness of
its output {GrM]. We now prove Lemma 1. _

Proof of Lemma 1. Note that FO(h,x) = (h, Fg')(h, x)). Thus, the condition in the
lemma implies that Fy(k, x) is hard to invert for |x| + 1 iterations even when % is given to the
inverter. We construct the following generator, G, which expands its input by one bit. Let s
be the seed for G, sothats = (7, 4, x), where |x| =n,r =rp,...,rn),and forall i, |;| = n.
Then, we define

G(s) =G, h,x)=(F,h,bo,...,bn)

where i = 0,...,n,b; is the inner product modulo 2 of r; and Féi)(h, x). (We denote
FOh, x) =x.)

We claim that this generator is pseudorandom. This is proved by noting that the output
string is unpredictable. This is true for the 7 and s part as they were chosen as truly random
strings. For the other bits, this is guaranteed by the Goldreich—-Levin result and the fact that
Fp is hard to invert for n + 1 iterations (even when £ is given to the inverter). ad

2.2. Mainideas. We prove the Main Theorem by transforming any regular and (strongly)
one-way function f into a new strongly one-way function F for which the conditions of Lemma
1 hold.

The following are the main ideas behind this construction. Since the function f is strongly
one-way, any algorithm trying to invert f can succeed only with negligible probability. Here
the probability distribution on the range f is induced by choosing a random element from
the domain and applying f. However, this condition says nothing about the capability of an
algorithm to invert f/ when the distribution on the range is substantially different. For example,
there may be an algorithm that is able to invert f if we consider the distribution on the range
elements induced by choosing a random element from the domain and applying f twice or
more (see Appendix A). To prevent this possibility, we “randomly” redistribute, after each
application of f, the elements in the range to locations in the domain. We prove the validity
of our construction by showing that the probability distribution induced on the range of f by
our “random” transformations (and the application of f) is close to the distribution induced
by a single application of f.

The function F we construct must be deterministic; and therefore, the “random” redistri-
bution must be deterministic (i.e., uniquely defined by the input to F). To achieve this, we use
high-quality hash functions. More specifically, we use hash functions that map n-bit strings to
n-bit strings, such that the locations assigned to the strings by a randomly selected hash func-
tion are uniformly distributed and n-wise independent. For properties and implementations
of such functions, see {[CW], [J], {CG], [Lu]. We denote this set of hash functions by H (n).
Elements of H (n) can be described by bit strings of length n2. In the sequel, #(e H (n)) refers
to both the hash function and to its representation.

2.3. The construction of F. We view the input string to F as containing two types
of information. The first part of the input is the description of hash functions that implement
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the “random” redistributions, and the other part is interpreted as the input for the original
function f.
The following is the definition of the function F:

F(h()v R hl(n)—lv I.v x) = (h()’ ey hl(n)—la i+a hl(f(x)))v

where x € {0, 1}*, h; € H(n),0 < i <1(n) —~ 1. The function ¢ (n) is a polynomial in 7, and
i* is defined as (i + 1) mod (n).

The rest of this section is devoted to the proof of the following theorem.

THEOREM 2. Let f be a regular and strongly one-way function. Then the function F
defined above is strongly one-way for t(n) iterations on strings x of length n.

Our Main Theorem follows from Theorem 2 and Lemma 1 by choosing ¢ (n) > n.

Let hg, b1, ..., Begny—1 be t(n) functions from the set H(n). Forr = 1,...,¢(n), let g,
be the function g, = fh,_) fh,_2f ... hy f acting on strings of length n, let G, (n) be the set
of all functions g, let g be g,y and let G(n) be the set of such functions g. From the above
description of the function F it is apparent that the inversion of an iterate of F boils down to
the problem of inverting f when the probability distribution on the range of f is g,(x), where
x €x {0, 1}". We show that, for most g € G (n), the number of preimages under g for each
element in its range is close (up to a polynomial factor) to the number of preimages for the
same range element under f. This implies that the same statement is true for most g, € G, (n)
forally = 1,...,1(n). The proof of this result reduces to the analysis of the combinatorial
game that we present in the next subsection.

2.4. The game. Consider the following game played with M balls and M cells, where
t(n) < M < 2" Initially, each cell contains a single ball. The game has 7 () iterations. In
each iteration, cells are mapped randomly to cells by means of an independently and randomly
selected hash function 2 €x H(n). This mapping induces a transfer of balls so that the balls
residing (before aniteration) in cell o are transferred to cell 2(o). We are interested in bounding
the probability that some cells contain “too many” balls when the process is finished. We show
that after ¢ (n) iterations, for  (n) a polynomial, the probability that there is any cell containing
more than some polynomial in # balls is negligibly small (i.e., less than any polynomial in n
fraction).

We first proceed to determine a bound on the probability that a specific set of n balls is
mapped after 7 () iterations to a single cell.

LEMMA 3. The probability, over hg, hy, ..., hypny—1 €r H(n), that a specific set of n balls
is mapped after t (n) iterations to the same cellis bounded above by p(n) = {(n-t (n))/ M1 ~*.

Proof. Let B = {by, by, ..., by} be asetof n balls. Notice that each execution of the game
defines for every ball b; a path through 7(n) cells. In particular, fixing 7(n) hash functions
ho, 1, ..., hymy—1, a path corresponding to each b; is determined. Clearly, if two such paths
intersect at some point, then they coincide beyond this point. We modify these paths in the
following way. The initial portion of the path for b; that does not intersect the path of any
smaller indexed ball is left unchanged. If the path for b; intersects the path for b; for some
J < i, then the remainder of the path for b; is chosen randomly and independently of the other
paths from the point of the first such intersection.

Because the functions #; are chosen totally independently of each other and because each
of them has the property of mapping cells in an n-independent manner, it follows that the
modified process just described is equivalent to a process in which a totally random path is
selected for each ball in B. Consider the modified paths. We say that two balls ; and b; join if
and only if their corresponding paths intersect. Define merge to be the reflexive and transitive
closure of the relation join (over B). The main observation is that if Ag, Ay, ..., A -1 map
the balls of B to the same cell, then by, by, . .., b, are all in the same equivalence class with
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respect to the relation merge. In other words, the probability that the balls in B end up in the
same cell in the original game is bounded above by the probability that the merge relation has
a single equivalence class (containing all of B). Let us now consider the probability of the
latter event.

If the merge relation has a single equivalence class, then the join relation defines a con-
nected graph, which we call the join graph, with the n balls as vertices and the join relation
as the set of edges. The join graph is connected if and only if it contains a spanning tree.
Thus an upper bound on the probability that the join graph is connected is obtained by the
sum of the probabilities of each of the possible spanning trees, which can be embedded in
the graph. Each particular tree has probability at most (¢(7)/M)"~! to be embedded in the
graph since (¢ (r) /M is an upper bound on the probability of each edge to appear in the graph).
Multiplying this probability by the (Cayley) number of different spanning trees (n"~2 cf. [E,
§2.3]), the lemma follows. a

A straightforward upper bound on the probability that there is some set of » balls, which
are merged, is the probability that » specific balls are merged multiplied by the number of
possible distinct subsets of » balls. Unfortunately, this bound is worthless as (%) - p(n) > 1.
(This phenomenon is independent of the choice of the parameter n.) Instead, we use the
following technical lemma.

LEMMA 4. Let S be a finite set, and let Tl denote a partition of S. Assume we have a
probability distribution on partitions of S. For every A C S, we define x4(I1) = 1 if A is
contained in a single class of the partition T and x 4(I1) = 0 otherwise. Let n and n’ be
integers such that n < n’. Let p(n) be an upper bound on the probability that x4 = 1, for
any subset A C S of size n. Let q(n’) be the probability that there exists some B C S such

that |B| > n' and xg = 1. Then
1S
- p(n)
n

nl
n
Proof. For B € § we define £5(IT) = 1 if B is exactly a single class of the partition
IT and &5(IT) = O otherwise. Fix a partition I1. Observe that every B, |B| > n’, for which

£(IT) = 1, contributes at least (’;) different subsets A of size n for which x4 = 1. Thus, we
get that

q(n’) <

(';) Y osMs= Y x(m.

BCS.|B|=n! ACS. | Al=n’

Dividing both sides of this inequality by ("), and averaging according to the probability
distribution on the partitions IT, the left-hand side is an upper bound for g(n’), while the
right-hand side is bounded above by (%) - p(n)/ (7). o

Remark. Lemma 4 is useful in situations when the ratio p(n)/p(n’) is smaller than
(S| —n n’ —n). Assuming that n’ « |S|, this happens when p(n) is greater than |.S|™".
Lemma 3 is such a case; and thus, the application of Lemma 4 is useful.

Combining Lemmas 3 and 4, we get the following theorem.

THEOREM 5. Consider the game played for t(n) iterations. Then, the probability that
there are 4t (n) - n? + n balls, which end up in the same cell, is bounded above by 27"

Proof. Let S be the set of M balls in the above game. Each game defines a partition of
the balls according to their position after ¢ (n) iterations. The probability distribution on these
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partitions is induced by the uniform choice of the mappings 2. Theorem 5 follows by using
Lemma 4 with n’ = 4¢(n) - n> + n and the bound p(n) of Lemma 3. (We also use the fact that
M < 2" and the binomial bound (n’ #n) > (n'/n — 1)".) a

2.5. Proof of Theorem 2. We now apply Theorem 5 to the analysis of the function
F. As before, let G(n) be the set of functions of the form g = fh;m_1f...hof. The
functions 2 = h; are hash functions used to map the range of f to the domain of f. We

let hg, ..., hypm~1 be randomly chosen uniformly and independently from H(n), and this
induces a probability distribution on G (n). Denote the range of f (on strings of length ) by
R(n) = {z1,z2, ..., z)}. Let each z; represent a cell. Consider the function # as mapping

cells to cells. We say that & maps the cell z; to the cell z; if 2(z;) € f -1 (z;), or in other words
f(h(z)) = z;. By the regularity of the function f, we have that the size of f —1(z;) (which we
have denoted by m(n)) is equal for all z; € R(n); and therefore, the mapping induced on the
cells is uniform. It is now apparent that g €z G (n) behaves exactly as the random mappings
in the game described in §2.4; and thus, Theorem 5 can be applied to obtain the next lemma.
(Notice that g €p G (n) means choosing ¢ (n) functions Aqg, ..., i;;my—1 €r H(n) and putting
g= fhim-1f.. hof)

LEMMA 6. There is a constant ¢y, such that for any constant ¢ > 0 and sufficiently
large n

. -1 e 1
Prob [32 with |g” " (2)] = n*® 'm(n)] < el
where g €r G(n).

Note. The constant ¢y depends on the degree of ¢(r). More precisely, we need n®® >
4t (n) - n* + n (see Thm. 5).

Let us denote by G’(n) the set of functions g € G (n) such that for all z in the range of
f,1g71(@)| < n° - m(n). By Lemma 6, G'(n) contains almost all of G (n). It is clear that if
g € G’'(n), then for all z in the range of f and for all » = 1, ..., () the function g, defined
by the first » iterations of g satisfies [g71(z)| < n® - m(n).

LEMMA 7. For any probabilistic polynomial time algorithm A, for any positive constant
¢ and sufficiently large n and for all ¥ = 1, ..., t(n),

Prob(A(g,,2) € f~(2) <n™¢,

where g, €gr G,(n) andz = g, (x),x €x {0, 1}".

Proof. We prove the claim for » = t(n), and the claim for » = 1, ..., t(n) follows
in an analogous way. Assume to the contrary that there is a probabilistic polynomial time
algorithm A and a constant ¢4 such that Prob(A(g, z) € f‘l(z)) > n~%, where g €x G(n)
and z = g(x), x €¢ {0, 1}".

By using 4, we can demonstrate an Algorithm A’ that inverts f, contradicting the one-
wayness of f. The input to 4" is z = f(x), where x € {0, 1}". A4’ chooses g €z G(n) and
outputs A(g, z). We show that 4’ inverts f with nonnegligible probability. By assumption
there is a nonnegligible subset G” (n) of G’ () such that, for each g € G”(n), A succeeds with
significant probability to compute a y € f~'(z), where z = g(x) and x €z {0, 1}". Since
g € G'(n), for all z in the range of f the probability induced by g on z differs by at most a
polynomial factor in n from the probability induced by f. Thus, for g € G"(n), 4 succeeds
with significant probability to compute a y € f ~1(2), wherez = f(x)andx € {0, 1}". This
is exactly the distribution of inputs to 4’, and thus 4’ succeeds to invert f with nonnegligible
probability, contradicting the strong one-wayness of f. a

The meaning of Lemma 7 is that the function f is hard to invert on the distribution induced
by the functions g,, » = 1, ..., t(n), thus proving the strong one-wayness of the function ¥
for ¢ (n) iterations. Theorem 2 follows.
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2.6. Extensions. In the above exposition, we assumed for simplicity that the function f
is length preserving, i.e., x € {0, 1}" implies that the length of f(x) is n. This condition is
not essential to our proof and can be dispensed with in the following way. If f is not length
preserving, then it can be modified to have the following property: For every n, there is an n’
such that x € {0, 1}* implies that the length of f(x) is »’. This modification can be carried
out using a padding technique that preserves the regularity of /. We can then modify our
description of F to use hash techniques mapping »’-bit strings to n-bit strings. Alternatively,
we can transform the above f into a length preserving and regular function f by defining
flxy) = f(x), where |x| = n, |y| =n' —n.

For the applications in §3, and possibly for other cases, the following extension (referred to
as semiregular) is useful. Let { f;}<e(0,1)- be a family of regular functions, then our construction
can still be applied to the function f defined as f(x, y) = (x, f;(»)). The idea is to use the
construction for the application of the function f,, while keeping x unchanged.

Another extension is a relaxation of the regularity condition. A useful notion in this
context is the histogram of a function.

DEFINITION 4. The histogram of the function f : {0, 1}* — {0, 1}* is a function Aist :
N x N — N such that hist;(n, k) is the cardinality of the set

{x €{0, 1}" : {log, | /™' (S (x)I] = k}.

Regular functions have trivial histograms: Let f be a regular function such that for all x €
{0, 1}, lf‘l(f(x))l = m(n). The histogram satisfies zist;(n, k) = 2" for k = |log,(m(n))]
and histy(n, k) = O otherwise. Weakly regular functions have slightly less dramatic his-
tograms.

DEFINITION 5. The function f is weakly regular if there is a polynomial p(-) and a
function &(-) such that the histogram of f satisfies (for all n)

(D) hists(n, b(n)) = ,,2&)

() D fmpouyr1 Pisty(n, k) < ﬁv
Clearly, this definition extends the original definition of regularity. Using our techniques, one
can show that the existence of weakly regular strongly one-way functions implies the existence
of pseudorandom generators. Details follow.

Observe that if the (n)th level of the histogram contains all of the 2" strings of length #,
then we can apply a similar analysis as done for the regular case. The only difference is that
we have to analyze the game of §2.4 not for cells of equal size, but for cells that differ in their
size by a multiplicative factor of at most two. Similar arguments hold when considering the
case where the »(n)th level of the histogram contains at least 1/ p(n) of the strings and the
rest of strings lie below this level (i.e., histy(n, k) = O, for k > b(n)). Note that the “small”
balls of low levels cannot cause the cells of the b(r)th level to grow significantly. On the
other hand, for balls below level b(r) nothing is guaranteed. Thus, we get that in this case the
function F we construct is weakly one-way on its iterates. More precisely, it is hard to invert
on its iterates for at least a 1/ p(rn) fraction of the input strings. In order to use this function
for generating pseudorandom bits, we have to transform it into a strongly one-way function.
This is achieved following Yao’s construction [Y] by applying F in parallel on many copies.
For the present case, the number of copies could be any function of n, which grows faster than
¢ - p(n) - logn, for any constant c. This increases the number of iterations for which F has to
remain one-way by a factor equal to the number of copies used in the above transformation.
That is, the number ¢ (n) of necessary iterates increases from the original requirement of n + 1
(see §2.1) to a quantity that is greater than ¢ - p(n) - n - log n, for any constant c. Choosing
this way the function #(#) in the definition of F in §2.3, we get F, which is one-way for the
right number of iterations.
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Finally, consider the case in which there exist strings above the b(xn)th level. When
considering the game of §2.4 we want to show that, also in this case, most of the cells of the
b(n)th level do not grow considerably. This is guaranteed by condition (ii) in Definition 5.
Consider the worst case possibility in which in every iteration the total weight of the “big”
balls (those above level b(n)) is transferred to cells of the b(n)th level. After ¢ (n) iterations,
this causes a concentration of big balls in the b(n)th level having a total weight of at most
t(n) - 2*/(n - p(n))*. Choosing t(n) = 1 p(n)n?, this weight will be at most 2" /(2p(n)).
But then one-half of the weight in the b(n)th level remains concentrated in balls that were
not affected by the big balls. In other words, we get that the function F so constructed is
one-way for 7 (n) iterations on 1/(2p(n)) of the input strings. Applying Yao’s construction,
as explained above, we get a function F, which satisfies the criterion of Lemma 1 and is then
suitable for the construction of pseudorandom generators.

Further Remarks.

1. The denominator in condition (ii) of Definition 5 can be substituted by any function
growing faster than ¢ - p?(n) - n, for any constant ¢. This follows from the above analysis and
the fact that the construction of a hard-core predicate in [GL] allows extracting log n secure
bits with each application of the one-way function.

2. The entire analysis holds when defining histograms with polynomial base (instead of
base 2). Namely, hists(n, k) is the cardinality of the set

{x € {0, 1) : llogpe, | /1SN =AY,
where Q(n) is a polynomial.

3. Applications: Pseundorandom generators based on particular intractability as-
sumptions. In this section, we apply our results in order to construct pseudorandom gener-
ators (PRGs) based on the assumption that one of the following computational problems is
“hard on a nonnegligible fraction of the instances.”

3.1. PRG based on the intractability of the general factoring problem. It is known
that pseudorandom generators can be constructed assuming the intractability of factoring
integers of a special form [Y]. More specifically, in [Y] it is assumed that any polynomial
time algorithm fails to factor a nonnegligible fraction of integers that are the product of
primes congruent to 3 modulo 4. With respect to such an integer N, squaring modulo N
defines a permutation over the set of quadratic residues mod N; therefore, the intractability of
factoring (such N’s) yields the existence of a one-way permutation [R]. It was not known how
to construct a one-way permutation or a pseudorandom generator assuming that factoring a
nonnegligible fraction of all the integers is intractable. In such a case, modular squaring is a
one-way function, but this function does not necessarily induce a permutation. Fortunately,
modular squaring is a semiregular function (see §2.6), so we can apply our results.

Assumption 1GF (Intractability of the General Factoring Problem): There exists a con-
stant ¢ > O such that for any probabilistic polynomial time algorithm A and sufficiently
large k&

Prob[A(N) does not factorize N1 > k~¢,

where N ey {0, 1}%.

COROLLARY 8. The IGF assumption implies the existence of pseudorandom generators.

Proof. Define the following function f(N, x) = (¥, x* mod N). Clearly, this function
is semiregular. The one-wayness of the function follows from IGF (using Rabin’s argument
[R]). Using an extension of Theorem 2 (see §2.6) the corollary follows. a

Subsequently, J. (Cohen) Benaloh has found a way to construct a one-way permutation
based on the IGF assumption. This yields an alternative proof of Corollary 8.
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3.2. PRG based on the intractability of decoding random linear codes. One of the
most outstanding open problems in coding theory is that of decoding random linear codes. Of
particular interest are random linear codes with constant information rate, which can correct
a constant fraction of errors. An (n, k, d)-linear code is an k-by-n binary matrix in which the
bit-by-bit XOR of any subset of the rows has at least d ones. The Gilbert—Varshamov bound
for linear codes guarantees the existence of such a code provided that k/n < 1 — H;(d/n),
where H, is the binary entropy function [McS, Chap. 1, p. 34]. The same argument can be
used to show (for every € > O) that if k/n < 1 — H((1 + €) - d/n), then almost all k-by-n
binary matrices constitute (n, k, d)-linear codes.

We suggest the following function f : {0, 1}* — {0, 1}*. Let C be an k-by-n binary
matrix, x € {0, 1}%, and lete € E7 <€ {0, 1}" be a binary string with at most ¢t = [(d — 1)/2]
ones, where 4 satisfies the condition of the Gilbert—Varshamov bound (see above). Clearly,
E7 can be uniformly sampled by an algorithm § running in time polynomial in n (i.e., S :
{0, 1}7o¥™ s E™) Let r € {0, 1}7°7™ be a string such that S(r) € E7. Then,

SCox,r) =(C, C(x) + 8(r)),

where C(x) is the code word of x (i.e., C(x) is the vector resulting by the matrix product
xC). One can easily verify that f just defined is semiregular (i.e., fc(x,7) = C(x) + S() is
regular for all but a negligible fraction of the C’s). The vector xC + e(e = S(r)) represents a
code word perturbed by the error vector e.

Assumption IDLC (intractability of decoding random linear codes). There exists a
constant ¢ > 0 such that for any probabilistic polynomial time Algorithm A and sufficiently
large k&

Prob[A(C, C(x) + e) # x] > k¢,

where C is a randomly selected k-by-n matrix, x € {0, 1}* and e € E”.

Now, either Assumption IDLC is false, which would be an earth-shaking result in coding
theory, or pseudorandom generators do exist.

COROLLARY 9.  The IDLC assumption implies the existence of pseudorandom
generators.

Proof. The one-wayness of the function f follows from IDLC. Using an extension of
Theorem 2 (see §2.6) the corollary follows. O

3.3. PRG based on the average difficulty of combinatorial problems. Some combi-
natorial problems, which are believed to be hard on the average, can be used to construct a
regular one-way function and hence be a basis for a pseudorandom generator. Consider, for
example, the Subset-Sum Problem.

Input. Modulo M, |M| = n,and n + 1 integers ayp, a1, . . ., a, of length n-bit each.

Question. Is there a subset I C {1,..., n} suchthat 3, ; a; = ap(mod M)?

Conjecture. The above problem is hard on the average, when the a;’s and M are chosen
uniformly in [2"7}, 2" — 1].

Under the above conjecture, the following weakly regular function is one-way

fs(ar,az, ... an M, 1) = (al,az, v M, (Za,- mod M))

iel

Appendix A. One-way functions, which are not one-way on their iterates. Assuming
that f is a (regular) one-way function, we construct a (regular) one-way function f, which is
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easy to invert on the distribution obtained by iterating f twice. Assume for simplicity that f
is length preserving (i.e., | f(x)| = |x{). let |[x| = |y| and let

flxy) = 0% f(x).

Clearly, fis one-way. On the other hand, for every xy € {0, 127, f(f_(xy)) =0" f(0™) and
0" £(0") € £~10" £ (O™)).
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