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Abstract

Dinur et al. [2] solved the long-standing open problem concerning the existence of locally

testable codes with constant rate, distance, and locality, by constructing the so-called Square

Codes, which we further study in this thesis. Their paper provides a lower bound for the rate of

square codes using a generic technique, namely, the bound is obtained by counting the number

of constraints in the parity check matrix of the code. Although this method yields tight bounds

for the rate of expander codes, that does not seem to be the case for square codes. In fact, we

show that if most expander codes meet the generic rate lower-bound (as is often observed in

practice), then most square codes have rate well above the generic bound.

In this thesis we study the rate and structure of square codes. We find better rate lower

bounds that depend on algebraic properties of the code. We also show that under certain

assumptions square codes can be constructed as a convolution of two expander codes, and

construct a basis for the square code by applying the convolution operator on the bases of two

expander codes.
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Chapter 1

Introduction

We study the rate and structure of ”Square Codes” presented in ”Locally Testable Codes

with constant rate distance, and locality” by Dinur et al. (see [2]). These codes constructively

resolve a long standing question regarding the existence of LTCs with constant rate, distance,

and locality. ”Square Codes” arise from expander codes, which are a family of error correcting

codes constructed from a fixed base code c0 ⊆ Fd
2 (d is constant) and an infinite family of

d-regular expander graphs Gn = (Vn, En) (n → ∞), such that the code corresponding to Gn

consists of functions on En that, for every vertex in Vn, have a ”local view” in c0. That is

Cn = {f : En → F2

∣∣ ∀v ∈ Vn, f |edges(v) ∈ c0} (1.1)

Square codes are similar, only that there are now two base codes cA and cB, and instead

of a graph, the underlying combinatorial object is a 2-dimensional complex, which along with

vertices and edges, also contains squares; two-dimensional faces that contain four edges and

vertices. The complex has two disjoint sets of edges EA ⊔EB, and each square contains exactly

two edges from each set, appearing in alternating order. Each edge in EA touches |B| squares

while EB edges touch |A| squares. Let us present a slightly more formal definition of this

complex.

Left-Right Cayley Complex. Let G be a finite group with two symmetric1 sets of gener-

ators A,B ⊂ G. The left-right Cayley complex X = Cay2(A,G,B) is defined as follows.

• The vertices are X(0) = G.

1A symmetric set of generators A, is a set that satisfies the condition a ∈ A ⇐⇒ a−1 ∈ A, for all a ∈ A.
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• The edges are X(1) = XA(1) ⊔XB(1) where A-edges are obtained by left multiplication,

and B-edges by right multiplication. That is,

XA(1) = {{g, ag}|g ∈ G, a ∈ A}, XB(1) = {{g, gb}|g ∈ G, b ∈ B}

• The squares are

X(2) = {(g, ag, agb, gb, g)|g ∈ G, a ∈ A, b ∈ B}

The square code. Fix a left-right Cayley complex X = Cay2(A,G,B) and base codes

cA ⊆ FA
2 and cB ⊆ FB

2 . The codewords are functions on the squares of the complex that satisfy

edge constraints. That is,

C = {f : X(2) → F2

∣∣ ∀e1 ∈ EA, e2 ∈ EB, f |squares(e1) ∈ cB, f |squares(e2) ∈ cA} (1.2)

Note that (XA(1), X(0)) is the left multiplication Cayley graph Cay(G,A) and (XB(1), X(0))

is the right multiplication Cayley graph Cay(G,B). Throughout this thesis we will use the two

induced expander codes laying on the edges of these graphs:

CA = {f : XA(1) → F2

∣∣ ∀g ∈ G, f |XA(g) ∈ cA}

and

CB = {f : XB(1) → F2

∣∣ ∀g ∈ G, f |XB(g) ∈ cB}

where XA(g) (or XB(g)) denotes the set of A-edges (or B-edges) touching a vertex g ∈ G.

In this thesis we study the rate and structure of square codes. Towards this end, it is

instructive to consider the tensor code of the expander codes CA and CB. The tensor code

CA⊗CB is fully understood in terms of CA and CB; we know that Rate(CA⊗CB) = Rate(CA) ·

Rate(CB). Moreover, given bases B(CA) and B(CB), a basis for CA ⊗ CB is B(CA)⊗ B(CB) =

{v ⊗ u : v ∈ B(CA), u ∈ B(CB)}.

We follow a similar path to construct square codes. Namely, we describe C as the space

spanned by CA ∗ CB, where ∗ is a convolution operator. We find a basis for C, and calculate

the exact rate of square codes under certain assumptions. Our operator is a convolution on

groups, meaning that the summation domain is a subset W ⊆ G, determined by the operands,

and the elements of W act on the operands by ”rotating” them on the graph. That is, for every

fA ∈ CA, fB ∈ CB we define the convolution by

fA ∗ fB =
∑
h∈W

fh
A ·h−1

fB
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where fh
A denotes the right action of h on fA,

h−1
fB denotes the left action of h−1 on fB, and

· is the point-wise product. Unlike tensor codes, in order to obtain a full description of C we

must rely on one of two assumptions: Either both bases B(CA) and B(CB) are invariant
2 to the

group action, or one of the bases is invariant and also has full orbits3 (namely, the only group

element acting trivially on basis elements, is the group’s unit). Another difference between

tensor codes and square codes, is that our exact rate expression depends not only on Rate(CA)

and Rate(CB), but also on orbit sizes. This approach does not only lead us to a tight rate

bound, but also to a better structural understanding of square codes. We now present our main

results.

Theorem 1.1. If B(CB) is closed under the action of G and every orbit in B(CB) has length

|G|, then

Rate(C) = Rate(CA)Rate(CB) .

Theorem 1.2. If B(CA) and B(CB) are closed under the action of G, then

Rate(C) = Rate(CA)Rate(CB) ·
|G|
Ō

,

where Ō is the average orbit length in B(CA)⊗ B(CB).

Theorem 1.3. If B(CB) is closed under the action of G, and one of the following holds:

1. B(CA) is closed.

2. B(CB) has full orbits.

then

C = CA ∗ CB.

We also provide weaker lower bounds for Rate(C), under weaker assumptions (see Theorems

4.1 and 4.2). However, we conjecture that every square code has rate at least Rate(CA) ·

Rate(CB) (see Conjecture 6.4).

2A set S is invariant to the group action if it contains all the ”rotations” of its elements, i.e., applying the

group action on any element of S, yields an element of S.
3The orbit of a codeword is the set of words obtained by applying the group action on the codeword.
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1.1 A comparison to previously known bounds

Under certain assumptions we have

Rate(C) = Rate(CA ⊗ CB) = Rate(CA) ·Rate(CB) (1.3)

It is a well known fact (see e.g. [4]) that any expander code C on Cay(G,S) with base code

c ⊆ {0, 1}|S| satisfies

Rate(C) ≥ 2Rate(c)− 1

Plugging this into Equation (1.3) yields a lower bound in terms of the base code rates ρA =

Rate(cA) and ρB = Rate(cB):

Rate(C) ≥ (2ρA − 1) · (2ρB − 1)

We compare this bound with the two bounds provided by [2].

• Lemma 4.2 in [2] gives the bound

Rate(C) ≥ 2(ρA + ρB)− 3

• Lemma 4.3 in [2] provides a bound that depends on the size of a minimal vertex cover

of (X(1), X(0)) (the graph obtained by the first 2 levels of the complex4). At best, this

graph is bipartite and then Lemma 4.3 assures that

Rate(C) ≥ 2ρAρB − 1

As demonstrated in the Examples section, there are codes that meet our bound, so there cannot

be a general lower-bound above Rate(CA)Rate(CB).

1.2 Organization

In Chapter 2 we present definitions as well as some basic auxiliary lemmas. Chapter 3

establishes an isomorphism between C and a subspace of the tensor code CA⊗CB (see Theorem

3.3). We study the rate and structure of C through this isomorphic space. The main results of

this thesis are presented in Chapters 4 to 7. Chapter 4 provides lower bounds for the rate of C

4Also referred to as the 1-skeleton of X.
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(see Theorems 4.1 and 4.2). In Chapter 5 we prove Theorems 1.1 and 1.2, thereby determining

the precise rate of square codes under the mentioned assumptions. The assumptions in Chapter

4 are weaker than those in Chapter 5, and unsurprisingly yield weaker results. In Chapter 6 we

provide a sufficient condition assuring the existence of a closed basis with full orbits. We then

conjecture that most expander codes have such a basis (see Conjecture 6.3), and that the lower

bound Rate(C) ≥ Rate(CA) · Rate(CB) always holds (see Conjecture 6.4). In Chapter 7 we

show that the square code is the convolution of expander codes, that is, we prove Theorem 1.3.

Beyond this conceptual contribution, we also show how to construct a basis for square codes,

given bases for the expander codes. Chapter 8 contains two examples of square codes with

Rate(C) = Rate(CA)Rate(CB) (which is the rate provided by Theorem 1.1 and our conjectured

”worst case” scenario). Finally, the appendix contains an alternative proof for Theorem 4.1

(Section 9.1) as well as a brief description of another project completed during my master’s

studies (Section 9.2).
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Chapter 2

Preliminaries

2.1 The complexes

The following definitions are taken from [2].

Definition 2.1. (Left-Right Cayley Complex) Let G be a group with two symmetric sets

of generators A,B, namely, each is closed under taking inverses. We assume that the identity

element of G is neither in A nor in B. Define the Left-Right Cayley Complex X = Cay2(A,G,B)

as follows

• The vertices are X(0) = G.

• The edges are X(1) = XA(1) ⊔XB(1) where

XA(1) = {[g, a]|g ∈ G, a ∈ A}, XB(1) = {[g, b]|g ∈ G, b ∈ B}

and [g, a] = {g, ag} for every a ∈ A, g ∈ G (and similarly [g, b] = {g, gb} for b ∈ B, g ∈ G)

• The squares are the equivalence classes of A × G × B, where two triples are equivalent

if they form the same 4-cycle; that is, for any g ∈ G the square (a, g, b) is obtained

by the left-right and right-left paths to the vertex agb (i.e. the paths [g, a], [ag, b] and

[g, b], [gb, a]).

Formally, X(2) = A×G×B/ ∼ where ∼ denotes the relation

(a, g, b) ∼ (a−1, ag, b) ∼ (a−1, agb, b−1) ∼ (a, gb, b−1)
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for every a ∈ A, b ∈ B, g ∈ G. We denote the equivalence class of (a, g, b) obtained by this

relation by [a, g, b], so

[a, g, b] = {(a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1)}.

We note that (X(0), XA(1)) = Cay(G,A) and (X(0), XB(1)) = Cay(G,B).

Definition 2.2. (TNC) A left-right Cayley complex satisfies the total no-conjugacy condition

if

∀a ∈ A, b ∈ B, g ∈ G, g−1ag ̸= b (TNC)

Assuming (TNC) the complex is regular. Specifically, each vertex has edge degree1 |A|+ |B|

and square degree |A| · |B|. Every A edge has square degree |B|, and every B edge has square

degree |A|. Finally, every square contains 4 vertices. We conclude that

|X(1)| = |A|+ |B|
2

· |G| and |X(2)| = |A||B|
4

· |G|.

The next definition will be used in section 7.

Definition 2.3. (Graph product) The product of two graphs G1 = (V1, E1) and G2 = (V2, E2)

is a square complex X = G1 ×G2 defined as follows.

• The vertices are X(0) = V1 × V2

• Two vertices (u, v) and (u′, v) are connected if and only if {u, u′} ∈ E1. Similarly, (u, v)

and (u, v′) are connected if and only if {v, v′} ∈ E2. Formally, the edges are X(1) =

E1 × V2 ⊔ V1 × E2, where an edge ({u, u′}, v) ∈ E1 × V2 connects (u, v) with (u′, v), and

and edge (u, {v, v′}) ∈ V1 × E2 connects (u, v) with (u.v′).

• The squares X(2) are identified with E1 × E2, so that the square corresponding to the

pair of edges e1 = {u, u′} ∈ E1 and e2 = {v, v′} ∈ E2 is the four-cycle

(u, v) → (u, v′) → (u′, v′) → (u′, v) → (u, v).

In our context we will only deal with products of Cayley graphs Cay(G,A) and Cay(G,B).

We note that Cay(G,A)× Cay(G,B) = Cay2(A× {1G}, G×G, {1G} ×B) so

1Throughout this document the degree of a set in the complex refers to the number of sets that contain it.

For example, a square degree of a vertex is the number of squares that the vertex touches.
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• The vertices are X(0) = G×G.

• The edges are X(1) = G × G × A ⊔ G × G × B, where an edge [g, g′, a] connects (g, g′)

with (ag, g′) and an edge [g, g′, b] connects (g, g′) with (g, g′b).

• The squares are X(2) = A×G×G×B ∼= XA(1)×XB(1).

2.2 The codes

Let G be a group, A,B ⊂ G symmetric sets of generators, and let cA ⊂ {0, 1}|A| and

cB ⊂ {0, 1}|B| be (base) codes. We denote [g, A], the set of edges {[g, a] : a ∈ A} ⊆ XA(1) and

describe the following codes:

• The expander code associated with Cay(G,A).

CA = {f : XA(1) → F2

∣∣ ∀g ∈ G, f [g, A] ∈ cA}

CB is defined similarly.

• The squares code (associated with Cay2(A,G,B)).

C = {f : X(2) → F2

∣∣ ∀a ∈ A, b ∈ B, g ∈ G, f [a, g, ·] ∈ cB, f [·, g, b] ∈ cA} (2.1)

• The tensor product of CA and CB (associated with Cay(G,A)× Cay(G,B)).

CA⊗CB = {f : A×G×G×B → F2

∣∣∀g, g′ ∈ G, a ∈ A, b ∈ B, f(·, ·, g, b) ∈ CA, f(a, g
′, ·, ·) ∈ CB}

(2.2)

Equation 2.2 defines tensor codes in terms of CA and CB constraints. Equation 2.1 defines

square codes in terms of edge constraints. It is important to note that in the context of cayley

graphs, these codes can be defined in a more unified way, that is:

1. Through vertex constraints (see Lemma 2.4).

2. Through edges constraints. See equation 2.1 for square codes. If we set X = Cay(G,A)×

Cay(G,B), the edge constraint definition of tensor codes is:

CA ⊗ CB = {f : X(2) → F2

∣∣ ∀a ∈ A, b ∈ B, g, g′ ∈ G, f [a, g′, g, ·] ∈ cB, f [·, g′, g, b] ∈ cA}
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As one can observe by these unified definitions- tensor codes are actually square codes. We

will mostly use the vertex view, so we prove that this type of definition is equivalent to the code

definitions in equations 2.2 and 2.1.

Lemma 2.4. The following definitions are equivalent to equations 2.2 and 2.1:

1. Set X = Cay(G,A)× Cay(G,B).

CA ⊗ CB = {f : X(2) → F2

∣∣ ∀g ∈ G×G, f [·, g, ·] ∈ cA ⊗ cB}

2. Set X = Cay2(A,G,B)

C = {f : X(2) → F2

∣∣ ∀g ∈ X(0), f [·, g, ·] ∈ cA ⊗ cB}

Proof. f(·, ·, g, b) ∈ CA if and only if ∀h ∈ G, f(·, h, g, b) ∈ cA. Similarly, f(a, g′, ·, ·) ∈ CB if

and only if ∀h ∈ G, f(a, g′, h, ·) ∈ cB. So the condition in equation 2.2 is equivalent to the

condition

∀g, g′ ∈ G, a ∈ A, b ∈ B f(·, g′, g, b) ∈ cA, f(a, g
′, g, ·) ∈ cB

Which is the same as

∀g ∈ G×G, f [·, g, ·] ∈ cA ⊗ cB

The proof of the second statement is similar.

Conclusion: CA ⊗ CB is the square code associated with the left-right Cayley complex

Cay(G,A)× Cay(G,B) = Cay2(A× {1G}, G×G, {1G} ×B).

2.3 Group Theory definitions

Definition 2.5. (Group action on a code)

• For every fA ∈ CA, g ∈ G, we define the right action of g on fA by

f g
A[h, a] := fA[hg

−1, a]

for all [h, a] ∈ XA(1).
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• For every fB ∈ CB, g ∈ G, the left action of g on fB is defined by

gfB[h, b] = fB[g
−1h, b]

for all [h, b] ∈ XB(1).

• The action of G on CA ⊗ CB is induced by the actions on CA and CB, specifically, for

every f ∈ CA ⊗ CB, g ∈ G, g acts on f by

f g[a, h, h′, b] = f [a, hg−1, gh′, b]

for all a ∈ A, b ∈ B and h, h′ ∈ G. In particular, if f = fA ⊗ fB we get

f g = f g
A ⊗g−1

fB (2.3)

Lemma 2.6. The actions in Definition 2.5 are well defined.

Proof. In order to show that the actions on C ∈ {CA, CB, CA ⊗ CB} are well defined we need

to show that for every f ∈ C:

1. f g ∈ C for all g ∈ G.

2. f 1G = f .

3. (f g)h = f gh for all g, h ∈ G.

We start with the action of G on CA.

1. First we show that f g ∈ CA for all g ∈ G, f ∈ CA. f g is well defined because neighbors

agree:

f g[v, a] = f [vg−1, a] = f [avg−1, a−1] = f g[av, a−1], ∀v ∈ G, a ∈ A

f g ∈ CA because the vertex views are in cA:

f g[v, ·] = f [vg−1, ·] ∈ cA, ∀v ∈ G

2. f 1G = f for every f ∈ CA.

3. (f g)h = f gh for all g, h ∈ G, f ∈ CA:

(f g)h[v, ·] = f g[vh−1, ·] = f [vh−1g−1, ·] = f [v(gh)−1, ·] = f gh[v, ·]

13



We proceed with the action of G on CB.

1. gf ∈ CB for all g ∈ G. It is easy to verify that neighbors agree and that the local view

gf [v, ·] is in cB for every f ∈ CB, g, v ∈ G.

2. 1Gf = f for every f ∈ CB.

3. h(gf) =hg f for all g, h ∈ G, f ∈ CB:

h(gf)[v, ·] =g f [h−1v, ·] = f [g−1h−1v, ·] = f [(hg)−1v, ·] =hg f [v, ·]

We conclude that the actions on CA and CB are well defined. It follows that the action on

CA ⊗ CB is well defined too.

The following definitions are standard, see e.g. lecture notes by Hugh Osborn.

If a group G acts on a set X, then the following relation is an equivalence relation:

x ∼ x′ ⇐⇒ ∃g ∈ G : xg = x′

Definition 2.7. (orbit) A congruence class of x ∈ X under the relation described above is

called the orbit of x and is denoted by O(x):

O(x) = {xg
∣∣ g ∈ G}

The set of orbits is denoted by X/G.

Corollary 2.8. X is the disjoint union of its orbits, so if X/G = {O(x1), ..., O(xr)}, then

|X| =
∑
i∈[r]

|O(xi)|

Definition 2.9. (Stabilizer) Say a group G acts on a setX. Then for every x ∈ X, the stabilizer

Gx is a subgroup of G that contains all the elements that fix x, that is

Gx = {g ∈ G | xg = x}

Every x′ ∈ O(x) is called a representative of the orbit. The set [g]x ⊆ Gx\G is a set of size

|Gx| that contains all h ∈ G that satisfy xh = xg. There is a bijection between O(x) and Gx\G

defined by xg 7→ [g]x for all xg ∈ O(x). That is, if W ⊆ G is a set of representatives of Gx\G,

then |W | = |O(x)| and O(x) = {xw : w ∈ W}.

14
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Lemma 2.10. Let H ≤ G be a subgroup, and W ⊆ G be a set of representatives of H\G. Then

for any g ∈ G, Wg is a set of representatives of H\G.

Proof. For any g ∈ G,

Hwg = Hw′g ⇐⇒ Hw = Hw′

so [wg] = [w′g] ⇐⇒ [w] = [w′]. We conclude that Wg is a set of representatives of H\G if and

only if W is such a set.

Lemma 2.11. (The stabilizers of an orbit are conjugates)

For every f ∈ CA ⊗ CB, g ∈ G,

Gfg = g−1Gfg

Proof. We prove this statement by mutual inclusion.

• g−1Gfg ⊆ Gfg . For every h ∈ Gf ,

(f g)g
−1hg = fhg = f g

thus g−1hg ∈ Gfg

• Gfg ⊆ g−1Gfg. For every h ∈ Gfg ,

f ghg−1

= (f g)hg
−1

= (f g)g
−1

= f

=⇒ ghg−1 ∈ Gf =⇒ h ∈ g−1Gfg

Lemma 2.12. If W ⊆ G is a set of representatives of Gf\G for some f ∈ CA ⊗ CB, then for

every g ∈ G, g−1Wg is a set of representatives of Gfg\G.

Proof. Lemma 2.11 implies that for every g ∈ G, Gf = gGfgg−1. Therefore, For every w1, w2 ∈

W ,

Gfw1 = Gfw2 ⇐⇒ gGfgg−1w1 = gGfgg−1w2

Multiplying the second expression on the right by g and on the left by g−1 yields

Gfw1 = Gfw2 ⇐⇒ Gfgg−1w1g = Gfgg−1w2g

15



Definition 2.13. A closed basis for a code C, is a basis B(C) that satisfies

B(C)G = B(C)

where

B(C)G := {f g
∣∣ f ∈ B(C), g ∈ G}
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Chapter 3

An isomorphic space

Denote by CA and CB the expander codes on Cay(G,A) and Cay(G,B) with corresponding

base codes cA and cB. Denote by C the square code on Cay2(A,G,B) with base codes cA and cB.

Instead of studying C directly, we study an isomorphic space. In this section we define this space

and establish the isomorphism. More specifically, we present an embedding ϕ : C → CA ⊗ CB

and conclude that C ∼= ϕC (see Lemma 3.4). Then we define a function µ : CA⊗CB → ϕC and

prove that it is onto (see Lemma 3.5). Finally, we conclude that C ∼= µ(CA⊗CB) (see Theorem

3.3).

Figure 3.1: ϕ is an embedding of C in the tensor code.

The equation ϕC = Im(µ) allows us to study C as the image of µ.

We start by defining ϕ and µ (see figure 3.1).

Definition 3.1. The function ϕ : C → CA ⊗ CB is defined by

ϕf [a, g1, g2, b] = f [a, g1g2, b]
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For all f ∈ C, a ∈ A, b ∈ B, g1, g2 ∈ G.

Definition 3.2. The function µ : CA ⊗ CB → ϕC is defined by:

µ(f) =
∑

f ′∈O(f)

f ′

We also use the notation

µ(f) =
∑

[g]∈Gf\G

f g

In this subsection we prove the following theorem.

Theorem 3.3.

C ∼= µ(CA ⊗ CB)

Proof of Theorem 3.3 assuming Lemmas 3.4 and 3.5. By Lemma 3.4, C ∼= ϕC. By Lemma 3.5,

ϕC = µ(CA ⊗ CB). Putting these facts together yields the desired isomorphism.

Lemma 3.4 (C is embedded in the tensor code). The function ϕ is:

1. Well defined.

2. Into CA ⊗ CB.

3. Linear.

4. Injective.

Proof. The function ϕ is:

1. Well defined. Here we need to show that the definition does not depend on the represen-

tatives. Indeed, for all a ∈ A the a-column of ϕf [·, g1, g2, ·] agrees with the a−1-column of

ϕf [·, ag1, g2, ·]:

ϕf [a, g1, g2, ·] = f [a, g1g2, ·] = f [a−1, ag1g2, ·] = ϕf [a−1, ag1, g2, ·]

Similarly, ϕf [·, g1, g2, b] = ϕf [·, g1, g2b, b−1] for all b ∈ B.

2. Into CA ⊗ CB because f [·, g, ·] ∈ cA ⊗ cB for all f ∈ C, g ∈ G.

3. Injective, since ϕf ≡ 0 implies f ≡ 0.
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4. Linear. For every f, f ′ ∈ C, g1, g2 ∈ G,

ϕ(f+f ′)[·, g1, g2, ·] = (f+f ′)[·, g1g2, ·] = f [·, g1g2, ·]+f ′[·, g1g2, ·] = ϕ(f)[·, g1, g2, ·]+ϕ(f ′)[·, g1, g2, ·]

We conclude that C ∼= ϕC.

Lemma 3.5. The function µ (Definition 3.2) is onto ϕC.

Before proving this Theorem we prove the following auxiliary lemma.

Lemma 3.6. µ is invariant with respect to the action of G, that is, for every f ∈ CA ⊗ CB,

g ∈ G,

µ(f g) = µ(f) = µ(f)g

Proof of Lemma 3.6. Denote W ⊆ G a complete set of representatives of Gf\G. By Lemma

2.12, g−1Wg is a complete set of representatives of Gfg\G, therefore,

µ(f g) =
∑
h∈W

(f g)g
−1hg =

∑
h∈W

fhg (3.1)

• We show that µ(f g) = µ(f). By Lemma 2.10, Wg is a complete set of representatives of

Gf\G, so ∑
h∈W

fhg =
∑
h∈Wg

fh = µ(f)

Plugging this into equation 3.1 we conclude that µ(f g) = µ(f).

• We show that µ(f g) = µ(f)g. Due to linearity of the group action,∑
h∈W

fhg = (
∑
h∈W

fh)g = µ(f)g

Plugging this into equation 3.1 yields µ(f g) = µ(f)g.

Proof of Lemma 3.5. First we show that µ is into ϕC. That is, every f⊗ ∈ CA⊗CB has a word

f ∈ C s.t. µ(f⊗) = ϕf . Specifically, the word f defined by

∀g ∈ G, a ∈ A, b ∈ B, f [a, g, b] := µ(f⊗)[a, 1G, g, b]

is in C, and µ(f⊗) = ϕ(f)
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• The definition of f does not depend on the representatives. That is, for every a ∈ A,

f [a, g, ·] = f [a−1, ag, ·] and for every b ∈ B, f [·, g, b] = f [·, gb, b−1]. Indeed,

f [a−1, ag, ·] = µ(f⊗)[a
−1, 1G, ag, ·] = µ(f⊗)

a−1

[a−1, 1G, ag, ·] =

µ(f⊗)[a
−1, a, g, ·] = µ(f⊗)[a, 1G, g, ·] = f [a, g, ·]

where the 2nd transition is due to lemma 3.6, the 3rd transition is by the definition of

the group action, and the 4th transition is true since [a, a−1] = [1G, a] (by the notation of

edges in XA(1)). The equality f [·, g, b] = f [·, gb, b−1] is immediate:

f [·, gb, b−1] = µ(f⊗)[·, 1G, gb, b−1] = µ(f⊗)[·, 1G, g, b] = f [·, g, b]

• f ∈ C. Let W ⊆ G be a set of representatives of Gf⊗\G, then

f [·, g, ·] = µ(f⊗)[·, 1G, g, ·] =
∑
h∈W

fh
⊗[·, 1G, g, ·]

f is clearly a word in C; for every g ∈ G, its local view is a sum of words in cA⊗ cB which

is itself a word in cA ⊗ cB. By the definition of square codes we conclude that indeed

f ∈ C.

• Now we show that µ(f⊗) = ϕf . For all g, g′ ∈ G,

ϕf [·, g, g′, ·] = f [·, gg′, ·] = µ(f⊗)[·, 1G, gg′, ·] = µ(f⊗)
g−1

[·, 1G, gg′, ·] = µ(f⊗)[·, g, g′, ·]

Where the 2nd transition follows from the definition of f , the 3rd transition is due to

Lemma 3.6, and the last transition is by the definition of the action of G on CA ⊗ CB.

We conclude that µ is into ϕC.

Now we show that µ is onto ϕC. We do this by showing that µ
∣∣
ϕC

= Id. Note that for

every f̃ = ϕf ∈ ϕC, O(f̃) = {f̃} because ϕC is invariant with respect to the action of G. That

is, for all g, g′, h ∈ G,

f̃h[·, g, g′, ·] = ϕf [·, gh−1, hg′, ·] = f [·, gg′, ·] = ϕf [·, g, g′, ·] = f̃ [·, g, g′, ·]

We conclude that µ(f̃) = f̃ for all f̃ ∈ ϕC, and thus µ(ϕC) = ϕC and µ is onto.

We completed the proof of Theorem 3.3, establishing the isomorphism C ∼= µ(CA ⊗ CB).

From now on we study the structure and rate of C indirectly, through the study of µ(CA⊗CB).
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Chapter 4

Lower-bounding the rate of square

codes

In this chapter we prove the following theorems.

Theorem 4.1. Assume that WA ⊆ CA and WB ⊆ CB are independent sets that are closed

under the action of G, and denote Ō, the average size of an orbit in WA ⊗WB/G
1. Then

Rate(C) ≥ |WA|
|XA(1)|

· |WB|
|XB(1)|

· |G|
Ō

If WA and WB are bases of their respective codes, then

Rate(C) ≥ Rate(CA)Rate(CB) ·
|G|
Ō

(4.1)

Theorem 4.2. If WB is independent, closed under the action of G, and every orbit in WB has

size |G|, then

Rate(C) ≥ Rate(CA) ·
|WB|

|XB(1)|
If WB is a basis for CB, then

Rate(C) ≥ Rate(CA)Rate(CB) (4.2)

Note that Theorem 4.2 provides a substantial lower bound of Rate(CA) · 2
|B| , even if WB

comprises only a single orbit. In both theorems, assuming that WA and WB form bases for their

respective codes, the rate of the square codes is at least the rate of the associated tensor code.

We will see in Example 8.2 a family of codes where Ō = |G|, leading to the conclusion that

bound (4.2) is tight.

1Note that all orbits in WA ⊗WB/G have size |G| at most, so Ō ≤ |G|.
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4.1 Making assumptions on both expander codes

Let us first assume that WG
A = WA and WG

B = WB. This implies the closure of WA ⊗WB

under the action of G (as defined by Equation (2.3)). Let F = {f1, ..., fℓ} ⊆ WA ⊗WB be a set

of representatives of the orbits WA ⊗WB/G. That is, every O(f) ∈ WA ⊗WB/G has exactly

one representative in F , and

WA ⊗WB =
⋃
i∈[ℓ]

O(fi)

Lemma 4.3. If WA and WB are independent and closed under the action of G, µ(F ) is an

independent set of size |F |.

Proof. Assume that for some α ∈ {0, 1}ℓ,

ℓ∑
i=1

αiµ(fi) =
ℓ∑

i=1

∑
f ′
i∈O(fi)

αif
′
i = 0

Since WA ⊗WB =
⋃
i∈[ℓ]

O(fi) is an independent set, we conclude that α = 0 and thus µ(F ) is

an independent set of size |F |.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.3,

C ∼= µ(CA ⊗ CB)

By Lemma 4.3, µ(F ) is an independent set of size |F | so

dim(C) ≥ |F | (4.3)

Note that

|WA| · |WB| = |WA ⊗WB| =
∑
f∈F

|O(f)| = |F | · Ō

and therefore

|F | = |WA| · |WB|/Ō

We plug this expression into Equation (4.3), divide both sides of the equation by |X(2)| =

|XA(1)| · |XB(1)|/|G| and get

Rate(C) ≥ |WA|
|XA(1)|

· |WB|
|XB(1)|

· |G|
Ō
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If WA and WB are bases, then |WA| = dim(CA) and |WB| = dim(CB) and we obtain the lower

bound

Rate(C) ≥ Rate(CA)Rate(CB) ·
|G|
Ō

4.2 Making assumptions on only one expander code

We proceed to prove Theorem 4.2. We assume only that WB is independent and closed and

make no assumptions on CA. The closure of WB implies that G acts on it. Let FB = {f1, ..., fℓ}

denote a set of representatives of the orbits G\WB.

We will now define functions µH : CA → CA (H ⊆ G) and use them to lower-bound the

dimension of µ(CA ⊗ CB). This may be viewed as a reduction from the problem of calculating

the image of µ(CA ⊗ CB) to the problem of calculating the image of µH(CA).

Definition 4.4. For any subgroup H ⊆ G, we define µH : CA → CA by

µH(f) =
∑

[h]∈Gf∩H\H

fh

Just like µ, the functions µH are not generally linear, but are functions from a linear space

onto a linear subspace. Specifically, µH(CA) is the space CH
A := {f ∈ CA|H ⊆ Gf}:

• µH is into CH
A due to Lemma 4.8.

• µH is onto CH
A because µH(f) = f for every f ∈ CH

A .

Lemma 4.5. If WB ⊆ CB is a closed and independent set, then

dim(µ(CA ⊗ CB)) ≥
∑

fB∈FB

dim(µGfB (CA))

Proof. For every fB ∈ FB denote VfB = Span{O(fB)}. By the independence of WB we have

CA ⊗ CB ⊇
⊕

fB∈FB

CA ⊗ VfB

where CA ⊗ VfB := Span{f1 ⊗ f2|f1 ∈ CA, f2 ∈ VfB}. For every fB ∈ FB, µ(CA ⊗ {fB}) ⊆

CA ⊗ VfB . It follows that

dim(µ(CA ⊗ CB)) ≥
∑

fB∈FB

Rank(µ(CA ⊗ {fB})) (4.4)
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Now we lower-bound Rank(µ(CA⊗{fB})) for every fB ∈ FB. Let B denote a basis for µGfB (CA).

By Lemma 4.8, for every fA ∈ µGfB (CA), GfB ⊆ GfA , and therefore, GfA ∩ GfB = GfB . By

Lemma 4.7, GfA⊗fB = GfA ∩ GfB so µ(fA ⊗ fB) sums over representatives of GfB\G. Now we

show that {µ(f ⊗ fB)
∣∣f ∈ B} is an independent set. Let α ∈ {0, 1}|B|, and assume that

0 =
∑
f∈B

αfµ(f ⊗ fB) =
∑
f∈B

αf

∑
[g]∈GfB

\G

f g ⊗g−1

fB =
∑

[g]∈GfB
\G

(
∑
f∈B

αff)
g ⊗g−1

fB

Since O(fB) is an independent set, the equation above implies that∑
f∈B

αff = 0

which implies that α = 0. We conclude that for every fB ∈ FB,

Rank(µ(CA ⊗ {fB})) ≥ dim(µGfB (CA))

Plugging this inequality into Equation (4.4) completes the proof.

Corollary 4.6. If WB is a closed and independent set, and for every fB ∈ FB,

dim(µGfB (CA)) ≥
dimCA

|GfB |

then

Rate(C) ≥ Rate(CA) ·
|WB|

|XB(1)|

Proof. Applying Lemma 4.5 yields

dim(µ(CA ⊗ CB)) ≥
∑

fB∈FB

dim(CA)

|GfB |
=

dim(CA)

|G|
∑

fB∈FB

|G|
|GfB |

=

dim(CA)

|G|
∑

fB∈FB

|O(fB)| = dim(CA) · |WB|/|G|

Recall that C ∼= µ(CA⊗CB) (see Theorem 3.3). Dividing both sides of the inequality dim(C) ≥

dim(CA) · |WB|/|G| by |X(2)| = |XA(1)| · |XB(1)|/|G| leads to the desired rate lower bound.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We assume that GfB = {1G} for all fB ∈ WB so µGfB = Id and

dim(µGfB (CA)) = dim(CA)
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By Corollary 4.6,

Rate(C) ≥ Rate(CA) ·
|WB|

|XB(1)|
If |WB| = dim(CB), the last inequality turns into

Rate(C) ≥ Rate(CA) ·Rate(CB)

We note that Lemma 4.5 can be used to obtain the same lower bound as in Theorem 4.1

(see Lemma 9.1 in the appendix). However, this path is somewhat longer than the proof we

provided in the current section. We conclude this section with two lemmas we used for the

proofs of Theorems 4.1 and 4.2.

Lemma 4.7. If f = fA ⊗ fB for some fA ∈ CA, fB ∈ CB then

Gf = GfA ∩GfB

Proof. Clearly, every g ∈ GfA ∩ GfB is in Gf , so GfA ∩ GfB ⊆ Gf . Now we show that Gf ⊆

GfA ∩GfB . Let g ∈ Gf , then

f g
A ⊗g−1

fB = (fA ⊗ fB)
g = fA ⊗ fB

Since ⊗ is an injective operator, the equation above implies that (f g
A,

g−1
fB) = (fA, fB) so

g ∈ GfA ∩GfB .

Lemma 4.8. For every f ′ = µH(f),

H ⊆ Gf ′

Proof. Let W denote a set of representatives of Gf ∩H\H. For every h ∈ H,

(f ′)h = (µH(f))h =
∑
w∈W

fwh =
∑

w∈Wh

fw = µH(f) = f ′

Where the last equation is due to Lemma 2.10.
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Chapter 5

The exact rate of square codes

In this chapter we calculate the exact rate of square codes, in two settings– under the

assumption the both CA and CB have a closed basis, or under the assumption that CB has a

closed basis of full orbits. Recall that in Chapter 4 we obtained lower bounds also for codes

that contain independent sets that are closed or have full orbits. In this part we require that

the complete bases comply with one of the aforementioned assumptions. We denote B(CA) and

B(CB), bases for CA and CB. We prove two theorems in this Chapter. Section 5.1 contains the

proof of the following Theorem.

Theorem 5.1. If B(CA) and B(CB) are closed under the action of G, then

Rate(C) = Rate(CA)Rate(CB) ·
|G|
Ō

where Ō is the average orbit length in B(CA)⊗ B(CB)/G.

The proof of the following theorem can be found in Section 5.2.

Theorem 5.2. If B(CB) is closed and has full orbits, then

Rate(C) = Rate(CA) ·Rate(CB)

5.1 Assuming both expander codes have closed bases

In this section we assume that the bases B(CA) and B(CB) are closed under the action of

G. The lower bound in Chapter 4 followed from µ(F ) being an independent set. To prove the

upper bound, we need to show that µ(F ) actually spans ϕC. We find it noteworthy, that had
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µ been a linear function, the task of this section would be easy (i.e., showing that ϕC is spanned

by µ(F )). We elaborate.

• Lemma 3.5 assures that µ is onto ϕC.

• If µ is a linear function then ϕC is spanned by µ(B(CA)⊗ B(CB)).

• It is also easy to see1 that

µ(B(CA)⊗ B(CB)) = µ(F )

All of the above leads to the conclusion that if µ is a linear function, then ϕC = Span{µ(F )}, as

desired. Unfortunately, µ is not generally a linear function. Nevertheless, ϕC is indeed spanned

by µ(F ), alas, we need to work harder to prove it. Let F = {f1, f2, ..., fℓ} ⊆ B(CA) ⊗ B(CB)

denote a set of representatives of the orbits B(CA)⊗ B(CB)/G.

Lemma 5.3. If B(CA) and B(CB) are closed under the action of G, then

µ(CA ⊗ CB) = Span{µ(F )}

Lemma 5.3 leads directly Theorem 5.1.

Proof of Theorem 5.1 assuming Lemma 5.3. By Theorem 3.3 we know that

dim(C) = dim(µ(CA ⊗ CB))

By Lemma 5.3, µ(CA ⊗ CB) = Span{µ(F )} which implies that

dim(C) = Rank(µ(F ))

Lemma 4.3 assures that µ(F ) is an independent set of size |F |. Putting these facts together

yields

dim(C) = |F |

By the definition of F and the closure assumption, |F | = dim(CA)dim(CB)/Ō, so

dim(C) = dim(CA)dim(CB)/Ō

We divide both sides of the equation by |X(2)| = |XA(1)| · |XB(1)|/|G| and obtain the desired

rate expression

Rate(C) = Rate(CA)Rate(CB) · |G|/Ō

1Note that by Lemma 3.6 µ is constant on orbits O(fi) for every fi ∈ F .
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We restate Lemma 5.3 and prove it:

Lemma 5.3 (Restated). If B(CA) and B(CB) are closed under the action of G, then

µ(CA ⊗ CB) = Span{µ(F )}

Proof of Lemma 5.3. We prove this by mutual inclusion. Span{µ(F )} ⊆ µ(CA ⊗ CB) since

µ(F ) ⊆ µ(CA ⊗ CB) and µ(CA ⊗ CB) = ϕC is a linear space. It remains to show that

µ(CA ⊗ CB) ⊆ Span{µ(F )}

As mentioned before, B(CA) ⊗ B(CB) is a basis for CA ⊗ CB. Closure of the expander code

bases implies the closure of B(CA) ⊗ B(CB) under the action of G. As before, we denote

F = {f1, ..., fℓ} a set of representatives of the orbits. Denote also Vi = Span{O(fi)} for every

i ∈ [ℓ]. The closure of B(CA) ⊗ B(CB) implies that CA ⊗ CB =
⊕
i∈[ℓ]

Vfi , so every f ∈ CA ⊗ CB

may be expressed as a sum

f =
ℓ∑

i=1

f̃i

where f̃i ∈ Vi, ∀i ∈ [ℓ]. In order to show that Im(µ) ⊆ Span{µ(F )}, we need to prove that

µ(f) ∈ Span{µ(F )}. We do this in two steps. First we show that µ(f) ∈ Span{µ(f̃i) | ∀i ∈ [ℓ]},

and then we apply Lemma 5.5 which states that µ(f̃i) ∈ {µ(fi), 0} for every i ∈ [ℓ]. We conclude

that µ(f) ∈ Span{µ(F )}.

By definition of µ and linearity of the action of G,

µ(f) = µ(
ℓ∑

i=1

f̃i) =
∑

[g]∈Gf\G

ℓ∑
i=1

f̃ g
i =

ℓ∑
i=1

∑
[g]∈Gf\G

f̃ g
i (5.1)

We now show that
∑

[g]∈Gf\G
f̃ g
i ∈ {µ(f̃i), 0} for every i ∈ [ℓ]. Recall that Gf̃i

stabilizes f̃i. By

Lemma 5.4, Gf =
⋂ℓ

i=1Gf̃i
so Gf ⊆ Gf̃i

(∀i ∈ [ℓ]) which means that the equivalence relation

associated with f refines the relation associated with f̃i. In particular, every class of Gf̃i
\G

contains exactly
|Gf̃i

|
|Gf |

classes of Gf\G. These f -classes are f̃i-equivalent, therefore,

∀i ∈ [ℓ],
∑

[g]∈Gf\G

f̃ g
i =

∑
[g]∈Gf̃i

\G

|Gf̃i
|

|Gf |
f̃ g
i =

|Gf̃i
|

|Gf |
µ(f̃i).

Plugging this expression into equation (5.1) yields

µ(f) =
1

|Gf |

ℓ∑
i=1

|Gf̃i
| · µ(f̃i) (5.2)
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By Lemma 5.5, µ(f̃i) ∈ {0, µ(fi)}, ∀i ∈ [ℓ], so we conclude that µ(f) ∈ Span{µ(F )}.

To prove Lemma 5.3 we used the following lemmas.

Lemma 5.4. Assume that CA ⊗ CB =
⊕
i∈[ℓ]

Vi, and V G
i = Vi for all i ∈ [ℓ]. Then for every

f =
∑
i∈[ℓ]

f̃i ∈ CA ⊗ CB (∀i ∈ [ℓ], f̃i ∈ Vi),

Gf =
⋂
i∈[ℓ]

Gf̃i

Proof. Clearly Gf ⊇
⋂
i∈[ℓ]

Gf̃i
so we only need to show that Gf ⊆

⋂
i∈[ℓ]

Gf̃i
. For any g ∈ Gf ,

∑
i∈[ℓ]

f̃i = f = f g =
∑
i∈[ℓ]

f̃ g
i

Since V G
i = Vi for all i ∈ [ℓ], and CA ⊗ CB =

⊕
i∈[ℓ]

Vi, the last equation implies that

∀i ∈ [ℓ], f̃i = f̃ g
i

so g ∈
⋂
i∈[ℓ]

Gf̃i
.

Lemma 5.5. Assume that

• O(f) is an independent set for some f ∈ CA ⊗ CB, and

• f̃ ∈ Span{O(f)}.

then

µ(f̃) ∈ {0, µ(f)}

Proof. Since f̃ ∈ Span{O(f)} there exists a set of representatives S ⊆ G s.t.

f̃ =
∑
h∈S

fh

We denote W ⊆ G, a complete set of representatives of Gf̃\G and express µ(f̃) in terms of

S and W :

µ(f̃) =
∑
w∈W

f̃w =
∑
w∈W

∑
h∈S

fhw

29



For every g ∈ G we define ng to be the number of pairs (h,w) ∈ S ×W s.t. [hw]f = [g]f .

That is,

ng := |{(h,w) ∈ S ×W : [hw]f = [g]f}|

We express µ(f̃) using this notation.

µ(f̃) =
∑

[g]∈Gf\G

ngf
g (5.3)

We will show that the parity of ng is the same for all g ∈ G, and conclude that

µ(f̃) ∈ {0, µ(f)}

where the value of µ(f̃) follows from the parity of the ng’s. Assume towards contradiction that

for some g1, g2 ∈ G,

ng1 ̸= ng2(mod 2) (5.4)

and set h = g−1
2 g1 (so that g1h

−1 = g2). Let T ⊆ G be a complete set of representatives of

Gf\G, then equation 5.3 implies that

µ(f̃)h =
∑
g∈T

ngf
gh =

∑
g∈T

nghh−1f gh =
∑
g∈Th

ngh−1f g =
∑

[g]∈Gf\G

ngh−1f g

where the last transition is due to Lemma 2.10. By Lemma 3.6, µ(f̃) = µ(f̃)h for every h ∈ G,

so

0 = µ(f̃)− µ(f̃)h =
∑

[g]∈Gf\G

ngf
g −

∑
[g]∈Gf\G

ngh−1f g =
∑

[g]∈Gf\G

(ng − ngh−1)f g

The orbit O(f) is an independent set, so for every [g] ∈ Gf\G,

ng = ngh−1(mod 2) (5.5)

In particular, plugging g = g1 and g1h
−1 = g2 into equation 5.5 leads to a contradiction to

assumption 5.4.

5.2 Assuming one expander code has a closed basis of

full orbits

.
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In this section we assume that the basis B(CB) is closed under the action of G and has full

orbits (namely, GfB = {1G} for every fB ∈ B(CB)). Recall that FB is a set of representatives

of the orbits G\B(CB), so we have

|FB| =
dim(CB)

|G|

Proof of Theorem 5.2 assuming Lemma 5.8. By Lemma 5.8, µ(CA ⊗ CB) is spanned by

{µ(fA ⊗ fB)|fA ∈ B(CA), fB ∈ FB}

This is a set of size at most

|B(CA)| · |FB| = dim(CA) · dim(CB)/|G|

so

dim(C) = dim(µ(CA ⊗ CB)) ≤ dim(CA) · dim(CB)/|G|

We divide both sides by |X(2)| = |XA(1)| · |XB(1)|/|G| and get

Rate(C) ≤ Rate(CA) ·Rate(CB)

The right side of the inequality is exactly the lower bound provided by Theorem 4.2, thus we

conclude that

Rate(C) = Rate(CA) ·Rate(CB)

Lemma 5.6. Assume that B(CB) is closed and has full orbits. Let f ∈ CA ⊗ VfB for some

fB ∈ B(CB). Then there exists a set T ⊆ G representing |T | different Gf\G classes, and

functions ft ∈ CA,∀t ∈ T , s.t.

f =
∑
t∈T

∑
g∈Gf

(ft ⊗t fB)
g

Proof. f can always be expressed as

f =
∑
s∈S

fs ⊗s fB

for some set S ⊆ G, and {fs}s∈S ⊂ CA.

For every s ∈ S we show that [s]Gf
⊆ S and that {fs′}s′∈[s]Gf

= {f g
s }g∈Gf

. For every g ∈ Gf ,∑
s∈S

f g
s ⊗g−1s fB = f g = f =

∑
s∈S

fs ⊗s fB
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The orbit O(fB) is an independent set and a full orbit, so the equation above implies that

g−1S = S. In other words, every s ∈ S has exactly one s′ ∈ S s.t. s′ = g−1s and

f g
s ⊗s′ fB = fs′ ⊗s′ fB

which implies that

fs′ = f g
s

so

fs′ ⊗s′ fB = f g
s ⊗g−1s fB = (fs ⊗s fB)

g

We denote T ⊆ S, a set of representatives of the Gf\G classes contained in S2, and obtain the

equation

f =
∑
t∈T

∑
g∈Gf

(ft ⊗t fB)
g

Lemma 5.7. Assume that B(CB) is closed and has full orbits, then

µ(CA ⊗ VfB) ⊆ Span{µ(fA ⊗ fB)|fA ∈ B(CA)}

for every fB ∈ B(CB).

Proof. By Lemma 5.6 we can express any f ∈ CA ⊗ VfB as

f =
∑
t∈T

∑
g∈Gf

(ft ⊗t fB)
g

where T ⊆ G represent |T | different Gf\G classes, and ft ∈ CA,∀t ∈ T . GfW = G for every

W , a set of representatives of Gf\G, so

µ(f) =
∑
w∈W

∑
t∈T

∑
g∈Gf

(ft ⊗t fB)
gw =

∑
t∈T

∑
g∈G

(ft ⊗t fB)
g =

∑
t∈T

µ(ft ⊗t fB) =
∑
t∈T

µ(f t
t ⊗ fB)

The third equality is due to Lemma 4.7. The last equation is due to Lemma 3.6. So far

we proved that µ(f) ∈ Span{µ(fA ⊗ fB)|fA ∈ CA}. To complete our proof we must show

2That is, S is the disjoint union
⋃
t∈T

[t]Gf
.
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that Span{µ(fA ⊗ fB)|fA ∈ CA} ⊆ Span{µ(fA ⊗ fB)|fA ∈ B(CA)}. Indeed, for every fA =∑
fi∈B(CA)

αifi ∈ CA,

µ(fA ⊗ fB) =
∑
g∈G

[(
∑

fi∈B(CA)

αifi)⊗ fB]
g =

∑
g∈G

∑
fi∈B(CA)

αi(fi ⊗ fB)
g =

∑
fi∈B(CA)

αiµ(fi ⊗ fB)

Lemma 5.8. Assume that B(CB) is closed and has full orbits, then

µ(CA ⊗ CB) = Span{µ(fA ⊗ fB)|fA ∈ B(CA), fB ∈ FB}

Proof. The inclusion

Span{µ(fA ⊗ fB)|fA ∈ B(CA), fB ∈ FB} ⊆ µ(CA ⊗ CB)

requires no proof. We prove the other direction. The closure of B(CB) implies that

CA ⊗ CB =
⊕
fi∈FB

CA ⊗ Vfi

where Vfi := Span{O(fi)}, and CA ⊗ Vfi := Span{fA ⊗ fB|fA ∈ B(CA), fB ∈ O(fi)} for every

fi ∈ FB. So every f ∈ CA ⊗ CB can be expressed as a sum

f =
∑
fi∈FB

f̃i

where f̃i ∈ CA ⊗ Vfi for all fi ∈ FB. Following the exact same steps as in Lemma 5.3 (see

Equations (5.1) to (5.2)) yields

µ(f) =
1

|Gf |
∑

i:fi∈FB

|Gf̃i
| · µ(f̃i)

By Lemma 5.7, for every fi ∈ B(CB),

µ(f̃i) ∈ Span{µ(fA ⊗ fi)|fA ∈ B(CA)}

and we conclude that

µ(f) ∈ Span{µ(fA ⊗ fi)|fA ∈ B(CA), fi ∈ FB}
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Chapter 6

Closed, full orbit bases are likely

The lower-bounds obtained in Chapter 4 rely on assumptions, while we have not actually

presented a good code that satisfies any of those assumptions. However, it is likely that most

expander codes have a large closed independent set of full orbits. In this short section we explain

this statement. First, we must present another definition.

Definition 6.1 (Induced Sub-code). Let H be the parity check matrix of an expander code

CB, and B1 ⊆ B a symmetric set of generators. Denote HB1 , the columns of H corresponding

to B1-edges. We define

CB1 := Ker(HB1)

and say that HB1 has maximal rank if Span{Cols(HB1)} = Span{Cols(H)}.

Note that CB1 is an expander code on Cay(G,B1) and is embedded in CB. Denote B0 =

B \B1.

Lemma 6.2. If b2 ̸= 1G for every b ∈ B, and HB1 has maximal rank, then the bits corresponding

to B0-edges may be used as message bits and

Rate(C) ≥ Rate(CA) ·
|B0|
|B|

(6.1)

If additionally |XB1(1)| = Rank(H) then CB has a closed basis of full orbits and

Rate(C) = Rate(CA) ·Rate(CB)

Proof. In order to show that the bits corresponding to B0-edges may be used as message bits,

we must prove that every m ∈ F|XB0 (1)| can be encoded. The columns of HB1 span the column
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space of H, in particular, −HB0m is in the image of HB1 . Let x be a vector s.t. HB1x = −H0m,

then

x

m

 is a codeword in CB, so m can be encoded.

We proceed to proving Equation (6.1). We find a closed independent set of full orbits, and

size |XB0(1)|, and apply Theorem 4.2. For every g ∈ G, b ∈ B0, let 1[g,b] ∈ F|XB0 (1)| denote the

indicator function of the edge [g, b]. The set

WB = {ENC(1[g,b])|g ∈ G, b ∈ B0} (6.2)

is clearly independent and closed under the action of G. Additionally, every function in WB

has a full orbit: Assume that h1[g,b] = 1[g,b]. Then, 1[g,b][h
−1g, b] = 1[g,b][g, b] = 1 which implies

that h = 1G. i.e., the stabilizer of 1[g,b] is trivial
1.

Theorem 4.2 assures that

Rate(C) ≥ Rate(CA) ·
|WB|

|XB(1)|

We plug |WB| = |XB0(1)| = |B0|
2

· |G| and |XB(1)| = |B|
2
· |G| into this expression and get

Rate(C) ≥ Rate(CA) ·
|B0|
|B|

If |XB1(1)| = Rank(H) then XB0(1) are exactly the message bits of CB, and WB = B(CB)

is a closed basis of full orbits. By Theorem 5.2

Rate(C) = Rate(CA) ·Rate(CB)

We conjecture that Rank(HB1) = |XB1(1)| = Rank(H) is actually the typical case.

Conjecture 6.3. If b2 ̸= 1G for every b ∈ B, Cay(G,B) is an expander, and cB is a random

code, then H has full rank w.h.p.

This conjecture implies that HB1 is likely to have full rank. If HB1 is square we get

Rank(HB1) = |XB1(1)| = Rank(H). Together with Lemma 6.2, this conjecture implies that

typically, expander codes have a closed basis of full orbits and square codes have the same rate

as their associated tensor code.

1This is where we used the assumption on the order of the elements in B. If there’s an order 2 element b,

then the stabilizer of 1[g,b] is {1G, gbg−1} and the whole argument fails.
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We would like to point out to the seeming irony in the last statement. Assuming that most

expander codes have the worst possible rate (i.e., a full rank parity-check matrix), we obtain

an ”improved” rate for square codes. This seems very unreasonable, leading us to another

conjecture.

Conjecture 6.4. For all expander codes CA and CB,

Rate(C) ≥ Rate(CA) ·Rate(CB)
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Chapter 7

Square codes as a convolution of

expander codes

Given fA ∈ CA and fB ∈ CB we define the convolution operator by

(fA ∗ fB)[a, g, b] =
∑

[h]∈GfA
∩GfB

\G

fA[h
−1, a] · fB[hg, b] =

∑
[h]∈GfA

∩GfB
\G

fh
A[1G, a] ·h

−1

fB[g, b] (7.1)

for every a ∈ A, b ∈ B, g ∈ G. In this section, we explore C as an operation on two codes

similarly to the tensor code as a product of two codes. However, while B(CA)⊗B(CB) forms a

basis for CA ⊗ CB, B(CA) ∗ B(CB) is usually not an independent set, but we will prove in the

following Theorem, that it contains a basis for C.

Theorem 7.1. If B(CB) is closed and one of the following holds:

1. B(CA) is closed.

2. B(CB) has full orbits.

then

C = CA ∗ CB

where

CA ∗ CB := Span{fA ∗ fB | fA ∈ B(CA), fB ∈ B(CB)}

Towards this end we prove the following lemma.
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Lemma 7.2. For every fA ∈ CA, fB ∈ CB, g ∈ G, a ∈ A, b ∈ B,

ϕ−1 ◦ µ(fA ⊗ fB) = fA ∗ fB

where ϕ−1 : ϕC → C is defined by1

ϕ−1f([a, g, b]) := f [a, 1G, g, b]

Proof. First we show that ϕ−1 is indeed the inverse of ϕ:

∀f ∈ C, ϕ−1 ◦ ϕf [a, g, b] = ϕf [a, 1G, g, b] = f [a, g, b]

We move on to prove the main statement. For every a ∈ A, b ∈ B, g ∈ G,

ϕ−1 ◦ µ(fA ⊗ fB)[a, g, b] = µ(fA ⊗ fB)[a, 1G, g, b] =
∑

[h]∈GfA
∩GfB

\G

(fh
A ⊗h−1

fB)[a, 1G, g, b] =

∑
[h]∈GfA

∩GfB
\G

fh
A[1G, a] ·h

−1

fB[g, b] = (fA ∗ fB)[a, g, b]

The second transition is due to Lemma 4.7 (which states that GfA⊗fB = GfA ∩GfB).

Corollary 7.3. If B(CA) and B(CB) are closed under the action of G then

B(C) = {fA ∗ fB | fA ⊗ fB ∈ F}

forms a basis for C2.

Proof. In previous sections we established that µ(F ) is a basis for ϕC. The inverse of ϕ is a

linear bijection from ϕC onto C and thus ϕ−1 ◦ µ(F ) forms a basis for C. By Lemma 7.2, this

set is no other than

{fA ∗ fB | fA ⊗ fB ∈ F}

We conclude that

B(C) = {fA ∗ fB | fA ⊗ fB ∈ F}

is a basis for C.

1Note that functions in ϕC are constant on the squares {[a, h−1, hg, b] | h ∈ G} for every g ∈ G, a ∈ A, b ∈ B,

so we could equally define ϕ−1 by ϕ−1f([a, g, b]) := f [a, h−1, hg, b] for any h ∈ G.
2Section 9.1 provides a more specific characterisation of F .
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Corollary 7.4. If B(CB) is closed and has full orbits, then

B(C) = {fA ∗ fB|fA ∈ B(CA), fB ∈ FB}

where FB is a set of representatives for the orbits G\B(CB).

Proof. Lemma 5.8 shows that {µ(fA⊗fB)|fA ∈ B(CA), fB ∈ FB} is a basis for µ(CA⊗CB) = ϕC.

Using this fact and following the same line of argumentation as in Corollary 7.3, proves this

corollary.

Now we are ready to prove our main theorem for this section.

Proof of Theorem 7.1. We need to show that

C = Span{B(CA) ∗ B(CB)}

In Corollary 7.3 and 7.4 we saw that C is spanned by {fA ∗ fB | fA ⊗ fB ∈ F} ⊆ B(CA) ∗

B(CB) or {fA ∗ fB | fA ∈ B(CA), fB ∈ FB} ⊆ B(CA) ∗ B(CB), so we only need to show that

Rank{B(CA) ∗ B(CB)} can be no larger than the size of these sets, which is true since ϕ−1

preserves the rank.
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Chapter 8

Examples- square codes that meet our

bound

Example 8.1. CA⊗CB is the square code obtained by the left-right Cayley complex Cay(G,A)×

Cay(G,B) = Cay2(A×{1G}, G×G, {1G}×B) and base codes cA and cB. The expander codes

C̃A and C̃B, defined by Cay(G,A) × Cay(G,B) and base codes cA and cB, are spanned by

the |G| ”copies” of the base elements of B(CA) and B(CB), corresponding to the |G| copies of

Cay(G,A) and Cay(G,B) embedded in Cay(G,A) × Cay(G,B), so |B(C̃A)| = |G| · |B(CA)|

and |B(C̃B)| = |G| · |B(CB)|. The block-length of C̃A and C̃B is also |G| times the block-length

of CA and CB. We conclude that Rate(CA) = Rate(C̃A) and Rate(CB) = Rate(C̃B). Without

assuming anything on C̃A and C̃B we have

Rate(CA ⊗ CB) = Rate(CA) ·Rate(CB) = Rate(C̃A) ·Rate(C̃B)

Example 8.2. Set G = Zn × Zn, a1 = (1, 0), a2 = (0, 1) and b = (1,−1). The sets

of generators are A = {a1,−a1, a2,−a2} and B = {b,−b}. The base codes are cA =

Span{{a1,−a1}, {a2,−a2}} ⊂ {0, 1}4 and cB = Span{{b,−b}} ⊂ {0, 1}2.

1. We find B(CA) and B(CB) of sizes 2n and n that are closed under the action of G.

2. We show that for every fA ∈ B(CA), fB ∈ B(CB),

|O(fA ⊗ fB)| = |G|

so Ō = |G|.
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3. We conclude from Theorem 5.1 that

dimC = dim(CA)dim(CB)/Ō = (2n · n)/n2 = 2

We may visualize Cay(G,A) as a grid–its horizontal edges corresponding to the generators a1

and −a1, and its vertical edges corresponding to the generators a2 and −a2. It is not hard to see

that CA is spanned by the indicator functions of the horizontal and vertical lines. Similarly, CB

is spanned by the indicator functions of the diagonal lines. We formally define the horizontal

line indicators.

f−
z [g, ·] :=

{a1,−a1} g ∈ (0, z) + ⟨a1⟩

∅ else

Similarly, the vertical lines are indicated by

f |
z[g, ·] :=

{a2,−a2} g ∈ (z, 0) + ⟨a2⟩

∅ else

Claim 8.3. {f−
z , f

|
z}z∈Zn is a closed basis for CA.

Proof. 1. We show that {f−
z , f

|
z}z∈Zn is a basis for CA. The set {f−

z , f
|
z}z∈Zn is obviously

independent (no line is a sum of other lines). On the other hand, every f ∈ CA is constant

on the lines (horizontal and vertical), so {f−
z , f

|
z}z∈Zn spans CA.

2. G moves horizontal lines to horizontal lines (and vertical lines to vertical lines). Thus,

{f−
z , f

|
z}z∈Zn is closed under the action of G.

Similarly, the diagonal indicators defined bellow form a closed basis for CB.

f \
z [g, ·] :=

{b,−b} g ∈ (z, 0) + ⟨b⟩

∅ else

Claim 8.4. For every fA ∈ {f−
z , f

|
z}z∈Zn, fB ∈ {f \

z }z∈Zn, |O(fA ⊗ fB)| = |G|.

Proof. We show that the intersection GfA ∩ GfB is trivial for every fA ∈ {f−
z , f

|
z}z∈Zn , fB ∈

{f \
z }z∈Zn . By Lemma 4.7,

GfA⊗fB = GfA ∩GfB
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so |O(fA⊗ fB)| = |G|
|GfA⊗fB

| = |G| as desired. Assume WLOG that fA indicates a horizontal line,

then GfA = Zn × {0}. For every diagonal indicator fB, GfB = Zn · (1,−1). The intersection of

these sets is indeed trivial (the Singleton {(0, 0)}).

Note that the last example actually demonstrates a somewhat more general phenomena.

Namely, if CA is spanned by kA lines, CB is spanned by kB different lines, then dim(C) =

(kA · kB)/n2, which is a constant, so Rate(C) = O( 1
|Zn×Zn|).
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Chapter 9

Appendix

9.1 An alternative proof for Theorem 4.1

In Chapter 4 we used different tools to prove Theorems 4.1 and 4.2. Although longer, we

present here a proof for Theorem 4.1 using the same technique as in Theorem 4.2. This proof

reveals more about F , a set of representatives of the orbits WA ⊗WB/G. We saw in Chapter 4

that µ(F ) is an independent set, a fact that allowed us to lower-bound Rate(C). Here we learn

that F can be chosen as ⋃
fA∈FA,fB∈FB

{µGfB (fu
A)⊗ fB

∣∣u ∈ U(fA, fB)}

where U(fA, fB) is a set of representatives of the double coset GfA\G/GfB , FA is a set of

representatives of WA/G, and FB is a set of representatives of G\WB.

Lemma 9.1. Assume that WA ⊆ CA is independent and closed under the action of G. Then

for every fB ∈ CB,

Rank(µGfB (CA)) ≥
∑

fA∈FA

|O(fA)| · |O(fB)|
|O(fA ⊗ fB)|

where FA is a set of representatives of the orbits WA/G.

Proof. Since CA ⊆
⊕

fA∈FA

VfA and µH(VfA) ⊆ VfA for every H ⊆ G, fA ∈ FA we have

Rank(µGfB (CA)) ≥
∑

fA∈FA

Rank(µGfB (VfA))

For every fA ∈ FA, denote U a set of representatives of the double coset GfA\G/GfB . We claim

that the set

{fug
A |u ∈ U, [g] ∈ Gfu

A
∩GfB\GfB}
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is independent. Since O(fA) is independent we only need to show that fug
A = fu′g′

A implies that

u = u′ and [g] = [g′]. Indeed, fug
A = fu′g′

A implies that

u′g′g−1u−1 ∈ GfA =⇒ u′ ∈ GfAuGfB

and fug
A = fug′

A implies that [g] = [g′]. An immediate conclusion is that

{µGfB (fu
A)|u ∈ U}

is independent, so

Rank(µGfB (VfA)) ≥ |U | = |G|
|GfAGfB |

=
|G| · |GfA ∩GfB |
|GfA| · |GfB |

=

|G|2

|GfA| · |GfB |
· |GfA⊗fB |

|G|
=

|O(fA)| · |O(fB)|
|O(fA ⊗ fB)|

Summing over FA concludes the proof.

Lemma 9.1 leads to an alternative proof for Theorem 4.1.

Alternative proof of Theorem 4.1. Applying Lemmas 9.1 and 4.5 leads to the inequality

dim(µ(CA ⊗ CB)) ≥
∑

fB∈FB

∑
fA∈FA

|O(fA)| · |O(fB)|
|O(fA ⊗ fB)|

= |F |

where FB is a set of representatives of G\WB and F is a set of representatives of WA ⊗WB/G.

The rest of the proof is identical to the proof provided in Section 4.

9.2 Another project completed during my studies

I conclude this thesis by reviewing another project completed during my masters. I col-

laborated with Yotam Dikstein and Irit Dinur on developing efficient encoding algorithms for

LDPC codes (LDPC stands for Low-Density Parity-Check). While working on this subject,

we encountered a paper claiming to present a linear-time encoding algorithm for every LDPC

code (see [3]), a claim that we dispute in [1]. In our refutation paper we present a family of

counterexamples, and point out where the analysis in [3] fails. Specifically, the algorithm in [3]

fails to encode our counterexample, let alone in linear time.
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