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Abstract. The use of large language models for code generation is a
rapidly growing trend in software development. However, without effec-
tive methods for ensuring the correctness of generated code, this trend
could lead to undesirable outcomes. In this paper, we introduce a new
approach for addressing this challenge: the Clover paradigm, short for
Closed-Loop Verifiable Code Generation, which uses consistency check-
ing to provide a strong filter for incorrect code. Clover performs con-
sistency checks among code, docstrings, and formal annotations. The
checker is implemented using a novel integration of formal verification
tools and large language models. We provide a theoretical analysis to
support our thesis that Clover should be effective at consistency check-
ing. We also empirically investigate its performance on a hand-designed
dataset (CloverBench) featuring annotated Dafny programs at a text-
book level of difficulty. Experimental results show that for this dataset:
(i) LLMs are reasonably successful at automatically generating formal
specifications; and (ii) our consistency checker achieves a promising
acceptance rate (up to 87%) for correct instances while maintaining zero
tolerance for adversarial incorrect ones (no false positives). Clover also
discovered 6 incorrect programs in the existing human-written dataset
MBPP-DFY-50.

1 Introduction

Large language models (LLMs) have recently demonstrated remarkable capabil-
ities. They can engage in conversation, retrieve and summarize vast amounts
of information, generate and explain text and code, and much more [7,17,48].
Among many possible applications, their ability to synthesize code based on nat-
ural language descriptions [14,16,38] is stunning and could potentially enhance
the productivity of programmers significantly [62]. Indeed, futurists are already
claiming that in the future, most code will be generated by LLMs (or their
successors) and not by humans.

C. Sun and Y. Sheng—Equal Contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Avni et al. (Eds.): SAIV 2024, LNCS 14846, pp. 134–155, 2024.
https://doi.org/10.1007/978-3-031-65112-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65112-0_7&domain=pdf
http://orcid.org/0009-0005-9226-3688
http://orcid.org/0000-0002-1883-2126
http://orcid.org/0009-0006-4209-1635
http://orcid.org/0000-0002-9522-3084
https://doi.org/10.1007/978-3-031-65112-0_7


Clover: Closed-Loop Verifiable Code Generation 135

However, there is a fundamental challenge that must be overcome before
realizing this future. Currently, there is no trustworthy way to ensure the cor-
rectness of AI-generated code [40]. Without some quality control, the prospect
of dramatically scaling up code generation is highly concerning and could lead
to catastrophic outcomes resulting from faulty code [20,52,55]. For the most
part, the current best practice for curating AI-generated artifacts is to have a
human expert in the loop, e.g., [25]. While this is better than nothing, requir-
ing human oversight of AI-generated code limits scalability. Furthermore, recent
work [28,50,64,70] confirms the many risks and limitations of using AI even as
a code assistant. Results suggest that developers with access to AI assistants
write more insecure code, while at the same time having higher confidence in
their code [52].

It is becoming clear that curating the quality of AI-generated content will be
one of the most crucial research challenges in the coming years. However, in the
specific case of generated code, formal verification can provide mathematically
rigorous guarantees on the quality and correctness of code. What if there were
a way to automatically apply formal verification to generated code? This would
not only provide a scalable solution, but it could actually lead to a future in
which generated code is more reliable than human-written code.

Currently, formal verification is only possible with the aid of time-consuming
human expertise. The main hypothesis of this paper is that LLMs are well-
positioned to generate the collateral needed to help formal verification succeed ;
furthermore, they can do this without compromising the formal guarantees pro-
vided by formal methods. To understand how, consider the following breakdown
of formal verification into three parts: (i) construct a mathematical model of
the system to be verified; (ii) provide a formal specification of what the system
should do; and (iii) prove that the model satisfies the specification. For code,
step (i) is simply a matter of converting the code into mathematical logic, which
can be done automatically based on the semantics of the programming language.
And step (iii) can often be done automatically thanks to powerful automated
reasoning systems for Boolean satisfiability (SAT) and satisfiability modulo the-
ories (SMT) [4]. In fact, a number of tools already exist that take a specification
(the result of step (ii)) and some code as input and largely automate steps (i) and
(iii) (e.g., [3,35,36]).1 However, step (ii) appears to be a showstopper for auto-
mated formal verification of generated code, as traditionally, significant human
expertise is required to create formal specifications and ensure that they are
both internally consistent and accurately capture the intended functionality.

Two key insights suggest a way forward. The first insight is simply a shift
in perspective: the result of any AI-based code generation technique should aim
to include not only code, but also formal specifications. The second insight is
that given these components (and a description in natural language), we can use
formal tools coupled with generative AI techniques to check their consistency.
We name our approach Clover, short for Closed-loop Verifiable Code Generation,

1 Such tools have plenty of room for improvement and must be extended to more
mainstream languages, but separate research efforts are addressing this.
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and we predict that Clover, coupled with steadily improving generative AI and
formal tools, will enable a future in which fully automatic, scalable generation
of formally verified code is feasible. This paper charts the first steps toward
realizing this vision.

The Clover paradigm consists of two phases: generation and verification. In
this paper, we also assume that a precise natural language description of the
desired functionality is available. In the first (generation) phase, some process
is used to create code annotated with formal specifications. For simplicity, we
refer to the formal specifications as “annotations” and the natural language
descriptions as “docstrings” going forward. It is worth noting that, in other
scenarios, including annotating an existing codebase or generating code given
specifications, one or two of these components (code, annotations, docstrings)
might already exist, in which case generative AI might be used to construct
only the other(s). In fact, the second phase is completely agnostic to the process
used in the first phase; we simply insist that the result of the first phase has all
three components: code, annotations, and docstrings. In the second (verification)
phase, a series of consistency checks are applied to the code, annotations, and
docstrings (see Fig. 1). The Clover hypothesis is that if the consistency checks
pass, then (i) the code is functionally correct with respect to its annotations; (ii)
the annotations capture the full functionality of the code; and (iii) the code and
its annotations also align with natural language descriptions of the functionality
(docstrings).

Fig. 1. The Clover paradigm

The idea is that we can unleash increas-
ingly powerful and creative generative AI
techniques in the generation phase, and
then use the verification phase as a strong
filter that only approves of code that is for-
mally verified, accurately documented, and
internally consistent.

In this paper, we focus on the verifica-
tion phase, though we also include some
demonstrations of the generation phase in
our evaluation. Our contributions include:2

– the Clover paradigm with a solution for the verification phase (Sect. 3.2);
– the CloverBench dataset, featuring manually annotated Dafny programs with

docstrings, which contains both ground-truth examples and adversarial incor-
rect examples (Sect. 4.1);

– a demonstration of the feasibility of using GPT-4 to generate code, specifica-
tions, and both (Sect. 4.2);

– implementation and evaluation of the verification phase of the Clover
paradigm using GPT-4 and the Dafny verification tool (Sect. 4.3, 4.4, and 4.5).

Our initial results on CloverBench are promising. Our implementation
accepts 87% of the correct examples and rejects 100% of the adversarial incor-
2 In addition, a theoretical framework which argues for the trustworthiness of the

Clover approach is available in [61, Appendix A.1].
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rect examples. We expect that the acceptance rate can be improved in a variety
of ways while maintaining the strong ability to reject incorrect code. Beyond
CloverBench, Clover also correctly detects 6 incorrect programs and accepts
89% of the correct programs in the external dataset MBPP-DFY-50 [44].3

2 Preliminaries: Deductive Program Verification

Deductive program verification provides a framework for mathematically proving
that programs are correct [23,30]. A standard approach is to first annotate code
with preconditions, postconditions, and loop invariants, and then check that the
code satisfies the specification given by these annotations. That is, if the code
is executed starting from a program state that satisfies the precondition, the
resulting program state after executing the code will satisfy the postcondition.
Checking whether a given piece of code meets the specification corresponding
to some set of annotations can be done by checking the validity of logical for-
mulas known as verification conditions, which is typically done automatically
using satisfiability modulo theories (SMT) solvers. Dafny is a programming lan-
guage used in our evaluation with state-of-the-art support for deductive verifi-
cation [36]. Dafny’s back-end includes both a compiler, capable of generating a
runnable binary, and a verifier, which formally checks whether the code conforms
to its specification.

In this paper, we assume annotations are given at the function level. For
example, a function for finding the maximal element in an array of integers will
have a precondition requiring that the input array is nonempty, and a post-
condition ensuring that the return value is indeed the maximal element of the
input array. Loops must be accompanied by loop invariants, which are used for
a proof by induction on the number of loop iterations. For example, Listing 1.1
shows a Dafny function for finding the maximal element of an array, with a doc-
string, a precondition, two postconditions, and a loop invariant. Dafny is able
to automatically verify this function with respect to these formal annotations.

Listing 1.1. Dafny function with consistent code, docstring, and annotations.
// Find the maxiaml element in an integer array
method maxArray(a: array <int >) returns (m: int)
requires a.Length >=1
ensures exists k :: 0<=k<a.Length && m==a[k]
ensures forall k :: 0<=k<a.Length ==> m>=a[k]

{
m := a[0];
var i := 1;
while (i < a.Length)
invariant 0<=i<=a.Length &&

(forall k :: 0<=k<i ==> m>=a[k]) &&
(exists k::0<=k<i && m==a[k])

{
m := if m>a[i] then m else a[i];
i := i + 1;

}
}

3 https://github.com/ChuyueSun/Clover.

https://github.com/ChuyueSun/Clover
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Listing 1.2. Example of generated docstring.
"This method returns the maximum value , m, in the integer array a, ensuring

that m is greater than or equal to all elements in a and that m is indeed
an element of a"

Listing 1.3. Example of generated annotations.
requires a.Length > 0;
ensures forall k::0<=k<a.Length ==> a[k]<=m
ensures exists k::0<=k<a.Length && a[k]==m

Listing 1.4. Example of generated code (loop invariant omitted).
var i := 0;
m := a[0];
while i<a.Length {
if (a[i] > m) { m := a[i]; }
i := i+1;

}

3 Clover

3.1 Clover Generation Phase

As mentioned in Sect. 1, Clover expects the output of the generation phase
to consist of code, annotations, and docstrings. These could be generated in
a variety of ways. In this paper, we include a feasibility study for three possible
instances of the generation phase.

First, we consider the case where the annotations (i.e. the formal spec-
ifications) are provided, and an LLM is asked to generate the code. This
is analogous to the standard synthesis problem that is well-studied in PL
research [26,42,43,65].

Second, we explore the opposite: generating annotations given the code. This
use case could be relevant for someone trying to verify legacy code.

Finally, we explore the possibility of generating both code and annotations
from a precise natural language description. This use case aligns with our pro-
posed vision that LLMs should include specifications when generating code from
natural language.

Our goal with these evaluations is not necessarily to chart new research
directions, as all of these directions are worthy of a much more targeted research
effort (and indeed, there are many such efforts underway [6,44,75]). Rather, our
goal here is simply to demonstrate the feasibility of different instances of the
generation phase in order to lend credibility to the overall Clover vision. We
report on an evaluation of each of these use cases in Sect. 4.

3.2 Clover Verification Phase

As mentioned in Sect. 1, Clover expects the input of the verification phase to
contain three components: code, annotations, and docstrings. Additionally, we
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expect that each of the three components provides sufficient detail to unambigu-
ously determine a unique result of running the code on any given input. The
verification phase checks the consistency of every pair of components, as shown
in Fig. 1, and succeeds only if all checks pass. Docstrings and annotations are con-
sistent if they contain the same information, i.e., they imply each other seman-
tically. The notion of consistency between a docstring and code is similar. On
the other hand, to assess the consistency between code and annotations, we can
leverage deductive verification tools.

One key idea used to check consistency between components in Fig. 1 is recon-
struction testing. Given the three components (code, docstring, annotations) as
input, we try to reconstruct a single component from a single other component,
and then we check if the reconstructed result is equivalent to the original com-
ponent. We do this for five out of the six (directed) edges of Fig. 1. A special
case is checking that the code conforms to the annotations, where we use formal
verification based on deductive verification tools instead of a reconstruction test.
For an input instance to pass the verification phase, it must pass all six tests.
For the reconstruction itself, we use an LLM (our evaluation uses GPT-4), and
for equivalence testing, we use LLMs to compare text, formal tools to compare
annotations, and pointwise sampling to compare code. A running example is
provided in Sect. 3.3. Listings 1.2, 1.3, and 1.4 are examples of generated arti-
facts. We explain how these checks are done in detail next. Pseudocode is shown
in Algorithm 1.4

Code-Annotations Consistency. (1. Code → Annotations: Soundness) A
deductive verification tool (our evaluation uses Dafny) checks that the code sat-
isfies the annotations. This is a standard formal verification check (see Sect. 2).
(2. Annotations → Code: Completeness) To prevent annotations that are too
trivial from being accepted, we test whether the annotations are strong enough
by testing if they contain enough information to reconstruct functionally equiv-
alent code. Given the annotations, we use an LLM to generate new code. Then,
we check the equivalence between the generated and the original code. If the
equivalence check passes, the annotations are considered complete.

Annotation-Docstring Consistency. (1. Annotations → Docstring) An LLM
is asked to generate a new docstring from the annotations. Then, the new and
the original docstrings are checked for semantic equivalence. (2. Docstring →
Annotations) An LLM is asked to generate new annotations from the docstring.
Then, the new and the original annotations are checked for logical equivalence.

Code-Docstring Consistency. (1. Docstring → Code) An LLM is asked to
generate code from the docstring. Then, the new and the original code are
checked for functional equivalence. (2. Code → Docstring) An LLM is asked
to generate a new docstring from the code. Then, the new and the original
docstrings are checked for semantic equivalence.

4 For more discussion about limitations and variants of, and future directions for
Clover, see [61, Appendix A.4].
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Algorithm 1. Clover Consistency Check (k = 1)
Input: Docstring d, annotations a, code c.
Output: True/False

Set number of tries m = 3
if Dafny fails to verify a, c then � annotation soundness

Return False
for i = 1 to m do � annotation completeness

Call LLM to generate code c′ from a.
if c′ successfully compiles then

break
else

Provide feedback from failed compilation to LLM

if c′ is not equivalent to c then
Return False

for i = 1 to m do � doc2code
Call GPT-4 to generate code c′ from d.
if c′ successfully compiles then

break
else

Provide feedback from failed compilation to LLM

if c′ is not equivalent to c then
Return False

for i = 1 to m do � code2doc
Call GPT-4 to generate docstring d′

i from c.

if all d′
i are not equivalent to d then

Return False
for i = 1 to m do � doc2anno

Call GPT-4 to generate annotations a′ from d.
if a′ successfully compiles then

break
else

Provide feedback from failed compilation to LLM

if a′ is not equivalent to a then
Return False

for i = 1 to m do � anno2doc
Call GPT-4 to generate docstring d′ from a.

if all d′ are not equivalent to d then
Return False

Return True
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We consider the methods used for equivalence checking to be parameters to
Clover. We discuss some possibilities (including those used in our evaluation)
below.

Equivalence Checking for Code. Standard equivalence checks for code
include input-output comparisons, concolic testing ([8,9,33,63]), and even full
formal equivalence checking (e.g., [18]). Our evaluation checks that the outputs
agree on a set of inputs included as part of the CloverBench dataset. This test
is, of course, imprecise, but our evaluation suggests that it suffices for the level
of complexity in CloverBench. For example, the generated code of Listing 1.4 is
equivalent to the original code in Listing 1.1, and indeed our equivalence check
succeeds for this example. More advanced equivalence checking techniques might
be required for more complex examples.

Equivalence Check for Docstrings. Checking equivalence between docstrings
is challenging, as natural language is not mathematically precise. In our evalua-
tion, we ask an LLM (GPT-4) to check whether two docstrings are semantically
equivalent. For example, it accepts Listing 1.2 as equivalent to the docstring in
Listing 1.1. Other NLP-based semantic comparisons may also be worth explor-
ing.

Equivalence Check for Annotations. To check the equivalence of two sets
of annotations, we write the equivalence as a formal lemma and ask a formal
tool (in our evaluation, we again use Dafny) to prove the lemma. This method is
sound in the sense that it succeeds only if the two sets of annotations are indeed
equivalent. For example, we are able to automatically prove that the annotations
in Listing 1.3 are equivalent to those in Listing 1.1. Note that this process may
fail, even on equivalent annotations, due to the limitations of the verification
tool being used. The specific equivalence checking template we use is described
in Sect. 4.1 and is included as part of our CloverBench dataset.

Although there are many approximate approaches, the two parts that lever-
age formal tools, the soundness check and the equivalence check for annotations,
are exact. The equivalence check used for code is also strong, though not perfect.
These checks strongly contribute to the lack of false positives in our evaluation.5

3.3 Consistency Checking Example

For illustration purposes, before the evaluation section, we describe how each
step described above is carried out for the maxArray example (Listing 1.1).

Listing 1.5. Annotation Input
method foo(a: array <int >) returns (m: int)
requires a.Length >= 1
ensures (forall k :: 0<=k<a.Length ==> m>=a[k]) && (exists k :: 0<=k<a.

Length && m==a[k])
{
// TOFILL
}

5 An analytical model of reconstruction tests is provided in [61, A.1].
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Listing 1.6. Code Input
method foo(a: array <int >) returns (m:

int)
// TOFILL
{
m := a[0];
var i := 1;
while (i < a.Length)
invariant 0<=i<=a.Length &&

(forall k :: 0<=k<i ==> m
>=a[k]) &&

(exists k :: 0<=k<i && m==
a[k])

{
m := if m>a[i] then m else a[i];
i := i + 1;

}
}

Listing 1.7. Generated code
method foo(a: array <int >) returns (m

: int)
{

var i := 0;
m := a[0];
while i<a.Length
{

if(a[i] > m) {
m := a[i];

}
i := i+1;

}
}

Listing 1.8. Docstring Input
// specification: Returns the maximum value m present in the array a.
method maxArray(a: array <int >) returns (m: int)
// TOFILL

anno-sound. Soundness is checked by simply running the Dafny verifier on the
annotated code shown in Listing 1.1.

anno-complete. For the annotations to be complete with respect to the code,
we must be able to reconstruct the code from the annotations alone. Therefore,
we ask GPT-4 to generate code from the anonymized function signature and the
annotations (Listing 1.5). In the prompt, we instruct the LLM to generate code
based on the Dafny specification in natural language, without providing any
few-shot examples. We run and provide feedback from the Dafny compiler up
to three times to help GPT-4 fix its code generation. For this example, GPT-4
generates the correct code on the first try, shown in Listing 1.7. Then, we check if
the generated code is equivalent to the original ground-truth code by comparing
their outputs.6

doc2anno. We try to reconstruct equivalent ground-truth annotations from
the docstring alone. First, we call GPT-4 with the docstring and the function
signature (Listing 1.8) asking for the annotations. To eliminate simple syntax
errors, we try to compile the generated annotations with an empty code body and
use error messages generated by the Dafny compiler as feedback (up to 3 times).
Results presented in Sect. 4.2, above, suggest that the feedback mechanism is
quite important. For our example, GPT-4 generates correct annotations on the
first try, shown in Listing 1.9.

Listing 1.9. Generated annotations
requires a.Length > 0;
ensures forall k :: 0 <= k < a.Length ==> a[k] <= m;
ensures exists k :: 0 <= k < a.Length && a[k] == m;

6 Example code for this check is shown in [61, Appendix A.8].
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anno2doc. To reconstruct a docstring from annotations, we ask GPT-4 to gen-
erate a new docstring three times independently in one session in plain natural
language. If one of them is equivalent to the original docstring, the check passes.
We consider two docstrings to be equivalent if they contain the same information
about the functional behavior of the program, ignoring implementation details
that do not affect functionality. In the prompt, we ask, “Do these two docstrings
describe the exact same functional behavior of a Dafny program? Return ’Yes’
or ’No’.” followed by the two docstrings in question (see GPT-4 System Prompt
in [61, Appendix A.7]). Note that the two calls to GPT-4 are independent to
ensure that the second call contains no memory of the first call. That is, the
answer to the question of whether the original and the generated docstrings are
semantically equivalent is unaffected (other than by bias inherent in the model)
by the first call to generate an equivalent docstring from the original. For our
example, GPT-4 generates a correct docstring on the first try, shown below:

This method returns the maximum value, m, in the integer array a, ensuring
that m is greater than or equal to all elements in a and that m is indeed an
element of a.

code2doc. The process is almost identical to anno2doc. The only difference
is that in order to ensure the code provides all the information needed for the
docstring generation, we embed the preconditions into the code in the form of
assert statements.

doc2code. This process leverages one of the most common use cases of GPT-
4: generating code from a natural language description. The concrete steps are
similar to that described in anno-complete. The only difference is that instead
of using verifier-generated error messages, we use compiler-generated error mes-
sages since we want to ensure that the code generation relies only on the doc-
string.

4 Evaluation

We have implemented a first prototype of our Clover consistency checking algo-
rithm using GPT-4 [48] as the LLM and using the Dafny programming language
and verification tool [36]. We selected Dafny because it provides a full-featured
and automatic deductive verification toolkit including support for a rich lan-
guage of formal specifications and a backend compiler linking to a verifier. But
Clover can be instantiated using any language and tool supporting deductive pro-
gram verification. Note that it is also crucial that the selected LLM has a good
understanding of the programming language. In our case, we were pleasantly
surprised to discover that GPT-4 understands Dafny programs well enough to
perform the translations between code, docstrings, and annotations that Clover
relies on (Sect. 4.2), despite the fact that Dafny is not a mainstream program-
ming language. In our evaluation, we use Dafny version 4.0.0.50303 with Z3
version 4.8.12. The evaluation also uses a concrete set of Dafny examples which
we describe next.
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4.1 Dataset: CloverBench

4.1.1 Dafny
There have been several popular datasets for code generation in different domains
[2,14,29,34,72], but none of them contain annotations or use the Dafny language.
Furthermore, we wanted to carefully curate the programs used to test our first
Clover prototype. In particular, as mentioned above, we require the docstring
and annotations to precisely specify a unique output for every input. For these
reasons, we introduce a new hand-crafted dataset we call CloverBench. We expect
to add and improve it over time, but at the time of writing, it is based on 60 small
hand-written example programs as might be found in standard CS textbooks.7

For each program, there are five variants: a “ground-truth” variant whose code,
annotations, and docstring are correct and consistent (verified by hand); and 4
adversarial incorrect variants. Associated with each example, there is also one
set of inputs and one Dafny code template for annotation equivalence checking.
We discuss possible data contamination issues in [61, Appendix A.4].

It is worth noting that recently, independent and concurrent work [6,44] on
Dafny annotation generation has produced some Dafny examples with annota-
tions that are similar to CloverBench. However, there are only a limited number
of these benchmarks, and they do not always meet the strict criteria we have
imposed in this paper (single-method code with precise specifications), and thus
our carefully curated CloverBench is still needed. In MCTS [6], only 5 examples
are provided. In dafny-synthesis [44], the authors translate some programs from
MBPP [2], a data set of Python programs, into Dafny. We do evaluate Clover
on a subset of these benchmarks in Sect. 4.3, below.

Set of Inputs. Each program in CloverBench contains five individual tests
designed to run that program on a specific input value. We use these tests as a
rough check for whether a piece of generated code is equivalent to the original
code. If the generated code has the same output as the original code for all five
tests, then the code is considered to be equivalent (See [61, Appendix A.8]).

Annotation Equivalence Checking Template. Each template can be used
to formally verify the consistency of two sets of annotations with Dafny. For two
sets of annotations a and b to be equivalent, the preconditions and postconditions
of a and b must be verified to be equivalent separately. We use a script to
automatically create annotation templates.8

4.2 Generation Phase

As mentioned in Sect. 3.1, we explored three use cases for the generation phase.
In all cases, we use GPT-4 as the generating LLM.

First, we ask GPT-4 to generate the code from specifications for each of
the 60 examples in CloverBench under various conditions. We manually checked
7 Since we wanted to concentrate on the most basic scenario initially, our initial dataset

only features examples containing exactly one method and no helper functions.
8 Details and an example are shown in [61, Appendix A.7].
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the generated code for correctness. Figure 2a shows the results. The first bar
(“one try”) shows the result when asking GPT-4 to produce the code, given the
annotations, in a single try. The next bar allows GPT-4 to try three times, each
time providing the output of the Dafny compiler and verifier as feedback (See
[61, Appendix A.6] for an example of using Dafny feedback). The next is similar
but uses the output of only the Dafny compiler. In the last bar, we allow three
tries, with feedback from the Dafny compiler and verifier, and we also provide
the docstring. We see that, at its best, GPT-4 can correctly provide the code
for 53 out of 60 examples, and it does best when it gets the most feedback from
Dafny. This suggests that GPT-4 is already performing reasonably well as a code
synthesis tool for Dafny programs.

Second, we asked GPT-4 to generate full annotations (pre-conditions, post-
conditions, and loop invariants) from the code alone. Figure 2b shows the results.
In one try, GPT-4 succeeds on 28 of 60 programs. Given three tries and maximal
feedback from Dafny, this improves to 41 out of 60. Though not perfect, out of
the box, GPT-4 can produce correct annotations for the majority of programs in
our simple set of benchmarks. This suggests that using LLMs for generating anno-
tations is feasible, and we expect that further efforts in this direction (including
fine-tuning models for the task) will likely lead to even stronger capabilities.

Finally, for the last experiment, we ask GPT-4 to generate both the code
and the annotations from the docstring alone. Figure 2c shows the results. On
the first try, GPT-4 succeeds on 24 of 60 programs. However, if we simply do 20
independent tries and test whether GPT-4 succeeds on any of these tries, the
number improves to 41. This naturally raises the question: how can we leverage
multiple LLM tries without having to check each one by hand? This is exactly
what the verification phase is for! The last column in the figure shows that
if we run the Clover verification phase, it accepts at least one correct answer
for 39 of 41 examples for which GPT-4 generates a correct answer. Further
more the Clover verification check never accepts an incorrect answer. Full results
are reported in [61, Appendix A.10]. Thus, we can fully automatically generate
39 of 60 programs from natural language alone, with the guarantee that the
generated programs pass all Clover consistency checks. While these numbers
must be improved and more complicated examples must be tried, these early
results are promising and suggest that these ideas should be explored further.

4.3 Verification Phase: Results on Ground-Truth Examples

Our main experiment evaluates the capabilities of the Clover consistency check-
ing algorithm. During consistency checking, we consider everything that appears
in the body of a method, including assertions and invariants, to be part of the
code, and consider the annotations to consist only of pre- and post-conditions.
The reason for this is for modularity. We need to be able to separate out the
annotation and have it generate the code. The assertions and invariants in the
code have no context without the code, and are thus meaningless without it;
moreover, the pre- and post-conditiosn contain all the information necessary to
reconstruct the code. Thus, this division makes the most sense for Clover.
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(a) Code generation.
(b) Annotation gener-
ation

(c) Code and Annotation
Generation

Fig. 2. Generation phase feasibility study

For each example in CloverBench, we run all 6 checks described in Sect. 3.2.
For checks that use Dafny, we use three tries and provide feedback from Dafny’s
compiler after each try. We also evaluate the effect of multiple independent runs,
meaning that we repeat each of the 6 checks k times. If any one of the k attempts
succeeds, then the check is considered to have passed. The results are summa-
rized in Table 1. When k = 1, we see that our Clover implementation accepts
45 of 60 correct (“ground truth”) examples and rejects all incorrect examples.
When k = 10, Clover accepts 52 of 60 correct examples and rejects all incorrect
ones. Details on each of the 6 checks for the ground truth examples are shown in
Table 2. All acceptance rates are above 80%. Failures are mostly due to incorrect
or imprecise reconstruction. More details can be found in [61, Appendix A.4.5].
We expect that using better LLMs (either better general-purpose LLMs or LLMs
fine-tuned for program verification or a specific language or both) will improve
the acceptance rate. For the complete experimental results, see [61, Appendix
A.10]. Since our ground-truth examples are hand-written and hand-checked for
correctness, it is not surprising that all pass the Dafny verifier (i.e., all annota-
tions are sound). Annotation completeness requires successful synthesis of code
from annotations, and here, we get an 88% acceptance rate when k = 1, which
goes up to 95% with k = 10. The main reason for failure is incorrect generation
of Dafny syntax by GPT-4. In doc2anno generation, we generate annotations
from docstrings. The main failure comes again from GPT-4 generating incorrect

Table 1. Summary of the experimental results for the verification phase.

Accept (k = 1) Accept (k = 10)

Ground-Truth 45/60 (75%) 52/60 (87%)

Adversarial-C1 0/60 (0%) 0/60 (0%)

Adversarial-C2 0/60 (0%) 0/60 (0%)

Adversarial-C3 0/60 (0%) 0/60 (0%)

Adversarial-C6 0/60 (0%) 0/60 (0%)
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Table 2. Ground-truth acceptance for each of the 6 Clover checks.

Ground-Truth Accept (k = 1) Accept (k = 10)

anno-sound 60/60 (100%) 60/60 (100%)

anno-complete 53/60 (88%) 57/60 (95%)

doc2anno 51/60 (85%) 53/60 (88%)

anno2doc 60/60 (100%) 60/60 (100%)

code2doc 58/60 (97%) 60/60 (100%)

doc2code 49/60 (82%) 56/60 (93%)

Dafny syntax. anno2doc and code2doc have perfect acceptance rates. On the one
hand, this is because GPT-4 is very good at synthesizing natural language. On
the other hand, our docstring equivalence checker is not very strong and skews
towards acceptance. As long as they do not directly contradict each other, infor-
mation omissions or additions in docstrings frequently go unnoticed by GPT-4.
Improving this equivalence checker is one important direction for future work.
doc2code generation shares the same issues as anno-complete and doc2anno:
failure because of invalid Dafny syntax generation. It also improves significantly
(93% vs 82%) using k = 10 instead of k = 1.

Table 3. Categories of adversarial incorrect examples.

Code Annotations Docstring Note

C0 – – – omitted: ground-truth

C1 – – mutated strengthen/weaken docstring

C2 – mutated – weaken annotation

C3 - mutated mutated weaken annotations and docstring simultaneously

C4 mutated – – omitted: cannot pass soundness check

C5 mutated – mutated omitted: cannot pass soundness check

C6 mutated mutated - code still satisfies annotations

C7 mutated mutated mutated omitted: non-sense or is a variant of another
ground-truth

4.4 Verification Phase: Results on MBPP-DFY-50

To explore the effectiveness of Clover on external datasets, we ran Clover on the
MBPP-DFY-50 dataset [44], which consists of 50 Dafny programs translated by
hand from Python, with docstrings and annotations. Our run revealed a number
of interesting things about this dataset. First, 17 of the 50 samples are out of
scope for Clover. Two are out of scope because the docstrings are not precise
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enough to specify a unique output for each input. The other 15 require auxiliary
functions or predicates. Extending Clover to such benchmarks is on our roadmap
for future work. Of the remaining 33 programs, 24 are accepted by Clover, and
9 are rejected.

Looking closely at the 9 rejected samples, we determined that 6 are, in fact,
incorrect: 5 have factual contradictions in their docstrings and pre-conditions;
and 1 has trivial (too weak) post-conditions that do not reflect the requirements
in the docstrings.9 The remaining 3 are false negatives: correct programs that
do not pass all of the Clover checks. We determined that the 24 accepted bench-
marks are all correct (0 false positives), once again demonstrating that Clover
provides a strong filter against incorrect code. Overall, after correctly categoriz-
ing the 33 benchmarks, Clover achieves an 89% acceptance rate (k = 10) while
maintaining a 100% rejection rate for incorrect benchmarks.10

4.5 Verification Phase: Results on Adversarial Examples

As mentioned, for each program in our dataset, we created 4 adversarial incor-
rect versions. Here we describe them in more detail. Table 3 lists all possible ways
we can mutate the ground-truth example, while still ensuring that it passes the
Dafny verification check (anno-sound). Thus, for these examples, a naive app-
roach using only Dafny (as in [44]) would result in a 100% false positive rate.
However, Clover with its 6 consistency checks is able to reject all of them (0%
false positive rate). Category C0 is the ground-truth where we mutate nothing.
Categories 1 to 7 cover all the possible ways we can mutate C0. Category C1
contains programs in which the docstring is incorrect and the other two are the
same as the ground-truth. Category C2 contains programs in which the anno-
tations are incorrect and the other two are the same as the ground-truth. To
ensure these examples are not trivially rejected by the Dafny soundness check,
we only weaken the annotations to ensure that the code still satisfies the mutated
annotations. Category C3 contains programs in which both the annotations and
the docstring are mutated. The mutated annotations and docstring are simulta-
neously weakened, but the two are consistent. Category C6 contains programs
in which the annotations and code are consistent but inconsistent with the doc-
string and thus not detectable by Dafny. Categories C4 and C5 are omitted
because they are trivially rejected by the Dafny verifier (i.e., they always fail the
soundness check). C7 is also omitted because it’s not clear how meaningful it is
to change all three, and, excluding the corner case when all three are changed
to be mutually consistent, benchmarks in this category should be strictly easier
to detect than those in the other categories.

9 The 6 incorrect samples are shown in [61, Appendix A.9].
10 Detailed results of the Clover checks for the 27 correct benchmarks are in [61,

Appendix A.10]).
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Table 4. Rejection rates for adversarial incorrect examples.

Category C1 Reject C2 Reject C3 Reject C6 Reject

k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

anno-sound 0/60 (0%) 0/60 (0%) 0/60 (0%) 0/60 (0%) 0/60 (0%) 0/60 (0%) 0/60 (0%) 0/60 (0%)

anno-complete 7/60 (12%) 3/60 (5%) 26/60 (43%) 16/60 (27%) 26/60 (43%) 21/60 (35%) 33/60 (55%) 27/60 (45%)

doc2anno 57/60 (95%) 54/60 (90%) 60/60 (100%) 60/60 (100%) 44/60 (73%) 30/60 (50%) 60/60 (100%) 60/60 (100%)

anno2doc 42/60 (70%) 34/60 (57%) 24/60 (60%) 13/60 (22%) 24/60 (60%) 4/60 (7%) 42/60 (70%) 27/60 (45%)

code2doc 57/60 (95%) 54/60 (90%) 0/60 (0%) 0/60 (0%) 51/60 (85%) 43/60 (72%) 43/60 (72%) 40/60 (67%)

doc2code 39/60 (65%) 37/60 (62%) 11/60 (18%) 4/60 (7%) 31/60 (52%) 18/60 (30%) 58/60 (97%) 55/60 (92%)

Table 4 shows the results of the 6 checks for each category. We observe that
doc2anno has the highest rejection rate. This is because we use Dafny to do a
formal equivalence check, which guarantees that only logically equivalent anno-
tations are accepted. Overall, there are no false positives (no incorrect example
passes all 6 checks), as summarized in Table 1.11

4.6 A Preliminary Study with Verus

As mentioned, we chose Dafny for our primary study because of its maturity as
a deductive verification tool. A natural question is how Clover performs with
other systems and languages. To gain some understanding of this, we did a
preliminary study using Verus [35], a deductive verification tool for a subset of
the Rust programming language. Verus and Dafny share the common goal of
integrating verification into the development process, but they differ in several
ways. For instance, Verus is designed to be more performant but less automatic
than Dafny. This means that it often requires more proof effort than Dafny to
verify the same program. Verus is also less mature than Dafny, having been
developed only recently.

We implemented 41 ground-truth examples in Verus [35] and used the same
approach used with Dafny to perform the Clover consistency checks (except that
formal checks were done with the Verus tool instead of Dafny). Also, because
the Verus specification format is very new, we started each LLM prompt with a
few simple examples of Verus specification syntax. For our 41 examples, Clover
accepts 32 of 41 when k = 1 and 36 out of 41 when k = 10. Full results are
shown in Table 5. These early results suggest that Clover can be used with other
languages and deductive verification tools.

5 Related Work

Code Generation. Besides well-known work [14,16,38] on code generation using
LLMs, [26] is a survey on program synthesis before the era of LLMs. Other works
using neural approaches for program synthesis include [2,5,71]. To scale up code
generation, researchers have tried to decompose the whole task into smaller steps
[5,22,73] and to use execution traces [21,58]. While the aforementioned works
11 For complete results, see Tables in [61, Appendix A.10].
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Table 5. Verus Ground-truth acceptance for each of the 6 Clover checks.

Ground-Truth Accept (k = 1) Accept (k = 10)

anno-sound 41/41 (100%) 41/41 (100%)

anno-complete 39/41 (95%) 40/41 (98%)

doc2anno 33/41 (80%) 36/41 (88%)

anno2doc 41/41 (100%) 41/41 (100%)

code2doc 41/41 (100%) 41/41 (100%)

doc2code 41/41 (100%) 41/41 (100%)

synthesize code from natural language, another common theme is to synthesize
programs from specifications [1,11,53,59]. Translation between natural and for-
mal language has also been studied in [24,27,60], and LLMs have been used to
predict program invariants [39,51,69].

Various approaches have been explored for self-correction in code generation,
as surveyed in [49], including self-consistency [66], self-debugging [15,56], and
self-improvement [41]. In [47], self-debugging has shown to be limited compared
to human-level debugging.

Verified Generation. Prior works acknowledge that verifying whether a gener-
ated program is correct is challenging. In [40], a test-case-based approach is
demonstrated to be insufficient. Other previous attempts include [32], which
asks the model to generate assertions along with the code, and [12–14,54], which
study the generation of unit tests and how to use the generated tests to increase
the generation accuracy. There is also a line of work [19,31,37,74] on a learning-
based approach for verifying correctness. [31,38,57,67] study various approaches
for reranking a model’s output, and [10] propose a self-repair method combining
LLMs and bounded model checking to locate software vulnerabilities and derive
counterexamples.

Finally, there has recently been a marked and rapid surge of interest in using
LLMs to generate formal annotations for verification purposes. [68] generates
specifications by leveraging LLMs and techniques from static analysis and pro-
gram verification. Research in specific domains includes examples like [45], which
proposes a framework for porting C to Checked-C to enable memory safety for C
programs, and [46], which uses LLMs to synthesize verified router configurations
in networking. Most closely related to our work is [6], which uses Monte Carlo
Tree Search to help with the multi-step synthesis of annotated Dafny programs,
and [44], which explores prompting techniques for generating Dafny programs.
In contrast to our work, both of these focus on generation rather than verifica-
tion. Furthermore, they use only the soundness check, whereas Clover requires
a stronger set of six consistency checks.
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6 Conclusion

We have introduced Clover, a paradigm for closed-loop verifiable code genera-
tion, together with a new dataset CloverBench featuring 60 hand-crafted Dafny
examples. We reduce the problem of checking correctness to the more accessible
problem of checking consistency. Initial experiments using GPT-4 on Clover-
Bench are promising. We show an 87% acceptance rate for ground-truth exam-
ples in CloverBench and a 100% rejection rate for incorrect examples. Clover
also accurately detects 6 incorrect samples and accepts 89% correct ones in the
existing human-written dataset MBPP-DFY-50 [44]. There are many avenues
for future work, including: better verification tools, improving LLM capabilities
for generating code, annotations, and docstrings, improving LLM capabilities
for understanding Dafny and Verus syntax, and scaling up to more challenging
examples.
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