l‘)

Check for
updates

Ivy: A Multi-modal Verification Tool
for Distributed Algorithms

Kenneth L. McMillan!®) and Oded Padon?

! Microsoft Research, Redmond, USA
kenmcmil@microsoft.com

2 Stanford University, Stanford, USA
padon@cs.stanford.edu

Abstract. Ivy is a multi-modal verification tool for correct design
and implementation of distributed protocols and algorithms, supporting
modular specification, implementation and proof. Ivy supports proving
safety and liveness properties of parameterized and infinite-state systems
via three modes: deductive verification using an SMT solver, abstraction
and model checking, and manual proofs using natural deduction. It sup-
ports light-weight formal methods via compositional specification-based
testing and bounded model checking. Ivy can extract executable dis-
tributed programs by translation to efficient C++ code. It is designed to
support decidable automated reasoning, to improve proof stability and
to provide transparency in the case of proof failures. For this purpose,
it presents concrete finite counterexamples, automatically audits proofs
for decidability of verification conditions, and provides modular hiding
of theories.

1 Introduction

Ivy is an open-source [16] multi-modal verification tool for correct design and
implementation of distributed algorithms, supporting modular specification,
implementation and proof. The motivating principles of Ivy are predictability,
stability and transparency. That is, automated proof steps should provide com-
plexity bounds, should be insensitive to small perturbations, and when they fail
should provide actionable feedback. To the extent consistent with these princi-
ples, Ivy aims to maximize expressiveness and proof automation, and thus to
achieve a high level of user productivity in designing, implementing and prov-
ing programs. A major goal of Ivy is to support decidable reasoning. That is,
automated proof should be restricted to logical fragments for which the tool is
a decision procedure. This greatly improves the stability of automated provers,
which otherwise rely on fragile heuristics to avoid divergence [28]. This is impor-
tant for the maintenance of large proofs, to prevent small changes from creat-
ing unpredictable proof failures. Moreover, on decidable problems, provers fail
transparently by providing true counterexamples, which greatly simplifies the
iterative development of proofs. Ivy supports the decomposition of proofs to
decidable theories by the use of modular abstraction.

© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 190-202, 2020.
https://doi.org/10.1007/978-3-030-53291-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_12

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 191

The architecture of Ivy is depicted in Fig.1. The figure shows the major
components of the tool and the information flow between them. Ivy provides a
language (also called “Ivy”) for the modular description of distributed programs,
along with their specifications and proofs (see Sect.2). Ivy is a synchronous,
reactive programming language [3], meaning that the program only executes
actions in response to input from its environment, and these actions appear to
execute atomically. From an Ivy program, the tool can extract an asynchronous,
distributed implementation. A program is made up of reactive modules [1], each
having a temporal assume/guarantee-style specification. After parsing of this
description and elaboration of templates, the program is decomposed into its
component modules, each with associated assumptions and proof obligations,
according to a system of proof rules for circular assume/guarantee reasoning
(see Sect. 2.1).

These proof obligations are passed on to the tactics engine (see Sect. 3). This
engine orchestrates the use of various built-in proof tactics, including decidable
invariant checking with an SMT solver (Sect.3.1), model checking with eager
abstraction [19] (Sect. 3.2), liveness proof by translation to safety (Sect.3.3) and
logical deduction rules (Sect.3.4). Each tactic works by reducing a given proof
goal to a (possibly empty) set of sub-goals, from which the original goal can be
proved. Combined with modular reasoning, the tactics engine makes it possible
to use a variety of proof approaches and proof automation tools in constructing
a proof.

Ivy extracts executable distributed programs by translation to C++ (see
Sect. 5). From the specifications of a module, Ivy can also generate a modular
randomized specification-based tester [7] (see Sect.4.1). This also makes it pos-
sible to test infrastructure not written in Ivy (including hardware) against Ivy
specifications.

1.1 Related Work

Ivy can be thought of as a hybrid between program verification tools such as
ESC-Java [11] and Dafny [14], based on the Floyd/Hoare approach, composi-
tional model checking tools, such as Mocha [2] and Cadence SMV [17] and proof
assistants based on the LCF model, such as Isabelle [26] or Coq [4]. Compared to
program verification tools that support only procedure modularity, Ivy provides
a richer form of specification that allows complete hiding of internal state, and
provides architectural support for decidable reasoning (see Sect. 2.1). Compared
to compositional tools, Ivy integrates a richer variety of reasoning techniques
(see Sect. 3). Compared to proof assistants, Ivy provides domain-specific support
for decidable proof automation, supporting a greater degree of proof automa-
tion [28]. On the other hand, Ivy relies on a vastly larger trusted computing base
than typical proof assistants. Moreover, Ivy has no mechanism of reflection, and
thus cannot be used for meta-reasoning about programs and program transfor-
mations. In principle, all the techniques in Ivy could be integrated into a tool such
as Isabelle or Coq but the effort would be large. A less foundational tool such as

192 K. L. McMillan and O. Padon

Impl.
5 Parse/ | | Modular Extract
“ Elaborate Decomposition Code
\ Generate <P

Spec.| Tester

Invariant

Fragment Eager Logical
|
Checker Checker Abstr. Tactics
BMC
X x
Z3 ABC

Fig. 1. Ivy architecture, showing flow between major components. Red, solid arrows
represent flow of proof goals and assumptions. Green, dashed arrows represent flow of
proofs and/or counterexamples. Not shown is VC generator, shared between Invariant
Checking/BMC and Eager Abstraction components. (Color figure online)

Ivy makes it possible to rapidly experiment with new proof and proof automa-
tion strategies. Compared to all of these tools, Ivy differs in providing native
support for extracting distributed programs, and specification-based testing. A
related tool, mypyvy, focuses on more powerful invariant inference techniques,
but lacks the other features of Ivy [10,29].

2 A Modular Language for Decidable Reasoning

The primary design goal of Ivy’s language is to support decidable reasoning while
maximizing expressiveness and performance. Figure 2 is an example of the basic
unit of verification in Ivy, called an isolate. An isolate is a reactive module that
hides internal state and provides a temporal (that is, stateful) specification of its
interface. An isolate has named traits that include types, properties, variables
and actions. It is divided into a specification part and an implementation part.
The figure shows an example of a simple module that inputs a sequence of
numbers and outputs an upper bound on the numbers received thus far.

Types, Variables and Actions. The native datatypes in Ivy include just the
Boolean type, uninterpreted types, records (structs) over datatypes, and pure
first-order functions. In the figure, line 2 declares an uninterpreted type ¢. Line
6 declares a state variable ‘seen’ holding a predicate over t. This variable is
initialized at line 9. This assigns ‘seen(X)’ to be the function that returns false
for all values of X.

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 193

Procedures in Ivy are called actions and may have side effects on variables.
Parameters are passed by value and there are no references. This greatly sim-
plifies modular reasoning (see Sect.2.1) and also allows for aggressive compiler
optimizations due to the absence of aliasing (see Sect. 5).

In the figure, line 3 declares an action ‘ub’ that takes an input z of type ¢
and outputs y of type t. Its implementation is given at lines 24 to 27. It updates
a state variable ‘max’ holding the maximum value received thus far, and returns
this value by assigning it to the output variable y.

2.1 Modularity and Decidability

The specification part of the isolate (lines 5 to 18) consists of ghost variables and
code that are visible outside the isolate. The implementation part (lines 19 to 30)
consists of real variables and code that are invisible outside the module. At line
15 the ghost predicate ‘seen’ is updated to reflect the fact that value x has been
seen as an input. Specification code contains assume/guarantee specifications in
terms of require and ensure statements. For example, line 12 represents an
assumption that input values are non-negative. Line 16 represents a guarantee
that output values will be an upper bound on all seen values.

Ghost and real code are kept syntactically separate in Ivy. The specification
code is interleaved with the implementation code using the directives ‘before’
(line 11) and ‘after’ (line 14). Thus, in the figure, the ‘require’ statement acts
as a precondition, while the ‘ensure’ statement acts as a postcondition. The
implementation code is not allowed to side effect any externally visible state, so
it is sound to erase (or ‘slice’) this code when verifying other modules. Other
modules see only the ghost code, which provides an abstract model of the isolate.
Similarly, when extracting executable code, it is safe to erase the ghost code
(which must be proven to be terminating). This makes it possible, for example,
to provide a pure, functional specification of a module interface, even though
internally it has state.

Theories can also be hidden inside modules. For example, the implementation
of our example interprets the type t as the integers (line 28). For verification
purposes, this instantiates the theory of Peano arithmetic for type ¢. This theory
is used only to prove correctness of the isolate, and is invisible to other isolates.
The theory can be used to prove properties (such as the irreflexivity property
at line 7) that provide an abstraction of the type externally. The ability to hide
theories behind abstractions provides an important strategy for keeping proof
obligations decidable.

An isolate with no implementation part (that is, a “ghost” module) can act
as an abstract model of a protocol. Using Ivy’s modular rules, an abstract model
can be refined to an implementation, using properties of the abstract model as
lemmas. In addition to simplifying the proof, abstract models provide another
useful strategy to hide functions, properties or theories that break decidability.
This approach, in combination with theory hiding, was used to verify implemen-
tations of distributed consensus protocols [28]. Modularity provides the primary
means in Ivy of keeping the automated reasoning decidable.

194 K. L. McMillan and O. Padon

1 isolate foo = {
2 type t
3 action ub(x:t) returns (y:t) 1o implementation {
: . s 20 var max : t
5 specification { o after init {
6 relation seen(X:t) 2 max = 0:
7 property VX : t.=(X < X) s 7
2 afte;;lll(tx{) — falso: 24 implement ub {
1;) T ’ 25 max := x if x > max else max;
11 before ub { zi) Y= max;
12 require x > 0; 28 interpret t — int
29 invariant seen(X) — X < max
14 after ub { 20 } =
15 seen(x) := true; a1}
16 ensure seen(X) — X <y;
17 }
18 }

Fig. 2. Example of an Ivy isolate.

3 Verification Tactics

Ivy provides a range of automated tactics for discharging proof goals that are
selected for their relatively predictable and stable performance, and for the abil-
ity to fail transparently.

3.1 Invariant Checking with SMT

The default tactic for proving safety properties is proof by inductive invariant,
using the SMT solver Z3 [21]. For example, in Fig. 2, the guarantee at line 16 is
proved using the auxiliary inductive invariant at line 29. The invariant relates the
hidden implementation state variable ‘max’ with the visible specification state
variable ‘seen’. An invariant is a property that is required to hold only between
executions of actions of the isolate. That is, actions may temporarily violate an
invariant, but must re-establish it before terminating. The VC (verification con-
dition) for the isolate holds if all invariants are established by the intializers and
preserved by the interface actions, and if the invariant implies that no assertion
in the code fails. These conditions are verified modulo the visible theories.

Before attempting to prove the VC, the invariance tactic sends it to the
fragment checker, which determines whether the VC is in a logical fragment
called FAU [12] for which Z3 is a decision procedure. If the VC is not in FAU,
Ivy provides an explanation to the user, by pointing to formulas that create a
function cycle or that violate rules for the use of quantifiers and interpreted
operators of the visible theories. A function cycle is a cycle in a graph whose
vertices are types and whose edges are functions (including Skolem functions).
This transparent mode of failure helps the user to reorganize the proof to keep
the VC’s in the decidable fragment.

If a VC in the decidable fragment is false, Z3 fails transparently, producing
a true finite counter-model, which is in turn translated into an execution trace

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 195

that violates an invariant or guarantee. Ivy provides a graphical interactive tool
to help the user in strengthening invariants [25] based on counterexamples. If
the VC is valid, the tactic discharges the proof goal, returning the empty set of
subgoals.

3.2 Eager Abstraction and Model Checking

An alternative tactic to prove safety properties is model checking with eager
abstraction [19]. This technique allows parameterized and infinite-state systems
to be verified with a finite-state model checker. The tactic first propositionally
strengthens the symbolic transition relation by adding instances of axioms of
the logic and theories, or of proved properties. It then propositionally abstracts
the transition relation by converting the atomic predicates to Boolean variables.
The resulting finite-state abstraction is verified by the ABC model checker [8].
If the property is false, the user is presented with an abstract counterexample
expressed in terms of the truth values of the atomic propositions. The user
may refine the abstraction by adding instantiation terms or auxiliary invariants.
In [19] it was shown that this technique can reduce the burden of constructing
auxiliary invariants, simplifying the overall proof of distributed protocols. As
an example, the isolate of Fig.2 can be proved without the auxiliary invariant.
With eager abstraction, one need not be concerned with function cycles, but on
the other hand, diagnosing abstract counterexamples can be challenging.

This approach is consistent with Ivy’s philosophy of using stable and trans-
parent automation, since the finite-state model checker has a single-exponential
upper complexity bound and terminates with a proof or a counterexample. This
is in contrast to more powerful proof engines such as Horn solvers [6] that suf-
fer from unpredictable divergence. In practice, although eager abstraction is not
fully automated, it can handle problems that are substantially beyond the capa-
bilities of current Horn solvers.

3.3 Liveness-to-Safety Transformation

Ivy supports proofs of temporal properties, e.g., liveness properties, via a
liveness-to-safety transformation. Temporal properties are specified in first-order
linear temporal logic (FO-LTL). The liveness-to-safety tactic reduces a temporal
proof goal into a safety proof goal, which can then be proven using an induc-
tive invariant. For finite-state or parameterized systems, any temporal prop-
erty can be proven by showing the absence of fair cycles, which is a safety
property [27]. For infinite-state systems such an argument is not sound, and
Ivy implements dynamic abstraction which generalizes the notion of fair cycles
to infinite-state systems in a sound and powerful way [23,24]. With dynamic
abstraction, Ivy’s liveness-to-safety tactic supports temporal proofs of infinite-
state systems, including both distributed systems with infinite-state per process
and systems with unbounded parallelism, where new processes can be dynami-
cally created so an infinite trace may involve infinite set of processes.

196 K. L. McMillan and O. Padon

1 isolate bar = {

2 finite type t

3 action step(x:t) 16 temporal property (0 enter.now) —

4 specification { 17 O VX. —pending(X)

5 relation pending(X:t) 18 proof {

6 instance enter : signal 19 tactic 12s with

7 20 invariant ¢ enter.now

8 after init { 21 invariant (was —pending(X)) — —pending(X)
9 pending(X) := true; 22 invariant ($happened$ enter.now) —

10 } 23 3X. (was pending(X)) A —pending(X)
11 before step { 24 }

12 require pending(x); 25 }

13 call enter.raise; 26 }

14 pending(x) := false;

Fig. 3. Example of an Ivy isolate with a temporal property.

The liveness-to-safety tactic fits within Ivy’s philosophy of using decidable
reasoning. The more standard way of proving liveness properties is to use rank-
ing functions, but for distributed systems, the required rankings often involve
cardinalities of sets defined via first-order formulas, resulting in verification con-
ditions that fall outside FAU and other decidable fragments. In contrast, the
transformation to safety based on fair cycles and dynamic abstraction results in
verification conditions which are often in the FAU fragment. Furthermore, since
the temporal proof is transformed to a safety verification problem, it is possible
to leverage for liveness proofs all the tactics and mechanisms that Ivy contains
for safety verification.

When the liveness-to-safety tactic is applied, Ivy constructs a symbolic cycle
detection transition system, which tracks fairness constraints and includes a
shadow or saved copy of the state variables, similar to [5]. For finite-state or
parameterized systems, it is enough to show that it is not possible to revisit the
saved state while satisfying all fairness constraints. This can be shown by an
inductive invariant, and Ivy contains special syntax for writing the invariant of
the cycle detection system (e.g., to access the saved copy of state variables). For
infinite-state systems, Ivy’s cycle detection system includes dynamic abstraction,
and invariants may also refer to the state of the abstraction [23].

Figure 3 shows an example of a simple liveness proof of an abstract model in
Ivy. The type t (line 2) is declared as finite, which means it is sound to use a
fair cycle argument without dynamic abstraction. The specification state of the
system consists of a single unary relation, pending, which is initialized to true
for all values of type ¢. The step action (line 11) removes a single value from the
pending relation. This can model, e.g., execution of tasks from a finite pool of
pending tasks. The temporal property that we prove (line 16) is that if step is
called infinitely often, then eventually nothing is pending. At line 13, we detect
the call by raising a flag enter.now. The proof applies the liveness-to-safety (12s)
tactic (line 19), and supplies inductive invariants for the cycle detection system.
The special operators was and $happened$ are used to refer to the saved state,
and the fairness constraints, respectively. The crux of the invariant is that after

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 197

1 axiom eid(X) =eid(Y) - X =Y

2 axiom mgr(X,Y) Amgr(X,Z) - Y =2

3 explicit axiom [mgr_total] Y. mgr(X,Y)
4 axiom mgr(X, X) — X = ceo

6 invariant mgr(X,Y) A scanned(Y) — mid(X) = eid(Y")
7
8

action get_ mid(x:emp) returns (res:id) = {

9 require VY.scanned(Y');

10 res := mid(x);

11 ensure x # ceo — res # eid(x);

12 proof {

13 assume mgr_total with X =z
14

15 }

Fig. 4. Example of manual quantifier instantiation with a tactic

enter.now has happened, there is some element which was pending in the saved
state and is not pending anymore, showing that the system has no fair cycle.

3.4 Logical Tactics

Though most of a proof in Ivy is done with the above automated proof tactics,
there are occasional situations in which a small amount of detailed manually-
guided proof is needed, or is preferable to restructuring the proof. For this
purpose, Ivy provides logical proof tactics that can be applied to properties,
invariants or code assertions, either to complete the proof or to reduce it to
subgoals that can be discharged by the automated tactics. A simple example
is shown in Fig.4. Here, mgr(X,Y") indicates that the manager of employee X
is Y and eid(X) is the employee id of X. We assume that employee ids are
unique, each employee has exactly one manager and that only the CEO is her
own manager (lines 1 to 4). Action get_mid(z) returns the id of the manager of
employee z. For this purpose, a procedure (not shown) scans the employees m
and sets mid(z) = eid(m) for each x managed by m, establishing the invariant
at line 6. Action get mid(z) requires that all employees have been scanned and
ensures that the return value is not the id of z, unless z is the CEO.

Axiom mgr_total states that for all employees there exists a manager (the
universal quantifier on X is implicit). Ivy complains that this quantifier alter-
nation puts the VC outside the decidable fragment. We can solve this with a
manual quantifier instantiation. We first tag the axiom explicit, meaning that it
is not used by the default tactic. We then apply the tactic ‘assume’ (line 13) to
instantiate this axiom for X = z. The resulting assumption 3Y.mgr(z,Y") has no
alternation. The modified proof goal is discharged by the default tactic using Z3.
Ivy’s proof engine is based on the AIT calculus [13] and a deterministic second-
order matching algorithm [30]. The Ivy standard library uses this framework to
define proof rules for natural deduction, similarly to Isabelle/FOL [26]. Logical
tactics also make it possible to perform theory reasoning outside the decidable
fragment, for example, applying the Peano induction axiom.

198 K. L. McMillan and O. Padon

4 Light-Weight Formal Methods

4.1 Compositional Specification-Based Testing

Before attempting a formal proof that an isolate satisfies its specification, it is
useful to debug it using testing. For this purpose, Ivy provides compositional
specification-based testing. The testers that Ivy produces generate randomized
input sequences for an isolate that satisfy its assumptions and check the outputs
against the isolate’s guarantees. This is similar in principle to specification-based
testing tools such as QuickCheck [9], but is reactive and compositional. Composi-
tionality provides a kind of completeness for unit testing. That is, if a system fails
its specification, then there is a local test of some component that fails. Unlike
QuickCheck, Ivy does not require the user to provide generators for datatypes,
instead relying on SMT solving for this purpose. Ivy can also be used to gener-
ate specification-based tests for hardware or software systems not written in Ivy.
For example, it has been used to find bugs in memory hierarchy components for
RISC-V processors [18], and the QUIC secure Internet transport protocol [20].

4.2 Bounded and Finite-State Model Checking

For debugging, Ivy supports bounded model checking. This is decidable if the
VC’s are in the decidable fragment. It also allows uninterpreted types to be
finitely instantiated, allowing under-approximate model checking in the style of
TLC [31].

5 Extracting Efficient Executable Code

Compilation. The implementation part of an Ivy program can be extracted as
executable code in C++. To be extractable, the implementation must satisfy cer-
tain computability conditions, for example that all quantifiers in conditionals be
bounded. For functions, the compiler can choose among several representations:
a closure, a dense representation as an array, or a sparse representation as a hash
table. The dense representation is unboxed, allowing a cache-efficient contiguous
representation of an array of structures and reducing allocation overhead.
Because there are no references in Ivy, there is a risk of copying large struc-
tures passed as arguments. However, the lack of aliasing makes it relatively easy
for the compiler to detect linear use of data, allowing call and return by reference
in the extracted code, and in-place update of structures. Subtype polymorphism
in Ivy is implemented by the compiler using smart pointers, allowing structure
sharing (and potentially copy-on-write, though this is not yet implemented).
In addition, the compiler borrows a technique from the Rust language [22] to
introduce references. Consider the Ivy code on the left of Fig.5 that looks up a
value in a map, operates on it, then writes it back into the map. The compiler
recognizes this as an instance of the “borrowing” pattern and renders it as the
C++ code on the right, which operates on the value in the map by reference.

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 199

1 auto &b = m[x];
2 f(b);

Fig. 5. Updating a map in place using the borrow pattern.

This is possible because the of lack of aliasing and the fact that the compiler
understands the underlying data structures. A C4++ compiler cannot accomplish
this optimization because of the difficulty of pointer analysis in the map imple-
mentation and the called operator f. Benchmarks of an older Ivy compiler [28]
on distributed protocols showed comparable performance to implementation in
OCaml and Go, though Ivy is purely value-based, while these languages support
references.

Concurrency. Although Ivy is a synchronous reactive language, the compiler can
extract parameterized distributed programs from Ivy programs in a sound way.
In a parameterized module, each action and state variable has a first parameter
representing a location. The compiler verifies that different locations do not
interfere with each-other, and then extracts an executable process that takes its
location as a parameter. Ivy guarantees that executing the locations concurrently
is observably equivalent sequential execution, based on a left-mover/right-mover
argument [15,28].

Run-Time Support. Ivy provide a standard library that includes useful abstrac-
tions, such ordered datatypes and arrays, as well as formally specified interfaces
to networking services provided by operating systems. In addition, the com-
piler automatically generates marshaling and unmarshaling code for user-defined
datatypes. These facilities make it relatively straightforward to implement veri-
fied networked protocols in Ivy.

6 Conclusion

Ivy has been designed to provide predictability, stability and transparency in
the process of developing verified systems. For this purpose, it integrates a col-
lection of verification techniques that provide these properties, while attempting
to maximize the expressiveness of the language, the degree of proof automation,
and the efficiency of extracted code. By setting the division of labor between the
human and automated provers appropriately, it aims to increase the productivity
of the overall process of formal development.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. In: Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA,
27-30 July 1996, pp. 207-218. IEEE Computer Society (1996)

200

10.

11.

12.

13.

14.

15.

16.
17.

18.

K. L. McMillan and O. Padon

Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521-525. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028774

Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87-152 (1992)

. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66(2), 160-177 (2002)

Bjgrner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D.,; Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24-51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2
Blundell, C., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee testing.
ACM SIGSOFT Softw. Eng. Notes 31(2), 1-8 (2006)

Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24-40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5
Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. SIGPLAN Not. 35(9), 268-279 (2000)

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M.: Inferring inductive invari-
ants from phase structures. In: Dillig, 1., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11562, pp. 405-425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25543-5 23

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI 2002,
pp. 234-245. ACM (2002)

Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306-320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_ 25

Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM
40(1), 143-184 (1993)

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717-721 (1975)

McMillan, K.L.: Ivy. http://microsoft.github.io/ivy/. Accessed 28 Jan 2020
McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Sci. Comput. Program. 37(1-3), 279-309 (2000)

McMillan, K.L.: Modular specification and verification of a cache-coherent inter-
face. In: 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Moun-
tain View, CA, USA, 3-6 October 2016, pp. 109-116. IEEE (2016)

https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://microsoft.github.io/ivy/

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

Ivy: A Multi-modal Verification Tool for Distributed Algorithms 201

McMillan, K.L.: Eager abstraction for symbolic model checking. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 191-208. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 11

McMillan, K.L., Zuck, L.D.: Formal specification and testing of QUIC. In: Wu, J.,
Hall, W. (eds.) Proceedings of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM 2019, Beijing, China, 19-23 August 2019, pp. 227-240. ACM
(2019)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337-340
(2008)

Nichols, C., Klabnik, S.: The Rust Programming Language. No Starch Press, San
Francisco (2018)

Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing
liveness to safety in first-order logic. PACMPL 2(POPL), 26:1-26:33 (2018)
Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.:
Temporal prophecy for proving temporal properties of infinite-state systems. In:
2018 Formal Methods in Computer-Aided Design, FMCAD 2018, Austin, Texas,
USA, 30 October—2 November 2018, pp. 74-84 (2018)

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Krintz, C., Berger, E. (eds.) Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, 13—-17 June 2016, pp. 614—
630. ACM (2016)

Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0030541

Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 328-343.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_ 26

Taube, M., et al.: Modularity for decidability of deductive verification with appli-
cations to distributed systems. In: Foster, J.S., Grossman, D. (eds.) Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, 18-22 June 2018, pp. 662—
677. ACM (2018)

Wilcox, J.: mypyvy. https://github.com/wilcoxjay/mypyvy. Accessed 15 May 2020
Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns. Inf. Pro-
cess. Lett. 89(6), 309-314 (2004)

Yu, Y., Manolios, P., Lamport, L.: Model checking TLA™ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54-66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2_6

https://doi.org/10.1007/978-3-319-96145-3_11
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/10722167_26
https://github.com/wilcoxjay/mypyvy
https://doi.org/10.1007/3-540-48153-2_6

202 K. L. McMillan and O. Padon

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Ivy: A Multi-modal Verification Tool for Distributed Algorithms
	1 Introduction
	1.1 Related Work

	2 A Modular Language for Decidable Reasoning
	2.1 Modularity and Decidability

	3 Verification Tactics
	3.1 Invariant Checking with SMT
	3.2 Eager Abstraction and Model Checking
	3.3 Liveness-to-Safety Transformation
	3.4 Logical Tactics

	4 Light-Weight Formal Methods
	4.1 Compositional Specification-Based Testing
	4.2 Bounded and Finite-State Model Checking

	5 Extracting Efficient Executable Code
	6 Conclusion
	References

