
mypyvy: A Research Platform
for Verification of Transition Systems

in First-Order Logic

James R. Wilcox1, Yotam M. Y. Feldman2, Oded Padon3,
and Sharon Shoham2(B)

1 University of Washington, Seattle, USA
2 Tel Aviv University, Tel Aviv-Yafo, Israel

sharon.shoham@gmail.com
3 VMware Research, Palo Alto, USA

Abstract. mypyvy is an open-source tool for specifying transition sys-
tems in first-order logic and reasoning about them. mypyvy is particu-
larly suitable for analyzing and verifying distributed algorithms. mypyvy
implements key functionalities needed for safety verification and provides
flexible interfaces that make it useful not only as a verification tool but
also as a research platform for developing verification techniques, and
in particular invariant inference algorithms. Moreover, the mypyvy input
language is both simple and general, and the mypyvy repository includes
several dozen benchmarks—transition systems that model a wide range
of distributed and concurrent algorithms. mypyvy has supported several
recent research efforts that benefited from its development framework
and benchmark set.

1 Introduction

mypyvy is an open-source1 research platform for automated reasoning about
symbolic transition systems expressed in first-order logic. A chief design goal
for mypyvy is to lower the barrier to entry for developing new techniques for
solver-aided analysis and verification of transition systems. As a result, mypyvy’s
modeling language is simple and close to the underlying logical foundation, and
the tool is designed as a collection of reusable components, making it easy to
experiment with new verification techniques.

The main application domain of mypyvy is verification of complex dis-
tributed algorithms. Following prior work [32,33], transition systems in mypyvy
are expressed in uninterpreted first-order logic (i.e., without theories). Using
uninterpreted first-order logic is motivated by the experience that solvers often
struggle when theories (e.g., arithmetic, arrays, or algebraic data types) are
combined with quantifiers. Quantifiers are essential for describing distributed
algorithms (e.g., to state properties about all messages in the network), but
theories can often be avoided, yielding improved automation.
1 https://github.com/wilcoxjay/mypyvy.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 71–85, 2024.
https://doi.org/10.1007/978-3-031-65630-9_4

https://doi.org/10.5281/zenodo.10948110
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65630-9_4&domain=pdf
https://github.com/wilcoxjay/mypyvy
https://doi.org/10.1007/978-3-031-65630-9_4


72 J. R. Wilcox et al.

Fig. 1. Main components of mypyvy.

mypyvy consists of a language for expressing transition systems directly as
logical formulas but in a convenient manner (Sect. 2), a tool for reasoning about
such systems, and a collection of benchmarks accumulated over the last few years
(Sect. 2.1). Figure 1 depicts mypyvy’s components, which are divided to solver-
based queries (Sect. 3) and invariant inference algorithms (Sect. 4). Solver-based
queries such as inductiveness checking and bounded model checking are answered
by translating them into satisfiability checks that are sent to external first-order
solvers. These queries are used as basic building blocks for developing invariant
inference algorithms. mypyvy includes an implementation of two such algorithms:
PDR∀ [21] and Primal-dual Houdini [34]. mypyvy’s internals are designed with
the goal of making it easy to build on (Sect. 5). mypyvy interacts with multiple
solvers, and currently supports Z3 [13] and cvc5 [2]. To present counterexamples
(states, transitions, or traces) in a user-friendly way, mypyvy supports custom
printers that simplify and improve readability of counterexamples.

mypyvy is not just the sum of the analyses currently available; it is a platform
for doing research in automated verification. Several projects (including ongoing
ones) use the mypyvy foundation and benchmark suite to build new invariant
inference techniques, user interfaces for verification and exploration, and, most
recently, liveness verification techniques (Sect. 6).

mypyvy’s first-order modeling is inspired by Ivy [30,33], which promoted the
idea of modeling distributed systems in the EPR decidable fragment of first-
order logic. Ivy includes a rich and modular high-level imperative specifica-
tion language, as well as mechanisms for creating executable implementations,
specification-based testing, liveness verification, and more. As a result, Ivy’s syn-
tax, semantics, and code base are more complicated than what would be ideal
for enabling rapid exploration of new techniques. In contrast, mypyvy’s focus on
transition systems, with a simple syntax and semantics, makes it especially suited
for enabling verification research.2 Moreover, mypyvy’s code base is intentionally
designed, documented, and typed (using Python’s support for type annotations),
to make it easy to build on and extend.

2 There are current open-source efforts to automatically translate Ivy to mypyvy [9,36],
which would allow Ivy users to benefit from mypyvy’s algorithms.



mypyvy 73

Broadly, mypyvy has three target audiences:

1. Researchers interested in modeling and verifying distributed algorithms.
mypyvy offers a user-friendly input language, several queries that assist in
developing models of distributed algorithms, readable counterexamples, and
access to a variety of automatic verification algorithms.

2. Researchers developing verification techniques, and invariant inference in par-
ticular. mypyvy offers a starting point for implementing new algorithms on
top of a developer-friendly code base. mypyvy includes many useful building
blocks, and has already been successfully used in several research projects.

3. Researchers looking for benchmarks for various verification tasks. mypyvy
includes a significant set of transition systems (and their invariants), which
can serve as benchmarks for invariant inference or other verification tasks.

2 Modeling Language

We present mypyvy through a simple example of modeling and analyzing a toy
consensus protocol.3 To get started, the user first expresses a transition sys-
tem in mypyvy’s input language, which is a convenient syntax for (many-sorted)
uninterpreted first-order logic. A mypyvy model of the toy consensus protocol is
shown in Fig. 2. In this protocol, each node votes for a single value, and once
a majority or quorum of nodes vote for the same value a decision takes place.
Because majorities intersect, the protocol ensures that at most one value is
decided on. Modeling an algorithm or system of interest as a transition system
in first-order logic may involve some abstraction, e.g., modeling majorities as
abstract quorums such that every two quorums intersect [31].

States. The first step is to choose the types over which the transition system is
defined. In the fashion of first-order logic, the basic types are uninterpreted sorts
(mypyvy does not use SMT theories). In the example, we use the sorts node, value,
and quorum to represent the nodes that participate in the distributed system,
the values they choose from, and the sets of nodes that suffice for a decision
(we abstract majorities following [4,32]). The state of the system is modeled
by variables which can be constants (individuals), relations, or functions, whose
domains are constructed from the aforementioned sorts. Each state variable is
either immutable, which means it does not change throughout an execution of
the system, or mutable, which means it may change with each transition. In the
example, all state variables are relations. An immutable relation member denotes
membership of a node in a quorum. The other relations are mutable: v records
votes of nodes for values, b tracks which nodes already voted, and d records
decisions.

3 While not useful as a consensus protocol, this example does illustrate important
aspects from proofs of complex, widely used consensus protocols like Paxos [25].



74 J. R. Wilcox et al.

Fig. 2. The toy consensus example in
mypyvy.

Fig. 3. A counterexample to induction
(CTI) for the toy consensus proto-
col’s safety property without additional
invariants.

Axioms. mypyvy allows the user to define a “background theory” over the
immutable symbols, which restricts the state space, via axiom declarations. In the
example, the property that any two quorums intersect (abstracting majorities)
is expressed as an axiom for the member relation (line 6). (The sorts of quanti-
fied variables are omitted in formulas since mypyvy infers them automatically.)
Another common background theory that is useful when modeling distributed
protocols in mypyvy is a total order, which can be used to abstract the natural
numbers in first-order logic (e.g., to model rounds or indices).



mypyvy 75

Initial States. The initial states are defined as those that satisfy all init declara-
tions. In the example, these declare that all mutable relations are initially empty
(lines 13 to 15).

Transitions. The transitions of the system are expressed by transition declara-
tions. The semantics is that each transition executes atomically and can modify
the system’s state. Transitions can have parameters, which are local variables
that are assigned nondeterministically whenever the transition is executed. The
example has two transitions: vote(n, x) and decide(x) (lines 17 to 27). An impor-
tant design choice of mypyvy is that the user specifies transitions by explicitly
writing logical formulas. Each transition is defined over two states: variables
in the usual notation refer to the state before the transition is applied (pre-
state), and primed variables refer to the state after the transition (post-state).
Pre-conditions are encoded as conjuncts in the formula about the pre-state; for
example, vote requires that the node has not already voted by specifying !b(n).
Post-conditions are encoded as conjuncts about the post-state, relating it to the
pre-state; for example, vote specifies that the relation b is updated to include
exactly the same nodes as before in addition to n. Writing transitions directly
through formulas offers great flexibility, but in order to write these formulas suc-
cinctly, a transition starts with a modifies clause that declares which mutable state
variables are changed by it. For any mutable state component not in the modifies
clause, mypyvy implicitly adds a conjunct encoding that the component does not
change. Formally, the transition relation is the disjunction of the formulas from
each of the transitions, where parameters are existentially quantified.

Safety. Finally, the user may specify safety properties using first-order formulas
in safety declarations. The agreement safety property in the example (line 29)
states that at most one value is decided. A safety property holds if it is satisfied
by every state that is reachable from an initial state via a sequence of transitions.

2.1 Benchmarks

The mypyvy repository includes over 30 transition systems collected over the
years. Some of these were translated from Ivy, while others were directly mod-
eled in mypyvy. The benchmarks model a variety of distributed and concurrent
algorithms, including consensus algorithms, networking algorithms, and cache
coherence protocols. The variety of benchmarks, which also vary in complex-
ity, is useful for evaluating and experimenting with new verification techniques.
Additional details can be found in the paper’s artifact [39].

3 Satisfiability-Based Queries

Once a transition system is specified, mypyvy supports several satisfiability-based
queries over it, which are directly translated to satisfiability checks and handed
off to solvers (currently Z3 [13] and cvc5 [2] are supported). These queries are



76 J. R. Wilcox et al.

useful building blocks for developing more advanced solver-aided algorithms, and
for users who are interested in analyzing specific systems (especially during the
model development process). For most queries, mypyvy provides counterexamples
based on satisfying models obtained from solvers. And while solvers are not
guaranteed to terminate, mypyvy makes it easy to follow the EPR fragment
restrictions, which ensures termination.

3.1 Queries

Inductiveness Checking. mypyvy allows the user to add invariant declarations
to prove safety by induction. These are first-order formulas, whose conjunc-
tion (together with the safety properties) forms a candidate inductive invariant.
Figure 2 lists three supporting invariants (lines 30 to 34). The most common
query in mypyvy is to check if the candidate invariant is inductive. When trans-
lating an inductiveness check to the solver, mypyvy splits it into one solver query
per (transition, invariant) pair. In our experience, splitting the disjunction out-
side the solver improves performance and reliability, and, best of all, improves
transparency for the user when one of the cases is more problematic (e.g., takes
a long time).

Theorems. In addition to invariants, which are meant to hold in all reachable
states of the transition system, mypyvy supports checking theorem declarations,
which specify first-order formulas that are expected to be valid modulo the
background theory (i.e., axioms). zerostate theorems refer to immutable state
variables only, onestate theorems may refer to the mutable state variables as well,
and twostate theorems involve two states, similarly to transition declarations. In the
toy consensus example, a zerostate theorem (line 36) is used to state that quorums
cannot be empty (follows from the quorum intersection axiom); a onestate theorem
(line 37) is used to state that, given the background theory, the unique_votes and
decision_quorums invariants imply the agreement safety property; and a twostate theorem
(line 39) is used to check that the voting_bit invariant is preserved by the vote
transition.

Bounded Model Checking (BMC). It is often useful to explore (un)reachability
of a safety violation via BMC. Given a transition system and a safety property,
BMC asks, “Is there a counterexample trace with ≤ k transitions?” BMC is
implemented in the usual way, by unrolling the transition relation.

Trace Queries. Trace queries allow the user to explore the possible executions of
the system in a more targeted way than BMC. This is useful both when the user
is interested only in specific scenarios, and when BMC does not scale to sufficient
depth. As an illustration, in a model of a distributed system with many protocol
steps, BMC may only reasonably scale to a small depth, say 5 transitions, but
many interesting behaviors of the system may not occur until at least 10 or 15
transitions. In Fig. 2, lines 41 to 48 show a query for the nonexistence of an
execution trace that starts with three vote transitions, followed by two decide



mypyvy 77

transitions, and then reaches a safety violation. mypyvy translates such a query
to a first-order formula that is checked for unsatisfiability.

As a complement of trace queries that are expected to be unsatisfiable (spec-
ified by the unsat keyword), it is also useful to make sat trace queries that are
expected to be satisfiable, demonstrating that some behaviors are indeed pos-
sible.4 For example, lines 50 to 54 show a query expecting the existence of a
trace that starts with any transition after which there exists a vote, followed by
a decide transition after which there exists a decision. (That is possible when
the number of nodes is 1.) Such satisfiable trace queries are especially useful for
detecting vacuity bugs, where, due to a modeling error, some transitions mistak-
enly cannot execute, potentially making the system erroneously safe.

Relaxed Bounded Model Checking (BMC�). So far we discussed concrete traces.
mypyvy can also search for relaxed counterexample traces of a bounded depth.
A relaxed trace consists of a sequence of interleaved transitions and “relaxation
steps”, where some elements get deleted from the structure. As shown in [21], a
relaxed counterexample trace that starts at an initial state and ends in a safety
violation proves that there is no universally quantified inductive invariant that
implies safety. This is the case in the toy consensus example—a relaxed coun-
terexample trace found by mypyvy for this example is provided in the paper’s
artifact [39]. The key to implementing relaxed BMC queries is encoding uni-
verse reduction between states. mypyvy does so by introducing a mutable unary
relation active for each sort and using it as a guard in every quantifier, effec-
tively restricting the universe in each state to the “active” part. Relaxation steps
are then modeled by adding a relax transition where each active relation in the
post-state is a subset of the corresponding one in the pre-state (expressed as a
universally quantified formula); all other state variables are unmodified over the
active part. Finally, a relaxed BMC query is encoded similarly to a BMC query
(with the added relax transitions), except that, due to the use of different active
universes, the axioms are asserted not only at the beginning of the trace but also
after every (relaxation) step, together with assertions requiring that the active
universe contains the constants and is closed under functions.

3.2 Counterexamples

When a query fails (except for a sat trace query), it is because the formula sent to
the solver was satisfiable. In such cases, mypyvy obtains a model from the solver
and displays a counterexample—which can be a state, a transition, or a trace,
depending on the failing query. For example, when inductiveness checking fails,
it returns either a 1-state model demonstrating a violation of safety at an initial
state, or a 2-state model demonstrating a counterexample to induction (CTI). As
4 mypyvy uses solver queries to generate executions of the transition system. A solver

is needed due to mypyvy’s flexible and abstract modeling language. More imperative
modeling languages, e.g. that of Ivy, admit execution/simulation without solvers,
which can be useful for invariant inference as well [40,42]. Such simulation can also
be implemented for a fragment of mypyvy’s language.



78 J. R. Wilcox et al.

another example, when BMC finds an execution that violates safety, it returns
a k-state model providing a counterexample trace. Figure 3 shows a CTI (2-
state model) for the toy consensus protocol when the invariants supporting the
safety property are omitted. In general, mypyvy displays a k-state model by first
listing the universe of each sort and the interpretations of the immutable symbols
(member in our example). Then, for each of the k states, the interpretations of
the mutable symbols in that state are printed. For relations, by default mypyvy
only prints positive literals, i.e., the tuples that are in the relation.

Annotations, Plugins, and Custom Printers. In some cases, the default coun-
terexample printing of mypyvy is not as readable as it could be. For example,
if one of the sorts in the transition system is totally ordered (using a binary
relation and suitable axioms), it would make sense to name the elements of that
sort according to the total order. To improve the readability of counterexamples,
mypyvy supports custom formatting via printer plugins and annotations. Every
declaration in mypyvy can be tagged with annotations, which have no inherent
meaning, but can be detected by plugins, e.g., to cause things to be printed
differently. For example, the declaration sort round @printed_by(ordered_by_printer, le)

invokes the ordered_by_printer plugin and tells mypyvy that the sort round should
be printed in the order given by the le relation. mypyvy provides several other
custom printers, including one for printing sorts that represent sets of elements
coming from another sort. Users can also implement their own custom printing
plugins in Python.

mypyvy also supports a handful of other annotations. @no_print instructs
mypyvy not to print a sort, relation, constant, or function at all, which can
be useful either because of a custom printer for another symbol, or temporarily
because the model is large and the symbol is irrelevant to the current debugging
session. @no_minimize is used to instruct mypyvy’s model minimizer not to minimize
elements of a certain sort or relation. The annotation framework is extensible,
and we expect more uses for it to come up.

3.3 Decidability and Finite Counterexamples via EPR

In general, mypyvy does not restrict the quantifier structure used in formulas,
nor the signatures of state variables. As a result, the first-order formulas that
encode different queries in mypyvy are not guaranteed to reside in any decidable
fragment and solvers may diverge. However, a common practice when working
with mypyvy is to use the effectively propositional (EPR) [35,37] fragment of
first-order logic, which imposes certain restrictions on functions and quantifier
alternations. To encode a system in EPR (i.e., ensure that formulas generated
for all queries are in EPR), the user can rely on recently developed method-
ologies [32,38]. For example, the toy consensus example of Fig. 2 is in EPR.
Satisfiability of EPR is decidable, and reliably checked by solvers. EPR enjoys a
small-model property, which implies queries have finite counterexamples (if any).
Solver reliability and finite counterexamples are key enablers for more advanced
algorithms (e.g., invariant inference) that make thousands of solver queries and



mypyvy 79

employ model-based techniques. mypyvy’s language is close to the underlying
logic used in queries, making it relatively easy to follow the EPR restrictions.

4 Invariant Inference

mypyvy’s design aims to make it easy to implement complex solver-aided analysis
algorithms on top of the simpler queries. Two such algorithms, for automatically
finding inductive invariants, are included in mypyvy: PDR∀ and Primal-dual
Houdini.

Universal Property-Directed Reachability (PDR∀ ). mypyvy includes an imple-
mentation of PDR∀ [21], which infers universally quantified inductive invariants
in first-order logic. Like IC3/PDR [7], PDR∀ constructs invariants incrementally
by finding backwards reachable states and “blocking” them relative to a “frame”.
To block a state, PDR∀ computes a “forbidden sub-state” that rules out all states
containing a certain pattern. If PDR∀ succeeds, it returns the inductive invari-
ant in the form of a conjunction of universally quantified clauses. Otherwise, it
either loops forever or returns a relaxed trace, proving that no universally quan-
tified inductive invariant exists for the property. On the toy consensus example,
PDR∀ returns a relaxed trace similar to the one obtained by BMC�. mypyvy’s
implementation is the state-of-the-art implementation of PDR∀, and was used
for comparison with PDR∀ in various papers [23,34,40]. The results demonstrate
the success of mypyvy’s PDR∀ implementation in solving benchmarks that only
require universally quantified invariants.

Primal-Dual Houdini. Primal-dual Houdini [34] is a recent invariant inference
algorithm based on a formal duality between reachability in transition systems
and a notion of incremental induction proofs. mypyvy includes an implementation
of Primal-dual Houdini for universally quantified invariants. Primal-dual Hou-
dini works best for transition systems where the inductive invariant can be con-
structed incrementally, adding one universally quantified clause at a time. Several
complex distributed algorithms have this feature. In cases where the invariant
cannot be constructed incrementally, Primal-dual Houdini can find a witness
for that fact. See [34] for more details and an empirical evaluation. Primal-dual
Houdini was prototyped using mypyvy’s infrastructure, and its development is
an example of the usefulness of mypyvy for research in invariant inference.

5 Designing mypyvy’s Internals

We designed mypyvy’s internals with the goal of making it easy to build on. The
most important aspects of the internals from the developer’s perspective are (1)
using typed Python,(2) the design of the abstract syntax trees (ASTs), and (3)
the interface to the underlying first-order solver. mypyvy is written in statically
typed Python using the mypy type checker. Types not only help catch bugs, but
also document the interfaces available to the developer. In our experience, types



80 J. R. Wilcox et al.

allow developers to get up to speed more quickly on the code base and facilitate
communication.

The ASTs for representing logical formulas in mypyvy were designed to sup-
port symbolic manipulation, as is common in solver-aided algorithms. This led
us to avoid any additional intermediate representations between the ASTs rep-
resenting the user-level formulas and the ASTs representing the input to solvers.
We also structured the ASTs so that it is easy to (re)compute any analysis per-
formed. For example, instead of using a traditional (mutable, long-lived) symbol
table to resolve names, mypyvy uses a purely functional context to track scopes
during AST traversals. The context is thrown away and recomputed every time
the AST is traversed. This makes it easy to traverse programmatically gener-
ated ASTs, without needing to update any symbol tables or other global data
structures, and the extra run time overhead is negligible.

Developers who use mypyvy often want to make many queries to the under-
lying solvers (currently Z3 and cvc5). We expose two interfaces for this. First,
many common primitives, such as those discussed in Sect. 3.1, are exposed as a
library. Second, mypyvy has a lower-level solver interface, where developers can
issue their own satisfiability queries, and also gain access to minimized models
and minimized unsat cores. Furthermore, developers of sophisticated invariant
inference algorithms may have many thousands of queries to run, so mypyvy
supports running many solvers in parallel.

6 Works Using mypyvy

One of mypyvy’s goals is to serve the research community and enable research on
verification, and invariant inference in particular. Indeed, in recent years several
works have built on mypyvy or used it to various extents.

Phase-PDR∀ [14] is a user-guided invariant inference technique. The user pro-
vides a phase structure to convey temporal intuition, and suitable phase invari-
ants are found using an adaptation of PDR∀. Phase-PDR∀ was developed on top
of the mypyvy code base and mypyvy’s PDR∀ implementation, and its evaluation
uses benchmarks available from mypyvy augmented with phase structures.

SWISS [18] is an invariant inference algorithm that finds quantified invari-
ants, including quantifier alternations, using explicit search. While SWISS does
not use the mypyvy code base (it is implemented in C++), it accepts mypyvy’s
input files and its evaluation uses benchmarks available from mypyvy.

P-FOL-IC3 [23] is a variant of IC3/PDR that can find invariants with arbi-
trary quantification using quantified separation [22]. P-FOL-IC3 was imple-
mented using mypyvy’s code, and also benefited from mypyvy’s benchmark set.

IC3PO [15,16] is an IC3/PDR variant that finds quantified invariants for
protocols by analyzing finite instances. It does not use mypyvy’s code, but is
evaluated on some of mypyvy’s benchmarks, manually translated to its input for-
mat.



mypyvy 81

LVR [41] develops a methodology for proving liveness properties. It uses
mypyvy “twice”: first, as a modeling language and a source of benchmarks, and
second, as an invariant inference engine (using P-FOL-IC3) to find invariants
that are required to support a liveness proof based on ranking functions.

7 Related Work
Several tools promote specification and verification of systems and algorithms
using first-order logic, dating back to Abstract State Machines [6,17]. Alloy [20]
is a relational modeling language and a tool that performs bounded verification,
i.e., bounding the size of the universe of each sort. Alloy goes beyond first-
order logic and has concepts such as transitive closure, but it shares mypyvy’s
emphasis on using uninterpreted relations and quantifiers, rather than SMT
theories. Electrum [8,29] is an extension of Alloy that was recently integrated
into Alloy 6 [1]; it essentially turns Alloy into a modeling language for transition
systems. When universe sizes are bounded, Electrum/Alloy 6 can use finite-state
model checkers to verify safety as well as liveness properties.

Ivy [30,33] is a multi-modal verification tool that supports modeling using
first-order logic and EPR as well as some decidable SMT theories, mod-
ular reasoning, extracting executable implementations, liveness verification,
specification-based testing, and more. Unlike Alloy, Ivy is not restricted to
bounded verification; instead, it relies on user-provided inductive invariants and
restricts the quantifier-alternation structure of verification conditions to ensure
decidability of unbounded verification queries.

Verification of transition systems is also the focus of the TLA+ toolbox [26],
where transition systems are expressed in a very rich logic (based on set theory).
As a result, verification is restricted to model checking bounded instances [24,43]
similar to Alloy, or manually writing detailed machine-checked proofs [10].

The IronFleet project [19] verifies distributed systems by formalizing transi-
tion systems and refinement in Dafny [27], a general-purpose deductive verifica-
tion language. In IronFleet, transition systems are expressed using the rich Dafny
type system, which is based on SMT combined with quantifiers. But as a result,
queries to Z3, the underlying SMT solver, suffer from instability, especially when
quantifiers—which are handled using triggers—are involved [28].

Compared to the aforementioned systems, mypyvy takes a similar approach
to Ivy in using first-order logic without theories and aiming for unbounded ver-
ification, but unlike Ivy it focuses on automatically finding inductive invariants,
and enabling research in that direction. We note that automated invariant infer-
ence depends on the reliability of invariant checking and related queries, which
is absent from Dafny, TLA+, or Alloy (for the unbounded case), and obtained
in mypyvy by using EPR in the style of [32].

Another related line of research is developing intermediate representation lan-
guages for invariant inference. VMT [11] is a format that extends SMT-LIB [3]
to a transition system semantics. Constrained Horn Clauses (CHCs) [5,12] is
another SMT-LIB extension that is similar to transition systems but more gen-
eral (it captures, e.g., recursive programs). Both VMT and CHCs are typically



82 J. R. Wilcox et al.

used with rich SMT theories, whereas mypyvy’s logic is centered around uninter-
preted first-order logic and quantifiers.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No [759102-SVIS]). This research was
partially supported by the Israeli Science Foundation (ISF) grant No. 2117/23.

References

1. Alloy 6 announcement (2021). https://alloytools.org/alloy6.html. Accessed 03 Feb
2023

2. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) ETAPS 2022, Part I. LNCS, vol. 13243, pp. 415–442.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

4. Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-
based distributed algorithms by decomposition to decidable logics. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 245–266. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_15

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

6. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level Sys-
tem Design and Analysis. Springer, Heidelberg (2003). http://www.springer.com/
computer/swe/book/978-3-540-00702-9

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

8. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The electrum analyzer: model
checking relational first-order temporal specifications. In: Huchard, M., Kästner,
C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE 2018, Montpellier, France, 3–7 Septem-
ber 2018, pp. 884–887. ACM (2018). https://doi.org/10.1145/3238147.3240475

9. Chajed, T.: Ivy to mypyvy translator (2023). https://github.com/tchajed/ivy-to-
mypyvy

10. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA+ proof system: build-
ing a heterogeneous verification platform. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 44–44. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14808-8_3

11. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools. CoRR
abs/2109.12821 (2021). https://arxiv.org/abs/2109.12821

https://alloytools.org/alloy6.html
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-25543-5_15
https://doi.org/10.1007/978-3-319-23534-9_2
http://www.springer.com/computer/swe/book/978-3-540-00702-9
http://www.springer.com/computer/swe/book/978-3-540-00702-9
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/3238147.3240475
https://github.com/tchajed/ivy-to-mypyvy
https://github.com/tchajed/ivy-to-mypyvy
https://doi.org/10.1007/978-3-642-14808-8_3
https://arxiv.org/abs/2109.12821


mypyvy 83

12. De Angelis, E., Hari Govind, V.K.: CHC-COMP 2022: competition report. In:
Hamilton, G.W., Kahsai, T., Proietti, M. (eds.) Proceedings 9th Workshop on
Horn Clauses for Verification and Synthesis and 10th International Workshop on
Verification and Program Transformation. HCVS/VPT@ETAPS 2022, and 10th
International Workshop on Verification and Program TransformationMunich, Ger-
many, 3 April 2022. EPTCS, vol. 373, pp. 44–62 (2022). https://doi.org/10.4204/
EPTCS.373.5

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M.: Inferring inductive invari-
ants from phase structures. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11562, pp. 405–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25543-5_23

15. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to ver-
ify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8_9

16. Goel, A., Sakallah, K.A.: Towards an automatic proof of Lamport’s paxos. In:
Formal Methods in Computer Aided Design. FMCAD 2021, New Haven, CT, USA,
19–22 October 2021, pp. 112–122. IEEE (2021). https://doi.org/10.34727/2021/
isbn.978-3-85448-046-4_20

17. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide, pp. 9–36. Oxford University
Press, Specification and Vgalidation Methods edn. (1995). https://arxiv.org/pdf/
1808.06255.pdf

18. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: it’s a small (enough) world after all. In: Mickens, J., Teixeira, R. (eds.)
18th USENIX Symposium on Networked Systems Design and Implementation.
NSDI 2021, 12–14 April 2021, pp. 115–131. USENIX Association (2021). https://
www.usenix.org/conference/nsdi21/presentation/hance

19. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct.
In: Proceedings of the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP), pp. 1–17. Monterey, CA (2015)

20. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

21. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM 64(1),
7:1–7:33 (2017)

22. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quantified separa-
tors. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
PLDI 2020, London, UK, 15–20 June 2020, pp. 703–717. ACM (2020). https://doi.
org/10.1145/3385412.3386018

23. Koenig, J.R., Padon, O., Shoham, S., Aiken, A.: Inferring invariants with quanti-
fier alternations: taming the search space explosion. In: TACAS 2022. LNCS, vol.
13243, pp. 338–356. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99524-9_18

24. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang. 3(OOPSLA), 123:1–123:30 (2019). https://doi.org/10.1145/
3360549

https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-030-76384-8_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://arxiv.org/pdf/1808.06255.pdf
https://arxiv.org/pdf/1808.06255.pdf
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3360549


84 J. R. Wilcox et al.

25. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

26. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Professional, Boston (2002)

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

28. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_20

29. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight
specification and analysis of dynamic systems with rich configurations. In: Zimmer-
mann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. FSE 2016, Seat-
tle, WA, USA, 13–18 November 2016, pp. 373–383. ACM (2016). https://doi.org/
10.1145/2950290.2950318

30. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed algo-
rithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020, Part II. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_12

31. Padon, O.: Deductive verification of distributed protocols in first-order logic. Ph.D.
thesis, Tel Aviv University (2018)

32. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. PACMPL 1(OOPSLA), 108:1–108:31 (2017)

33. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 2016 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
614–630. Santa Barbara, CA (2016)

34. Padon, O., Wilcox, J.R., Koenig, J.R., McMillan, K.L., Aiken, A.: Induction dual-
ity: Primal-dual search for invariants. Proc. ACM Program. Lang. 6(POPL), 1–29
(2022).https://doi.org/10.1145/3498712

35. Piskac, R., de Moura, L.M., Bjørner, N.S.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

36. Pîrlea, G.: Translation from ivy to mypyvy (2024). https://github.com/kenmcmil/
ivy/pull/76

37. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. s2–30(1),
264–286 (1930). https://doi.org/10.1112/plms/s2-30.1.264, https://londmathsoc.
onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-30.1.264

38. Taube, M., et al.: Modularity for decidability of deductive verification with applica-
tions to distributed systems. In: Proceedings of the 2018 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). Philadelphia,
PA (2018)

39. Wilcox, J.R., Feldman, Y.M.Y., Padon, O., Shoham, S.: mypyvy: A Research Plat-
form for Verification of Transition Systems in First-Order Logic (Artifact) (2024).
https://doi.org/10.5281/zenodo.10948110

40. Yao, J., Tao, R., Gu, R., Nieh, J.: Duoai: fast, automated inference of inductive
invariants for verifying distributed protocols. In: Aguilera, M.K., Weatherspoon,
H. (eds.) 16th USENIX Symposium on Operating Systems Design and Implemen-
tation. OSDI 2022, Carlsbad, CA, USA, 11–13 July 2022, pp. 485–501. USENIX
Association (2022). https://www.usenix.org/conference/osdi22/presentation/yao

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1145/3498712
https://github.com/kenmcmil/ivy/pull/76
https://github.com/kenmcmil/ivy/pull/76
https://doi.org/10.1112/plms/s2-30.1.264
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-30.1.264
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-30.1.264
https://doi.org/10.5281/zenodo.10948110
https://www.usenix.org/conference/osdi22/presentation/yao


mypyvy 85

41. Yao, J., Tao, R., Gu, R., Nieh, J.: Mostly automated verification of liveness prop-
erties for distributed protocols with ranking functions. Proc. ACM Program. Lang.
8(POPL) (2024). https://doi.org/10.1145/3632877

42. Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., Ryan, G.: Distai: data-driven automated
invariant learning for distributed protocols. In: Brown, A.D., Lorch, J.R. (eds.) 15th
USENIX Symposium on Operating Systems Design and Implementation. OSDI
2021, 14–16 July 2021, pp. 405–421. USENIX Association (2021). https://www.
usenix.org/conference/osdi21/presentation/yao

43. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2_6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3632877
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao
https://doi.org/10.1007/3-540-48153-2_6
http://creativecommons.org/licenses/by/4.0/

	mypyvy: A Research Platform for Verification of Transition Systems in First-Order Logic
	1 Introduction
	2 Modeling Language
	2.1 Benchmarks

	3 Satisfiability-Based Queries
	3.1 Queries
	3.2 Counterexamples
	3.3 Decidability and Finite Counterexamples via EPR

	4 Invariant Inference
	5 Designing mypyvy's Internals
	6 Works Using mypyvy
	7 Related Work
	References


