Check for
Updates

Quarl: A Learning-Based Quantum Circuit Optimizer

ZIKUN LI, Carnegie Mellon University, USA
JINJUN PENG, Columbia University, USA
YIXUAN MEI, Carnegie Mellon University, USA
SINA LIN, Microsoft, USA

Y| WU, Tsinghua University, China

ODED PADON, VMware Research, USA
ZHIHAO JIA, Carnegie Mellon University, USA

Optimizing quantum circuits is challenging due to the very large search space of functionally equivalent
circuits and the necessity of applying transformations that temporarily decrease performance to achieve a final
performance improvement. This paper presents Quarl, a learning-based quantum circuit optimizer. Applying
reinforcement learning (RL) to quantum circuit optimization raises two main challenges: the large and varying
action space and the non-uniform state representation. Quarl addresses these issues with a novel neural
architecture and RL-training procedure. Our neural architecture decomposes the action space into two parts
and leverages graph neural networks in its state representation, both of which are guided by the intuition that
optimization decisions can be mostly guided by local reasoning while allowing global circuit-wide reasoning.
Our evaluation shows that Quarl significantly outperforms existing circuit optimizers on almost all benchmark
circuits. Surprisingly, Quarl can learn to perform rotation merging—a complex, non-local circuit optimization
implemented as a separate pass in existing optimizers.

CCS Concepts: « Software and its engineering — Compilers; « Computing methodologies — Rein-
forcement learning; « Hardware — Quantum computation.

Additional Key Words and Phrases: Quantum compilers

ACM Reference Format:

Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia. 2024. Quarl: A Learning-
Based Quantum Circuit Optimizer. Proc. ACM Program. Lang. 8, OOPSLA1, Article 114 (April 2024), 28 pages.
https://doi.org/10.1145/3649831

1 INTRODUCTION

Quantum computing presents a novel paradigm that enables significant acceleration over classical
counterparts in a wide range of applications, such as quantum simulation (Cao et al., 2019), integer
factorization (Monz et al., 2016), and machine learning (Biamonte et al., 2017). However, program-
ming quantum computers is a challenging task due to the scarcity of qubits and the diverse forms
of noise that affect the performance of near-term intermediate-scale quantum (NISQ) devices.
Quantum programs are commonly represented as quantum circuits, such as the one shown in
Figure 1, where each horizontal wire represents a qubit and boxes on these wires represent quantum

Authors’ addresses: Zikun Li, Carnegie Mellon University, Pittsburgh, PA, USA, zikunl@andrew.cmu.edu; Jinjun Peng,
Columbia University, New York, NY, USA, mail@colin.me; Yixuan Mei, Carnegie Mellon University, Pittsburgh, PA, USA,
meiyixuan2000@gmail.com; Sina Lin, Microsoft, Mountain View, CA, USA, silin@microsoft.com; Yi Wu, Tsinghua University,
Beijing, China, jxwuyi@gmail.com; Oded Padon, VMware Research, Palo Alto, CA, USA, oded.padon@gmail.com; Zhihao
Jia, Carnegie Mellon University, Pittsburgh, PA, USA, zhihao@cmu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART114
https://doi.org/10.1145/3649831

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3649831
https://doi.org/10.1145/3649831
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649831&domain=pdf&date_stamp=2024-04-29

114:2 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

gates. To enhance the success rate of executing a circuit, a common form of optimization is applying
circuit transformations, which replace a subcircuit matching a specific pattern with a functionally
equivalent subcircuit that has better performance (e.g. fidelity, depth).

[C1] =8 |C2] =8 |C3] =9
Jo—(T— HP— 1o (M [an' R Go+-P— Rz HP———HP— Ly o1 qo——o—s | o 11 L o
q1— — o >‘h—, —DH o = > Gr—P | _,g— o -
S1 S2 Ty T 3
q _ q2 | G2 -
T -
Go—9—o— (D —H—-1> qo—o—o—— [— - —_——
q1. — H———————— L q1 — P 1!
T3
CP G2~ o W ans
[Cs| =7 [Cql =9

Fig. 1. A quantum circuit optimization with four transformations, one of which temporarily increases the
cost. Each arrow indicates a transformation, whose source and target sub-circuits are highlighted by boxes in
the same color.

Prior research has proposed two approaches for performing circuit transformations on an input
circuit. The first approach is the use of rule-based strategies, which are employed by many quantum
compilers such as Qiskit (Aleksandrowicz et al., 2019), t|ket) (Sivarajah et al., 2020), and Quilc (Skil-
beck et al., 2020). These strategies involve the greedy application of a set of circuit transformations
that are manually designed by quantum computing experts to improve the performance of quan-
tum circuits. The second approach, as introduced in recent works (Pointing et al., 2021, Xu et al.,
2022c,a), is a search-based approach that explores a search space of circuits that are functionally
equivalent to the input circuit. For instance, Quartz (Xu et al., 2022a) automatically generates
and verifies circuit transformations for a given gate set, which preserves equivalence but may
not necessarily improve performance. To optimize an input circuit, Quartz employs a cost-based
backtracking search algorithm to apply these transformations and discover an optimized circuit.
Although existing approaches improve the performance of quantum circuits, they are limited by
the following challenges in transformation-based quantum circuit optimization.

Planar optimization landscape. The set of circuits that can be reached from an input circuit by
iteratively applying verified, equivalence-preserving transformations comprises the search space
in quantum circuit optimization. However, finding the optimal circuit is challenging due to the size
of the space, which makes exhaustive exploration infeasible, and the inability of the cost function
(derived from a selected performance metric) to provide enough guidance for a greedy approach.
This scenario is referred to as a planar optimization landscape since the path from one circuit to
another with lower cost often contains many steps in which the cost remains unchanged. (Plateaus
of this sort are also present in classic program optimization (Koenig et al., 2021).)

To illustrate the challenge of discovering an optimal circuit in the search space, we analyze the
search space of a relatively small circuit barenco_tof_3 (Nam et al., 2018) which is implemented
with 58 gates in the Nam gate set (CNOT, X, H, Rz). We consider the 6,206 transformations
discovered by Quartz (Xu et al., 2022a) for the Nam gate set and exhaustively find all circuits
reachable within seven transformations. Of these roughly 162 million circuits, we randomly sample
200 circuits and analyze the optimization landscape around them. Specifically, for each sampled
circuit C, we perform a breadth-first search (BFS) to determine the shortest path from C to a circuit
C’ with a lower cost (using the total number of gates as the cost function). That is, we determine the
radius of the optimization landscape around C. The BFS is performed up to a radius of 6, so we either

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:3

60
1.0 0-94/1_60 i —e— w/0 cost-increasing transformations
frovm 1 w/ cost-increasing transformations
0.8 0.73 255 ' e
A 3 1
0.6 © L
& 0.4 2 >0 i
“oa4 o o |
2/ T 45
0. (s}
0.2 & fiss
0.06 "
0.03 40
00 20—
0 1 2 3 4 5 6 >6 0 20 40 60 80 100
Minimal # of transformations to reduce cost # of transformations
(a) (b)

Fig. 2. An analysis on the search space of barenco_tof_3. (a) CDF of the minimal number of transformations
needed to reduce gate count. (b) The optimization trace of the best discovered circuits when including and
excluding cost-increasing transformations.

find the exact radius or conclude that it is greater than 6. Notably, it is guaranteed that all of the 200
circuits can be optimized because their cost is greater then the optimal. The results are summarized
in Figure 2. For more than half of the sampled circuits, reducing the total gate count requires more
than 4 transformations, and 6% of the sampled circuits require more than 6 transformations to
improve performance. While we could exhaustively explore transformation sequences of length 7
for barenco_tof_3, this would not be practical for larger circuits with hundreds of gates or more.
Thus, in the absence of guidance from the cost function, it is natural to consider a learning-based
approach to guide the application of transformations towards a lower-cost circuit.

Cost-increasing transformations. Another challenge in optimizing quantum circuits is the need
to use transformations that may temporarily increase the cost. As illustrated in Figure 1, the gate
count rises from 8 to 9 before ultimately decreasing to 7 through subsequent transformations. Such
cost-increasing transformations are vital for achieving optimal circuits. In Figure 2b, for instance,
the best circuit for barenco_tof_3 without these transformations has 46 gates. In contrast, utilizing
them can lower the count to 36. Identifying the appropriate time and place for these transformations
is complex, given their value is only realized when paired with cost-decreasing transformations.

Our approach. This paper presents Quarl, a learning-based quantum circuit optimizer which
utilizes reinforcement learning (RL) to guide the application of quantum circuit transformations.
In the RL task, each circuit is defined as a state, and each application of a transformation is
considered an action. By adopting this formulation, Quarl can learn to identify circuit optimization
opportunities and perform long sequences of transformations to realize them.

The first challenge we must address in applying RL to circuit optimization is the large action
space. For example, when learning to apply the 6,206 transformations discovered by Quartz (Xu
et al,, 2022a) on a thousand-gate circuit, there may be millions of possible actions (i.e., ways to match
a transformation to a subcircuit of the current circuit). Such a large action space would degrade
the training efficiency of most RL algorithms. To deal with this issue, we propose a hierarchical
action space that uses a gate-transformation pair to uniquely identify a potential transformation
application, so that the RL agent first chooses a gate and then a transformation to apply. This
decomposition allows Quarl to use two much smaller sub-action spaces, enabling effective training.
To effectively train the RL agent to select both a gate and a transformation, we propose hierarchical
advantage estimation (HAE), which allows Quarl to train two policies with a single actor-critic
architecture. Quarl combines HAE with proximal policy optimization (PPO) (Schulman et al., 2017)
to jointly train the gate- and transformation-selecting policies.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:4 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

The second challenge for RL-based quantum circuit optimization is state representation. An
RL application typically represents states as vectors in a fixed, high-dimensional space. Unlike
most RL tasks whose states have relatively uniform structure, a state in our setting is a quantum
circuit whose size and topology depend on the input circuit and change at each step during the
optimization process, making it non-trivial to design a fixed, uniform state representation. A key
insight behind Quarl’s approach is to leverage the locality of quantum circuit transformations, that
is, the decision of applying a transformation at a certain location is largely guided by the local
environment at that location. Based on this insight, Quarl uses a graph neural network (GNN)-based
approach to represent the local environment of each gate. Although each representation encodes
the local environment of only one gate, combining all gate representations allows Quarl to identify
optimization opportunities across the entire circuit. A key advantage of our learned gate-level
representations is that they are independent to the circuit size and generalize well to unseen circuits.
By combining this local decision making with global circuit-wide fine-tuning, we aim to achieve a
balance of both local and global guidance for the optimization process.

The evaluation results show the superior performance of Quarl over existing optimizers on
almost all circuits. On the Nam gate set, Quarl achieves an average reduction of 35.2% and 32.5%
in total gate count and CNOT gate count, respectively (geometric mean), while the best existing
optimizers achieve reductions of only 31.0% and 25.4%. On the IBM gate set, Quarl achieves an
average reduction of 36.6% and 21.3% in total gate count and CNOT gate count, respectively, while the
best existing optimizers achieve reductions of 20.1% and 7.7%. Furthermore, Quarl improves circuit
fidelity by up to 4.84x (with an average fidelity improvement of 1.37X) on the IBM gate set, while the
best existing optimizer only improves circuit fidelity by 1.07X. Notably, the evaluation also reveals
that Quarl can automatically discover rotation merging, a non-local circuit optimization, from its
own exploration, while existing optimizers require manual implementation of this technique.

The remainder of this paper is organized as follows. Section 2 provides background information
on transformation-based quantum circuit optimization and RL. Section 3 outlines the key chal-
lenges associated with applying RL to quantum circuit optimization and describe our approach for
addressing them. The main technical contributions of this paper are presented in Section 4 that
presents Quarl’s neural architecture, and Section 5 that presents Quarl’s training methodology.
Empirical evaluations are presented in Section 6, and related work are discussed Section 7.

2 BACKGROUND

Graph representation of quantum circuits. We adopt the graph representation of quantum circuits
from prior work (Xu et al., 2022a). As illustrated in Figures 3a and 3b, a circuit C is represented as a
directed acyclic labeled graph G = (V, E). Each gate with g qubits is represented as a node v € V
with g in- and out-edges, and each edge e € E represents a connection of two adjacent gates on a
qubit. Nodes are labeled with gate types, and edges are labeled to distinguish different qubits of a
multi-qubit gate (e.g., the control and target qubits of a CNOT gate).

Transformation-based circuit optimization. A common form of optimization of quantum circuits
is circuit transformation which replaces a subcircuit matching a specific pattern with a distinct
equivalent subcircuit. In the graph representation, a subcircuit corresponds to a convex subgraph (Xu
et al., 2022a, p.8). A convex subgraph of a directed graph refers to a subset of the graph’s vertices
along with the directed edges that connect these vertices, possessing a specific property: for any
pair of vertices in the subgraph, if there is a directed path in the original graph that connects these
two vertices, then all the vertices along this path are also part of the subgraph. A transformation is
represented as a pair of connected graphs (G, G’) representing equivalent circuits as illustrated in
Figure 3c, and applying it to a circuit C (with corresponding graph representation G¢) amounts to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:5

B X — [P0 O
QoT o) g, 75— C O St
g1 Rz o 1 o M / G(Z)(v) ¢O(v) o
TG AN~ C —7 T —tq
C
% {Ho——0{r T T TG
a3 DI ylHRz |- 948 ¥ B G CE
(a) Circuit representation. (b) Graph representation.
q1—— H — q1-H P~ NUiC CAHPT D~(HN\T T-%
—
Qb H - qaqH[—— QT THF92 Q-{HYe 42
Source Circuit Target Circuit Source Graph Target Graph

(c) Circuit transformation and its graph representation.

Fig. 3. A quantum circuit (a) and its graph representation (b). For each CNOT, C and T correspond to the
control and target qubits. G%) (v) shows the k-hop neighborhood (see Section 4.1) for the CNOT gate identified
by G (v). (c) illustrates a circuit transformation and its graph representation.

finding a convex subgraph of G¢ that is isomorphic to G and replacing it by G’ to yield a new circuit
C’. For a given transformation (G, G") and a circuit C, multiple subgraphs of C may be isomorphic
to G. Yet, by adding a constraint that requires a specific gate gc in C to correspond to a gate gg
in G, the matching subgraph can be determined uniquely. It’s essential to note that our design
leverages the fact that G¢, G, and G’ are all labeled graphs (e.g., the control and target qubit of a
CNOT gate carry different labels), which allows us to differentiate between the in- and out-edges
of a node and guarantees uniqueness of a match.

Reinforcement learning (RL). RL is a class of machine learning algorithms that focus on sequential
decision making problems. An RL problem is formalized as a Markov decision process defined
by a tuple (S, As, P, r, y), where S is the state space of the environment, A is the action space for
the agent at state s € S, P(s’|s, a) defines the probability of the state transiting from s to s’ if the
agent takes the action a, r(s’, s, a) defines the immediate reward of the transition from state s to
state s’ by action g, and y € (0, 1) is the discounted factor to prioritize immediate rewards over
future rewards. Each state-action pair is a step, and a sequence of steps is a trajectory, denoted
as 7 = (So, 4o, S1, a1, . ..). The return of a trajectory is the discounted cumulative reward along
the trajectory, given by R, = X,_, v'rs, where r; = r(s;41, 51, a;) . We use R; for the discounted
cumulative reward starting from step ¢ in the trajectory, that is, R; = 3,,_, y* ~'rs.

RL agents aim to learn a policy to maximize the return through trial and error, by first collecting
trajectories and then optimizing the policy based on the actions taken and the returns observed.
Formally, a policy is a function 7 that maps each state to a probability distribution over valid actions.
A policy induces a probability distribution over trajectories starting at a given state (i.e., trajectories
generated by the policy), where a; is sampled according to 7(s;) and s is sampled according to
P(st41]81, ar). A policy parameterized by 6 is denoted as 7 (+|s; 6) or my. The learning objective in RL
is to maximize the expected return of trajectories generated by the policy 7y, i.e., J(0) = E;-r, [R,].

Policy gradient methods optimize this objective by gradient ascent over J(6) w.r.t. 6. By the policy
gradient theorem (Sutton et al., 1999), an equivalent formulation in the form of a loss function
can be expressed as L¢(0) = Erng 2 logm(as|ss; 0)A(sy, ar)], whose gradient is equivalent
to VJ(6) and can be estimated by sampling 7. A(s;, a;) in LYC () is the advantage, defined as
A(s,a) = Q" (s,a) —V”"(s), where Q" (s, a) = E[R;|sg = s, ap = a] is the Q-function (i.e., the expected

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:6 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

return starting from state s and taking action a), and V7 (s) = E[R;|so = s] is the expected return
starting from state s. Advantage measures how much better the agent can get by taking a specific
action at a state than average. By gradient ascent, actions are reinforced based on their advantages
(i.e. the probability of an action increases if its advantage is positive, and drops otherwise). The
empirical advantage A, is often estimated as A(s;, a;) = R, —V” (s;) over a sampled trajectory, where
R; is the return, which is a sampled estimation of Q" (s;, a;), and V" (s;) is typically approximated
by training another neural network. Such a framework is also referred to as the actor-critic method,
where actor denotes the policy and critic denotes the value network (Mnih et al., 2016).

Proximal policy optimization (PPO). PPO is a variant of policy gradient methods that achieve
state-of-the-art performance in various applications (Schulman et al., 2017). PPO uses an clipped sur-
rogate objective: L°MP(0) = E [Zt min(po (s, ar) Ay, clip(po(ss, ar), E)At)], where pg(s,a) =

T~ T0s1a
g (als)
79,4 (als)’
7o,,4> and clip(p, €) = min(1 + €, max(1 — ¢, p)) is the clip function used by PPO (Schulman et al.,
2017, Eq. 7).

A, denotes the estimated advantage A(sy, az) at step t over trajectory T generated by

3 CHALLENGES AND HIGH-LEVEL APPROACH

Applying reinforcement learning to optimize quantum circuits presents several challenges unique to
this problem setting. This section presents these challenges and the key ideas Quarl uses to overcome
them. In the sequel, we assume a fixed gate set, set of equivalence-preserving transformations,
and cost function. We formulate quantum circuit optimization as a Markov decision process
(S, As, P,r,y) as follows. S is the set of circuits over the given gate set. For a circuit C € S, Ac
includes all valid applications of transformations on C. Applying a transformation a to a circuit C
deterministically defines a new circuit C’; therefore we let P(C’|C, a) = 1 and P(C”|C, a) = 0 for
C" # C’. Finally, the reward function is given by the cost difference between the circuits before
and after a transformation: r(C, a) = Cost(C) - CosT(C).

3.1 Challenge 1: Action Space

Directly applying existing policy gradient methods to our setting requires the RL agent to learn a
policy that can simultaneously select a transformation and a subcircuit to apply the transformation
for a given circuit. However, learning such a policy is challenging due to the very large action space.
For example, when learning to apply the 8,664 transformations discovered by Quartz (Xu et al.,
2022a) on a thousand-gate circuit, there can be up to millions of actions (i.e., possible applications
of the transformations) for a given state (i.e., circuit). The large action space degrades the training
efficiency of the RL agent, since a training sample only directly updates the probability of a single
action, and exploring a large action space requires a huge amount of training samples. Moreover,
the action space of a state depends on its graph structure, which changes at each step.

Solution. For a circuit C, Quarl decomposes its action space Ac into two “subspaces” a position
space Pc and a transformation space X. Pc includes all gates in C, and X contains all transformations.
(Recall that a subcircuit matching a transformation can be determined by matching a gate, see §2.)
Under this decomposition, Ac is a subset of Pc X X. Quarl uses separate policies for Pc and X.

3.2 Challenge 2: State Representation

At the core of most RL algorithms is a representation of states as high-dimensional vectors. However,
unlike most RL tasks whose states have a uniform structure, a state in our setting is a quantum
circuit whose size and topology depend on the input circuit and may change at each step during

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:7

the optimization process. Therefore, designing a uniform state representation for quantum circuits
is challenging. A straightforward approach would be to directly represent each quantum circuit
as a high-dimensional vector. However, due to the diversity of quantum circuits, this approach
leads to learned representations that are highly tailored to the circuits used in training and do not
generalize well to unseen circuits.

Solution. A key insight for addressing this challenge is leveraging the locality of circuit trans-
formations, that is, while the overall optimization strategy depends on the entire circuit, we
hypothesize that the decision of applying a transformation at a gate can be largely guided by the
local environment of the gate. Based on that, we design a neural architecture that relies on local
decision making when selecting a gate to apply a transformation. In particular, Quarl uses a K-layer
graph neural network (GNN) to represent the K-hop neighborhood of each gate (see Definition 1).
While each representation only encodes a local subcircuit, combining all gates’ representations
allows Quarl to collectively represent an entire circuit. A key advantage of our approach is that the
representations generated by the GNN is independent of the circuit size and thus can generalize to
circuits at different time steps in the optimization process. While our approach localizes the decision
making, it still allows global circuit-wide guidance, since we fine-tune the RL agent (including the
weights of the GNN) when optimizing a circuit (see Section 5). With this design, we aim to achieve
a good balance between local and global decision making in the optimization process.

3.3 Quarl’s Approach

Combining our solutions to the two challenges discussed above, we propose a hierarchical approach
to optimizing quantum circuits using RL. Quarl’s neural architecture is outlined in Figure 4. The
first stage in processing the current circuit C; is the gate representation generator, which is a graph
neural network (GNN) that computes a learned vector representation for the K-hop neighborhood
of each gate in C; (see Section 4.1). Next, based on these learned representations, Quarl’s gate
selector chooses a gate g; using a learned gate-selecting policy, denoted m,(:|Cy; 6;), which is a
probability distribution over all gates in C; (see Section 4.2). Finally, the learned representation
of g; is fed into Quarl’s transformation selector, which selects a transformation using a learned
transformation-selecting policy, denoted 7y (-|Cy, g¢; 0x), which is a probability distribution over all
valid transformations at g; (see Section 4.3).

The gate- and transformation-selecting policies are trained jointly in Quarl with a combined
actor-critic architecture. Specifically, the actor network learns the transformation-selecting policy,
and the critic network acts both as a value estimator for the transformation-selecting policy and as
a predictor for the gate-selecting policy. In other words, the transformation-selecting policy is the
only policy whose parameters are updated by gradient ascent and whose actions (i.e., transformation
selections) are reinforced. The critic network learns to estimate the value of the state derived by
applying the transformation-selecting policy, which is the K-hop neighborhood of a gate. The gate-
selecting policy evaluates all gates with the value estimator of the transformation-selecting policy
and selects (with high probability) a high-value gate. Intuitively, the value estimator is suitable to
form the gate-selecting policy, because high value indicates high optimization opportunity.

Compared to a straightforward PPO approach, where the actor learns both 7, and 7, and the
critic learns to estimate the value of an entire circuit, our method has fix-sized state (the K-hop
neighborhood) for both the actor and critic, and a fixed and relatively small action space for the
transformation-selecting policy. These advantages ultimately make our policies easier to train.
However, our specialized architecture requires a different advantage estimator from standard PPO,
which we develop in Section 5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:8 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

Gate Representation Gate Selector(§4.2) __| Value Transformation
qo—{R2 H X —— Generator (§4.1) o mEEEn go| 0.1 e () Xfer | Prob. Go— T XA —
o B NI Y 91 HEEEN - 91| 02 = ~ Xo | 01 T
N 9 EEEnn - g2| 03] x| 01y
. !)
92 —o—p——— ——~— e [74 g3 01 = " = Xz 0.7 Gy ——(15—
N ' w | = x3 | 01
g3 — g; HEEE8 gs| 01 Tifit G3———
“Eeri ransformation
Input Circuit Gate sl policy New Circuit
Representations Gate Value
)

Fig. 4. The neural architecture of Quarl’s RL agent. The arrows indicate the control flow.

4 QUARL’S NEURAL ARCHITECTURE
4.1 Gate Representation Generator

For an input circuit C, Quarl uses a graph neural network (GNN) with K layers to learn to represent
the K-hop neighborhood of each gate in C as a high-dimensional vector. Our GNN architecture
follows GraphSAGE (Hamilton et al., 2017).

DEFINITION 1 (k-HOP NEIGHBORHOOD). For a node v in graph G, its k-hop neighborhood, denoted
G¥)(v), is the subgraph of G that includes all nodes within k (undirected) hops from v.

Figure 3b shows the k-hop neighborhood for a selected gate (identified by G(?) (v)) and different
values of k € {1, 2,3}.

The GNN architecture takes as inputs (1) a circuit represented as a graph, (2) gate-level features
(i.e., the type of each gate), and (3) edge-level features (i.e., the direction of each edge and the qubits
it connects to). Let h;k) ,k € {1,..., K} denote the representation of the k-hop neighborhood of gate
g outputted by the kth GNN layer, let h;o) denote the input features of the first GNN layer for g (i.e.,
an embedding of g’s gate type), and let e,,, denote the edge features of the edge between node u and
v. h;k) is computed by taking hl(tk_l) and e, as inputs, where u is a neighbor gate of g. Each GNN
layer includes an aggregation phase, which first gathers the representations of each gate’s neighbors
from the previous GNN layer, and an update phase, which computes a new representation for each
gate by combining its previous representation and the aggregated neighborhood representations.

Aggregation phase. Let N(g) denote gate ¢g’s neighbors in the graph (i.e. a set of gates that share an
in- or out-edge with g). For each gate g, the aggregation phase at layer k takes as inputs hl(,k_1> and

eug (u € N(g)) and computes an aggregated representation of g’s neighbors a;k) with a multi-layer
perceptron (MLP) (Gardner and Dorling, 1998). The neural architecture of the aggregate phase is
formalized as follows:

) = > oW - concat(h ", eug) + b1)
ueN(g)

where Wa(k) and bék) denote the weights of the MLP in the aggregation phase of the k-th layer, and
o(-) is the ReLU function (Agarap, 2018).

Update phase. For each gate g, the update phase computes a new representation h;k) by com-
bining g’s representation from the previous GNN layer (i.e., h;k_l)) and the aggregated neighbor

representation (i.e., a;k)). The neural architecture of the update phase is formalized as follows:
h_‘(]k) = O'(Wu(k) : concat(hék_l), a;k))) 2

where Wu(k) denotes the weight matrix of the MLP in the update phase.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:9

Note that using more GNN layers allows Quarl to represent a larger neighborhood of each gate
but introduces more trainable parameters, which requires more time and resource to train (see
Section 5). Section 6 analyzes the choice of K. In the text that follows, 8, represents the parameters
used within the representation generator.

4.2 Gate Selector

The gate selector is composed of two parts: a gate value predictor and a gate sampler. The gate
value predictor predicts the on-policy value V7 (C, g) (see Section 5.3) of gate g on circuit C for the
transformation selecting policy .. The gate value predictor takes as an input héK) , which represents
the K-hop neighborhood of g on circuit C, and outputs V7 (C, g; 0,, 0,4), which approximates
V7™ (C, g), and 0, denotes the trainable parameters of the predictor. The predictor uses a multi-layer
perceptron (MLP) (Hinton, 1987) in our current implementation.

Our gate selecting policy 7, is formed by applying a temperature softmax (He et al., 2018) to the
outputs of the gate value predictor, which is parameterized as follows:

exp (V7™ (C, g; 04, 0,9) [t)
2gec exp(V7(C,g'; 05, 0r) /1)

where 7,(g|C; 0y, 0,4) denotes the probability of choosing g in circuit C, and ¢ is a temperature
parameter for the softmax function. The temperature ¢ € (0, +o0) balances exploration and ex-
ploitation. Specifically, when ¢ is larger, 7, selects gates with increased randomness and becomes
more explorative. On the other hand, when ¢ becomes smaller, z; becomes more exploitative and
tends to select the gate with the highest estimated value. Balancing exploration and exploitation
across different circuits requires circuit-specific temperatures. For a specific circuit C, we set the

Ty (91Cs 99: Grg) = (3)

temperature ¢ as t = 1/ln%, A € (0,1), where |C| is the number of gates in circuit C and A is a
measure of exploitation. Specifically, we set t such that even if there is only one gate with a value
closes to 1 (representing an optimization opportunity to reduce cost by 1), and the values of all
other gates are close to 0 (representing no optimization opportunity), the gate selector samples the
high-value gate with probability ~ A.

4.3 Transformation Selector

Given a circuit C and a gate g, Quarl’s transformation selector chooses a transformation to apply
at g. The transformation selector is an MLP, which takes as an input the representation of the
selected gate h;K), and outputs a probability distribution 7, (:|C, g; 0, 0,4) over the entire set of
transformations X, where 0, denotes the trainable parameters of the transformation selector. The
final output of the MLP is followed by a masked softmax layer that filters out invalid transformations.
The mask is generated by the circuit transformation engine by checking every transformation in X
to figure out which of them can be applied to gate g.

5 TRAINING AND INFERENCE METHODOLOGY

To train Quarl’s neural architecture with PPO, Section 5.1 introduces hierarchical advantage estima-
tor, a novel approach to estimating the actions’ advantages in our problem setting. Algorithm 1 lists
Quarl’s RL-based optimization algorithm, which optimizes a circuit by training the RL agent. This
algorithm is used in both pre-training and fine-tuning of the optimizer. A training iteration of Quarl
consists of two phases: data collection, which uses the current RL agent to generate trajectories (line
5-19), and agent update, which updates the agent’s trainable parameters with gradient ascent (line
20-21). The two phases are introduced in Sections 5.2 and 5.3, respectively. Section 5.4 discusses
Quarl’s combination of pre-training and fine-tuning to optimize an input circuit.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:10 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

Algorithm 1 Quarl’s RL-based circuit optimization algorithm. B and T are hyper-parameters that
specify the number of trajectories to collect in each training iteration and the maximum number of
transformations in each trajectory. NOP is a special transformation that stops the current trajectory
when selected. Quarl uses « to control data collection (see Section 5.2).

1: Inputs: A circuit Cjppy

2: Output: An optimized circuit

3: C = {Cinput} > C is the initial circuit buffer
4: for iteration = 1, ... do

5: > Training data collection
6: R=0 > Clear the rollout buffer in each iteration
7: forj=1,...,Bdo
8 Sample an initial circuit Céj) from C (see Section 5.2)
9: fort=1,...,T do
10: Compute gate representations héK) forg e Ct(z)l
11: Selects gate gt(j) using ng(-|c§{)1; 04, 0rg)
12: Selects transformation xt(j) using nx(-|Ct(£)l, ggj); Ox, 0rg)
13: Generate new circuit C;j) by applying xt(j) atggj)
14: Compute reward rt(j) = COST(C;{)1) - COST(Ct(j))
B R=RU{C DG A v (€ g0, g a1 701,00}
16: if Cost(CY)) < Cost(C?) then
17: c=cufcy
18: ifxij) =NOP v COST(Ct(j)) > a - CosT(Cippyy) then
19: break > End the trajectory
20: > Agent update

21: Update 64, 0x, 0rg using SGD (loss given by eq. (7)) for M epochs

22: return argminee e Cost(C)

5.1 Hierarchical Advantage Estimator

As described in Sections 3.3 and 4, Quarl uses a combined actor-critic architecture to jointly train two
policies: the gate-selecting policy 7y, which is directly approximated using the values V7 (C, g); and
the transformation-selecting policy 7, on which we apply RL training with an adaptation of PPO.
For the transformation-selecting policy ry, its input is the embedding of the K-hop neighborhood
of a gate g on circuit C (i.e., C’®)(g)), and its output action is an applicable transformation x at
gate g. To update 7, using policy gradient, a key challenge is to estimate the advantage of applying
transformation x. In the canonical framework of PPO, the advantage A, of applying x at step t over
a sampled trajectory 7 is estimated by the difference between the return R; and the value function,
namely A, = R, — V™ (C, g). However, such a straightforward approach can be problematic in
our setting. The value function V”* (C, g) is computed using the GNN embedding over the K-hop
neighborhood of gate g, so it represents the local value for the neighborhood of g rather than the
global value of the entire circuit C. Note that when generating a trajectory 7 during RL training,
our hierarchical policy may choose an arbitrary gate g according to 7, to apply a transformation,
so the following steps in 7 after x is applied to g can involve gates that are arbitrarily far away
from g. Accordingly, the trajectory return R, = 3\, y*~*r(C;, g, x;) is in fact estimating the global
return over the circuit C rather than the local return over the K-hop neighborhood. Therefore, the
multi-step trajectory return R, may not be the most appropriate choice for advantage estimation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:11

2-hop influenced gates I-hop influenced gates

\Tl \ gg,/' gi— 9s

qo——H~ AR —=q0 qo—7={H —{HA_9o xRz qo
‘ 92

G—, T W@ i —— ‘q"—‘q x99 _.q,

P e)t \llzi'/qz\ Osp—— S T <
7N PN L

q2

q3 q3 q3 q3

Fig. 5. The ¢-hop influenced gates of applying the graph transformation in Figure 3c.

In order to obtain an accurate local advantage, we propose a hierarchical advantage estimator,
which is based on a 1-step return estimation given by

A(C, g,x) =r(C,g,x)+y max V™(C,¢)|-V™(C,g), (4)
g’ €IG(¢,C.9.x)

where r(C, g, x) is the reward of applying transformation x to gate g of circuit C, C" denotes the
new circuit obtained by applying the transformation, and IG(¢, C, g, x) is the £-hop influenced gates
of this transformation (defined below) to ensure locality.

DEFINITION 2 (£-HOP INFLUENCED GATES). For a transformation x applied at gate g of circuit C, its
¢-hop influenced gates, denoted IG(¢, C, g, x), is gate set of the new circuit C' that includes (1) all the
new gates introduced by the transformation, and (2) all £-hop (directed) predecessors of these gates.

IG(#,C, g, x) includes all gates in the new circuit C’ influenced by transformation x, which can
fall into two categories. First, all gates in the target graph of the transformation are in IG(¢, C, g, x),
since these gates are newly introduced by the transformation. For transformation T in Figure 5,
9o 91, and g, are added to the new circuit by applying T;. Second, IG(¥¢, C, g, x) also includes gates
whose applicable transformations may change due to the transformation. For this category, we
consider all ¢-hop predecessors of the new gates. Figure 5 shows the 1- and 2-hop influenced
gates. Quarl locates a transformation based on a topologically minimal gate in the source graph
of the transformation. Therefore for any gate not influenced by a transformation x, its applicable
transformations remain the same after applying transformation x, as shown in Theorem 1.

THEOREM 1 (PROPERTY OF INFLUENCED GATES). Let C’ be the new circuit obtained by applying
transformation x to gate g on circuit C, and assume that for any transformation (G, G’) the depth of
G is at most d (the depth of a directed acyclic graph is the maximal length of a path in the graph). For
any gateg’.g’ € C' A g’ ¢ IG(d,C, g, x), its set of applicable transformations is identical in C and C’.

Proor. Let NG(C, g, x) refer to the new gates introduced by x in C’. For gates g’ € C' A g’ ¢
IG(d, C, g, x), there are three cases: (1) ¢’ is a k-hop predecessor of NG(C, g, x) where k > d; (2)
g’ is a successor of NG(C, g,x); (3) ¢’ is neither a predecessor nor a successor of NG(C, ¢, x). The
availability of any transformation (G, G’) where the depth of G is less than or equal to d on gate
g, only depends on the d-hop successors of g. For case (1), (2) and (3), the d-hop successors of
¢’ remains unchanged. For case (1), since ¢’ is a k-hop predecessor of NG(C, g, x) where k > d,
then all gates in NG(C, g, x) are outside g”’s d-hop successors, so g’’s d-hop successors remain
unchanged. For case (2), all successors of ¢’ are successors of NG(C, ¢, x), remaining unchanged.
For case (3), since ¢’ is not a predecessor of NG(C, g, x), none of its successors are in NG(C, g, x).
Thus, ¢g”’s successors remain unchanged. O

Quar] uses influenced gates to capture dependencies between transformations when estimating
their advantages. As per eq. (4), Quarl estimates the local advantage of a transformation based

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:12 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

on the maximum V” (calculated by the gate value predictor) across all influenced gates of the
transformation. The rationale behind the max aggregator is to propagate the reward signal through
the dependency path of transformations, so our hierarchical advantage estimator can capture the
rewards that truly depend on the current transformation. In our experiments, the maximal depth of
circuits used in transformations is 4, but in practice we found that using 1-hop influenced gates leads
to better results than using 4-hop influenced gates suggested by Theorem 1. We note that while
some transformations have a depth of 4, most have a lower depth; including more predecessors
introduces more variance into the training process as the value of the maximal-value node in the
influenced gates may not always be related to the applied transformation.

5.2 Training Data Collection

Generating Trajectories. As shown in Algorithm 1 line 5-19, in each training iteration, Quarl
generates B trajectories according to the current policy, and each trajectory has at most T steps.
These generated trajectories are taken as the training dataset to update the gate- and transformation-
selecting policies. To generate the j-th trajectory, Quarl randomly selects an initial circuit Céj) from
the initial circuit buffer C (introduced later in this section), and iteratively applies transformations

on the selected circuit. Specifically, at the t-th time step, Quarl takes the current circuit C [(i)1 as
an input and chooses a gate gﬁj) and a transformation x,(j) using the gate- and transformation-
selecting policies. After that, xt(j) is applied to gﬁj) on Ct(i)1 to generate a new circuit Ct(j). At each
time step, Quarl collects the following data: (1) the current and new circuits C;f)1 and Ct(j), (2) the
selected action (gij), xt(j)), (3) the reward r;, (4) the value of gij) given by the gate value predictor
V7= (Ct(i)1, gﬁj). 0y, 0;4) (see Section 4.2), and (5) the probability of choosing xt(j) under the current
transformation-selecting policy (i.e., er(x;j) |Ct({)1’ ggj); Ox, 0rg). The collected data is saved in a
rollout buffer R, which is initialized to empty at the start of each iteration. According to the PPO

algorithm (Schulman et al., 2017), no gradient is generated during the generation of trajectories.

Stop conditions. After a trajectory begins, Quarl keeps applying transformations on the circuit
until one of the following stop conditions is met. First, each trajectory can have at most T time
steps, where T is a hyper-parameter. Second, Quarl introduces a special transformation named NOP
into the transformation set. Selecting NOP as the transformation (Algorithm 1 line 18) indicates that
Quarl chooses to end the current trajectory, which provides Quarl the ability to stop when it finds
that moving forward cannot bring benefits or even leads to negative rewards. Third, Quarl stops
the current trajectory when the cost of the current circuit is « times greater than the cost of the
input circuit (Algorithm 1 line 18), which prevents Quarl from moving toward a wrong direction
too far. We set « to be 1.2 in our evaluation.

Initial circuit buffer. Instead of always starting from the input circuit C;ppy, in a trajectory, Quarl
samples a circuit from an initial circuit buffer C (Algorithm 1 line 16-17). C includes all circuits
discovered in previous trajectories whose cost is lower than the trajectory’s initial circuit. To
select a circuit from C, Quarl first samples a cost and then uniformly selects a circuit from the
set of circuits with the sampled cost. Users can define customized probability distributions over
costs depending on how they expect their agent to behave. Specifically, a greedier distribution
where probabilities for sampling lower costs are larger makes the agent more progressive in doing
optimization, preferring to extend lower-cost states.

Compared to always starting a trajectory from Ciypys, sampling circuits from the initial circuit
buffer enhances the exploration of the search space. In particular, starting from Cjppy; restricts
Quarl to only explore circuits at most T steps away from Cjyy;, where T is the maximum number

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:13

of steps in a trajectory. In contrast, starting from a randomly selected circuit allows Quarl to explore
previously unknown areas, enabling Quarl to discover more optimized circuits.

5.3 Agent Update

To update Quarl’s neural architecture, we first traverse the rollout buffer, and compute the advantage
value for each time step according to eq. (4). Next, we train the graph embedding network, the gate
value predictor network and the transformation selector network jointly with stochastic gradient
descent for M epochs. Following the PPO algorithm in (Schulman et al., 2017), the loss function for
the transformation selector can be rewritten as

L™ (04, 0,4) = E; ®)

> min(pe (Bx, 0r9) Ar, clip(pr (O, Org), €)Ar)
t

T3 (%t |Ct,g230x,0rg)
Tx (¢ |Cr.9¢30x (01d) Org(old)) *
with eq. (5), the transformation-selecting policy is updated toward making a better choice given C;

and g; (i.e. increasing the probability of choosing transformation x; if A, > 0, and decreasing the
probability otherwise). Since the update is conditioned on fixed C; and gy, the gate-selecting policy
0, isn’t involved. To update the value estimator network, which is also the gate selecting policy,
Quarl minimizes LVE (64, 0r4) given by

where p; (0, 0rg) = Note that p;(0y, 0,4) doesn’t depend on 6. Intuitively,

LYE(0,,0,4) = E,

ZA(Ct,gt,xt)zl (6)

To train the networks jointly, we combine these loss functions into
L(6) = L™ (0x, 0rg) + c1LVF (6, 09) + c2H (7 O, Org) (7)

where 0 denotes all the trainable parameters combining 0, 0x and 0,4, ¢c; > 0 and c; > 0 are two
coeflicients, and H(,) denotes the entropy of policy 7y, which serves as a regularization term to
promote exploration.

We now describe how Quarl updates the trainable parameters of the three networks. Let
Ox(o1d)s Og(01a) and O,4(o1q) denote the parameters in the gate selector, the transformation selec-
tor and the representation generator, used during data collection, respectively. In each epoch,
for each data point in the rollout buffer (i.e. C;_1, C;, g, X¢, 72,V (Ct-1, g3 04(01d)> Org(ota)) and
T (Xt |Ci-1, Gt3 Ox (01d)» Org(ola)), We compute the loss function L(0) w.r.t. the latest parameters
Ox (new)s Og(new) and Opg(new). Quarl uses all three neural networks to compute the loss function.
Specifically, in each epoch, to compute LT5(6y, 6,4) and LVE(6,, 6,,), the graph representation gen-
erator first generates the representation for the nodes. Second, the transformation selector network
uses these representations to compute p(Ox(new), Org(new)) in eq. (5) and H(7x; Ox (new)> Org(new))
in eq. (7). Finally, the representations are also used by the gate value predictor network to compute
the regression loss on gate value according to eq. (6). As a result, back-propagating the loss in
eq. (7) generates gradients for all three networks. The gradients for the gate selector come from
the loss function in eq. (6), the gradients for the transformation selector derive from the loss
function in eq. (5) and the entropy term (i.e. H(7y; Oy, 0;4) in eq. (7)), and the gradients for the gate
representation generator come from all three terms in the loss function eq. (7).

5.4 Pre-training, Fine-tuning, and Policy-guided Search

Circuits implemented in the same gate set share common local topologies, which offers oppor-
tunities to transfer the learned optimizations from one circuit to another in the same gate set.
This observation motivates our pre-training and fine-tuning approach through which we can

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:14 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

avoid training from scratch on previously unseen circuits and accelerate training. As introduced in
Section 4, Quarl’s neural architecture can automatically adapt to circuits with different sizes and/or
topologies, which enables the pre-training and fine-tuning pipeline.

Pre-training. The goal of the pre-training phase is to help the agent learn how to optimize
different local structures. Quarl uses a diversity of circuits for pre-training, which allows the agent
to explore various local structures and prevents over-fitting to the structure of a single circuit. Minor
changes are needed to support training Quarl on multiple circuits. In the initial buffer, circuits are
clustered into equivalent groups. At the beginning of each trajectory, Quarl chooses the initial
circuit of a trajectory by first uniformly sampling an equivalent group and then randomly selecting
a circuit from the group. All trajectories are used in gradient estimations to update the agent.

Fine-tuning. Quarl optimizes a new circuit by fine-tuning the pre-trained model on the circuit,
which allows Quarl to discover optimizations specific to the new circuit. During the fine-tuning,
there is a single equivalent group in the initial buffer, which corresponds to the new circuit Quarl
fine-tunes on. Optimized circuits may be discovered during the fine-tuning, however, the primary
goal of fine-tuning is to make the agent fit to the new circuit, specifically, the model should learn
the gate values and policy distribution specific to the new circuit. Once the model has fitted to the
new circuit, we should stop the fine-tuning to avoid wasting computation and use the fine-tuned
model to apply a more efficient policy-guided search to finish the rest of the optimization.

Policy-guided search. In this stage, we employ a circuit optimization model that has been fitted
to the circuit at hand. We use this model to guide the further optimization of the circuit using a
technique we call policy-guided search, which shares some similarities with the trajectory collection
stage during training. However, there are a few key differences between policy-guided search and
trajectory collection. First, policy-guided search only maintains circuits with lowest cost in the
initial circuit buffer, ensuring that Quarl uses one of the best discovered circuits to start a trajectory.
Second, after selecting a gate using the gate-selecting policy, instead of sampling a transformation
from the transformation-selecting policy, Quarl selects the transformation with highest probability.
During the search, if the transformation-selecting policy triggers a stop condition (described in
Section 5.2) when selecting a transformation for a gate g on circuit C, Quarl applies a hard mask to
g, which will prevent Quarl from revisiting g. Furthermore, to prevent Quarl from exploiting the
policy without exploration, we also apply soft masks to gates that have been visited by Quarl for
at least once. The difference between hard and soft masks is that once all gates in a circuit have
been masked out, either by hard or soft masks, we remove the soft masks and do not reapply them.
The purpose of soft masks is to ensure that every gate in a circuit C is visited at least once if the
circuit is visited at least |C| times. Whenever a circuit with lower cost is discovered, Quarl clears
the initial circuit buffer, adds the circuit to the initial circuit buffer, and restarts the search.

Optimizing a circuit. To optimize an input circuit, Quarl runs a fine-tuning process and a policy-
guided search process simultaneously. Figure 6 shows the interactions between the two processes,
which exchange information whenever one process discovers a circuit with new lowest cost.
Specifically, if a circuit C; with new lowest cost is found during fine-tuning, Quarl restarts the
search using Cy, as shown in Figure 13a. Conversely, if a circuit C; with new lowest cost is found
during the search, the fine-tuning process will include C; in its initial circuit buffer and continue
fine-tuning, as shown in Figure 13b. Moreover, a timeout is set for the search process in case that
its model is obsolete. If no new lowest cost circuit is discovered before timeout, Quarl restarts the
policy-guided search using the most recent model from fine-tuning, as shown in Figure 6c¢.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:15

(1) New lowest-cost circuit C; found (3) Continues with C; in initial buffer
FT FT FT
(2) Send C; to the (2) Send C;, to the fine-tuning (2) Send timeout (3) Send
search process process message new model
PGS PGS PGS
(3) Restart the search on C; (1) New lowest-cost circuit C, found (1) Search (4) Restart search
times out with new model
(a) Fine-tuning discovers a (b) Policy-guided search finds a (c) No processes find a better circuit
circuit with new lowest cost. circuit with new lowest cost. before search times out.

Fig. 6. Interactions between Quarl’s fine-tuning (FT) and policy-guided search (PGS) processes. (a) and (b)
show how the two processes exchange information when a circuit with new lowest cost is discovered. (c)
shows the case where the policy-guided search times out.

5.5 Scaling to Large Circuits

This section analyzes the scalability of Quarl during the training data collection and agent update
phases, and describe how we improve its scalability for large circuits.

Scalability of training data collection. To optimize an input circuit C, Quarl’s gate value predictor
computes a value for every gate in C at each step in a trajectory. This process consists of a GNN
inference to generate the representation of all gates in C, and an MLP inference that calculates the
values of C’s gates. For each gate, both the GNN and MLP inferences take constant time, therefore
the overall time complexity of the gate selector is O(|C|). After a gate g is selected, selecting a
transformation and identifying the [-hop influenced gates takes constant time. Overall, the time
complexity of Quarl’s data collection is O(|C]).

However, as the size of the circuit grows, a significant amount of computation is discarded since
all but one gate’s representation are not used after gate selection. To address this inefficiency, Quarl
partitions an input circuit into sub-circuits by limiting the number of gates in each sub-circuit, and
optimize these sub-circuits individually. Specifically, to partition a circuit, Quarl first arranges
the circuit’s gates in topological order, then divide them into sequential partitions where each
contains no more than a constant number of gates. This approach reduces the cost of training
data collection to a constant. We evaluate the performance improvement of circuit partitioning in
Section 6.6. However, partitioning circuits may lead to missed optimization opportunities that span
across partitions, which we plan to explore in future work.

Scalability of agent update. The agent update phase involves recomputing the probability of
choosing the same transformation in the data collection phase. Specifically, to calculate the im-
portance sampling ratio p;(0y, 0;4) in the loss function (Equation (5)), we need the probability
7x (x¢|Ct, gy Ox, Org) under the updated 0, and 6,4. Since 6,4 is changed due to the update to the
parameters of the GNN , Quarl needs to re-calculate the representation for g;, which takes O(|C;|).
Also, the network update phase involves gradient computation and backward-propagation, whose
peak GPU memory usage is O(|C;|). On GPUs with limited device memory, we have to hand-tune
the training batch-size to prevent out-of-memory issues.

Again, only a small number of gates are involved in the gradient generation, while the represen-
tation of other gates are compute-to-discard. We deal with this issue based on the fact that since
the gate representation only contains information of its k-hop neighborhood, we can obtain exactly
the same representation by running GNN only on its k-hop neighborhood. The number of gates
in the k-hop neighborhood of a gate has a constant upper bound due to the sparse structure of
quantum circuits. With this optimization, the complexity of computing gradient on a single data
point becomes a constant.

Note that due to the design of Quarl’s neural architecture, the time and space complexity of
Quarl only depend the number of gates in a circuit, rather than the number of qubits.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:16 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

6 EVALUATION
6.1 Experimental Setup

Benchmarks. To evaluate the effectiveness of our framework, we employ a widely-adopted
quantum circuit benchmark suite, which has been previously used by several works (Amy et al,,
2014, Hietala et al., 2021, Kissinger and van de Wetering, 2020, Nam et al., 2018, Xu et al., 2022c,a,b)
for logical quantum circuit optimization. The benchmark suite primarily comprises arithmetic and
reversible circuits, and we evaluate them in the Nam gate set (CX, Rz, H, X), following existing
studies. Additionally, we transpile these benchmark circuits to the IBM gate set ({CX, Rz, X, SX})
to demonstrate Quarl’s compatibility with different gate sets. Since this benchmark suite contains
a limited number of circuit types, we extend our evaluation to include circuits from the MQTBench
library (Quetschlich et al., 2022), which encompasses circuits from various categories, such as
QAOA (Farhi et al., 2014) and VQE (Peruzzo et al., 2014).

Metrics. We use four metrics in our evaluation: total gate count, CNOT count, circuit depth, and
fidelity. Operations on NISQ devices are affected by noise, and the error rates of different gates vary.
Specifically, the error rate of two-qubit gates (e.g. CNOT) are typically an order of magnitude larger
than single-qubit gates (e.g., 3 X 1072 and 4.43 x 1073, respectively, on IBM Q20 (Li et al., 2018)). In
light of this, we evaluate Quarl with not only total gate count but also CNOT count. Moreover, since
qubits in NISQ devices have limited coherence time, circuit depth should be within a certain range
for successful execution. The optimizing results ultimately translate to the fidelity of executions.
However, the end-to-end fidelity involves many factors, such as mapping and routing method,
device coupling map and device error rate, which are out of the scope of logical quantum circuit
optimization. To rule out the effect of these factors, we follow prior work (Xu et al., 2022¢) and
report the absolute circuit fidelity, which is defined as the product of the success rate of all gates
in the circuit. For a circuit C, its fidelity can be expressed as [[,ec(1 — e(g)) where e(g) denotes
the empirical device error rate for gate g. During evaluation, we use the calibration data of IBM
Washington device (IBM, 2023) where CNOT error rate is 1.214 X 1072, Rz error rate is 0, and the
error rate of other single-qubit gates (i.e. X gate and SX gate) are 2.77 X 10™*,

Server specification. Our experiments are conducted on the Perlmutter supercomputer (per, 2023).
Pre-training is performed on a node equipped with an AMD EPYC 7763 64-core 128-thread processor,
256GB DRAM, and four NVIDIA A100-SXM4-40GB GPUs. For circuit optimization, we use a node
with the same hardware specification, but with only one NVIDIA A100-SXM4-40GB GPU.

For each circuit, we allocate a 6-hour time budget for all tools including Nam, VOQC, Qiskit, Tket,
Quartz, QUESO, and Quarl in our comparison. Circuit partitioning, as introduced in section 5.5
is only enabled in section 6.6 where we evaluate Quarl’s scalability and is not enabled in other
comparisons. We also evaluate Quarl against baselines using the same monetary budget, with
findings presented in §6.7. We run all Quarl experiments three times with different seeds, and
report the mean and standard deviation (std) of the results.

6.2 Implementation Details

We build the Quarl training pipeline on top of PyTorch (Paszke et al., 2019) and DGL (Wang et al.,
2019a). We utilize the APIs provided by Quartz (Xu et al., 2022a) to generate graph representations of
circuits and transformation rules and perform graph pattern matching. These APIs are encapsulated
with Cython (Wang et al., 2019b) to facilitate their invocations by Python processes.

Correctness guarantee. Quarl leverages the verification techniques from Quartz to guarantee
the correctness of the optimized circuits. Specifically, all circuit transformations considered by
Quarl are first symbolically verified by Quartz’s circuit equivalence verifier. In addition, we used

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:17

multiple circuit equivalence checkers, including Qiskit’s (Aleksandrowicz et al., 2019) statevector
equivalence checker and QCEC (Burgholzer and Wille, 2020), to examine the correctness of Quarl’s
final circuits. Except for some timeouts encountered during the test of very large circuits (i.e., those
with many thousands of gates), all the output circuits have passed the equivalence checks.

Data-parallel pre-training. Quarl uses a distributed data-parallel approach during pre-training,
leveraging multiple GPUs. Each process occupies a single GPU and contains an agent that indepen-
dently collects trajectories and computes gradients. After each iteration, gradients are synchronized
across GPUs to update model parameters. Each process also keeps its circuit buffer and shares
information on the lowest-cost circuits found. In the evaluation, for each gate set, we pre-train
Quarl’s neural architecture on six circuits (i.e. barenco_tof_3, gf2"4_mult, mod5_4, mod_mult_55,
tof_5, and vbe_adder_3) for 8 hours with 4 GPUs. We choose these circuits because they are
relatively small and have diverse structures. Since the pre-trained models are reused in circuit
optimization, we do not count the pre-training time when reporting Quarl’s fine-tuning time.

Table 1. Hyperparameters in Quarl’s training. Fine-tuning and policy-guided search. Within the 6-
hour timeframe, we initiate both a fine-tuning process

Hyperparameter Pre-training | Fine-tuning) . . Lo1

Horizon (T) 600 600 and a policy-guided search, with the fine-tuning’s onset

éCtOY {eaming rate | 3e-4 3e-4 marking the beginning of this period. A 5-minute delay
ritic learning rate S5e-4 Se-4 . ~

GNN leamning rate | 3e-4 3o before starfmgl the search process Serves as a warm-up

Num. actors 128 64 for the policy it employs. After this initial delay, both

Numl-)eP%ChS 20 5 processes proceed concurrently for the remainder of

Minibatch size 4800 4800 . s 1

Discount (1) 0.95 0.95 the 6-h0ur Wl.ndOW. The search process perlod.lcally up-

Clipping parameter € | 0.2 0.2 dates itself with the newest policy and resets if neither

Iéntrolfy coeff. 0.02 0.02 process improves the circuit within a 20-minute search
NN layers 6 6 . _ .

GNN hidden dim. 128 128 timeout. Consequently, through.out the 6-hour .wmdow,

GS MLP layers 2 2 the search process may experience several timeouts

GS hidden dim. 128 128 and restarts.

TS MLP layers 2 2

TS hidden dim. 256 256

Rotation merging. Aside from circuit transforma-
tions, many quantum circuit optimizers (i.e. Nam (Nam
et al.,, 2018), VOQC (Hietala et al., 2021), Quartz (Xu et al., 2022a) and QUESO (Xu et al., 2022c)),
incorporate rotation merging, a technique that merges R, gates with identical phase polynomial
expressions (Nam et al., 2018), into their optimization pipeline. However, the R, gates being merged
may be arbitrarily far apart, making it difficult to represent rotation merging as combinations of
local circuit transformations. Rotation merging is adopted as a pre-processing pass of Quarl, yet
we show that Quarl can learn similar behavior by itself.

Cost function. In all our experiments, we use total gate count as the cost function for Quarl.
While 2-qubit gate count (e.g., CNOT count) can also be used as the cost function, we find that
both of them yield equally good results in 2-qubit gate count. We do not adopt fidelity as the cost
function because, at the logical optimization layer, we lack hardware specification, and the circuit
is not mapped or routed on a physical device.

Hyperparameters. Table 1 lists the architectural details of the models in Quarl and hyperparame-
ters used in Quarl’s learning process. Beside that, we choose A = 0.9 in Quarl’s gate selector and
use 1-hop influenced gates in training. The hyperparameters are chosen by grid search.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:18 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

Table 2. Comparing Quarl and existing circuit optimizers on reducing total gate count of the benchmark
circuits for the Nam gate set. The best result for each circuit is in bold.

Total Gate Count (Nam gate set)

uartz uartz UESO UESO uarl uarl
Circuit Orig. | Nam | vOQC | Qiskit | Tket | ZRTH | BUETE | 91 | 8o, it | wamM
tof 3 5| 3% 35 B 39 35 35 35 35 33(z0) 33(z 0)
barenco_tof_3 58| 40 40 54| 49 40 46 38 38 35 (+ 0.6) 35 (+ 0)
mod5_4 63| 51 51 61| 57 37 39 25 27 24 (+ 0) 24 (« 0)
tof_4 75| 55 55 71| 64 55 55 55 55 51(x 0) 51 (= 0)
tof_5 05| 75 75 99 | 89 75 75 68 75 70 (+ 1.2) 71 (¢ 0)
barenco_tof_4 14| 72 72| 106| 97 72 90 75 68 64(+20)| 66(+35)
mod_mult_55 19| 91 92| 115| 103 90 94 93 100 84(x0)| 85(x17)
vbe_adder_3 150 | 89 89| 189 | 130 89 112 79 81 72(£1.2) | 72 (12)
barenco_tof_5 70| 104| 104| 158| 145 104 134 98 98 92 (£2.0)| 94 (x20)
csla_mux_3 170 | 155| 158 | 249 | 149 148 146 148 148 || 141(x0.0)| 141(x0.6)
rc_adder_6 200 140| 152 226| 172 152 170 152 176 || 136 (+ 1.5) | 151 (x 1.2)
gf2"4_mult 205 | 187 | 186 | 212| 205 176 215 176 183 || 162(x0.6) | 163 (x 2.5)
tof_10 255 | 175| 175 | 239 | 214 175 175 175 175 || 170 (x4.2) | 174 (x 1.2)
hwb6 259 | 200|258 217 214 250 202 211 194 (+ 1.0) | 192 (= 1.2)
mod_red_21 278 | 180 | 184| 256 | 223 198 268 215 204 || 179 (£0.0) | 182 (« 4.2)
gf2°5_mult 347 | 206| 287 327 319 274 334 273 287 || 258(x17)| 267 (x3.1)
csum_mux_9 420 | 266| 280| 420 | 365 256 420 252 364 || 230(£9.5)| 283 (6.1)
qcla_com_7 443 | 284 | 269| 498 | 377 288 431 248 320 || 257 (£3.1)| 290 (27.6)
ham15-Low 443 S| 3a8 | 421 302 360 435 274 346 || 338 (x21.1)| 335 (7.8)
barenco_tof_10 || 450 | 264 | 264 | 418 | 385 264 450 338 248 || 235 (x 1.2) | 270 (= 19.1)
gf2°6_mult 495 | 403 | 401| 464 | 453 391 485 381 435 || 357 (£2.5)| 386 (+0.6)
qcla_adder_10 s21| 399 | 416|630 | 444 404 518 397 464 || 381(x1.2)| 383 (2.0)
gf2"7_mult 669 | 555| 543| 627| 614 531 657 576 504 || 490 (+5.3) | 557 (+ 29.0)
gf2"8_mult 883 | 712| 706| 819| 806 703 883 680 789 || 659 (x 12.1) | 757 (+ 19.5)
qcla_mod_7 884 | 624 | 678 933| 759 652 884 645 775 || 629 (£2.1) | 690 (21.5)
adder_8 900 | 606 | 596 | 1001 | 802 624 874 579 618 || 577 (£ 13.2) | 598 (+31.7)
geo. Mean | 280% | 27.0%| -0.6%|13.1%| 283% 12.9% | 31.0% 26.1% || 35.2 (+ 0.2)% | 32.4 (£ 0.3)%
eduction

6.3 Comparison on the Nam Gate Set

We compare Quarl with existing rule-based ! (i.e. Nam (Nam et al., 2018), VOQC (Hietala et al.,
2021), Qiskit (Aleksandrowicz et al., 2019) and t|ket) (Sivarajah et al., 2020)) and search-based (i.e.
Quartz (Xu et al., 2022a) and QUESO (Xu et al., 2022c)) optimizers on total gate count, CNOT count,
and circuit depth on the Nam gate set. We do not evaluate on circuit fidelity since the Nam gate set
is not hardware native. Both Quarl and Quartz (Xu et al., 2022a) use a set of 6206 transformation
rules generated by Quartz. This section (and Section 6.4) focus on circuits with less than 1,500
gates, and Section 6.6 evaluates the performance and scalability of Quarl on larger circuits. Nam
et al. (2018) and VOQC (Hietala et al., 2021) have both incorporated rotation merging into their
framework while Quartz and QUESO adopt it as a preprocessing procedure. Similarly, Quarl adopts
rotation merging as a preprocessing step. However, to demonstrate the effectiveness of Quarl
without rotation merging, we report results of Quarl, Quartz and QUESO without rotation merging.

As shown in Table 2, Quarl outperforms existing rule-based circuit optimizers on almost all
benchmark circuits. Rule-based optimizers rely on a fixed set of manually designed rules and
schedule them in a predetermined, typically greedy, manner. For instance, Nam (Nam et al., 2018) is
specifically fine-tuned for the Nam gate set and is among the best-performing rule-based optimizers
on that gate set. Nam applies gate-set-specific heuristics and rules, such as rotation merging and
floating R, gates, and also uses 1- and 2-qubit gate cancellation as subroutines to simplify the
circuits. To apply these subroutines, Nam et al. (2018) uses two fixed schedules. We report the
results of the heavy schedule, which is more aggressive and achieves better results. Other rule-based

1PyZX (Kissinger and van de Wetering, 2020) is another rule-based optimizer. However, it only minimizes the T gate count
and does not explicitly optimize our chosen metrics, namely total gate count, CNOT count, circuit fidelity, and depth. We
observe that PyZX achieves worse-than-original performance on these metrics and therefore exclude it in this comparison.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:19

Table 3. Comparing Quarl and existing circuit optimizers on reducing CNOT count of the benchmark circuits
for the Nam gate set. The best result for each circuit is in bold.

CNOT Count (Nam gate set)

uartz uartz UESO UESO uarl uarl
Circuit Orig. | Nam | VOQC | Qiskit | Tket | 2500E | O | 2 | M. it | wam
tof_3 8| 14 14 B 18 14 4 14 14 12(x0.0)| 12(x00)
barenco_tof_3 24| 18 18 24| 24 18 20 16 16 13 (£0.6) | 13 (+ 0.0)
mod5_4 28| 28 28 28| 28 20 22 14 16 13 (£0.0) | 13 (+ 0.0)
tof_4 30| 22 22 30| 30 22 22 22 22 18 (£0.0) | 18 (x 0.0)
tof_5 42| 30 30 2| 42 30 30 30 30 25(x 1.0) | 26 (x 0.0)
barenco_tof_4 48 48 34 48 48 34 40 30 30 26 (£ 1.2) 24 (+ 3.5)
mod_mult_55 48| 40 42 48| 48 39 a1 39 42 37(x00) | 35 (x17)
vbe_adder_3 70| 50 50 62| 62 44 50 38 39 33(x1.0) | 34(x12)
barenco_tof_5 72| 50 50 72| 72 50 60 44 44 38(x2.0) | 42 (x20)
csla_mux_3 80| 70 74 71| 71 70 68 70 70 63(x0.0)| 63 (x0.6)
rc_adder_6 93| 7 71 81| 81 71 77 71 79 63(x15)| 69 (+12)
gf2"4_mult 99 | 99 99 99 | 99 95 99 95 96 81(+0.6) | 79 (x17)
tof_10 02| 70 70| 102 | 102 70 70 70 70 65(x4.0)| 70 (x12)
hwb6 116 Sl 104|115 111 99 115 101 99 87(x0.6) | 86 (x17)
mod_red_21 05| 81 81| 105| 104 81 105 81 81 74(x0.0) | 78 (x23)
gf2°5_mult 154 154| 154| 154| 154 149 154 148 154 || 133 (+1.5)| 134 (x 1.0)
csum_mux_9 168 | 140| 140| 168 | 168 140 168 112 168 118 (+ 8.6) | 138 (£ 3.1)
qcla_com_7 186 | 132 132| 174 174 127 178 123 139 || 116(x2.1)| 134(x9.1)
ham15-Low 236 S| 210|236 | 225 209 236 198 202 || 193 (+ 13.7) | 193 (= 3.5)
barenco_tof_10 || 192 | 130| 130 | 192 192 130 192 114 114 || 101(x06)| 134(x9.9)
gf2"6_mult 221 221| 221| 221 221 221 221 211 221 || 187(x25)| 196 (= 1.0)
qcla_adder_10 233 | 183| 199| 213 | 205 187 230 180 208 || 166 (1.0) | 167 (= 2.0)
gf2"7_mult 300 | 300| 300] 300 300 300 300 285 300 || 259 (£ 4.2) | 282 (+ 115)
gf2"8_mult 405 | 405| 405| 405 | 402 405 405 382 403 || 375(x11.6) | 383 (+7.8)
qcla_mod_7 382 | 202| 328| 366 | 366 307 382 300 356 || 286 (+0.6) | 292 (+ 13.9)
adder_8 409 | 201| 301| 385| 383 305 395 276 205 || 275 (+4.2) | 297 (+ 17.2)
geo. Mean -1 184% | 17.8% | 25%| 3.0% | 20.6% 109% | 25.4% 21.1% || 32.5 (+ 0.4%) | 30.0 (+ 0.2)%
eduction

optimizers (i.e., VOQC (Hietala et al., 2021), Qiskit (Aleksandrowicz et al., 2019), t|ket) (Sivarajah
et al., 2020)) operate similarly. VOQC (Hietala et al., 2021) also implements specific optimizations
for the Nam gate set, which are combined into a pass optimize_nam. In contrast, Quarl is equipped
with transformation rules automatically generated by Quartz (Xu et al., 2022a).

For search-based approaches, Quarl surpasses Quartz (Xu et al., 2022a) and QUESO (Xu et al.,
2022c) for most of the benchmark circuits. Both Quartz and Quarl employ the same set of trans-
formations, and therefore the difference in their performance arises from their respective search
algorithms. Quartz uses cost-based backtracking search to schedule transformations, while Quarl
leverages reinforcement learning to detect optimization opportunities and determine the best
combination of transformations to achieve them. QUESO uses a more complex set of transforma-
tion rules than Quartz, and employs a beam-search-based optimizer. The reduction in gate count
achieved by Quarl translates to an average reduction of 25.7% in circuit depth, which outperforms
the best depth reduction achieved by existing optimizers (i.e., 19.6%).

Table 3 shows CNOT count reduction. Quarl reduces CNOT count by 33.9% on average, while
the reduction achieves by existing optimizers is at most 25.4%. Reducing CNOT count is a desirable
advantage since it significantly increases the fidelity of executing a circuit on NISQ devices with
sparse inter-qubit connections.

Even for relatively small circuits, Quarl achieves better performance than Quartz (Xu et al.,
2022a) and QUESO (Xu et al., 2022c), as shown in Table 2 and Table 3. This is because exhaustively
exploring the search space is prohibitively expensive even for very small circuits. And both Quartz
and QUESO greedily prune the search space, resulting in missed optimizations that require cost-
increasing transformations. In contrast, Quarl’s learning-based approach provides a more efficient
and scalable solution, which allows Quarl to better explore the search space and discover more
optimization opportunities.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:20 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

q@ —Rzl A\ | P — W | LN (Rz|

a1

42 — Rz — — Rz —

(a) Rotation merging

@ ARz Rz| o1 (N [Rz| (NURz| a0 Rz (PH——Rz o (5 Rz (B

@ — D

qz |72 _ - ! Jralm

G0 —17 9 —R7 — Rz —

- S . _ [|

o [1L \ o w - il 1

@ —————— (B Rz L a2 Rz

(b) Rotation merging as transformations

Fig. 7. (a) shows an example circuit with CNOT and Rz gates. The phase of each Rz gate is shown above the
gate. Rotations with identical phase can be combined by rotation merging. (b) represents the rotation merging
optimization as a sequence of transformations discovered by Quarl. Note that Quarl can also update the final
circuit to have the same CNOT topology as the original circuit by applying a few additional transformations,
which are omitted in the figure.

o]

As shown in Table 2 and Table 3, the perfor-
mance gap between Quarl with and without rota-
tion merging is relatively small (i.e., 3.2% in both
cases); as a comparison, disabling rotation merg-
ing decreases Quartz’s performance by 15.4%
for total gate count and 9.7% for CNOT count.
Though rotation merging can be achieved by mul-
tiple applications of local R, transformation rules,
it is challenging to rebuild it with those rules
since applying them does not provide immediate ~Fig. 8. Fidelity comparison on the IBM gate set. The

rewards until we finally fuse the R, gates. RL al- numbers in parentheses in the legend indicate the
average relative fidelity improvement.

¢ Qiskit (1.e4) {
Tket (1.07)
Quartz (1.06)
® Quarl (1.37)

IS
|

o

N

!.ioooo°:°

Optimized fidelity / Orig. fidelity
w

-

gorithms are efficient in realizing long-term goals.
Our experiments show that Quarl can learn to perform optimizations similar to rotation merging
through its own exploration. Though it takes some time to learn, once the best schedule is learned,
Quarl can apply it everywhere. An example where Quarl merges two pairs of R, gates with identical
phase polynomial using a sequence of local transformations is shown in Figure 7.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:21

Table 4. Comparing Quarl and existing circuit optimizers on reducing total gate count and CNOT count of
the benchmark circuits for the IBM gate set. The best result for each circuit is in bold.

Circuit Orig. Qiskit Tket Quartz Quarl

gates | # CXs | # gates | # CXs | # gates | # CXs | # gates | # CXs # gates # CXs
tof_3 53 18 51 18 51 18 42 14 39 (£ 0) 14 (= 0)
barenco_tof_3 65 24 61 24 61 24 52 20 42 (+ 0) 16 (£ 0)
mod5_4 71 28 69 28 69 28 62 27 50 (+ 0) 22 (0)
tof_4 38 30 84 30 84 30 67 22 62 (+ 0) 22 (0)
tof_5 123 42 117 42 117 42 92 30 85 (+ 0) 30 (0)
barenco_tof_4 125 48 117 48 117 48 99 40 75 (+ 0) 30 (+0)
mod_mult_55 140 48 135 48 145 48 114 41 101 (+ 1.0) 39 (+ 0.6)
vbe_adder_3 165 70 186 62 159 62 124 50 82 (x0) 36 (+ 0)
barenco_tof_5 185 72 173 72 173 72 146 60 109 (+ 1.0) 39 (+ 0.0)
csla_mux_3 200 80 235 71 188 71 181 72 39(£0.0) | 39 (+0.0)
rc_adder_6 229 93 250 81 277 81 189 75 164 (+ 0.0) 71 (+ 0.0)
gf2"4_mult 246 99 232 99 232 99 229 99 195 (+ 2.0) 87 (+ 1.5)
hwb6 287 116 281 115 282 111 272 114 212 (+ 1.5) 87 (x 1.2)
mod_red_21 294 105 279 105 317 104 292 105 204 (+ 2.3) 77 (+ 0.6)
tof_10 298 102 282 102 282 102 217 70 201 (+ 1.7) 70 (+ 0.0)
gf2"5_mult 374 154 353 154 353 154 372 154 298 (+ 1.0) 136 (+ 1.2)
csum_mux_9 459 168 453 168 474 168 459 168 321 (+ 0.5) 140 (+ 0.6)
barenco_tof_10 485 192 453 192 453 192 482 192 273 (£ 0.6) 114 (+ 0.0)
ham15-1ow 485 236 456 236 455 225 480 234 362 (+ 3.0) 188 (+ 2.3)
qcla_com_7 486 186 511 174 486 174 470 174 304 (+ 3.2) 117 (£ 0.0)
gf2"6_mult 528 221 496 221 496 221 528 221 424 (+ 3.8) 200 (+ 1.7)
qcla_adder_10 587 233 636 213 556 205 586 232 414 (+ 3.1) 165 (+ 1.2)
gf2"7_mult 708 300 665 300 665 300 708 300 576 (+ 1.2) 276 (+ 1.5)
gf2"8_mult 928 405 864 405 861 402 923 403 782 (+ 16.1) 380 (+ 7.2)
qcla_mod_7 982 382 980 366 933 366 978 382 762 (+24.1) | 311 (% 11.0)
adder_8 1004 409 1010 385 1169 383 997 405 687 (+ 6.4) 282 (+ 3.2)
vge_8 199 14 91 14 93 14 92 14 85 (+ 2.5) 14 (£ 0.0)
qgan_8 256 28 114 28 98 28 100 26 84 (£ 4.9) 18 (+ 0.0)
qaca_8 284 32 211 32 159 32 157 32 (| 157 (= 1.7) 32 (+ 0.0)
ae_8 502 56 350 56 283 56 373 56 289 (+4.6) 55 (+ 0.0)
gpeexact_8 555 64 373 64 286 55 371 64 327 (£5.6) 64 (£0.6)
gpeinexact_8 571 65 381 65 312 56 381 65 339 (£4.6) 65 (£0.6)
qft_8 578 68 392 68 262 56 326 67 310 (+4.9) 67 (£0.0)
aftentangled_8 647 75 415 75 295 61 489 75 326(+6.1) 74 (0.0)
portfoliovge_8 708 84 288 84 232 84 359 84 203 (+ 4.4) 54 (+ 0.6)
portfolioqaoa_8 1352 168 975 168 712 168 1207 168 811 (+12.3) 160 (+ 3.2)
Geo. Mean - -1 1447 | 18%| 201% | 41%| 199%| 7.7% || 36.7 (0.1)% | 21.3 (+ 0.1)%
Reduction

6.4 Comparison on the IBM Gate Set

We conduct a comparison between Quarl and existing optimizers* on the IBM gate set on total gate
count, CNOT count, circuit depth, and fidelty. To optimize a circuit, both Quarl and Quartz (Xu
et al., 2022a) use a set of 6881 transformation rules generated by Quartz. For parametric quantum
gates, Quartz only discovers symbolic transformations applicable to these gates with arbitrary
parameter values, and misses transformations that are only valid for specific parameter values.
Some of these transformations missed by Quartz are important to optimize circuits on the IBM gate
set. To address this limitation, we also include three single-qubit transformations missed by Quartz:
(1) Rz() = SX Rz(m) SX, (2) SX Rz(7/2) SX = Rz(x/2) SX Rz(n/2), and (3) SX Rz(37/2) SX =
Rz(37/2) SX Rz(37/2). We verify their correctness by directly computing the concrete matrix
representation of the two circuits in each transformation. These three transformations are used by
both Quarl and Quartz. Since rotation merging is not native to the IBM gate set, it is not applied
during the evaluation.

As shown in Table 4, Quarl greatly outperform existing optimizers for the IBM gate set for both
total gate count and CNOT count. Specifically, Quarl reduces total gate count by 36.7% on average,
while existing optimizers reduce total gate count by at most 20.1%. Quarl also reduce the CNOT

2QUESO (Xu et al., 2022¢) is not included in the comparison because they doesn’t support the new IBM gate set.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:22 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

count of the circuits by 21.3%, while existing approaches achieve up to 7.7% CNOT count reduction.
The performance gap between Quarl and Quartz (Xu et al., 2022a) is widened on the IBM gate set.
We hypothesize that this is because of Quartz’s reliance on rotation merging as a preprocessing
pass, which is not applicable on the IBM gate set. Quarl achieves 21.1% circuit depth reduction on
average, whereas existing optimizers reduce the circuit depth by at most 13.5%.

Figure 8 shows the fidelity improvement achieved by different optimizers. Quarl improves circuit
fidelity by up to 4.84X (on adder_8) and 1.37 (+ 0.007) times on average, while Qiskit, Tket and
Quartz improve circuit fidelity by 1.04%, 1.07X, 1.06X on average, respectively. Quarl achieves the
best fidelity improvements for most circuits. This is largely because CNOT involves a much higher
error rate than other gates, and Quarl performs the best on CNOT reduction.

6.5 Ablation Studies

230 rc_adder_6 mod_red_21 vbe_adder_3
= h b= = —— Global decoding
% \m % 290 g 160\, Local decoding
o o O 150
@220 280 9 T
] © ®© 140
= 2270 °
8210 — Localdecoding] —— Global decoding £ 130
|9 Global decoding |9 260 Local decoding |9 120
0 1 2 0 1 2 0 1 2
Time (h) Time (h) Time (h)
Fig. 9. Comparison on Quarl’s local decoding of actions with global decoding.
. rc_adder_8 mod_red_21 barenco_tof 4
= 30 % — GAE ¥ € 125 — GAE
§ N § 290 § HAE
120
% 220 % 280 %
115
5 2210 3
S210 = — GAE < 110
e 2 260 HAE S
0 1 2 0 1 2 0 1 2
Time (h) Time (h) Time (h)
Fig. 10. Comparison on Quarl’s hierarchical advantage estimation (HAE) with GAE.
portfoliovge_8 portfoliogaoa_8 250 qgan_8
€ | —— w/o pretrain 2 \ —— w0 pretrain = —— w/o pretrain
> / pretrai ‘ =] / pret
8 600 w/ pretrain § 1200 w/ pretrain 8 200 w/ pretrain
O o Q
© B B 150
5400 ©1000 =
g E g 100
o o (=] —
= = =
200 800
0 2 4 6 0 2 4 6 0 2 4 6
Time (h) Time (h) Time (h)

Fig. 11. Comparison on Quarl’s optimization with and without pretraining.

Local decoding of actions. We conduct an ablation study on Quarl’s local decoding of actions. To
conduct a comparison, the baseline uses global decoding of actions where both the gate/transformation
selectors and the value network use a global representation of an entire circuit to make predictions.
The global representation is obtained by a max pooling over all the node representations. As shown
in Figure 9, the global decoding approach achieves relatively marginal optimizations compared with
Quarl. This is because it is very difficult for the networks to take the entire graph as an input and
learn to select one action among millions of candidates. In contrast, Quarl first selects a promising
sub-graph and decodes actions locally by leveraging locality of quantum circuit optimization.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:23

barenco_tof 10 portfoliovge_8

portfolioqaoa_8

SN —— w/o search —— w/o search

- -

= 3 - —— wjo search £ 500

3 450 \\\‘ w/ search S 1200 wj search 2 w/ search
o b 8 @ 400

@ 400 \K g 1100 Q

© = ©

o 1000 2300

< 350 — =

8 g 8

F 300 2 900 ¥ 200

0.00 0.05 0.10 0.15 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8
Million steps Million steps Million steps

Fig. 12. Comparison on Quarl’s optimization with and without policy-guided search.

Hierarchical advantage estimation (HAE). We further evaluate the effect of HAE compared with
generalized advantage estimation (GAE). As shown in Figure 10, Quarl outperforms the agent
equipped with GAE °. Though GAE is different from estimating the advantage with the return R;,
they are similar in that they both reflects global advantage, while Quarl’s HAE outputs the local
advantage which is more appropriate to use in this scenario because we want the advantage to
reflect the local influence of an action.

Pre-training. We assess the generalizability of Quarl’s pre-trained neural architecture to unfamil-
iar circuits and its influence on performance. We contrast the performance of fine-tuning processes
(with search) using the pre-trained model against those initialized with random parameters. Results
in Figure 10, derived from the MQT benchmark circuits (distinct from pre-training circuits), reveal
that pre-training enables Quarl to quickly identify optimizations across all circuits. This yields
superior outcomes, demonstrating the model’s efficacy on larger, previously unencountered circuits.

Policy-guided search. To evaluate Quarl’s
policy-guided search, we start two groups
of experiments from the same pre-trained
model checkpoint: the first group performs fine-
tuning with policy-guided search while the sec-
ond only conducts fine-tuning. As shown in 10
Figure 12, policy-guided search allows Quarl
to discover better solution faster. Compared ° Querz QUESO Quar Querz QUESO quar
to fine-tuning, Quarl’s policy-guided search al- ' '
lows greedier exploitation (i.e., storing only (2) Total gate count. (b) CNOT count.
best cost circuits in the initial buffer and us-
ing argmax instead of sampling during transfer
selection) and bolder exploration (i.e. using soft
mask to force exploration).

31.0 (+1.4) 28.8 (+1.8)

w

o
w
o

26.7
21.8

N

o
N
o

9.1

%CNOT count reduction
=
o

%Total gate count reduction

o

Fig. 13. Comparison between Quarl, Quartz and
QUESO with same amount of computational resources.

6.6 Scalability Analysis

This section investigates the relationship between circuit size and time to collect training data,
and evaluates how circuit partitioning improves Quarl’s scalability. We evaluate Quarl using four
circuits with similar structures, namely adder_8, adder_16, adder_32, and adder_64, which have
900, 1437, 3037, and 6237 gates, respectively. Figure 14a shows the time to collect training data for
these circuits, demonstrating a linear relationship, which aligns with our analysis in Section 5.5.
Additionally, Figure 14b compares the performance of Quarl on the original and partitioned circuits,
where we partition the input circuit into subcircuits with at most 512 gates based on a topological

3Note that the results on circuit mod_red_21 are the same in fig. 9 and fig. 10, this is because they are compared to same
Quarl baseline and neither the global-decoding method nor GAE find any optimizations.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:24 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

%]
— n 3 /l
2 100 S [
= 3 0.8
2 80 ° n
£ =
o
o 60 = 0.7
2 g
o 40 u N
2 / # 0.6 W —B- w/o partition
& 20 o iti
v n—N 8 w/ partition
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Original # gates Original # gates

(a) Relation between gate count and single-step (b) Comparison between Quarl’s performance with
time cost in data collection. and without circuit partitioning.

Fig. 14. Scalability analysis.

order. The experiments are conducted with a search time budget of 2 hours to rule out the influence
of optimization saturation. The results indicate that circuit partitioning generally increases Quarl’s
performance in limited search time, but it may lead to performance degradation due to missed
optimization opportunities across partitions.

6.7 Discussion on Computational Cost

We also compare the computational requirement of Quarl with other tools, focusing on monetary
cost as a unifying metric since direct computational power comparison between CPUs and GPUs is
challenging. While the performance of rule-based optimizers does not vary with computational
resources, we contrast Quarl against existing search-based optimizers, including Quartz (Xu et al.,
2022a) and QUESO (Xu et al., 2022c), both of which run on CPUs. The major monetary cost of
Quarl comes from the use of an A100 GPU. The lowest market price of an on-demand instance
with a NVIDIA A100-SXM4-40GB GPU is $1.10/hr (Lambda, 2023). For Quartz and QUESO, the
computational cost is mainly contributed by the memory usage. As claimed in their papers, running
Quartz and QUESO requires 32GB and 16GB of memory, respectively, while the market price
of an on-demand instance with 32GB and 16GB of memory are at least $0.384/hr and $0.192/hr,
respectively (AWS, 2023). For a comparable budget, Quarl runs for 4 hours, whereas Quartz and
QUESO operate for 10.4 and 20.8 hours, respectively. As shown in Figure 13, Quarl outperforms
both Quartz and QUESO under the same monetary budget. Running Quartz and QUESO for 10 and
20 hours slightly improves the final performance compared with the 6-hour experiments (shown in
table 2 and table 3), which stems from the greedy search algorithms used in these approaches. In
contrast, Quarl strikes a better balance that favors both time-efficiency and superior performance.

7 RELATED WORK

Quantum circuit optimization. In recent years, several optimizing compilers for quantum circuits
have been introduced, such as Qiskit (Aleksandrowicz et al., 2019), t|ket) (Sivarajah et al., 2020),
Quilc (Skilbeck et al., 2020), and vogc (Hietala et al., 2021). These optimizers rely on a rule-based
strategy that applies manually designed circuit transformations whenever possible. Quartz (Xu et al.,
2022a) uses a search-based approach that generates a comprehensive set of circuit transformations
and applies them using a backtracking search algorithm. QUESO (Xu et al., 2022c), on the other
hand, uses a path-sum-based approach to synthesize non-local circuit transformations and apply
them using beam search. However, the large search space of functionally equivalent circuits and
the need for cost-increasing transformations pose challenges for existing approaches to effectively
discover circuit optimizations. Quarl addresses this challenge with a novel neural architecture
and RL-training procedure, enabling it to automatically identify optimization opportunities and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

Quarl: A Learning-Based Quantum Circuit Optimizer 114:25

apply the right transformations through interaction with the environment. Different from the
aforementioned compilers that apply transformations, PyZX (Kissinger and van de Wetering, 2020)
represents circuits as ZX-diagrams and use ZX-calculus (Hadzihasanovic et al., 2018, Jeandel et al.,
2018) to simplify ZX-diagrams, which are eventually converted back to the circuit representation.
In contrast, Quarl is designed to learn to perform transformations. Applying Quarl’s techniques to
optimize circuits in ZX-calculus is a promising avenue for future research.

Reinforcement learning for quantum computing. Prior work has explored the use of reinforcement
learning for quantum circuit optimization. For example, Fosel et al. (2021) directly applied the PPO
algorithm to this problem, focusing on a limited set of transformations (mainly gate cancellation).
In contrast, Quarl tackles additional challenges arising from a more diverse and complex set of
transformations. Quarl’s solution involves a hierarchical action space, leveraging the locality of
circuit transformations, and the introduction of hierarchical advantage estimations. As another
example, Ostaszewski et al. (2021) emphasizes the optimization of state preparation circuits for the
VQE algorithm. Instead of a transformation-centric approach, Ostaszewski et al. (2021) optimizes
circuits by reconstructing them from ground up. Quarl, when compared with this work, seeks to
optimize a broader range of quantum circuits and presents a fundamentally different approach.

Reinforcement learning has also been applied to the qubit routing problem, which involves
inserting SWAP gates into the circuits to enable their execution on near-term intermediate-scale
quantum (NISQ) devices (Li et al., 2018). Examples include QRoute (Sinha et al., 2022) and a DQN-
based method proposed by Pozzi et al. (2020), both aiming to minimize the depth of circuits after
routing with RL. It is worth noting that Quarl’s techniques are orthogonal to RL-based qubit router,
and combining them may lead to further improvements in circuit optimization on NISQ devices.

8 CONCLUSION

In this paper, we present Quarl, a learning-based quantum circuit optimizer. In Quarl’s hierarchical
approach, circuits are optimized with a sequence of transformation applications where in each
application a gate-selecting policy and a transformation-selecting policy are used to choose a gate
and a transformation to apply on the selected gate, respectively. The two policies are trained jointly,
with a single actor-critic architecture. To apply PPO in the training of this architecture, we propose
hierarchical advantage estimation (HAE) as an novel advantage estimator. Experiment results show
that Quarl significantly outperforming existing circuit optimizers.

ACKNOWLEDGEMENT

We thank Shinjae Yoo and Mingkuan Xu for their helpful feedback. This work is supported by
NSF awards CNS-2147909, CNS-2211882, and CNS-2239351, and research awards from Amazon,
Cisco, Google, Meta, Oracle, Qualcomm, and Samsung. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231 using NERSC award DDR-ERCAP0023403.

DATA-AVAILABILITY STATEMENT

We have deposited a research artifact associated with our study (Li et al., 2024), which includes both
code and scripts necessary for replicating the experimental results reported in our paper. Please note
that due to non-deterministic factors related to multi-processing, there may be minor discrepancies
between the replicated results and those originally published. Despite these potential variations,
the provided materials offer a robust framework for accurately understanding and reproducing our
experimental methodology.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

114:26 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

REFERENCES

2023. The Perlmutter Supercomputer. https://docs.nersc.gov/systems/perlmutter;/.

Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU). https://doi.org/10.48550/ARXIV.1803.08375

Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose
Cabrera-Hernandez, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Cércoles-Gonzales,
Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente Gonzalez, Enrique De La Torre,
Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas
Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek,
Joe Hellmers, Lukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki
Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose
Martin-Fernandez, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda
Rodriguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesus Pérez, Anna
Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdén Rodriguez Davila, Raymond Harry Putra Rudy,
Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi,
Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,
Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica
Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wérner, Ismail Yunus Akhalwaya, and Christa Zoufal.
2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2562111

Matthew Amy, Dmitri Maslov, and Michele Mosca. 2014. Polynomial-Time T-Depth Optimization of Clifford+T Circuits
Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (2014),
1476-1489. https://doi.org/10.1109/TCAD.2014.2341953

AWS. 2023. Amazon EC2 M6i Instances. https://aws.amazon.com/ec2/instance-types/mé6i/ Accessed: 19th Oct 2023.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum machine
learning. Nature 549, 7671 (2017), 195-202.

Lukas Burgholzer and Robert Wille. 2020. Advanced equivalence checking for quantum circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 40, 9 (2020), 1810-1824.

Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Maria Kieferova, Ian D Kivlichan,
Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. 2019. Quantum chemistry in the age of quantum computing.
Chemical reviews 119, 19 (2019), 10856—-10915.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint
arXiv:1411.4028 (2014).

Thomas Fosel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. 2021. Quantum circuit optimization with deep reinforce-
ment learning. arXiv preprint arXiv:2103.07585 (2021).

Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer perceptron)—a review of applications in
the atmospheric sciences. Atmospheric environment 32, 14-15 (1998), 2627-2636.

Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. 2018. Two Complete Axiomatisations of Pure-State Qubit
Quantum Computing. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford,
United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 502-511. https://doi.org/10.
1145/3209108.3209128

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural
information processing systems 30 (2017).

Yu-Lin He, Xiao-Liang Zhang, Wei Ao, and Joshua Zhexue Huang. 2018. Determining the optimal temperature parameter
for Softmax function in reinforcement learning. Applied Soft Computing 70 (2018), 80-85.

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum
Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434318

Geoffrey E Hinton. 1987. Learning translation invariant recognition in a massively parallel networks. In International
Conference on Parallel Architectures and Languages Europe. Springer, 1-13.

IBM. 2023. The IBM Washington quantum device. https://reversiblebenchmarks.github.io/

Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. 2018. A Complete Axiomatisation of the ZX-Calculus for Clifford+T
Quantum Mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford,
United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 559-568. https://doi.org/10.
1145/3209108.3209131

Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated Diagrammatic Reasoning. Electronic
Proceedings in Theoretical Computer Science 318 (may 2020), 229-241. https://doi.org/10.4204/eptcs.318.14

Jason R. Koenig, Oded Padon, and Alex Aiken. 2021. Adaptive restarts for stochastic synthesis. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 696-709. https://doi.org/10.1145/3453483.3454071

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

https://docs.nersc.gov/systems/perlmutter/
https://doi.org/10.48550/ARXIV.1803.08375
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1109/TCAD.2014.2341953
https://aws.amazon.com/ec2/instance-types/m6i/
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/3434318
https://reversiblebenchmarks.github.io/
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.4204/eptcs.318.14
https://doi.org/10.1145/3453483.3454071

Quarl: A Learning-Based Quantum Circuit Optimizer 114:27

Lambda. 2023. On-demand GPU cloud pricing. https://lambdalabs.com/service/gpu-cloud Accessed: 19th Oct 2023.

Gushu Li, Yufei Ding, and Yuan Xie. 2018. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. https:
//doi.org/10.48550/ARXIV.1809.02573

Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia. 2024. Artifact for OOPSLA 2024 Paper:
Quarl: A learning- based quantum circuit optimizer. https://doi.org/10.5281/zenodo.10463907

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In International conference on
machine learning. PMLR, 1928-1937.

Thomas Monz, Daniel Nigg, Esteban A Martinez, Matthias F Brandl, Philipp Schindler, Richard Rines, Shannon X Wang,
Isaac L Chuang, and Rainer Blatt. 2016. Realization of a scalable Shor algorithm. Science 351, 6277 (2016), 1068-1070.

Yunseong Nam, Neil] Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum
circuits with continuous parameters. npj Quantum Information 4, 1 (2018), 1-12.

Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dunjko. 2021. Reinforcement
learning for optimization of variational quantum circuit architectures. Advances in Neural Information Processing Systems
34 (2021), 18182-18194.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024-8035.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alan Aspuru-Guzik, and
Jeremy L O’brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature communications 5, 1
(2014), 4213.

Jessica Pointing, Oded Padon, Zhihao Jia, Henry Ma, Auguste Hirth, Jens Palsberg, and Alex Aiken. 2021. Quanto: Optimizing
Quantum Circuits with Automatic Generation of Circuit Identities. arXiv:2111.11387 (2021). https://doi.org/10.48550/
arXiv.2111.11387

Matteo G Pozzi, Steven] Herbert, Akash Sengupta, and Robert D Mullins. 2020. Using reinforcement learning to perform
qubit routing in quantum compilers. arXiv preprint arXiv:2007.15957 (2020).

Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2022. MQT Bench: Benchmarking Software and Design Automation
Tools for Quantum Computing. arXiv:2204.13719 MQT Bench is available at https://www.cda.cit.tum.de/mgqtbench/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017).

Animesh Sinha, Utkarsh Azad, and Harjinder Singh. 2022. Qubit routing using graph neural network aided Monte Carlo
tree search. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 9935-9943.

Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. t|ket): a retargetable
compiler for NISQ devices. Quantum Science and Technology 6, 1 (Nov 2020), 014003. https://doi.org/10.1088/2058-
9565/ab8e92

Mark Skilbeck, Eric Peterson, appleby, Erik Davis, Peter Karalekas, Juan M. Bello-Rivas, Daniel Kochmanski, Zach Beane,
Robert Smith, Andrew Shi, Cole Scott, Adam Paszke, Eric Hulburd, Matthew Young, Aaron S. Jackson, BHAVISHYA,
M. Sohaib Alam, Wilfredo Velazquez-Rodriguez, c. b. osborn, fengdlm, and jmackeyrigetti. 2020. rigetti/quilc: v1.21.0.
https://doi.org/10.5281/zenodo.3967926

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems 12 (1999).

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al.
2019a. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al.
2019b. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws Albarghouthi. 2022c. Synthesizing Quantum-Circuit
Optimizers. arXiv preprint arXiv:2211.09691 (2022).

Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken,
Umut A. Acar, and Zhihao Jia. 2022a. Quartz: Superoptimization of quantum circuits. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (PLDI °22), June 13-17, 2022, San
Diego, CA, USA. ACM. https://doi.org/10.1145/3519939.3523433

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

https://lambdalabs.com/service/gpu-cloud
https://doi.org/10.48550/ARXIV.1809.02573
https://doi.org/10.48550/ARXIV.1809.02573
https://doi.org/10.5281/zenodo.10463907
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/arXiv.2111.11387
https://doi.org/10.48550/arXiv.2111.11387
https://arxiv.org/abs/2204.13719
https://www.cda.cit.tum.de/mqtbench/
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.5281/zenodo.3967926
https://doi.org/10.1145/3519939.3523433

114:28 Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia

Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A.
Acar, and Zhihao Jia. 2022b. Quartz: Superoptimization of quantum circuits (extended version). arXiv:2204.09033 [cs.PL]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 114. Publication date: April 2024.

https://arxiv.org/abs/2204.09033

	Abstract
	1 Introduction
	2 Background
	3 Challenges and High-Level Approach
	3.1 Challenge 1: Action Space
	3.2 Challenge 2: State Representation
	3.3 Quarl's Approach

	4 Quarl's Neural Architecture
	4.1 Gate Representation Generator
	4.2 Gate Selector
	4.3 Transformation Selector

	5 Training and Inference Methodology
	5.1 Hierarchical Advantage Estimator
	5.2 Training Data Collection
	5.3 Agent Update
	5.4 Pre-training, Fine-tuning, and Policy-guided Search
	5.5 Scaling to Large Circuits

	6 Evaluation
	6.1 Experimental Setup
	6.2 Implementation Details
	6.3 Comparison on the Nam Gate Set
	6.4 Comparison on the IBM Gate Set
	6.5 Ablation Studies
	6.6 Scalability Analysis
	6.7 Discussion on Computational Cost

	7 Related Work
	8 Conclusion
	References

