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Administration

• Start-off meeting (today)

• Project teams:

• 2-3 students

• Each team will take different a project, and work independently 
during the semester

• Meet with Oded / Mooly as needed

• If needed, we’ll have more workshop meeting during the semester

• 14/6 – project presentation meeting

• Each team will present project

• Project must be finished and approved by Oded / Mooly before
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Possible Projects

• Use Ivy to verify any distributed / shared memory algorithm

• Paxos variants

• Disk Paxos, Generalised Paxos, EPaxos (see http://paxos.systems/variants.html for ideas)

• Prove reconfiguration / failure recovery / log truncation / liveness

• Mutual Exclusion Algorithms

• Knuth’s Algorithm, Lamport’s Bakery, Patterson, …

• Prove safety and liveness

• Blockchain algorithms

• Algorand, HoneyBadgerBFT, Bitcoin-NG, …

• Improve Ivy

• Experiment with other SMT solvers (e.g. iProver, CVC4, Vampire, SPASS)
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Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient
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Proving distributed systems is hard

• Amazon [CACM’15] uses TLA+ for testing protocols, but no proofs

• IronFleet [SOSP’15] – verification of Multi-Paxos in Dafny (3.7 person-years)

• Verdi [PLDI’15] – verification of Raft in Coq (50,000 lines of proofs)

Our goal: reduce human effort while maintaining flexibility

Our approach: decompose verification into decidable problems

[CACM’15] Newcombe et al. How Amazon Web Services Uses Formal Methods

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems



Automatic verification of infinite-state systems
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Inductive invariants

System S is safe if all the reachable states satisfy the property P = ¬Bad 
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Inductive invariants

System State Space Safety 
Property

Bad Inv

Initial

System S is safe iff there exists an inductive invariant Inv :

System S is safe if all the reachable states satisfy the property P = ¬Bad 

TR

TR

TR

Inv Bad =  (Safety)

Init  Inv (Initiation)

if   Inv and  ’ then ’  Inv (Consecution)



Counterexample To Induction (CTI)

• States σ,σ’ are a CTI of Inv if:

• σ ∈ Inv

• σ’ ∉ Inv

• σ σ’

• A CTI may indicate:
• A bug in the system
• A bug in the safety property
• A bug in the inductive invariant

• Too weak
• Too strong
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Strengthening & weakening from CTI
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Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

TR
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x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

Counterexample to 
induction (CTI)x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

Simple example: loop invariants

¬even[x]
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x=3, y =2

x=5, y =4

x=4, y =5
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Inv = ¬even[x] ∧ even[y]

x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

Simple example: loop invariants
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x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = ¬even[x] ∧ even[y]

Simple example: loop invariants

x := 1;
y := 2;
while * do {
assert ¬even[x];
x:=(x*x–y*y)/(x-y);
y := y + 2;
}

TR



Challenges in Deductive Verification

1. Formal specification: formalizing infinite-state systems 

• Modeling the system and property (TR, Init, Bad)

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifier alternation

3. Inference: inferring inductive invariants (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable
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State of the art in formal verification
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Ultimately limited by human

“the proofs consisted of about 5000 lines and assumed several nontrivial invariants of the Raft 
protocol. This paper discusses the verification of Raft as a whole, including all the invariants from the 
original Raft paper [32]. These new proofs consist of about 45000 additional lines” [Verdi, CPP’16] 

proof/code: 

Verdi: ~10

IronFleet: ~4
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Ultimately limited by human

proof/code: 

Verdi: ~10

IronFleet: ~4

“but our input language cannot compete in generality with mechanized proof methods that rely heavily 
on human expertise, e.g., IVY [55], Verdi [68], IronFleet [38], TLAPS [16]” [Konnov et al, POPL’17] 

Model Checking
Static Analysis
Type Checking

Ultimately limited by undecidability

IVy
Decidable Reasoning

Finite Counterexamples

proof/code: ~0.2



IVy’s Principles

• Specify systems and properties in decidable fragment of first-order logic (EPR)

• Allows quantifiers to reason about unbounded sets 

• Decidable to check inductiveness

• Finite counterexamples to induction, display graphically

• Logic is mostly hidden

• Interact with the user to find inductive invariants

• Challenge: use restricted logic to verify interesting systems

• Paxos, Reconfiguration, Byzantine Fault Tolerance

• Liveness and Temporal Properties

23



Example: Leader Election in a Ring

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if the id in the 
message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized 
extrema-finding in circular configurations of processes
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Leader Election Protocol (IVy)
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in 
first-order logic

structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1
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Leader Election Protocol (IVy)
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

protocol = (send | receive)*

assert I0 = ∀ x,y: Node. leader(x)leader(y) → x = y

action receive(n: Node, m: ID) = {
requires pending(m, n);
if id(n) = m then
// found leader
leader(n) := true

else if id(n)  m then
// pass message
“s := next(n)”;
pending(m, s) := true

}

action send(n: Node) = {
“s := next(n)”;
pending(id(n),s) := true

}

∃n,s: Node. “s := next(n)” ∧ ∀x:ID,y:Node. pending'(x,y)↔ (pending(x,y)∨(x=id(n)∧y=s))
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Specify and verify the protocol for any number of nodes in the ring



Inductive Invariant for Leader Election
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: I0
I0 = x, y: Node. leader(x) ∧ leader(y)  x = y

Inductive invariant: Inv = I0 I1 I2 I3

I1 = n1,n2: Node. leader(n2)  id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2], n2) 
id[n1]  id[n2]

I3 =n1,n2,n3: Node. btw(n1, n2, n3) 
pending(id[n2], n1)id[n3]id[n2]

h

How can we find an inductive invariant without knowing it?

The leader has the 
highest ID

Only the leader can 
be self-pending

Cannot bypass higher 
nodes



Invariant Inference in IVy
Model Candidate Inductive Invariant

Inductive?
Yes

No

Find “minimal” CTI

Modify candidate invariant

Generalize from CTI

User Automation

Inductive Invariant Found

https://www.quora.com/Human-Computer-Interaction


IVy: Check Inductiveness 

Leader Protocol Inv = I0 I1 I2

rcv(1, id(2))

I0I1 I2  I2
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IVy: Generalize from CTI

Cannot bypass nodes
with higher ids
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id3

id

btw

Interp(3)

C3 = n1, n2, n3 : Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1]  id[n2]  id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

C’3 = n1, n2, n3 : Node. btw(n1, n2, n3) 
pnd(id[n2], n1) 
id[n2]  id[n3]

This looks good, add to 
the invariant as I3

I3



IVy: Check Inductiveness 

Bad =  I0

VC Generator

Leader Protocol Inv = I0 I1 I2 I3

EPR Solver

Init   Inv
Inv(V)  TR(V,V’)  Inv(V’)

Inv(V)  Bad(V)

Proof

I0 I1 I2 I3  is an inductive invariant for the leader protocol,
which proves the protocol is safe



L L
≤

id idpnd

pnd
id
≤

id

btw

Init  Inv (Initiation)
if σ  Inv and σ σ’ then σ’  Inv (Consecution)
Inv  Bad =  (Safety)

≤

L
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Leader Election Protocol (axioms)
•  (ID, ID) – total order on node id’s 

• btw (a: Node, b: Node, c: Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Natural Interpretation EPR Modeling

Node ID’s Integers

i:ID.  i  i Reflexive
i, j, k: ID. i  jj ki k  Transitive
i, j: ID. i  jj ii=j  Anti-Symmetric
i, j: ID. i  j  j  i Total
x, y: Node. id(x) = id(y)  x=y Injective

Ring Topology
Next edges + 
Transitive closure

x, y, z: Node. btw(x, y, z) btw(y, z, x)  Circular shifts
x, y, z, w: Node. btw(w, x, y) btw(w, y, z) btw(w, x, z) Transitive
x, y, w: Node. btw(w, x, y) btw(w, y, x) A-Symmetric
x, y, z, w: Node. distinct(x, y, z)  btw(w, x, y) btw(w, y, x) 

“next(a)=b”  x: Node.X=aX=bbtw(a,b,x)



Challenge: How to use restricted first-order 
logic to verify interesting systems?

37

• Expressing transitive closure

• Linked lists

• Ring protocols

• Expressing Consensus

• Paxos, Multi-Paxos

• Reconfiguration

• Byzantine Fault Tolerance

• Liveness and temporal Properties



Key idea: representing deterministic paths
[Itzhaky SIGPLAN Dissertation Award 2016]

Alternative 1: maintain n
• n* defined by transitive closure of n
• not definable in first-order logic

nn

n*

h t

nnh t

Alternative 2: maintain n*

• n defined by transitive reduction of n*

• Unique due to outdegree  1
• Definable in first order logic (for roots)

• n+(a,b)  n*(a, b)ab
• n(a, b)  n+(a,b) z: n+(a, z)n*(b, z) 

n*

h t
Not first order expressible

First order expressible

n*  btw



Paxos made EPR

Methodology for decidable verification of infinite-state systems

Formal specification 
in first-order logic

Formal specification 
with decidable VC

Protocol

Abstraction
Domain knowledge

1 2

Modeling Transforming



Paxos

• Single decree Paxos – consensus
lets nodes make a common decision despite node crashes and packet loss

• Paxos family of protocols – state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low 
contention, Vertical Paxos is reconfigurable, etc. 

• Pervasive approach to fault-tolerant distributed computing

• Google Chubby

• VMware NSX

• AWS

• Many more…



Challenge: reasoning about Paxos in FOL

• Consensus algorithms use set cardinalities

• Wait for messages from more than N / 2 nodes

• Insight: set cardinalities are used to get a simple effect

Can be modeled in first-order logic!

• Solution: axiomatize quorums in first-order logic

sort quorum
relation member (node, quorum)
– set membership (2nd-order logic in first-order)

axiom ∀q1,q2: quorum. ∃n: node. member(n, q1) ∧ member(n, q2)    

action propose(r:round) {
requires “>N/2 join_msg’s”
…

}

action propose(r:round) {
requires ∃q.∀n.member(n,q) →
∃r’,v’.join_msg(n,r,r’,v’)

…
}



Principle: domain knowledge

Concept Intention First-order abstraction

Quorums Majority sets
relation member (node, quorum)
axiom ∀q1,q2:quorum∃n:node. member(n, q1) ∧ member(n, q2) 

Rounds
Natural
numbers

relation ≤(round,round) 
axiom ∀x:round.  x ≤ x  reflexive
axiom ∀x,y,z:round. x≤y ∧ y≤z → x ≤ z transitive
axiom ∀x,y:round. x≤y ∧ y≤ x → x=y  anti-symmetric
axiom ∀x,y:round. x≤y ∨ y ≤ x total

Messages

Network with:
dropping
duplication
reordering

relation start_msg(round)
relation join_msg(node,round,round,value)
relation propose_msg(round,value)
relation vote_msg(node,round,value)

Formal specification
in first-order logic

Protocol 1



Paxos in first-order logic

VC’s in first-order logic



Step 2: Obtaining decidable VC’s
Challenge : quantifier alternation cycles

• Axiom

∀q1,q2: quorum. ∃n: node. member(n, q1) ∧ member(n, q2) 

• Propose action precondition

∃q:quorum. ∀n:node. member(n,q) → ∃r’:round,v’:value. join_msg(n,r,r’,v’)

• Inductive invariant

∀r:round,v:value. decision(r,v) → ∃q:quorum. ∀n:node. member(n,q) → vote_msg(n,r,v)

round

value

nodequorum

Quantifier 
Alternation Cycle



Solution: derived relations and rewrites

∃q:quorum. ∀n:node. member(n,q) → ∃r’:round,v’:value. join_msg(n,r,r’,v’)



Solution: derived relations and rewrites

∃q:quorum. ∀n:node. member(n,q) → ∃r’:round,v’:value. join_msg(n,r,r’,v’)

new relation: joined(n:node,r:round) ≡ ∃r’:round,v’:value. join_msg(n,r,r’,v’)

update code:

∃q:quorum. ∀n:node. member(n,q) → joined(n,r)

rew
rite

action join(n:node, r:round) {
requires start_round_msg(r)
let maxr,v := …
join_msg(n,r,maxr,v) := true
joined(n,r) := true

}



joined(n:node,r:round) ≡ ∃r’:round,v’:value. join_msg(n,r,r’,v’)

left(n:node,r:round) ≡ ∃r’,r’’:round,v’:value. join_msg(n,r’,r’’,v’) ∧ r’>r

VC’s are decidable!

Solution: derived relations and rewrites



Principle: decomposing into decidable checks

• User defines:

• Derived relations

• Rewrites

• Inductive invariants

• Decidable checks:

⊨Invaux

Spec in FOL

Invaux ⊨ ↔ ⊨Inv

Modified Spec

Formal specification 
in first-order logic

Formal specification 
with decidable VC

2



Inductive Invariant of Paxos
# safety property

conjecture decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

# proposals are unique per round

conjecture proposal(R,V1) & proposal(R,V2) -> V1 = V2

# only vote for proposed values

conjecture vote(N,R,V) -> proposal(R,V)

# decisions come from quorums of votes:

conjecture forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

# properties of one_b_max_vote

conjecture one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

conjecture one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

conjecture one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

# property of choosable and proposal

conjecture ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

# property of one_b, left_rnd

conjecture one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)



Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Experimental Evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!
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Verification of Temporal Properties

53



Possible Projects

• Verify any distributed / shared memory algorithm

• Paxos variants

• Disk Paxos, Generalised Paxos, EPaxos (see http://paxos.systems/variants.html for ideas)

• Prove reconfiguration / failure recovery / log truncation / liveness

• Mutual Exclusion Algorithms

• Knuth’s Algorithm, Lamport’s Bakery, Patterson, …

• Prove safety and liveness

• Blockchain algorithms

• Algorand, HoneyBadgerBFT, Bitcoin-NG, …

• Improve Ivy

• Experiment with other SMT solvers (e.g. iProver, CVC4, Vampire, SPASS)
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