Data Streams, Dyck Languages, and Detecting Dubious Data Structures

Amit ChakrabartiDartmouth CollegeGraham CormodeAT&T Research LabsRanganath KondapallyDartmouth CollegeAndrew McGregorUniversity of Massachusetts, Amherst

ins(5)

ins(5) ins(3)

ins(5) ins(3)

ins(5) ins(3) ext(3)

ins(5) ins(3) ext(3) ins(6)

ins(5) ins(3) ext(3) ins(6) ins(7)

ins(5) ins(3) ext(3) ins(6) ins(7)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6) ext(7)

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6) ext(7)

? <u>Challenge</u>: Without remembering all the interaction, can you verify the priority queue performed correctly?

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6) ext(7)

- ? <u>Challenge</u>: Without remembering all the interaction, can you verify the priority queue performed correctly?
- <u>Motivation</u>: Want to use cheap commodity hardware.
 [Blum, Evans, Gemmell, Kannan, Naor '94]

• Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

• Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

 Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

 Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

 $ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) \notin PQ$

 <u>PQ Problem</u>: Given streaming access to length N transcript, determine if it's in PQ using o(N) space.

 Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

- <u>PQ Problem</u>: Given streaming access to length N transcript, determine if it's in PQ using o(N) space.
- In this talk...
 - i. We'll design an algorithm that uses $O(\sqrt{N})$ space!

 Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

- <u>PQ Problem</u>: Given streaming access to length N transcript, determine if it's in PQ using o(N) space.
- In this talk...
 - i. We'll design an algorithm that uses $O(\sqrt{N})$ space!
 - ii. Prove it's optimal via a communication lower bound.

 Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 $ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) \in PQ$

- <u>PQ Problem</u>: Given streaming access to length N transcript, determine if it's in PQ using o(N) space.
- In this talk...
 - i. We'll design an algorithm that uses $O(\sqrt{N})$ space!
 - ii. Prove it's optimal via a communication lower bound.
 - iii. Explore connections with other problems...

II. Lower Bounds

III. Parenthesis and Passes

I. Memory Checking

• <u>Thm:</u> There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

• <u>Thm</u>: There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes!"

• <u>Thm:</u> There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes!"

• <u>Prelim</u>: Easy to check that set of values inserted equals set of values extracted using fingerprinting.

• <u>Thm:</u> There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes!"

• <u>Prelim</u>: Easy to check that set of values inserted equals set of values extracted using fingerprinting.

$$\prod (x-u) \stackrel{?}{=} \prod (x-u)$$

u inserts

u extracts

• <u>Thm:</u> There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes!"

• <u>Prelim</u>: Easy to check that set of values inserted equals set of values extracted using fingerprinting.

$$\prod (r-u) \stackrel{?}{=} \prod (r-u)$$

u inserts

u extracts

• <u>Thm:</u> There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes!"

 <u>Prelim</u>: Easy to check that set of values inserted equals set of values extracted using fingerprinting.

$$\prod_{u \text{ inserts}} (r - u) \stackrel{?}{=} \prod_{u \text{ extracts}} (r - u)$$

For this talk: Assume inserted elements are distinct and that inserts come before their corresponding extract. I.e., we're trying to identify the following bad pattern:

 $ins(u) \dots ext(v) \dots ext(u)$ for some u < v

Epochs and Local Bad Patterns...

• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}

• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}

- Split length N sequence into \sqrt{N} epochs of length \sqrt{N}
- <u>Defn</u>: Bad pattern ins(u) ... ext(v) ... ext(u) is <u>local</u> if ins(u) and ext(v) occur in same epoch and <u>long-range</u> otherwise.

- Split length N sequence into \sqrt{N} epochs of length \sqrt{N}
- <u>Defn</u>: Bad pattern ins(u) ... ext(v) ... ext(u) is <u>local</u> if ins(u) and ext(v) occur in same epoch and <u>long-range</u> otherwise.
- Using $O(\sqrt{N})$ space, we can buffer each epoch and check for local bad patterns.

- Maintain the max value extracted between end of i-th epoch and *current time*. Call it f(i).
- <u>Defn</u>: Each ins(u) or ext(u) is *adopted* by earliest epoch k with $f(k) \le u$.

 <u>Lemma:</u> If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.

- <u>Lemma:</u> If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.
- <u>Proof:</u>
 - i. Let ins(u) be adopted by k-th epoch.

- <u>Lemma</u>: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.
- <u>Proof:</u>
 - i. Let ins(u) be adopted by k-th epoch.
 - ii. After v is extracted $f(k) \ge v \ge u$.

- <u>Lemma</u>: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.
- <u>Proof:</u>
 - i. Let ins(u) be adopted by k-th epoch.
 - ii. After v is extracted $f(k) \ge v \ge u$.
 - iii. ext(u) can no longer be adopted by k-th epoch.

- <u>Lemma</u>: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.
- <u>Proof:</u>
 - i. Let ins(u) be adopted by k-th epoch.
 - ii. After v is extracted $f(k) \ge v \ge u$.
 - iii. ext(u) can no longer be adopted by k-th epoch.
- <u>Lemma</u>: If there are no bad patterns, every ins(u) and ext(u) pair get adopted by the same epoch.

- <u>Lemma</u>: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.
- <u>Proof:</u>
 - i. Let ins(u) be adopted by k-th epoch.
 - ii. After v is extracted $f(k) \ge v \ge u$.
 - iii. ext(u) can no longer be adopted by k-th epoch.
- <u>Lemma</u>: If there are no bad patterns, every ins(u) and ext(u) pair get adopted by the same epoch.
- <u>Algorithm:</u> Using fingerprints to check: for each epoch k

 $\{u : ins(u) \text{ adopted by } k\} = \{u : ext(u) \text{ adopted by } k\}.$

Conclusions

Conclusions

• <u>Thm</u>: There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes"

Conclusions

• <u>Thm</u>: There exists a $O(\sqrt{N} \log N)$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

"Can verify terabytes of transcript with only megabytes"

• <u>Extensions</u>: Sub-linear space streaming recognition of other data structures like stacks, double-ended queues...

II. Lower Bounds

III. Parenthesis and Passes

II. Lower Bounds

 Many space lower bounds in data stream model are based on reductions from communication complexity.

- у, с
- Many space lower bounds in data stream model are based on reductions from communication complexity.
- <u>Augmented Index</u>: Alice has $x \in \{0, I\}^n$ and Bob has a prefix $y \in \{0, I\}^{k-1}$ of x and $c \in \{0, I\}$. Bob wants to check if $c = x_k$.

у, с

- Many space lower bounds in data stream model are based on reductions from communication complexity.
- <u>Augmented Index</u>: Alice has $x \in \{0, I\}^n$ and Bob has a prefix $y \in \{0, I\}^{k-1}$ of x and $c \in \{0, I\}$. Bob wants to check if $c = x_k$.
- <u>Thm</u>: Any 1/3-error, one-way protocol from Alice to Bob for Al_n requires $\Omega(n)$ bits sent. [Miltersen et al. JCSS '98]

 We now have 2m players A₁, ..., A_m, B₁, ..., B_m where each A_i and B_i have an instance (xⁱ,yⁱ,cⁱ) of AI_n

- We now have 2m players A₁, ..., A_m, B₁, ..., B_m where each A_i and B_i have an instance (xⁱ,yⁱ,cⁱ) of AI_n
- Want to determine if any of the AI_n instances are false using private messages communicated in the order

$$A_1 \rightarrow B_1 \rightarrow A_2 \rightarrow B_2 \rightarrow \dots \rightarrow A_m \rightarrow B_m \rightarrow A_m \rightarrow A_{m-1} \rightarrow \dots \rightarrow A_1$$

- We now have 2m players A₁, ..., A_m, B₁, ..., B_m where each A_i and B_i have an instance (xⁱ,yⁱ,cⁱ) of AI_n
- Want to determine if any of the AI_n instances are false using private messages communicated in the order

$$A_1 \rightarrow B_1 \rightarrow A_2 \rightarrow B_2 \rightarrow \dots \rightarrow A_m \rightarrow B_m \rightarrow A_m \rightarrow A_{m-1} \rightarrow \dots \rightarrow A_1$$

• <u>Thm</u>: Any 1/3-error protocol has a $\Omega(\min m,n)$ bit message.

- We now have 2m players A₁, ..., A_m, B₁, ..., B_m where each A_i and B_i have an instance (xⁱ,yⁱ,cⁱ) of AI_n
- Want to determine if any of the AI_n instances are false using private messages communicated in the order

$$A_1 \rightarrow B_1 \rightarrow A_2 \rightarrow B_2 \rightarrow \dots \rightarrow A_m \rightarrow B_m \rightarrow A_m \rightarrow A_{m-1} \rightarrow \dots \rightarrow A_1$$

- <u>Thm</u>: Any 1/3-error protocol has a $\Omega(\min m, n)$ bit message.
- <u>Corollary</u>: Any algorithm for PQ requires $\Omega(\sqrt{N})$ space.

• <u>Thm</u>: Any algorithm for recognizing PQ with probability at least 2/3 requires $\Omega(\sqrt{N})$ space.

- Thm: Any algorithm for recognizing PQ with probability at least 2/3 requires $\Omega(\sqrt{N})$ space.
- <u>Proof:</u>
 - i. Let \mathcal{A} be a stream algorithm using s bits of space.

- Thm: Any algorithm for recognizing PQ with probability at least 2/3 requires $\Omega(\sqrt{N})$ space.
- <u>Proof</u>:
 - i. Let \mathcal{A} be a stream algorithm using s bits of space.
 - ii. Use \mathcal{A} to construct a protocol with s bit messages: Players run \mathcal{A} on their input and send memory state to next player.

- Thm: Any algorithm for recognizing PQ with probability at least 2/3 requires $\Omega(\sqrt{N})$ space.
- <u>Proof:</u>
 - i. Let \mathcal{A} be a stream algorithm using s bits of space.
 - ii. Use \mathcal{A} to construct a protocol with s bit messages: Players run \mathcal{A} on their input and send memory state to next player.
 - iii. Therefore, $s = \Omega(\min m, n)$ for length mn sequence.

II. Lower Bounds

III. Parenthesis and Passes

III. Parenthesis and Passes

Fictional Quote:

"After Ammu died (after the last time she came back to Ayemenem (she had been swollen with cortisone and a rattle in her chest that sounded like a faraway man shouting), Rahel drifted."

• DYCK₂ is the set of strings of properly nested brackets when there are two different types of brackets:

 $((([])()[])) \in DYCK_2$

 $([([]])[])) \not\in \mathsf{DYCK}_2$

• DYCK₂ is the set of strings of properly nested brackets when there are two different types of brackets:

 $((([])()[])) \in \mathsf{DYCK}_2 \qquad ([([]])[])) \notin \mathsf{DYCK}_2$

• <u>DYCK Problem</u>: Given streaming access to length N string, determine if it's in DYCK₂ using o(N) space.

• DYCK₂ is the set of strings of properly nested brackets when there are two different types of brackets:

 $((([])()[])) \in \mathsf{DYCK}_2 \qquad ([([]])[])) \notin \mathsf{DYCK}_2$

- <u>DYCK Problem</u>: Given streaming access to length N string, determine if it's in DYCK₂ using o(N) space.
- <u>Previous result</u>: $O(\sqrt{N})$ space suffices. [Magniez, Mathieu, Nayak '10]

• DYCK₂ is the set of strings of properly nested brackets when there are two different types of brackets:

 $((([])()[])) \in \mathsf{DYCK}_2 \qquad ([([]])[])) \notin \mathsf{DYCK}_2$

- <u>DYCK Problem</u>: Given streaming access to length N string, determine if it's in DYCK₂ using o(N) space.
- <u>Previous result</u>: $O(\sqrt{N})$ space suffices. [Magniez, Mathieu, Nayak '10]
- <u>But...</u> If you're allowed a forward pass followed by a backwards pass, space can be reduced to O(log N)!

• DYCK₂ is the set of strings of properly nested brackets when there are two different types of brackets:

 $((([])()[])) \in \mathsf{DYCK}_2 \qquad ([([]])[])) \notin \mathsf{DYCK}_2$

- <u>DYCK Problem</u>: Given streaming access to length N string, determine if it's in DYCK₂ using o(N) space.
- <u>Previous result</u>: $O(\sqrt{N})$ space suffices. [Magniez, Mathieu, Nayak '10]
- <u>But...</u> If you're allowed a forward pass followed by a backwards pass, space can be reduced to O(log N)!

"How useful is reading backwards? Do we also get a space saving if you can take multiple forward passes?"

• If you increase the number of passes p, for some problems the space required can be dramatically reduced...

- If you increase the number of passes p, for some problems the space required can be dramatically reduced...
- <u>Example 1</u>: Necessary and sufficient space to find the median of n values $\Theta(n^{1/p})$.

- If you increase the number of passes p, for some problems the space required can be dramatically reduced...
- <u>Example 1</u>: Necessary and sufficient space to find the median of n values $\Theta(n^{1/p})$.
- <u>Example 2</u>: Necessary and sufficient space to find an increasing subsequence of length k is $\Theta(k^{1+\frac{1}{2^{p}-1}})$.

• There's a reduction from DYCK₂ to PQ and our bounds extend to multi-pass algorithms.

- There's a reduction from DYCK₂ to PQ and our bounds extend to multi-pass algorithms.
- <u>Thm</u>: Any *p* pass algorithm for DYCK₂ that only uses forward passes requires $\Omega(\sqrt{N/p})$.

- There's a reduction from DYCK₂ to PQ and our bounds extend to multi-pass algorithms.
- <u>Thm</u>: Any p pass algorithm for DYCK₂ that only uses forward passes requires $\Omega(\sqrt{N/p})$.

"Reading backwards can be very helpful!"

- There's a reduction from DYCK₂ to PQ and our bounds extend to multi-pass algorithms.
- <u>Thm</u>: Any p pass algorithm for DYCK₂ that only uses forward passes requires $\Omega(\sqrt{N/p})$.

"Reading backwards can be very helpful!"

? <u>Open Problem</u>: Stream complexity of recognizing other languages and examples of backwards phenomena?

Summary

<u>Memory Checking</u>: Sub-linear space recognition of various datastructure transcript languages!

<u>Theory of Stream Computation:</u> Forward and backward pass better than many forward passes!

Further Work: Annotations, stream language recognition, ...

Thanks!

II. Lower Bounds

III. Parenthesis and Passes

IV. Augmented Index Bound

[Chakrabarti, Shi, Wirth, Yao '01]

[Chakrabarti, Shi, Wirth, Yao '01]

Entropy and Mutual Information:

$$H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x]$$

$$H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y]$$

[Chakrabarti, Shi, Wirth, Yao '01]

• Entropy and Mutual Information:

$$H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x]$$

$$H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y]$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

[Chakrabarti, Shi, Wirth, Yao '01]

• Entropy and Mutual Information:

$$H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x]$$

$$H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y]$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

 Information cost method: Consider mutual information between random input for a communication problem and the communication transcript:

I(transcript; input)

[Chakrabarti, Shi, Wirth, Yao '01]

• Entropy and Mutual Information:

$$H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x]$$

$$H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y]$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

 Information cost method: Consider mutual information between random input for a communication problem and the communication transcript:

I(transcript; input) ≤ length of transcript

[Chakrabarti, Shi, Wirth, Yao '01]

• Entropy and Mutual Information:

$$H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x]$$

$$H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y]$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

 <u>Information cost method</u>: Consider mutual information between random input for a communication problem and the communication transcript:

 $I(\text{transcript}; \text{input}) \leq \text{length of transcript}$

 Can restrict to partial transcript and subsets of input: useful for proving direct-sum arguments.

Information Complexity of AI_n

Information Complexity of Aln

<u>Defn</u>: Let P be a protocol for Al_n using public random string R. Let T be the transcript and (X, K, C)~ξ. Define

$$icost^{A}_{\xi}(P) = I(T : X | K, C, R)$$

 $icost^{B}_{\xi}(P) = I(T : K, C | X, R)$

Information Complexity of Aln

<u>Defn</u>: Let P be a protocol for Al_n using public random string R. Let T be the transcript and (X, K, C)~ξ. Define

$$icost^{A}_{\xi}(P) = I(T : X | K, C, R)$$

 $icost^{B}_{\xi}(P) = I(T : K, C | X, R)$

• <u>Thm</u>: Let P be a randomized protocol for AI_n with error I/3 under the uniform distribution μ . Then,

$$\mathsf{icost}^{\mathsf{A}}_{\mu_0}(\mathsf{P}) = \Omega(\mathsf{n}) \quad \mathsf{or} \quad \mathsf{icost}^{\mathsf{B}}_{\mu_0}(\mathsf{P}) = \Omega(1)$$

where μ_0 is μ conditioned on $X_K = C$.

$\textbf{MULTI-AI}_{m,n} \textbf{ versus } \textbf{AI}_n$

$\textbf{MULTI-AI}_{m,n} \textbf{ versus } \textbf{AI}_n$

<u>Defn</u>: Let Q be a protocol for MULTI-AI_{m,n} using public random string R. Let T be transcript and (Xⁱ,Kⁱ,Cⁱ)_{i∈[m]}~ξ.

 $\mathsf{icost}_{\xi}(\mathsf{Q}) = \mathsf{I}(\mathsf{T}_{\mathsf{m}} : \mathsf{K}^{1}, \mathsf{C}^{1}, \dots, \mathsf{K}^{\mathsf{m}}, \mathsf{C}^{\mathsf{m}} \mid \mathsf{X}^{1}, \dots, \mathsf{X}^{\mathsf{m}}, \mathsf{R})$

where T_m is the set of messages sent by B_m .

$\textbf{MULTI-AI}_{m,n} \textbf{ versus } \textbf{AI}_n$

<u>Defn</u>: Let Q be a protocol for MULTI-AI_{m,n} using public random string R. Let T be transcript and (Xⁱ,Kⁱ,Cⁱ)_{i∈[m]}~ξ.

 $icost_{\xi}(Q) = I(T_m : K^1, C^1, \dots, K^m, C^m \mid X^1, \dots, X^m, R)$

where T_m is the set of messages sent by B_m .

- <u>Thm (Direct Sum)</u>: If there exists a p-round, s-bit, E-error protocol Q for MULTI-AI_{m,n} then there exists a p-round, E-error randomized protocol P for AI_n where
 - i. Alice sends at most ps bits
 - ii. $m \cdot \mathrm{icost}^B_{\mu_0}(P) \leq \mathrm{icost}_{\mu_0^{\otimes m}}(Q)$

• <u>Thm</u>: Any p-round, s-bit, 1/3-error protocol Q for MULTI-Al_{m,n} requires $ps=\Omega(\min m,n)$.

- <u>Thm</u>: Any p-round, s-bit, 1/3-error protocol Q for MULTI-Al_{m,n} requires $ps=\Omega(min m,n)$.
- <u>Proof:</u>
 - i. By direct sum theorem, there exists ϵ -error, p-pass protocol P for AI_n such that:

$$egin{array}{lll} p \cdot s &\geq & ext{icost}_{\mu_0^{\otimes m}}^{M}(Q) &\geq & m \cdot ext{icost}_{\mu_0}^{B}(P) \ \ p \cdot s &\geq & ext{icost}_{\mu_0}^{A}(P) \end{array}$$

- <u>Thm</u>: Any p-round, s-bit, 1/3-error protocol Q for MULTI-Al_{m,n} requires $ps=\Omega(min m,n)$.
- <u>Proof</u>:
 - i. By direct sum theorem, there exists ϵ -error, p-pass protocol P for AI_n such that:

$$egin{array}{rcl} p \cdot s & \geq & ext{icost}_{\mu_0^{\otimes m}}^{B}(Q) & \geq & m \cdot ext{icost}_{\mu_0}^{B}(P) \ \ p \cdot s & \geq & ext{icost}_{\mu_0}^{A}(P) \end{array}$$

ii. By information complexity of AI_n

 $\max(m \cdot \mathrm{icost}^{B}_{\mu_{0}}(P), \mathrm{icost}^{A}_{\mu_{0}}(P)) = \Omega(\min(m, n))$

Summary

<u>Memory Checking</u>: Sub-linear space recognition of various datastructure transcript languages!

<u>Theory of Stream Computation:</u> Forward and backward pass better than many forward passes!

Further Work: Annotations, stream language recognition, ...

Thanks!