
Data Streams, Dyck Languages, and
Detecting Dubious Data Structures

! Amit Chakrabarti ! Dartmouth College
! Graham Cormode ! AT&T Research Labs
! Ranganath Kondapally ! Dartmouth College
! Andrew McGregor ! University of Massachusetts, Amherst

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

5

ins(5)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

5 3

ins(5) ins(3)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

5 3

ins(5) ins(3)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53

ins(5) ins(3) ext(3)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 6

ins(5) ins(3) ext(3) ins(6)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ins(7)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ins(7)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

? Challenge: Without remembering all the interaction, can
you verify the priority queue performed correctly?

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

• At each step, user inserts a value into the memory or
asks that the smallest value is extracted:

? Challenge: Without remembering all the interaction, can
you verify the priority queue performed correctly?

• Motivation: Want to use cheap commodity hardware.
	
 [Blum, Evans, Gemmell, Kannan, Naor ’94]

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

PQ Language Problem

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

• In this talk...

i. We’ll design an algorithm that uses O(√N) space!

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

• In this talk...

i. We’ll design an algorithm that uses O(√N) space!

ii. Prove it’s optimal via a communication lower bound.

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

• In this talk...

i. We’ll design an algorithm that uses O(√N) space!

ii. Prove it’s optimal via a communication lower bound.

iii. Explore connections with other problems...

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

I. Memory
Checking
I. Memory
Checking

PQ Algorithm

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting.

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting.

�

u inserts

(x − u)
?
=

�

u extracts

(x − u)

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting.

�

u inserts

(r − u)
?
=

�

u extracts

(r − u)

PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting.

! For this talk: Assume inserted elements are distinct and
that inserts come before their corresponding extract.
I.e., we’re trying to identify the following bad pattern:

• ins(u) ... ext(v) ... ext(u) for some u < v

�

u inserts

(r − u)
?
=

�

u extracts

(r − u)

Epochs and Local Bad Patterns...

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u)
and ext(v) occur in same epoch and long-range otherwise.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u)
and ext(v) occur in same epoch and long-range otherwise.

• Using O(√N) space, we can buffer each epoch and check
for local bad patterns.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

Catching Long-Range Bad Patterns... 1/2

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

f(2)

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

f(2)

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

f(2)

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

f(2)

f(3)

Catching Long-Range Bad Patterns... 1/2

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

f(2)

f(3)

Catching Long-Range Bad Patterns... 1/2

f(3)f(2)

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

f(1)

Catching Long-Range Bad Patterns... 1/2

f(3)f(2)

• Maintain the max value extracted between end of i-th
epoch and current time. Call it f(i).

• Defn: Each ins(u) or ext(u) is adopted by earliest epoch k
with f(k)≤u.

f(1)

Catching Long-Range Bad Patterns... 1/2

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u.
iii. ext(u) can no longer be adopted by k-th epoch.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u.
iii. ext(u) can no longer be adopted by k-th epoch.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair
get adopted by the same epoch.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u.
iii. ext(u) can no longer be adopted by k-th epoch.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair
get adopted by the same epoch.

• Algorithm: Using fingerprints to check: for each epoch k

• {u : ins(u) adopted by k} = {u : ext(u) adopted by k}.

Catching Long-Range Bad Patterns... 2/2

Conclusions

Conclusions

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes”

Conclusions

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes”

• Extensions: Sub-linear space streaming recognition of
other data structures like stacks, double-ended queues...

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

II. Lower
Bounds
II. Lower
Bounds

Communication Complexity

Communication Complexity

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

Communication Complexity

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

x y, c

Communication Complexity

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

• Thm: Any 1/3-error, one-way protocol from Alice to Bob
for AIn requires Ω(n) bits sent. 	 [Miltersen et al. JCSS ’98]

x y, c

Multi-player Augmented Index

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where each
Ai and Bi have an instance (xi,yi,ci) of AIn

x1 x2 x3y1, c1 y2, c2 y3, c3

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where each
Ai and Bi have an instance (xi,yi,ci) of AIn

• Want to determine if any of the AIn instances are false using
private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

x1x2x3x1 x2 x3y1, c1 y2, c2 y3, c3

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where each
Ai and Bi have an instance (xi,yi,ci) of AIn

• Want to determine if any of the AIn instances are false using
private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

• Thm: Any 1/3-error protocol has a Ω(min m,n) bit message.

x1x2x3x1 x2 x3y1, c1 y2, c2 y3, c3

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where each
Ai and Bi have an instance (xi,yi,ci) of AIn

• Want to determine if any of the AIn instances are false using
private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

• Thm: Any 1/3-error protocol has a Ω(min m,n) bit message.

• Corollary: Any algorithm for PQ requires Ω(√N) space.

x1x2x3x1 x2 x3y1, c1 y2, c2 y3, c3

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

ins(4.0)
ins(3.1)
ins(2.0)
ins(1.1)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

ins(4.0)
ins(3.1)
ins(2.0)
ins(1.1)

ext(1.1)
ins(1.1)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

ins(4.0)
ins(3.1)
ins(2.0)
ins(1.1)

ext(1.1)
ins(1.1)

ext(1.1)
ext(2.0)
ext(3.1)
ext(4.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

ins(4.0)
ins(3.1)
ins(2.0)
ins(1.1)

ext(1.1)
ins(1.1)

ext(1.1)
ext(2.0)
ext(3.1)
ext(4.0)

ext(5.0)
ext(6.1)
ext(7.0)
ext(8.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

“Ascension Problem” [Magniez, Mathieu, Nayak ’10]

ins(12.0)
ins(11.1)
ins(10.0)
ins(9.0)

ext(9.0)
ext(10.0)
ins(10.0)
ins(9.0)

ins(8.0)
ins(7.0)
ins(6.1)
ins(5.0)

ext(5.0)
ext(6.1)
ext(7.1)
ins(7.1)
ins(6.1)
ins(5.0)

ins(4.0)
ins(3.1)
ins(2.0)
ins(1.1)

ext(1.1)
ins(1.1)

ext(1.1)
ext(2.0)
ext(3.1)
ext(4.0)

ext(5.0)
ext(6.1)
ext(7.0)
ext(8.0)

ext(9.0)
ext(10.0)
ext(11.1)
ext(12.0)

0010 0, 0 0100 01,1 1010 1010 0100 0010,1

Reduction from multi-player AI to PQ...

Reduction from multi-player AI to PQ...

• Thm: Any algorithm for recognizing PQ with probability at least
2/3 requires Ω(√N) space.

Reduction from multi-player AI to PQ...

• Thm: Any algorithm for recognizing PQ with probability at least
2/3 requires Ω(√N) space.

• Proof:

i. Let A be a stream algorithm using s bits of space.

Reduction from multi-player AI to PQ...

• Thm: Any algorithm for recognizing PQ with probability at least
2/3 requires Ω(√N) space.

• Proof:

i. Let A be a stream algorithm using s bits of space.
ii. Use A to construct a protocol with s bit messages: Players

run A on their input and send memory state to next player.

Reduction from multi-player AI to PQ...

• Thm: Any algorithm for recognizing PQ with probability at least
2/3 requires Ω(√N) space.

• Proof:

i. Let A be a stream algorithm using s bits of space.
ii. Use A to construct a protocol with s bit messages: Players

run A on their input and send memory state to next player.
iii. Therefore, s = Ω(min m,n) for length mn sequence.

Reduction from multi-player AI to PQ...

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

III. Parenthesis
and Passes
III. Parenthesis

and Passes

Fictional Quote:
“After Ammu died (after the last time
she came back to Ayemenem (she had

been swollen with cortisone and a
rattle in her chest that sounded like a
faraway man shouting), Rahel drifted.”

DYCK Language Problem

DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

• Previous result: O(√N) space suffices. [Magniez, Mathieu, Nayak ’10]

DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

• Previous result: O(√N) space suffices. [Magniez, Mathieu, Nayak ’10]

• But... If you’re allowed a forward pass followed by a
backwards pass, space can be reduced to O(log N)!	

DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

• Previous result: O(√N) space suffices. [Magniez, Mathieu, Nayak ’10]

• But... If you’re allowed a forward pass followed by a
backwards pass, space can be reduced to O(log N)!	

• “How useful is reading backwards? Do we also get a space
saving if you can take multiple forward passes?”

Space/Pass Trade-Offs

Space/Pass Trade-Offs

• If you increase the number of passes p, for some problems
the space required can be dramatically reduced...

Space/Pass Trade-Offs

• If you increase the number of passes p, for some problems
the space required can be dramatically reduced...

• Example 1: Necessary and sufficient space to find the
median of n values Θ(n1/p).

Space/Pass Trade-Offs

• If you increase the number of passes p, for some problems
the space required can be dramatically reduced...

• Example 1: Necessary and sufficient space to find the
median of n values Θ(n1/p).

• Example 2: Necessary and sufficient space to find an
increasing subsequence of length k is .Θ(k1+ 1

2p−1)

DYCK2 ➯ PQ

DYCK2 ➯ PQ

• There’s a reduction from DYCK2 to PQ and our bounds
extend to multi-pass algorithms.

DYCK2 ➯ PQ

• There’s a reduction from DYCK2 to PQ and our bounds
extend to multi-pass algorithms.

• Thm: Any p pass algorithm for DYCK2 that only uses
forward passes requires Ω(√N/p).

DYCK2 ➯ PQ

• There’s a reduction from DYCK2 to PQ and our bounds
extend to multi-pass algorithms.

• Thm: Any p pass algorithm for DYCK2 that only uses
forward passes requires Ω(√N/p).

• “Reading backwards can be very helpful!”

DYCK2 ➯ PQ

• There’s a reduction from DYCK2 to PQ and our bounds
extend to multi-pass algorithms.

• Thm: Any p pass algorithm for DYCK2 that only uses
forward passes requires Ω(√N/p).

• “Reading backwards can be very helpful!”

? Open Problem: Stream complexity of recognizing other
languages and examples of backwards phenomena?

Thanks!

Memory Checking: Sub-linear space
recognition of various data-
structure transcript languages!

Theory of Stream Computation:
Forward and backward pass
better than many forward passes!

Further Work: Annotations, stream
language recognition, ...

Summary

I. Memory
Checking

II. Lower
Bounds

III. Parenthesis
and Passes

IV. Augmented
Index Bound

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

• Entropy and Mutual Information:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

• Entropy and Mutual Information:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

• Can restrict to partial transcript and subsets of input:
useful for proving direct-sum arguments.

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

Information Complexity of AIn

Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random

string R. Let T be the transcript and (X, K, C)~ξ. Define

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)

Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random

string R. Let T be the transcript and (X, K, C)~ξ. Define

• Thm: Let P be a randomized protocol for AIn with error
1/3 under the uniform distribution μ. Then,

• where μ0 is μ conditioned on XK=C.

icostAµ0
(P) = Ω(n) or icostBµ0

(P) = Ω(1)

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)

MULTI-AIm,n versus AIn

MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)

MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

• Thm (Direct Sum): If there exists a p-round, s-bit, ε-error
protocol Q for MULTI-AIm,n then there exists a p-round,
ε-error randomized protocol P for AIn where

i. Alice sends at most ps bits

ii. m · icostBµ0
(P) ≤ icostµ⊗m

0
(Q)

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)

Putting it all together...

Putting it all together...
• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-

AIm,n requires ps=Ω(min m,n).

Putting it all together...
• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-

AIm,n requires ps=Ω(min m,n).

• Proof:

i. By direct sum theorem, there exists ε-error, p-pass
protocol P for AIn such that:

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

Putting it all together...
• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-

AIm,n requires ps=Ω(min m,n).

• Proof:

i. By direct sum theorem, there exists ε-error, p-pass
protocol P for AIn such that:

ii. By information complexity of AIn

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

max(m · icostBµ0
(P), icostAµ0

(P)) = Ω(min(m, n))

Thanks!

Memory Checking: Sub-linear space
recognition of various data-
structure transcript languages!

Theory of Stream Computation:
Forward and backward pass
better than many forward passes!

Further Work: Annotations, stream
language recognition, ...

Summary

