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• At each step, user inserts a value into the memory or 
asks that the smallest value is extracted:

? Challenge: Without remembering all the interaction, can 
you verify the priority queue performed correctly? 

• Motivation: Want to use cheap commodity hardware. 
	
 [Blum, Evans, Gemmell, Kannan, Naor ’94]
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PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority 
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(3), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N 
transcript, determine if it’s in PQ using o(N) space.

• In this talk... 

i. We’ll design an algorithm that uses O(√N) space!

ii. Prove it’s optimal via a communication lower bound.

iii. Explore connections with other problems...
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PQ Algorithm
• Thm: There exists a O(√N log N) space algorithm with 

O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes!”

• Prelim: Easy to check that set of values inserted equals 
set of values extracted using fingerprinting.

! For this talk: Assume inserted elements are distinct and 
that inserts come before their corresponding extract. 
I.e., we’re trying to identify the following bad pattern:

• ins(u) ... ext(v) ... ext(u) for some u < v
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• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u) 
and ext(v) occur in same epoch and long-range otherwise.

• Using O(√N) space, we can buffer each epoch and check 
for local bad patterns.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6
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• Maintain the max value extracted between end of i-th 
epoch and current time. Call it f(i).

• Defn: Each ins(u) or ext(u) is adopted by earliest epoch k 
with  f(k)≤u.

f(1)
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• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern 
then ins(u) and ext(u) are adopted by different epochs.

• Proof: 
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u.
iii. ext(u) can no longer be adopted by k-th epoch.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair 
get adopted by the same epoch.

• Algorithm: Using fingerprints to check: for each epoch k

• {u : ins(u) adopted by k} = {u : ext(u) adopted by k}.

Catching Long-Range Bad Patterns... 2/2
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Conclusions

• Thm: There exists a O(√N log N) space algorithm with 
O(log N) amortized update time for recognizing PQ.

• “Can verify terabytes of transcript with only megabytes”

• Extensions: Sub-linear space streaming recognition of 
other data structures like stacks, double-ended queues...
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Communication Complexity

• Many space lower bounds in data stream model are 
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix 
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

• Thm: Any 1/3-error, one-way protocol from Alice to Bob 
for AIn requires Ω(n) bits sent. 	 [Miltersen et al. JCSS ’98]

x y, c 
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Multi-player Augmented Index

• We now have 2m players A1 , ... ,  Am , B1 , ... , Bm where each 
Ai and Bi have an instance (xi,yi,ci) of AIn

• Want to determine if any of the AIn instances are false using 
private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

• Thm: Any 1/3-error protocol has a Ω(min m,n) bit message.

• Corollary: Any algorithm for PQ requires Ω(√N) space.

x1x2x3x1 x2 x3y1, c1 y2, c2 y3, c3
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• Thm: Any algorithm for recognizing PQ with probability at least 
2/3 requires Ω(√N) space.

• Proof: 

i. Let A be a stream algorithm using s bits of space. 
ii. Use A to construct a protocol with s bit messages: Players 

run A on their input and send memory state to next player.
iii. Therefore, s = Ω(min m,n) for length mn sequence.

Reduction from multi-player AI to PQ...
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Fictional Quote:
“After Ammu died (after the last time 
she came back to Ayemenem (she had 

been swollen with cortisone and a 
rattle in her chest that sounded like a 
faraway man shouting), Rahel drifted.”
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DYCK Language Problem

• DYCK2 is the set of strings of properly nested brackets 
when there are two different types of brackets:

• ((([])()[])) ∈ DYCK2                ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N 
string, determine if it’s in DYCK2 using o(N) space. 

• Previous result: O(√N) space suffices. [Magniez, Mathieu, Nayak ’10]

• But... If you’re allowed a forward pass followed by a 
backwards pass, space can be reduced to O(log N)!	


• “How useful is reading backwards? Do we also get a space 
saving if you can take multiple forward passes?”
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Space/Pass Trade-Offs

• If you increase the number of passes p, for some problems 
the space required can be dramatically reduced... 

• Example 1: Necessary and sufficient space to find the 
median of n values Θ(n1/p).

• Example 2: Necessary and sufficient space to find an 
increasing subsequence of length k is                   .Θ(k1+ 1

2p−1 )
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DYCK2 ➯ PQ

• There’s a reduction from DYCK2 to PQ and our bounds 
extend to multi-pass algorithms.

• Thm: Any p pass algorithm for DYCK2 that only uses 
forward passes requires Ω(√N/p). 

• “Reading backwards can be very helpful!”

? Open Problem: Stream complexity of recognizing other 
languages and examples of backwards phenomena?



Thanks!

Memory Checking: Sub-linear space 
recognition of various data-
structure transcript languages!

Theory of Stream Computation: 
Forward and backward pass 
better than many forward passes!

Further Work: Annotations, stream 
language recognition, ...

Summary
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Index Bound
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• Entropy and Mutual Information:

• Information cost method: Consider mutual information 
between random input for a communication problem and 
the communication transcript:

• Can restrict to partial transcript and subsets of input: 
useful for proving direct-sum arguments.

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X ) = −Σ Pr[X = x ] lg Pr[X = x ]
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Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random 

string R. Let T be the transcript and (X, K, C)~ξ. Define

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)



Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random 

string R. Let T be the transcript and (X, K, C)~ξ. Define

• Thm: Let P be a randomized protocol for AIn with error 
1/3 under the uniform distribution μ. Then, 

• where μ0 is μ conditioned on XK=C.

icostAµ0
(P) = Ω(n) or icostBµ0

(P) = Ω(1)

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)
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• Defn: Let Q be a protocol for MULTI-AIm,n using public 
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.
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MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public 
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

• Thm (Direct Sum): If there exists a p-round, s-bit, ε-error 
protocol Q for MULTI-AIm,n then there exists a p-round, 
ε-error randomized protocol P for AIn where 

i. Alice sends at most ps bits

ii.  m · icostBµ0
(P) ≤ icostµ⊗m

0
(Q)

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)
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Putting it all together...
• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-

AIm,n requires ps=Ω(min m,n). 

• Proof: 

i. By direct sum theorem, there exists ε-error, p-pass 
protocol P for AIn such that:

ii. By information complexity of AIn 

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

max(m · icostBµ0
(P), icostAµ0

(P)) = Ω(min(m, n))



Thanks!

Memory Checking: Sub-linear space 
recognition of various data-
structure transcript languages!

Theory of Stream Computation: 
Forward and backward pass 
better than many forward passes!

Further Work: Annotations, stream 
language recognition, ...

Summary




