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Acquisition as linear algebra
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Small number of samples = underdetermined system
Impossible to solve in general

If x is sparse and Φ is diverse, then these systems can be “inverted”



Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

I gigahertz+ analog-to-digital conversion
I accelerated MRI
I industrial imaging

Deluge of data
I camera arrays and networks, multi-view target databases, streaming

video...

Compressive Sensing: sample smarter, not faster
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Wavelet approximation

1 megapixel image 25k term approximation

1% error with ≈ 2.5% of the wavelet coefficients
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If x is sparse and Φ is diverse, then these systems can be “inverted”



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

‖A(x1 − x2)‖22 ≈ ‖x1 − x2‖22 for all x1, x2 ∈ RN

i.e. A preserves distances



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ) ≤ σ2
min(A) ≤ σ2

max(A) ≤ (1 + δ)

i.e. A has clustered singular values



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for some 0 < δ < 1



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x
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Now we have an underdetermined M ×N system Φ
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

To recover x0, we solve

min
x
‖x‖0 subject to Φx ≈ y

‖x‖0 = number of nonzero terms in x

This program is intractable



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

A relaxed (convex) program

min
x
‖x‖1 subject to Φx ≈ y

‖x‖1 =
∑

k |xk|

This program is very tractable (linear program)



Sparse recovery algorithms

Given y, look for a sparse signal which is consistent.

One method: `1 minimization (or Basis Pursuit)

min
x
‖ΨTx‖1 s.t. Φx = y

Ψ = sparsifying transform, Φ = measurement system
(need RIP for ΦΨ)

Convex (linear) program, can relax for robustness to noise

Performance has theoretical guarantees

Other recovery methods include greedy algorithms and iterative
thresholding schemes



Stable recovery

Despite its nonlinearity, sparse recovery is stable in the presence of
I modeling mismatch (approximate sparsity), and
I measurement error

If we observe y = Φx0 + e, with ‖e‖2 ≤ ε, the solution x̂ to

min
x
‖ΨTx‖1 s.t. ‖y − Φx‖2 ≤ ε

will satisfy

‖x̂− x0‖2 ≤ Const ·
(
ε+
‖x0 − x0,S‖1√

S

)
where

I x0,S = S-term approximation of x0

I S is the largest value for which ΦΨ satisfies the RIP

Similar guarantees exist for other recovery algorithms
I greedy (Needell and Tropp ’08)
I iterative thresholding (Blumensath and Davies ’08)



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , each measurement is

yk ∼ Normal(0, ‖x‖22/M)



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

E[‖Φx‖22] = ‖x‖22
the mean of the measurement energy is exactly ‖x‖22



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

P
{∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22

} ≥ 1− e−Mδ2/4



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For all 2S-sparse x ∈ RN , we have

P
{

max
x

∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22
}
≥ 1− ec·S log(N/S)e−Mδ2/4

So we can make this probability close to 1 by taking

M & S log(N/S)



What other types of matrices are restricted isometries?

Four general frameworks:

Random matrices (iid entries)

Random subsampling

Random convolution

(Randomly modulated integration — we’ll skip this today)

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated



Random matrices (iid entries)

Φ

!"#$%&&
"'()'*%*+,&

S

-!*.'(&
%*+-/%,&

±1

0"'()-%,,%.&
(%!,1-%(%*+,2&

M

N+'+!3&-%,'31#'*45!*.6/.+7&8&

Random matrices are provably efficient

We can recover S-sparse x from

M & S · log(N/S)

measurements



Rice single pixel cameraRice Single-Pixel CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)



Georgia Tech analog imager
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Georgia Tech Analog Imager

• Bottleneck in imager arrays is data readout

• Instead of quantizing pixel values, take CS 
inner products in analog

• Potential for tremendous (factor of 10000) 
power savings



Compressive sensing acquisition
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(Robucci, Chiu, Gray, R, Hasler ’09)



Random matrices

Example: Φ consists of random rows from an orthobasis U

Can recover S-sparse x from

M & µ2 S · log4N

measurements, where

µ =
√
N max

i,j
|(UTΨ)ij |

is the coherence



Examples of incoherence

Signal is sparse in time domain, sampled in Fourier domain

time domain x(t) freq domain x̂(ω)

S nonzero components measure m samples

Signal is sparse in wavelet domain, measured with noiselets
(Coifman et al ’01)

example noiselet wavelet domain noiselet domain



Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)



Empirical processes and structured random matrices

For matrices with this type of structured randomness, we simply
do not have enough concentration to establish

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22
“the easy way”

Re-write the RIP as a the supremum of a random process

sup
x
|G(x)| = sup

x
|x∗Φ∗Φx− x∗x| ≤ δ

where the sup is taken over all 2S-sparse signals

Estimate this sup using tools from probability theory
(e.g. the Dudley inequality) — approach pioneered by Rudelson and
Vershynin



Random convolution

Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green’s function)

pulse 

(known)  
rcvr  

txmt  

profile 

(unknown)  

return 

(sample this)  

Applications include:
I radar imaging
I sonar imaging
I seismic exploration
I channel estimation for communications
I super-resolved imaging

Using a random pulse = compressive sampling
(Tropp et al. ’06, R ’08, Herman et al. ’08, Haupt et al. ’09, Rauhut ’09)



Random convolution for CS, theory

Signal model: sparsity in any orthobasis Ψ
Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at m random locations Ω

Φ = RΩF∗ΣF , Σ = diag({σω})

The RIP holds for (R ’08)

M & S log5N

Note that this result is universal

Both the random sampling and the flat Fourier transform are needed
for universality



Randomizing the phase

local in time local in freq not local in M

sample here



Why is random convolution + subsampling universal?

 F


σ1

σ2

. . .

σn


 ψ̂1(ω) ψ̂2(ω) · · · ψ̂n(ω)


One entry of M = FΣΨ̂:

Mt,s =
∑
ω

ej2πωtσωψ̂s(ω)

=
∑
ω

σ′ωψ̂s(ω)

Size of each entry will be concentrated around ‖ψ̂s(ω)‖2 = 1
does not depend on the “shape” of ψ̂s(ω)



Compare to Fast Johnson-Lindenstrauss Transform

Ailon and Chazelle, 2006

Problem:
k points x1, . . . , xk in RN , project onto RM using Φ (M ×N matrix)
Want ‖Φ(xi − xj)‖2 ≈ ‖xi − xj‖2 for M ∼ log k, and Φ to be “fast”

JL problem is closely related to CS (Baraniuk et al. ’07)

Their solution: take Φ = PHD
D = diag({εi}) (makes input signs random)
H = Hadamard transform (Fourier on Z2)
P = M ×N subsampling matrix,

each row has m random entries at random locations

This Φ would be tremendous, except it is not clear how to implement
it by taking O(M) physical measurements
(P has M2 entries in it)



Seismic forward modeling

Run a single simulation with all of the sources activated
simultaneously with random waveforms

The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later
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Related work: Herrmann et. al ’09



Restricted isometries for multichannel systems

G1 G2 · · · Gp

...

=yk
h1,k

h2,k !"#$$%&'()*((

&%$+,"((n

!)$-)&./)$(01,"(2.&'%( pj

m

hc,kyk = Φhk

With each of the pulses as iid Gaussian sequences,
Φ obeys

(1− δ)‖h‖2 ≤ ‖Φh‖22 ≤ (1 + δ)‖h‖22 ∀s-sparse h ∈ Rnc

when (R and Neelamani ’09)

m & s · log5(nc) + n

Consequence: we can separate the channels using short random
pulses (using `1 min or other sparse recovery algorithms)



Summary

Main message of CS:
We can recover an S-sparse signal from ∼ S logN measurements

Random matrices (iid entries)
I easy to analyze, optimal bounds
I univeral
I hard to implement and compute with

Structured random matrices (random sampling, random convolution)
I structured, and so computationally efficient
I physical
I much harder to analyze, bound with exta log-factors


