Optimal Constant-Time Approximation
Algorithms and (Unconditional)
Inapproximability Results for Every
Bounded-Degree CSP

Yuichi Yoshida
Kyoto Univ. & Preferred Infrastructure

2011FE5826 HAEH



Polynomial-Time
Approximation for Max CSP

2011FE5826 HAEH



R
(Constraint Satisfaction Problem)

e Given variables and constraints on them. Satisfy
constraints as many as possible by assigning values
to variables.

e Ex.: Max Cut (, Max k-SAT, Max E3LIN2)
Input I: (vi @ v2), (vi @ v3), (Vi @ v4), (V2@ v3), (V2@ va4)

Vi V2
B=1(0,0,1,1)
. 3%\/ p opt(/) = val(Z, B) = 4

e In this talk, we mainly deal with Max Cut. But, we
can use the same machinery to “any” CSP.

constant domain size
constant arity
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Poly-Time Approximation
e Since Max CSP is NP-Hard in general, approximation {

have been considered.

e Approximation by SDP (semidefinite programmings)

e Hardness by PCP/Unique Games Conjecture

@Sk SR Ve |
Max k-SAT 0.787 or more (aszos| 4
Max Cut 0.878...1wos] 0.878...+Exxmoos
Max Dicut 0.874 or morepLzos 4
Max k-CSP poly(k)/2Kcnmos) poly(k)/2%sos)
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R D

[Rag08] (informal)

For every CSP A, under Unique Games Conjecture,
. “BasicSDP” + a certain rounding is the best possible §
i poly-time approximation algorithm. ]

Poly-time Approximation

SR

SDP

UG-Hard

Max k-SAT

coincides (up to €)

Max Cut

coincides (up to g) = 0.878...

Max Dicut

coincides (up to €)

Max k-CSP

coincides (up to g)
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Constant-Time
Approximation for Max CSP
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Max CSP

¢ \We want faster approximation algorithms! (O(1) time)

e A value x is an (o, €)-approximation to x* if:
DB sy e

® An assignment [ is (a, €)-approximate assignment for an
input 7 if val(Z, B) is (o, €)-approximation to opt(/)
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Bounded-Degree Model

e [t takes Q(n) to read the whole input. Thus, we read it
through an oracle.

B An input = (¥, P)is given as an oracle Op V<[> P
(t = degree bound).

Oi(v, i) = the i-th constraint incident to v.

e Query complexity: # of accesses to the oracle.
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Can we show something similar to
[Rag08] on (a, €)-approximation?
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?f e (informal) For every CSP A, unconditionally,
¥ “BasicLP”+ a certain rounding is the best possible
constant-time approximation algorithm.

GSE O(1) queries (via LP) need Q(Vn) queries
Max k-SAT coincides (up to €) = 0.75
Max Cut coincides (up to €) = 0.5
Max Dicut coincides (up to €) = 0.5
Max k-CSP coincides (up to g) = 2/2*
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Our Results N Detall

® Ip(/): the optimal value of BasicLP for an input .

® Integrality Gap: q, = Imf\ Olpt((lj;)
er Ip

_ [Theorem] For every CSP A
: ve>0, there exists a constant-time (aa-g, €)-
approximation algorithm.

ve>0, 36>0, any algorithm that outputs (aa+te, d)-
}  approximation to opt(/) with prob = 2/3 requires  §
] Q(\n) queries. ]

Query complexity: exp(exp(poly(gst/e)))

2011FE5826 HAEH



Our Results in Detail

® Ip(/): the optimal value of BasicLP for an input .

® Integrality Gap: o, = inf

opt([)
IeA lp(l)

[Theorem] For every CSP A

2011FE5826 HAEH

1 With prob > 2/3, gives an oracle access to some
i §(aa-g,)-approx assignment . Once we succeed, we §
«____{can compute B, in constant time for each v. 3

ve>0, there exists a constant-time (aa-g, €)-
approximation algorithm.

~ Query complexity: exp(exp(poly(gst/e)))
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Our Results N Detall

® Ip(/): the optimal value of BasicLP for an input .

® Integrality Gap: q, = Imf\ Olpt((lj;)
er Ip

_ [Theorem] For every CSP A
: ve>0, there exists a constant-time (aa-g, €)-
approximation algorithm.

ve>0, 36>0, any algorithm that outputs (aa+te, d)-
}  approximation to opt(/) with prob = 2/3 requires  §
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Upper Bound in More Detall _____

opt(Z)
m

e Integrality gap curve: Sa(c) =  inf
1p(I)>,cm

'f o For every CSPA g > 0 a constant-time algorlthm
! exists satisfying the followmg

For an input I with Ip(/) = cm (¢ € (0,1]), with prob > Q
§ 2/3, it gives an oracle access to B such that Sx(c-€)m- {
; en = val(Z, B) = opt(J). ,if

T (o

opt(/) = cm
opt(/) = Sa(c-e)m-en

g——
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. are distinguishable in const time.
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| ower Bounds in More Detail

e Integrality gap curve: Sa(c) = inf

opt(Z)

m
Ip(I)=cm

e For every CSP A, c € [0, 1], €0, any algorithm
t  satisfying the following requires Q(\n) queries:

For an input I with opt(/)=cm, with prob > 2/3, it
outputs a value x such that (Sa(c)+e)m = x = opt(J).

i e B R B R A T R Y T TR R I Do X S 5. 8 T L T Y T S A R T S T B DR Y, (DD O R, SO -3 WO VG SR T A DG
5 ESNg ~ ~ ~ ~ ~ ~
1 .0

0
0

2011FE5826 HAEH

130

opt(/) = cm
opt(/) = (Sa(c)t+e)m

are indistinguishable in const time.
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Comparison to [Rag08]

This work [Rag08]
For every CSP, BasicLP is | For every CSP, BasicSDP is
the best algorithm. the best algorithm.
Unconditional Assuming UGC

L ower bounds hold for | Lower bounds do not hold
satisfiable instances for satisfiable instances
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Property Testing

® An input / is e-far from satisfiability: we need to
remove gtn constraints to make I satisfiable.

e CSP A is testable: we can decide with prob > 2/3
whether an input of CSP A is satisfiable or e-far.

e If Ip(/) = m implies opt(/) = m, then CSP A is testable
¥ in constant time.

(If integrality gap curve is continuous at ¢ = 1.

. ® If not, testing CSP A requires Q(Vn) queries.
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Proof sketch:
. ower bounds

(aate, 8)-approximation needs Q(Vn) queries.
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BasicLP for Max Cut |

e Consider the following IP. u v
® x,;: indicating v has a value i € {0,1}

® [.p: indicating e has an assignment € {0,1}2

max Zewe(le,01 + Le,10)
SlEey o e f ] Vv
He00 T Heol = Xvo YV e= (v, u)
He 10t Uit =Xv1 Ve = (v, u)
T U Vv, i
Wep € {0,1} Ve,@p
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® Relax the IP to LP. u v
e x,: probability distribution of value of v.

® Li.: probability distribution of assignment to e.

max Xewe(lle,01 T Le,10)
SlEey o e f ] Vv
He,00 T Ueol =Xvo VYV €= (v, u)
He 10t Uit =Xv1 Ve = (v, u)
Xv,i 20 Vov,i
Hep =0 Ve,@p
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Proof Strategy

® Choose I s.t. Ip({) = cm, opt(l) = aacm.
e Create two distributions of inputs using I:
® D/°P%: generates J s.t. opt(J) = (aacte)m.

e D/P: generates J s.t. opt(J) z cm.

eeiivai= 20 sl =l

He 00— Ue,1 1=0
e 01=le,10=1/2
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Yao’s minimax principle

® Let 4 be a deterministic algorithm supposed to
output:

® “Yes” if Jis generated by D,
e "No” if J is generated by D/P

e Let G, G/ be the distribution of subgraphs seen
by A running on D/?, D/®, respectively.

e [t suffices to show that G,°Pt and G/ are “close”
when # of queries is o(\n)
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Construction of Dj°pt

1. Make clusters by duplicating each vertex of I.
2. Make an expander for each edge of I.

e The optimal assignment for J and I are similar.

e With prob 1-o(1), opt(J) = (aacte)m

AN ¢

2011FE5826 HAEH



=L . i an HERAEL e N Sl i = LI

Construction of D/P

1. Make clusters by duplicating each vertex of I. f
2. Make an expander for each edge of I using p.

e The optimal assignment for J can be made from p.

® opt(J) = cm

A
» He,01
X

u %
He, 10
Ue,00=Le,11=0 v

e 01=Ue,10=1/2

He01 | B

He,10 | B
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® As long as we do not find a cycle, G? and G/
behaves identically.

G opt G/P
O )
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® As long as we do not find a cycle, G? and G/
behaves identically.

G opt G/P

¢ {

2011FE5826 HAEH



® As long as we do not find a cycle, G? and G/
behaves identically.

G opt G/P

A
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® As long as we do not find a cycle, G/°** and G/
behaves identically.

G opt G/P
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® As long as we do not find a cycle, G/°** and G/
behaves identically.

G opt G/P
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® As long as we do not find a cycle, G/°** and G/
behaves identically.

G opt G/P

For both distributions, with o(\n) queries,
with high probability, we do not find a cycle
= Q(Vn) bound
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Proof Sketch:
Upper bounds

(aa-g, €)-approximation algorithms

2011FE5826 HAEH



The following (poly-time) algorithm is an optimal
rounding (slight modification of [RS09]):

. Contract vertices of [ having similar LP values.
= Get instance I’ with constant number of vertices.

. Compute the optimal assignment § for I’ by

exhaustive search.

. Output B as an assignment for /.

2011FE5826 HAEH



The following (poly-time) algorithm is an optimal
rounding (slight modification of [RS09]):

. Contract vertices of [ having similar LP values.
= Get instance I’ with constant number of vertices.
. Compute the optimal assignment § for I’ by

exhaustive search.

. Output B as an assignment for /.

Simulate in constant time!
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e For each assignment 3 for I’:
e Sample s =0O(1) edges in 1.
® Map each edge into an edge in I.
o val(l’, B) := (# of edges satisfied in I’ by B) * m / s.

e Take p that attains the maximum val(’, p)

e To compute LP values, we use a distributed
algorithm for LP [kMwoe]
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Future Works: Approximation

e To what extent can we approximate with Q(v/n)
queries?

e Approimability/Inapproximability using Lovasz-
Schrijver or Sherali-Adams hierarchies?

e For Max Cut/Unique Games, can we do

something with SDP, random walks or spectral
technique?
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Future Works: Testing

e For which CSP, Ip(1) = m implies opt(/) = m?
o B ol

® CSP A has width k if it can be solved by a certain
propagation algorithm that considers a set of &
variables at a time.

e Fact: Every CSP has width 1, 3 or .

Conjecture:
CSP A is testable if and only if A has width 1.
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e Known results:
e Horn SAT: O(1) queries (vkiol
e 2-colorability: ®(\n) queries icroz)
e System of linear equations: ®(n) queries ooz

e Can we test 2SAT with O(Vn) queries?

® The following trichotomy holds?
e O(1) queries & width 1
e O(Vn) queries & width 3

® O(n) queries & width oo
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