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Abstract

Modern data science is centered around learning from large-scale, high-dimensional, and noisy datasets.
A key strategy for addressing this complexity involves identifying a simple model that captures the
important features of the data, such as assuming that the parameter of interest is a sparse vector,
meaning it has only a few non-zero values. Over the past few decades, sparse models have been used
in various domains, ranging from signal and image processing to genomics analysis. However, even in
the absence of noise, recovering the sparsity pattern of vectors (also known as their support set) is in
general computationally challenging, and becomes even more difficult in extremely noisy settings.

An additional source of complexity is that the process of data collection and analysis is becoming
more and more decentralized. From mobile phones, through autonomous vehicles, to geographically
spread-out data centers – modern distributed networks gather and store enormous amounts of data.
This shift poses new challenges for designing learning algorithms, that must process data from dis-
tributed sources while carefully navigating constraints related to communication, computation, and
privacy.

In this dissertation, we study three sparse estimation problems in both centralized and distributed
settings. In each problem, the goal is to recover a sparse signal, or its support set, based on mea-
surements from a linear model corrupted by Gaussian (or sub-Gaussian) noise. We analyze sparse
recovery algorithms, derive novel guarantees for their success based on the signal-to-noise ratio (SNR),
and substantiate our results by simulation studies.

We first consider sparse linear regression in the presence of Gaussian noise. Orthogonal Matching
pursuit (OMP) is a popular greedy algorithm for this problem, and we improve upon previous works
studying this algorithm in two ways. First, we derive a slightly sharper sufficient condition for exact
support recovery by OMP with high probability, and second, we show both theoretically and empirically
that this sharper sufficient condition is tight. Thus, we uncover an SNR regime in which OMP succeeds.

Next, we focus on distributed settings with communication constraints. We study distributed sparse
normal means estimation, where noisy observations of a high-dimensional sparse vector are distributed
across multiple machines, with limited communication to a fusion center. Previous works showed that
to achieve the centralized minimax rate for the `2 risk, the total communication must be high – at
least linear in the dimension. This phenomenon occurs, however, at very weak signals. We show that
at SNRs that are sufficiently high – but not enough for recovery by any individual machine – the
support of the sparse vector can be correctly recovered with communication sublinear in its dimension.
Furthermore, the communication decreases exponentially as a function of signal strength.

Finally, we leverage our insights from the first two studies and consider distributed OMP-based
schemes for high-dimensional sparse linear regression. Such schemes are particularly suited for settings
where end machines have both limited communication and computational resources. We prove that
under suitable assumptions, distributed-OMP schemes recover the support of a sparse regression vector
with communication per machine that is linear in its sparsity and logarithmic in the dimension. Again,
this holds even at low SNRs, where individual machines are unable to recover the support on their
own. Furthermore, our simulations show that distributed-OMP schemes are competitive with more
computationally intensive methods, and in some cases even outperform them.

Collectively, the results in this thesis advance our statistical and algorithmic understanding of
sparse estimation under noise in both centralized and distributed settings.
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Chapter 1

Introduction

A key challenge in statistical machine learning is to efficiently distill complex, high-dimensional data
into understandable and manageable forms. One way of achieving this objective is through assuming
that a simple sparse model underlies the data. Indeed, sparsity is a natural modeling assumption in
high-dimensional settings, widely adopted across numerous studies over the past few decades (Foucart
and Rauhut, 2013; Tibshirani et al., 2015).

Learning and estimation under sparsity assumptions has been applied in various fields. In fact,
many natural signals such as acoustics, images, or video, have a sparse (or approximately sparse)
representation in some appropriate basis, as demonstrated by transform-domain methods and tech-
nologies like JPEG compression (Wallace, 1991; Mallat, 1999). Moreover, redundant over-complete
dictionaries enable even sparser representations of natural signals (Elad, 2010). This leads to a sparse
linear regression problem, as discussed in Section 1.1.

Furthermore, in modern applications such as spectrum sensing and wireless sensor networks, ma-
chines constrained by limited computational resources and communication bandwidth are tasked with
jointly estimating sparse quantities (Bazerque and Giannakis, 2010; Sharma et al., 2016; Ling and
Tian, 2010). This requires distributed algorithms that balance accuracy, communication costs, com-
putational efficiency, and privacy, as discussed in Section 1.2.

Despite the broad applications and theoretical foundations of sparsity, there are still open questions
regarding the effect of the signal-to-noise ratio (SNR) on the success of sparse estimation algorithms.
Such guarantees are essential to understanding the limits of existing algorithms and for guiding the
development of new methodologies. In this thesis, we advance the theoretical foundations of sparse
estimation by deriving SNR-based recovery guarantees for both centralized and distributed algorithms.
Our contributions are summarized in Sections 1.1 and 1.2 below. We then propose in Section 1.3 several
directions for future work.

1.1 Sparse Linear Regression

A fundamental inverse problem arising in machine learning, statistics and signal processing is to esti-
mate an unknown sparse vector θ ∈ Rd from N linear measurements of it, often with N < d. Notable
examples in signal processing include sparse recovery in a redundant representation and compressed
sensing (Elad, 2010; Eldar and Kutyniok, 2012; Foucart and Rauhut, 2013). A notable example in
statistics is linear regression with a sparse coefficient vector, in particular when there are more variables
than observations (Tibshirani et al., 2015). A sparsity assumption gives rise to the variable selection
problem, of identifying a small subset of variables which are most informative for a given prediction
problem (Miller, 2002).

Assuming that the measurements are corrupted by additive Gaussian noise, the observed signal
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y ∈ RN has the following form
y = Xθ + σξ (1.1)

where X ∈ R
N×d is a known matrix, θ ∈ R

d is an unknown sparse vector, ξ ∈ R
N is a random

Gaussian noise vector ξ ∼ N (0, IN ) and σ > 0 is the noise level. We say that θ is K-sparse if
‖θ‖0 = |supp(θ)| = K and denote its support by S = supp(θ). In statistics X is referred to as the
design matrix, whereas in the signal processing literature it is often called the dictionary.

In sparse recovery, given the observed signal or response vector y, the design matrix or dictionary
X and the sparsity level K, the goal is to output an estimate θ̂ that is close to the unknown vector of
regression coefficients θ. Under the assumption that ξ is Gaussian and independent of θ, the maximum
likelihood solution is

θ̂ = arg min {‖y −Xz‖2 : ‖z‖0 ≤ K} . (1.2)

In the noiseless case σ = 0, minimizing (1.2) is equivalent to finding a K-sparse vector θ̂ such that

y = Xθ̂. For N < d this linear system is underdetermined and may have multiple solutions. Hence,
for any σ ≥ 0, Eq. (1.2) may in general also have multiple solutions. In certain regimes there exists a
unique solution, for example when K is small compared to the size of the smallest linearly-dependent
subset of design matrix columns (Donoho and Elad, 2003). Furthermore, even if a unique solution
exists, finding it is in general NP-hard because the sparsity constraint is non-convex (Davis et al.,

1997). In recent decades, several polynomial-time methods were developed for estimating θ̂. Convex
optimization-based methods such as Basis Pursuit use a relaxation of the l0-norm of θ to its l1-norm
(Tibshirani, 1996; Chen et al., 2001). Other recovery methods use non-convex penalty functions that
promote sparsity (Figueiredo et al., 2007; Blumensath and Davies, 2008; Chartrand and Yin, 2008;
Daubechies et al., 2010; Amir et al., 2021), or Bayesian approaches (Tipping, 2001; Wipf and Rao,
2004; Ji et al., 2008). Greedy methods estimate θ by iteratively selecting columns that have high
correlation with the residual part of the signal (Dai and Milenkovic, 2009; Needell and Tropp, 2009;
Needell and Vershynin, 2010). For a review of sparse recovery algorithms, see (Marques et al., 2019)
and the references therein.

In our first study, we focus on Orthogonal Matching Pursuit (OMP), which is one of the simplest
and fastest greedy methods for sparse recovery (Chen et al., 1989; Pati et al., 1993; Mallat and Zhang,

1993). One key challenge in computing an estimate θ̂ close to θ is to accurately estimate its support.
Hence, several authors studied conditions under which OMP exactly recovers the support of θ.

Several conditions for exact support recovery by OMP and by other methods have been studied.
These include the Restricted Isometry Property (RIP) (Candes and Tao, 2005), the Exact Recovery
Condition (ERC) (Tropp, 2004) and the Mutual Incoherence Property (MIP) (Donoho and Huo, 2001).
For RIP and ERC based guarantees, see (Cai et al., 2018; Hashemi and Vikalo, 2016) and the references
therein. While MIP is more restrictive than the other conditions, it is simple and tractable to compute
for arbitrary dictionaries. We thus restrict our attention to coherence-based guarantees. Specifically,
the coherence of the matrix X is defined as

µ = µ (X) = max
i 6=j

|〈xi,xj〉|
‖xi‖2 ‖xj‖2

, (1.3)

where xi it the i-th column of X. The sparsity K of a sparse vector θ is said to satisfy the Mutual
Incoherence Property (MIP) if

µ <
1

2K − 1
. (1.4)

A fundamental result by Tropp (2004) is that the MIP condition is sufficient for exact support recovery
by OMP in the noiseless case. Cai et al. (2010) proved that the MIP condition is sharp in the following
setting: for each pair of positive integers (n,K), there exist a dictionary of size 2Kn× (2K − 1)n with
coherence µ = 1

2K−1 and a K-sparse vector such that OMP fails to recover its support.
In the presence of additive Gaussian noise with noise level σ > 0, even if a K-sparse vector θ satisfies

the MIP condition (1.4), its exact support recovery will depend on the specific noise realization in the
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observed signal y. Hence, exact support recovery can only be guaranteed with a success probability
Psucc < 1, which in general depends on the noise level σ, the sparsity level K, the magnitude of the
non-zero coefficients of θ, the matrix dimensions N and d and the coherence µ. As we review in
Chapter 2, Ben-Haim et al. (2010) developed a sufficient condition for OMP to recover the support of
θ in the presence of additive Gaussian noise with high probability. A similar result for a variant of
OMP was proved by Cai and Wang (2011). Miandji et al. (2017) derive a similar sufficient condition
in a different model where the nonzero elements of θ are random variables. An interesting question is
whether this sufficient condition is sharp, or can it be lowered further.

Our Contributions. Towards answering this question, we make two key contributions, presented in
Chapter 2 and published in Amiraz et al. (2021). First, in Theorem 2.2 we derive a sharper sufficient
condition for exact support recovery by OMP than that of Ben-Haim et al. (2010) and Cai and Wang
(2011) by performing a tighter analysis of their proof. Our main result, stated formally in Theorem
2.3, shows that our sharper sufficient condition is tight, in the following sense. For a wide range of
sparsity levels K, dictionary dimensions N , d and coherence values µ, there exist a dictionary X and
a vector θ with a signal-to-noise ratio that is slightly lower than that of our sufficient condition, for
which with high probability OMP fails to recover its support. More specifically, we prove the following
result.

Theorem 1.1 (Informal statement of Theorems 2.2 and 2.3.). Let θmin = mini∈S |θi|. Under the MIP
condition (1.4), around

θcrit =
σ
√

2 log d

1− (2K − 1)µ(X)

the following transition in the behavior of OMP occurs:

� If the SNR is slightly higher, namely θmin & θcrit

(
1 +

√
logK
log d

)
, then w.h.p. OMP exactly recovers

S.

� If the SNR is slightly lower, namely θmin . θcrit

(
1−

√
logK
log d − µ(X)

)
, then there exist X and

K-sparse θ for which w.h.p. OMP fails to recover S.

In Section 2.2 we present several simulations that support our theoretical analysis and show that
this phase transition occurs for many common families of matrices X and sparse vectors θ. Thus, we
identify the SNR regime in which OMP succeeds.

1.2 Distributed Statistical Estimation

In many modern applications, the collected datasets are too large to be stored or analyzed on a single
machine. Moreover, due to communication or privacy constraints, the data at each machine cannot be
sent to other machines in the network. This has sparked the development of distributed approaches
for machine learning, statistical analysis, and data mining. A few examples of this vast body of work
are McDonald et al. (2009); Bekkerman et al. (2011); Duchi et al. (2012); Guha et al. (2012). For a
recent survey see Wimalajeewa and Varshney (2019).

In this thesis, we consider a popular distributed setting where M machines, each holding an in-
dependent set of n samples from some unknown distribution, are connected in a star topology to a
central node, also called a fusion center or simply the center. The task of the fusion center is to
estimate θ, a parameter of the distribution, using little communication with the M machines. In each
round of communication, the fusion center may send a message to the machines (or a subset of them).
Then, each contacted machine performs a local computation and sends its result back to the center.
Finally, after the last communication round, the fusion center forms a global estimator θ̂ based on
these messages.

3



An interesting special case of this distributed setting is known as one-shot, embarrassingly parallel
or split-and-merge schemes, where there is only a single round of two-way communication. A clear
advantage of such one-shot schemes is their simplicity and ease of implementation.

Statistical inference in a distributed setting, in particular under communication constraints, raises
several fundamental theoretical and practical questions. One question is what is the loss in statistical
accuracy incurred by the scheme being distributed, i.e., compared to a centralized setting, whereby a
single machine has access to all of the samples. Various works proposed multi-round communication-
efficient schemes and analyzed their accuracy, see for example (Shamir et al., 2014; Zhang and Lin,
2015; Wang et al., 2017; Jordan et al., 2019). In the context of one-shot schemes, several works analyzed
the case where the fusion center simply averages the estimators computed by the individual machines
or for robustness, takes their median (Zhang et al., 2013b; Rosenblatt and Nadler, 2016; Minsker et al.,
2019). In a high dimensional setting where the parameter of interest is a-priori known to be sparse,
Lee et al. (2017) and Battey et al. (2018) considered a variant where the averaged estimator is further
thresholded at the fusion center. A key finding in many of these papers is that in various scenarios
and under suitable regularity assumptions, the `2 risk of the distributed estimate attains the same
convergence rate as the centralized one, provided that the data is not split across too many machines.

Another important theoretical aspect in distributed learning is fundamental lower bounds on the
achievable accuracy under communication as well as memory constraints, regardless of any specific
inference scheme, see e.g. (Zhang et al., 2013a; Garg et al., 2014; Steinhardt et al., 2016; Cai and Wei,
2020; Zhu and Lafferty, 2018; Szabo and van Zanten, 2020; Acharya et al., 2020b), and similarly for
the closely related problem of distributed detection (Acharya et al., 2020a; Szabo et al., 2020). Lower
bounds on the estimation accuracy were also studied for problems involving a sparse quantity, including
sparse linear regression, correlation detection and more (Steinhardt and Duchi, 2015; Braverman et al.,
2016; Dagan and Shamir, 2018; Han et al., 2018). A central finding in these works is that to achieve
the centralized minimax rate for the `2 risk, the communication must scale at least linearly in the
ambient dimension.

However, when the task is to estimate a sparse quantity, then intuitively the communication should
increase linearly with its sparsity level, and logarithmically with the ambient dimension, the latter being
necessary for encoding the indices. Indeed, in the context of supervised learning, Acharya et al. (2019)
showed that in various linear models with a sparse vector, optimal prediction error rates are achievable
with total communication logarithmic in the dimension. However, they consider connectivity topology
of a chain where each machine i sends a message only to machine i + 1, and thus their algorithm
is sequential and not compatible with one-shot inference schemes. An interesting question is the
following: can problems that involve a sparsity prior admit one-shot algorithms with communication
that is sublinear in the ambient dimension?

1.2.1 Distributed Sparse Normal Mean Estimation

In our second study, we consider sparse normal mean estimation, which is one of the simplest and
most well-studied inference problems with sparsity priors, but in a distributed setting of M machines
connected in a star topology to a fusion center. For simplicity we assume that each machine has the
same number n of i.i.d. samples of the form

si = θ + σξi,

where the mean vector θ ∈ Rd is exactly K-sparse, the noise is Gaussian, ξi ∼ N (0, Id), and σ > 0
is the noise level. Note that this problem can be viewed as a special case of distributed sparse linear
regression where the design matrices are orthogonal.

We consider a one-shot communication scheme where the fusion center sends a setup message to
each of the machines (or a subset of them), and then each contacted machine sends back its message
to the center. We emphasize that in our setting the machines communicate only with the center and
not with each other. Note that if the machines have prior knowledge of all problem parameters, then
setup messages are not required. However, in any case the communication of this setup stage is often
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negligible. The goal of the center is to recover the support of θ under the constraint that the total
communication between the fusion center and the machines (including the setup stage) is bounded by
a budget of B � d bits. As we discuss in Section 3.3, if KM � d

log d then achieving this goal implies
that the vector θ itself can be estimated with small `2 risk using communication sublinear in d.

For this sparse normal means problem, Braverman et al. (2016) and Han et al. (2018) derived
communication lower bounds for the `2 risk of any estimator, and proved that to achieve the minimax
rate, the total communication must be at least Ω(d). Shamir (2014) derived lower bounds for several
other distributed problems involving M machines, each allowed to send a message of length at most
b bits. His work implies that there exist d-dimensional distributions whose mean is a 1-sparse vector
of sufficiently large magnitude, such that with n = O(d log d) samples per machine, any scheme with
communication sublinear in d has only an o(1) probability of exact support recovery. These works paint
a pessimistic view, that to achieve the performance of the centralized solution, distributed inference
must incur high communication costs.

Our contributions. Our main contribution, presented in Chapter 3 and published in Amiraz et al.
(2022), is that in contrast to the previous works presented above, at SNRs that are sufficiently high, but
not high enough for recovery by any individual machine, the support of θ can be exactly recovered with
total communication sublinear in the dimension d. Specifically, we present and analyze the performance
of two distributed schemes. In the first scheme, which we denote Top-L, the center sends a parameter
L to each contacted machine, which then sends back the indices of its top L coordinates in terms of
magnitude. In the second scheme, which we denote Thresholding, the center sends a suitably chosen
threshold tm to each contacted machine, which then sends back the indices of coordinates that exceed
the threshold. Our analysis is non-asymptotic, but the setting we have in mind is of a sparse vector in
high dimension, namely d� 1 and K � d. Assuming that θmin = mini∈S |θi| is known to the center,

we define the SNR scaling r such that θmin = σ
√

2r log d
n and prove the following results.

Theorem 1.2 (Informal statement of Theorem 3.2.A.). Assume that M ≥ Ω(log d), that Ω
(

1
log d

)
<

r < 1, and that d is sufficiently large. Then, with high probability, Thresholding with tm =
√

2r log d
recovers the support of the K-sparse vector θ with Õ

(
K + d1−r) expected total communication bits.

Note that since r < 1, the total communication is sublinear in d. As we show next, when the
number of machines M is higher, the total communication can be lowered even further.

Theorem 1.3 (Informal statement of Theorem 3.2.B.). Assume that M > Ω
(
log1.5 d

)
, that Ω

(
logM
log d

)
<

r < 1, and that d is sufficiently large. Then, with high probability, Thresholding with an appropri-
ately chosen threshold tm recovers the support of the K-sparse vector θ with expected communication
of Õ

(
KM + d1−r · e−f(M,r,d)

)
bits, for an appropriately chosen function f(M, r, d) that increases in

all of its parameters.

The function f(M, r, d) increases in r in a way that the communication cost decreases exponentially
as r increases towards 1, at which point the support of θ may be found by a single machine using
O(K log d) communication bits. In addition, Theorem 3.2.B implies the following counter-intuitive
behavior of our Thresholding scheme: more machines enable less communication. Specifically, as
discussed after Theorem 3.2.B, for some range of the problem parameters, as the number of machines
is increased, exact support recovery is possible with less total communication. The reason is that
a larger number of machines allows the center to set a higher threshold, which in turn implies that
on average, each machine sends fewer indices back to the center. As we show, with a suitably chosen
threshold, the total communication decreases, while the probability of exact recovery still remains close
to one. In addition, if the number of machines M is sufficiently high, then the total communication
cost can be further optimized by letting the center contact a subset of the machines, as presented in
the next theorem.
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Theorem 1.4 (Informal statement of Theorem 3.2.C.). Assume that Ω
(

1
log2 d

)
< r < 1 and let

Mc = Õ
(
d(1−

√
r)

2)
. Further assume that M ≥ Mc and that d is sufficiently large. Then, with high

probability, by contacting Mc machines, Thresholding with tm =
√

2 log d recovers the support of the

K-sparse vector θ with Õ
(
Kd(1−

√
r)

2)
expected total communication bits.

In Theorem 3.1 we prove a similar result for Top-L with L = K. In the reminder of Chapter 3 we
further extend some of these results to the case of sub-Gaussian additive noise. Finally, we prove that
if KM � d

log d , then an additional single round of communication, also sublinear in d, results in an
estimator for θ that achieves the centralized rate for the `2 risk.

This idealized setting allows for a relatively simple analysis that showcases a tradeoff between the
number of machines, SNR, and communication. Our work raises several issues for future research.
First, it remains an open problem whether the SNR-communication tradeoff of our algorithms is
optimal. Indeed, the derivation of tight SNR-dependent communication lower bounds for the sparse
normal means problem is an interesting research topic. Second, we focus on the simple case where all
machines have the same number of samples n and all samples have the same noise level σ. Another
interesting research direction is to consider a more general setting where each machine i has a different
number of samples ni, or a different noise level σi. An additional interesting setting is where each
machine observes different sparse vectors θi with the same support S (or very similar supports Si).
Note that there is no single SNR parameter in these cases since different machines have different
effective SNRs. Lastly, building on the insights gained in this simple setting, we believe a similar
behavior should hold for other popular statistical learning problems involving estimation of a sparse
quantity in a high dimensional setting.

1.2.2 Distributed Sparse Linear Regression

In our third study, we revisited the sparse linear regression model with Gaussian noise, but in a
distributed setting where M machines are connected in a star topology to a fusion center. Each
machine m ∈ [M ] has for simplicity a vector of observations y(m) ∈ Rn of size n = N/M and a design
matrix X(m) ∈ Rn×d, related via

y(m) = X(m)θ + σξ(m), (1.5)

where the vector θ ∈ R
d is the unknown K-sparse vector of regression coefficients, ξ(m) ∈ R

n is a
Gaussian noise vector, i.e., ξ(m) ∼ N (0, In), independent across machines, and σ > 0 is the noise
level. Recall that in a centralized setting, as described in (1.1), all entries of the response vector and
design matrix are provided as input, and common tasks are to accurately estimate θ as well as its
support S = supp(θ) = {i | θi 6= 0}.

Some distributed methods attempt to recover the centralized solution that would have been com-
puted by the fusion center, if it had access to all N = nM observations of the M machines. Examples
include optimization-based methods (Mateos et al., 2010; Ling and Tian, 2011; Mota et al., 2011; Ling
et al., 2012; Fosson et al., 2016; Smith et al., 2018; Scaman et al., 2019; SarcheshmehPour et al., 2023),
Bayesian approaches (Makhzani and Valaee, 2013; Khanna and Murthy, 2016), and greedy schemes
(Sundman et al., 2012; Li et al., 2015; Patterson et al., 2014; Han et al., 2015; Chouvardas et al.,
2015). These methods are in general communication intensive, as they are iterative and may require
many rounds to converge. A single round divide-and-conquer scheme is for each machine to send its
own dense estimate of θ, each of size d, to the fusion center, which then averages these estimates.
For a wide range of problems, the resulting estimator has a risk comparable to that of the centralized
solution (Rosenblatt and Nadler, 2016; Wang et al., 2017; Jordan et al., 2019; Liu et al., 2023). For the
sparse linear regression model (1.5), Lee et al. (2017) and Battey et al. (2018) proposed a single round
distributed debiased-Lasso scheme, and proved that under suitable conditions it achieves the same
error rate as the centralized solution. Yet, these debiased-Lasso methods have two limitations: (i) the
communication per machine is at least linear in d; and (ii) the computational costs are considerable,
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as each machine has to solve d+1 Lasso problems. Barghi et al. (2021) and Fonseca and Nadler (2023)
proposed debiased-Lasso methods with much less communication, where each machine sends to the
center only the indices of its few largest coordinates.

In Chapter 4 we consider distributed estimation of the sparse vector θ in the model (1.5), under the
following setting: The M end machines have both limited processing power and a restricted commu-
nication budget. This is motivated by modern applications where end machines are computationally
weak, but collect high dimensional data. For example, in spectrum sensing, a network of sensors
continuously monitor and collect high dimensional data, and repeatedly need to estimate the current
vector θ. In this setting, computationally intensive methods such as debiased Lasso may be infeasible
or prohibitively slow. In addition, under communication constraints, regardless of computational con-
siderations, most of the above methods are not applicable in high dimensions, as their communication
per machine is at least linear in d.

As the quantity of interest θ is K-sparse with K � d, this gives rise to the following challenge:
develop a scheme that accurately estimates the vector θ with number of operations per machine linear
in d and communication sublinear in d, and derive theoretical guarantees for it. Here we focus on
accurately estimating the support of θ. Indeed, as discussed in Battey et al. (2018); Fonseca and
Nadler (2023), given an accurate estimate of the support, an additional single round of communication
allows distributed estimation of θ with the same error rate as in the centralized setting.

A natural base algorithm for machines with low computational resources is Orthogonal Matching
Pursuit (OMP), as it is one of the fastest methods for sparse recovery (Chen et al., 1989; Pati et al.,
1993; Mallat and Zhang, 1993). Several distributed-OMP schemes, which are computationally fast and
incur little communication, were proposed in Duarte et al. (2005); Wimalajeewa and Varshney (2013);
Sundman et al. (2014). To the best of our knowledge, the only work to derive support recovery
guarantees for distributed-OMP methods is by Wimalajeewa and Varshney (2014). However, their
analysis is restricted to a noise-less compressed-sensing setting, where each vector xi at each machine
was independently sampled at random, and their proofs rely heavily on the symmetry between all
non-support variables. Thus, they are inapplicable in our framework.

Our Contributions. In Chapter 4 we analyze several distributed-OMP schemes that estimate the
support of θ. The first scheme, D-OMP, is a one-shot scheme, while the second scheme, DJ-OMP, requires
K rounds of communication between the machines and the fusion center. Our results detailed below
have been accepted for publication in the Proceedings of the Conference on Artificial Intelligence and
Statistics (AISTATS) Amiraz et al. (2024).

Our key contribution is the derivation of the following recovery guarantee for DJ-OMP.

Theorem 1.5 (Informal statement of Theorem 4.1.). Let θmin = mini∈S |θi|, and define the SNR

scaling r such that θmin = σ
√

2r log d
1−(2K−1)µmax

, where µmax = µmax

(
X(1), . . . ,X(M)

)
= maxm∈[M ] µ(X(m)).

Suppose that the MIP condition (1.4) holds for each of the M matrices X(m), that r & µmax, that

M ≥ Ω̃

(
Kd

(1−
√
r)2

(1−µmax)3

)
, and that d is sufficiently large. Then, w.h.p. DJ-OMP with K communication

rounds recovers the support of the K-sparse vector θ.

Remarkably, our guarantee holds even at low SNRs, where each individual machine fails to recover
the support. The main challenge in our analysis is that the matrices X(m), assumed deterministic,
may be similar (or even identical) across machines. Hence, at low SNRs, several machines might send
the same incorrect support variable to the fusion center. Deriving a theoretical guarantee in this case
requires a different and more delicate analysis than that of previous works. Specifically, to bound the
probability that a non-support variable is sent to the fusion center we use recent lower bounds on the
maximum of correlated Gaussian random variables (Lopes and Yao, 2022). Thus, our analysis goes
significantly beyond the limitations of previous works by providing theoretical guarantees in a more
general setting, where the design matrices may be correlated, deterministic or even structured, and for
noisy signals.
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To complement our theoretical analysis, we compare via simulations the support-recovery success
of the distributed-OMP algorithms D-OMP and DJ-OMP with debiased Lasso schemes (Lee et al., 2017;
Battey et al., 2018; Barghi et al., 2021). In addition we compare to distributed sure independence
screening (SIS) schemes (Fan and Lv, 2008), which are also suitable for computationally weak machines.
In distributed SIS schemes, each machine first excludes variables weakly correlated to the response,
and then estimates the sparse vector θ on the remaining ones via any appropriate algorithm. In our
experiments we considered smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and OMP.
Our simulations show that, as expected, the best performing scheme is debiased Lasso, but at the
expense of significantly higher communication and computational costs. Interestingly, in comparison
to a communication-restricted thresholded variant of debiased Lasso, distributed-OMP methods perform
comparably, and in some cases even outperform it, while being orders of magnitude faster.

1.3 Directions for Future Research

In summary, this thesis advances the field of sparse estimation by establishing novel guarantees for
recovering sparse vectors from linear measurements corrupted by Gaussian (and sub-Gaussian) noise
in both centralized and distributed settings. For each of the three problems considered in this thesis,
there are various questions for future research that are outlined in each chapter.

On a broader scale, we believe that our results could be extended to a wide array of sparse estimation
problems. For instance, our methodologies could be adapted to distributed sparse logistic regression
and other generalized linear models. Another intriguing direction for future research is the online or
streaming setting, where the goal is to recover a support set shared between multiple measurement
vectors that are observed sequentially, where the support set may vary over time. Thus, the insights
from our work offer a foundation for developing algorithms and deriving SNR-based bounds for diverse
sparse recovery problems.
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Chapter 2

Tight Recovery Guarantees for OMP

under Gaussian Noise1

Orthogonal Matching pursuit (OMP), described in Algorithm 1, is a popular algorithm to estimate an
unknown sparse vector from multiple linear measurements of it. Assuming exact sparsity and that
the measurements are corrupted by additive Gaussian noise, the success of OMP is often formulated as
exactly recovering the support of the sparse vector. Several authors derived a sufficient condition for
exact support recovery by OMP with high probability depending on the signal-to-noise ratio, defined as
the magnitude of the smallest non-zero coefficient of the vector divided by the noise level. We make
two contributions, presented in Section 2.1. First, we derive a slightly sharper sufficient condition for
two variants of OMP, in which either the sparsity level or the noise level is known. Next, we show that
this sharper sufficient condition is tight, in the following sense: for a wide range of problem parameters,
there exist a dictionary of linear measurements and a sparse vector with a signal-to-noise ratio slightly
below that of the sufficient condition, for which with high probability OMP fails to recover its support.
In Section 2.2, we present simulations which illustrate that our condition is tight for a much broader
range of dictionaries. All proofs appear in Section 2.3.

2.1 Main Results

We first introduce key notations and assumptions that will hold throughout the chapter. We denote
θmin = mini∈S |θi| and define the following effective noise factor

σeff(K,µ) =
σ

1− (2K − 1)µ
.

We assume that the MIP condition (1.4) holds, so σeff(K,µ) is well defined and strictly positive.
Moreover, we refer to the columns xi of X as the atoms of the dictionary and assume for simplicity
that they are normalized to have unit norm ‖xi‖ = 1.

For measurements that are corrupted by additive Gaussian noise, Ben-Haim et al. (2010) derived
the following sufficient condition for OMP to recover the support of θ with high probability.

Theorem 2.1 (Ben-Haim et al. (2010)). Let θ be an unknown vector with known sparsity K, and
let y = Xθ + σξ, where X ∈ R

N×d is a dictionary with normalized columns and coherence µ, and
ξ ∼ N (0, IN ). Suppose that the MIP condition (1.4) holds and that for some α ≥ 0

θmin ≥ 2σeff(K,µ)
√

2 (1 + α) log d. (2.1)

1The results presented in this chapter have been published in Amiraz et al. (2021). The notations have been changed
for consistency with the other chapters of the thesis.

9



Algorithm 1: Orthogonal Matching Pursuit (OMP)

input : dictionary X ∈ RN×d, signal y ∈ RN , sparsity level K
output: estimated vector θ̂K ∈ Rd

1 initialize the residual r0 = y and the estimated support Ŝ0 = ∅
2 for t = 1, . . . ,K do

3 calculate j = arg max
{
|〈xi,rt−1〉|
‖xi‖ : i ∈ [d]

}
4 add Ŝt = Ŝt−1 ∪ {j}
5 calculate θ̂t = arg min

{
‖y −Xz‖2 : z ∈ Rd, supp(z) = Ŝt

}
6 update rt = y −Xθ̂t
7 end

Then, OMP with K iterations successfully recovers the support of θ with probability at least

1− 1

dα
√
π (1 + α) log d

. (2.2)

In many practical cases K is unknown while the noise level σ is known. Denote by OMP∗ a variant
of Algorithm 1 where instead of performing K iterations, the algorithm stops when the maximal
correlation of the residual with any dictionary atom is smaller than a threshold τ , i.e.,

∥∥XT rt
∥∥
∞ ≤ τ .

Cai and Wang (2011, Thm. 8) proved the following analogue of Theorem 2.1 for this OMP∗ variant:
under the MIP condition (1.4) and condition (2.1), OMP∗ with threshold τ = σ

√
2(1 + α) log d recovers

the support of θ with probability at least 1−K/dα√2 log d.

2.1.1 Sharper sufficient condition

By performing a tighter analysis of the proofs of Ben-Haim et al. (2010) and Cai and Wang (2011),
we derive a sharper sufficient condition than (2.1) for exact support recovery by both OMP and OMP∗.
However, this sharper sufficient condition comes at a price, whereby the success probability is a function
not only of the vector length d, but also of its sparsity level K. The following theorem formalizes this
statement and is proved in Section 2.3.1.

Theorem 2.2. Let θ be an unknown fixed vector with known sparsity K, and let y = Xθ + σξ, where
X ∈ RN×d is a dictionary with normalized columns and coherence µ, and ξ ∼ N (0, IN ). Suppose that
the MIP condition (1.4) holds, that K ≤ dβ for some 0 < β < 1 and that for some α ≥ 0

θmin ≥ σeff(K,µ)
(

1 +
√
β
)√

2 (1 + α) log d. (2.3)

Then, OMP with K iterations successfully recovers the support of θ with probability at least

1− 1√
π (1 + α) log d

(
1

dα
+

1

dαβ
√
β

)
. (2.4)

Moreover, under the same conditions OMP∗ with threshold τ = σ
√

2(1 + α) log d successfully recovers
the support of θ with probability at least (2.4).

We emphasize that in both Theorem 2.1 and Theorem 2.2 the vector θ is fixed and the probability
of success is over the realizations of the noise vector ξ. Eq. (2.3) is sharper than Eq. (2.1) since β < 1.
Simulations in Section 2.2 illustrate the tightness of this result.
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2.1.2 Near-tightness of the OMP recovery guarantee

According to either Eq. (2.2) or (2.4), the smallest α that still guarantees exact support recovery with
probability tending to 1 as d → ∞ is α = 0. Therefore, the weakest sufficient condition for OMP to
recover the exact support of θ with high probability for d� 1 is

θmin ≥ σeff(K,µ)
(

1 +
√
β
)√

2 log d. (2.5)

An interesting question is thus whether this sufficient condition is sharp, or could the right hand side
in (2.5) be lowered further.

The main result of this chapter, formalized in Theorem 2.3 below, is that the above condition is
quite tight. Informally, our result can be stated as follows: for a wide range of sparsity levels K,
dictionary dimensions N , d and coherence values µ, there exist a dictionary X ∈ RN×d and a K-sparse
vector θ ∈ Rd with

θmin ≈ σeff(K,µ)
(

1− µ−
√
β
)√

2 log d, (2.6)

for which OMP fails to recover its support with probability 1−o(1). In particular, the failure probability
for this specific X and θ tends to 1 as d → ∞. As shown by the simulations in Section 2.2, OMP fails
with high probability under condition (2.6) in a much broader range of cases. These include a case
where the dictionary atoms are drawn independently and uniformly at random from the unit sphere
and a case where the dictionary is composed of two orthogonal matrices (the identity matrix and the
Hadamard matrix with normalized columns).

If K is constant or polylogarithmic in d, then as d → ∞ we can take β > 0 arbitrarily small.
In this case, the bounds (2.5) and (2.6) match, up to a multiplicative factor of 1 − µ. Finally, for
various dictionaries the coherence µ is itself small. For example, if each entry of the dictionary is
drawn independently and uniformly at random from ±1/

√
N , then with probability exceeding 1− δ2

the coherence is µ ≤ 2
√
N−1 log d

δ (Tropp and Gilbert, 2007). Hence, µ→ 0 if d is sub-exponential in

N .
To formally state our theorem, we introduce the following notations. First, let

ρ = ρ (K,µ) =

√
1− (K − 1)µ

K
(2.7)

and

µ̃ = µ̃ (K,µ) =
µ2

ρ2
=

µ2K

1− (K − 1)µ
. (2.8)

Both quantities are well defined, since by the MIP condition (1.4), 1− (K − 1)µ > 0. It can be easily
shown that

√
µ < ρ ≤ 1/

√
K and µ̃ < µ. Next, denote Ñ = N −K and d̃ = d−K. Let µmin (a, b) be

the smallest possible coherence of an a× b overcomplete dictionary with a < b. To prove our theorem
we construct a dictionary that consists of several parts. One of these parts is a Ñ × d̃ dictionary with

coherence L = L
(
Ñ , d̃

)
= µmin

(
Ñ , d̃

)
. By the theory of Grassmannian frames,

L ≥
√

d̃− Ñ
Ñ(d̃− 1)

(2.9)

(see for example Strohmer and Heath, 2003). In fact, L may be strictly higher since Grassmannian
frames do not exist for every pair (Ñ , d̃). However it can not be much higher, since by Tropp and

Gilbert (2007) L ≤ 2

√
Ñ−1 log d̃.

We now give a rigorous statement of our result, whose proof appears in Section 2.3.2.
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Theorem 2.3. Let N, d be integers such that N < d. Let K be an integer and let µ be a number that
satisfy the MIP condition (1.4) and the following set of inequalities:

K ≤ min
{
dβ , N

}
(2.10)

where 0 < β < 1,

K ≤ 3− L−
√

8− 8L

L
, (2.11)

and

(1 + L (K − 1))
(

1−
√

1− 4L(2K−1−LK)

(1+L(K−1))2

)
2 (2K − 1− LK)

≤ µ ≤
(1 + L (K − 1))

(
1 +

√
1− 4L(2K−1−LK)

(1+L(K−1))2

)
2 (2K − 1− LK)

.

(2.12)
Then, there exists a dictionary X ∈ R

N×d with coherence µ and a corresponding K-sparse vector
θ ∈ Rd satisfying

θmin = σeff(K,µ) ·
{√

2(1− µ)(1− µ̃) log d̃−
√

2β (1− ρ2) log d

−c0
√

(1− µ̃) log log d̃−
(
ρ+

√
µ̃
)√

2 log log d

}
(2.13)

where ρ is given in (2.7), µ̃ is given in (2.8) and c0 > 0 is a universal constant, such that with
probability at least

P0 = 1− 6e
−C
√

log log d̃min{µ−1, log d̃} −
(

log d
√
π log log d

)−1

−
(√

πβ log d
)−1

,

OMP fails to recover the support of θ from y = Xθ + σξ.

Remark 2.1. Let us now illustrate that conditions (2.11) and (2.12) are not very restrictive. It is
instructive to consider the over-complete case with d = JN for J > 1, with d,N � 1 and sparsity K

much smaller than N , such that Ñ ≈ N . By the theory of Grassmannian frames L ≈ C(J)√
N

for an

appropriate C(J) > 0 (Strohmer and Heath, 2003). Under the MIP condition (1.4), K . 0.5
√
N

C(J) ,

while under condition (2.11), K . (3−
√

8)
√
N

C(J) ≈ 0.17
√
N

C(J) .

For values of K such that LK is much smaller than 1, condition (2.12) can be approximated by a

binomial approximation
√

1− ε ≈ 1− ε/2 for small ε = 4L(2K−1−LK)

(1+L(K−1))2
as

L . µ .
1

2K − 1
− L.

The inequality L . µ follows essentially from frame lower bounds whereas the other inequality is very
close to the MIP condition (1.4). Hence, condition (2.12) is only slightly more restrictive than MIP.
This comparison is visualized in Figure 2.1.

Remark 2.2. We now show how Eq. (2.13) may be approximated by Eq. (2.6). First, for Theorem 2.3
to be meaningful, the right hand side of Eq. (2.13) must be positive. We now show that this is indeed
the case for typical parameter values. If K = dβ for β < 1, then log d̃ = log d+ log

(
1− 1

d1−β

)
≈ log d.

Recall that µ̃ < µ and that ρ > 0. Hence, the first two terms on the right hand side of (2.13) can be
approximated as follows√

2(1− µ)(1− µ̃) log d̃−
√

2β (1− ρ2) log d > (1− µ)

√
2 log d̃−

√
2β log d

≈ (1− µ−
√
β)
√

2 log d.

In addition, the last two terms on the right hand side of equation (2.13) are small compared to the first
term, since they are of order

√
log log d. Hence, (2.13) may be approximated by (2.6).
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(a) (K,µ) by the MIP condition (1.4) (b) (K,µ) by condition (2.12)

Figure 2.1: Comparison of various conditions on (K,µ) for a dictionary of size Ñ = 1020 and d̃ = 2040.
In the left panel, the green curve is the MIP condition (1.4) and the red curve is the frame lower bound
from Eq. (2.9). The vertical dashed line is the maximal sparsity K where the two curves intersect.
The solid black lines between these two curves are values of (K,µ) for which if θmin is sufficiently
large, then support recovery is guaranteed with high probability. In the right panel, the blue curve is
condition (2.12) and the black lines are the values of (K,µ) where our Theorem 2.3 holds. Namely, if
θmin is small then there are provable cases where OMP will fail. Comparing the two panels shows that
Theorem 2.3 applies to most but not all values of (K,µ) where Theorems 2.1 and 2.2 hold.

2.2 Simulations

We present several simulations to illustrate our sharper sufficient condition in Theorem 2.2 and our
near-tightness result in Theorem 2.3. We generated N × d dictionaries and K-sparse vectors with
coefficients of equal magnitude ν. For each vector θ, we drew random noise ξ ∼ N (0, IN ) with noise
level σ = 1 and computed the signal y as in Eq. (1.1).

In Setting 1, we considered the probability of exact support recovery of K-sparse vectors with
sparsity K = 3 using three dictionaries of size (N, d) = (4096, 8192). The first is a two-ortho dictionary
X1 = [I H] composed of two orthogonal matrices – the identity matrix and the Hadamard matrix
with normalized columns. The second X2 is a dictionary whose atoms are drawn independently and
uniformly at random from the unit sphere. For these two dictionaries the K-sparse vectors were
drawn independently and uniformly at random from the

(
d
K

)
possible vectors. The third dictionary

X3 and its corresponding K-sparse vector are the ones used to construct the near-tightness example
in the proof of Theorem 2.3 (see Eqs. (2.24) and (2.27)). Figure 2.2 depicts the empirical probability
that OMP recovered the exact support of the unknown sparse vector in Setting 1, averaged over 500
realizations. It is interesting to note that our sufficient condition in Theorem 2.2 indeed improves over
that of Ben-Haim et al. (2010). In addition, our sufficient condition is relatively sharp for small values
of K. Another important observation is that even though condition (2.6) was derived considering X3

corresponding to the third panel, we see that the condition holds for different types of dictionaries as
well.

In Setting 2, we study the probability of exact support recovery for different sparsity levels K =
2, 4, 6 for the specific dictionary and K-sparse vector used in the proof of Theorem 2.3. For each
value of K, the corresponding dictionary of size (N, d) = (4096, 8192) and coherence µ = 0.03 was
constructed using the alternating projection method of Tropp et al. (2005). Figure 2.3 depicts the
empirical probability that OMP recovered the exact support of the unknown sparse vector in Setting 2,
averaged over 500 realizations. Note that condition (2.6) is conservative since in our proof we analyze
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(a) Two-ortho dictionary (b) Random dictionary (c) Our dictionary

Figure 2.2: The solid blue line in each panel is the empirical probability of exact support recovery of a
sparse vector by OMP as a function of its normalized signal-to-noise ratio in Setting 1. The dash-dotted
black line is the sufficient condition (2.1) by Ben-Haim et al. (2010). The dashed green line is the
sharper sufficient condition (2.3). The dotted red line is the approximate condition (2.6) below which
OMP fails with high probability by Theorem 2.3. In all panels, when fixing a high success probability
(for example 0.95), our sharper sufficient condition (2.3) is indeed closer to the empirical probability
than the sufficient condition (2.1) by Ben-Haim et al. (2010), and in the first panel it is in fact tight.

failure only in the first step of the algorithm. However, it cannot be increased much further, since
the probability of recovery increases sharply at higher values of the normalized signal-to-noise ratio.
Finally, we remark that similar results are obtained for other values of N, d,K and µ.

2.3 Proofs

The following auxiliary lemma will be useful in proving both Theorems 2.2 and 2.3. Its proof appears
in Section 2.3.3.

Lemma 2.1. Let (X1, . . . , Xn1) ∼ N (0,Σ) where Σii = 1 for all i ∈ [n1]. For any η > 0 and n2 ≥ n1

the following holds

Pr

[
max
i∈[n1]

|Xi| <
√

2η log n2

]
≥ 1− n1

nη2
√
πη log n2

. (2.14)

2.3.1 Proof of Theorem 2.2

The proof is based on a tighter analysis of the proof of Ben-Haim et al. (2010, Thm 4). First, we define
”bad” random events BK and Bd̃ which indicate that the largest magnitude of inner products of the
noise with support atoms and with non-support atoms is larger than their respective thresholds. We
then define the ”good” random event G that indicates that neither BK nor Bd̃ occurs, and prove that
the event G occurs with probability (2.4). Next, we show that under the event G, OMP with K iterations
successfully recovers the support of θ. Finally, we prove that OMP∗ with threshold τ = σ

√
2(1 + α) log d

stops after exactly K iterations, and therefore also successfully recovers the support of θ.
In details, we define the following two random events

BK =

{
max
k∈S
|〈xk, σξ〉| ≥

√
βτ

}
and

Bd̃ =

{
max
i/∈S
|〈xi, σξ〉| ≥ τ

}
,
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(a) Sparsity K = 2 (b) Sparsity K = 4 (c) Sparsity K = 6

Figure 2.3: The solid blue line in each figure is the empirical probability of exact support recovery of a
sparse vector by OMP as a function of its normalized signal-to-noise ratio in Setting 2. The dash-dotted
black line is the sufficient condition (2.1) by Ben-Haim et al. (2010). The dashed green line is the
sharper sufficient condition (2.3). The dotted red line is the approximate condition (2.6) below which
OMP fails with high probability by Theorem 2.3. In all panels, when fixing a high success probability
(for example 0.95), our sharper sufficient condition (2.3) is indeed closer to the empirical probability
than the sufficient condition (2.1) by Ben-Haim et al. (2010), and in the first and second panel it is in
fact tight.

and let the random event G =
(
BK ∪Bd̃

)C
be the complement of their union. Note that while these

definitions depend on the unknown support set S, this is only for the sake of the analysis, and we do
not assume that OMP receives the support S as input.

Next, we prove that the event G occurs with probability at least (2.4). Since the dictionary atoms
are normalized, each random variable 〈xi, ξ〉 is a standard Gaussian random variable. Therefore,
applying Lemma 2.1 with n1 = K, n2 = d and η = (1 + α)β gives

Pr [BK ] ≤ K

d(1+α)β
√
π (1 + α)β log d

.

Since K ≤ dβ , then

Pr [BK ] ≤ 1

dαβ
√
π (1 + α)β log d

.

Similarly, we can apply Lemma 2.1 again with n1 = d̃ = d−K, n2 = d and η = 1 + α and get

Pr
[
Bd̃
]
≤ d̃

d(1+α)
√
π (1 + α) log d

.

Since d̃ < d, then

Pr
[
Bd̃
]
≤ 1

dα
√
π (1 + α) log d

.

By the definition of G and a union bound,

Pr [G] = Pr
[(
BK ∪Bd̃

)c] ≥ 1− Pr [BK ]− Pr
[
Bd̃
]
,

which proves that the event G occurs with probability at least (2.4).
The following lemma shows that under condition (2.3), one step of the OMP algorithm chooses an

atom in the support S.
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Lemma 2.2. Let z be an unknown vector with sparsity K and support S = supp {z}, and let r =
Xz+σξ where X ∈ RN×d is a dictionary with normalized columns and coherence µ, and ξ ∼ N (0, IN ).
Suppose that the MIP condition (1.4) holds, that K ≤ dβ for some 0 < β < 1 and that for some α ≥ 0

max
i∈S
|zi| ≥ σeff(K,µ)

(
1 +

√
β
)√

2 (1 + α) log d. (2.15)

Then under the event G,
max
k∈S
|〈xk, r〉| > max

i/∈S
|〈xi, r〉| . (2.16)

Proof of Lemma 2.2. Denote by zmax = maxi∈S |zi|. Under the event G, the largest magnitude of an
inner product of the observed signal r with a non-support atom i /∈ S is

max
i/∈S
|〈xi, r〉| = max

i/∈S

∣∣∣∣∣∣〈xi, σξ〉+
∑
j∈S

zj 〈xi,xj〉

∣∣∣∣∣∣
≤ max

i/∈S
|〈xi, σξ〉|+ max

i/∈S

∑
j∈S
|zj 〈xi,xj〉|

< τ +Kµzmax. (2.17)

Similarly,

max
k∈S
|〈xk, r〉| = max

k∈S

∣∣∣∣∣∣zk + 〈xk, σξ〉+
∑

j∈S\{k}

zj 〈xk,xj〉

∣∣∣∣∣∣
≥ zmax −max

k∈S

∣∣∣∣∣∣〈xk, σξ〉+
∑

j∈S\{k}

zj 〈xk,xj〉

∣∣∣∣∣∣
> zmax −

√
βτ − (K − 1)µzmax. (2.18)

Combining the last two equations gives

max
k∈S
|〈xk, r〉| −max

i/∈S
|〈xi, r〉| > zmax − (2K − 1)µzmax −

√
βτ − τ.

Substituting for τ implies that Eq. (2.16) holds under condition (2.15).

Next, assume that G occurs. We prove the first part of Theorem 2.2 by induction. Consider the
first iteration of OMP, described in Algorithm 1. In line 3, OMP chooses an atom xi whose inner product
with y is maximal. In other words, condition (2.16) must hold for r = y and z = θ for OMP to select
an atom i ∈ S at the first iteration. When G occurs, then by condition (2.3) and by Lemma 2.2 OMP

selects a support atom, i.e., Ŝ1 ⊆ S. Assume by induction that the set of atoms that were selected in

all previous 1 ≤ t < K iterations is a subset of the support set, i.e., supp
{
θ̂t

}
= Ŝt ⊆ S. Hence,

rt = y −Xθ̂t = X
(
θ − θ̂t

)
+ σξ, (2.19)

where θ− θ̂t is a sparse vector whose support is contained in S. In addition, since OMP selects exactly
one atom at each iteration, ∣∣∣supp

{
θ̂t

}∣∣∣ = t < K = |supp {θ}| .

Hence, at least one entry in θ − θ̂t is equal to its corresponding entry in θ and

max
i∈S

∣∣∣(θ − θ̂t

)
i

∣∣∣ ≥ min
i∈S
|θi| = θmin. (2.20)
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Since by Eq. (2.3) θmin is larger than the bound in Eq. (2.15), we can apply Lemma 2.2 with r = rt
and z = θ − θ̂t to conclude that under the event G,

max
k∈S
|〈xk, rt〉| > max

i/∈S
|〈xi, rt〉| .

This implies that OMP chooses a support atom at iteration t + 1. Therefore by induction the OMP

algorithm recovers the unknown support of θ under the event G, which concludes the proof of the first
part of Theorem 2.2.

It remains to show that the OMP∗ algorithm with threshold τ = σ
√

2(1 + α) log d does not stop
early before the K-th iteration, and that it does stop after the K-th iteration. At iteration 1 ≤ t ≤ K,∥∥XT rt

∥∥
∞ = max

i∈[d]
|〈xi, rt〉| ≥ max

k∈S
|〈xk, rt〉|.

Under the event G, by Eqs. (2.18) and (2.20),

max
k∈S
|〈xk, rt〉| > θmin (1− (K − 1)µ)−

√
βτ.

Finally, by condition (2.3),

∥∥XT rt
∥∥
∞ >

(
1 +
√
β
)

(1− (K − 1)µ)

1− (2K − 1)µ
τ −

√
βτ =

1−
((

1−√β
)
K − 1

)
µ

1− (2K − 1)µ
τ > τ,

which proves that OMP∗ does not stop early.
At the end of iteration t = K all support atoms have been selected. Let θS ∈ RK and XS ∈ RN×K

be the vector θ and the dictionary X restricted to the support S (respectively), and let PS = XSX
†
S =

XS
(
XT
SXS

)−1
XT
S be the projection of the observed signal onto the linear subspace spanned by the

elements of S. Then

rK = y −XSX
†
Sy = (I − PS) y = (I − PS) XSθS + (I − PS)σξ.

Since I − PS is a projection to the linear space that is orthogonal to the subspace spanned by the
elements of S, the first term of the last equation above is zero. Hence, under the event G,∥∥XT rK

∥∥
∞ = max

i∈[d]
|〈xi, rK〉| = max

i∈[d]
|〈xi, (I − PS)σξ〉| ≤ max

i∈[d]
|〈xi, σξ〉| ≤ τ.

Therefore, OMP∗ stops after exactly K iterations. This concludes the proof of Theorem 2.2.

2.3.2 Proof of Theorem 2.3

First, we present an outline of the proof. Given parameters d,N,K, µ with N < d, and where K,µ
satisfy conditions (2.10)-(2.12), we construct a dictionary X ∈ RN×d with coherence µ and a sparse
vector θ ∈ Rd with sparsity K. We show that when the smallest coefficient in θ is sufficiently small
as in condition (2.13), then with probability at least P0, OMP fails to detect a support atom already at
the first iteration, and therefore fails to recover the support of θ.

To prove the theorem we shall use the following auxiliary lemmas. The first lemma concerns the
maximum of several correlated normal random variables.

Lemma 2.3. Let (X1, . . . , Xn) ∼ N (0,Σ) where Σii = 1 for all i ∈ [n] and 0 < |Σij | ≤ η < 1 for all
i 6= j ∈ [n]. For Mn = maxi∈[n]Xi, the following hold:

1. (Lopes (2018)). There exists a universal constant c0 > 1 such that

E [Mn] ≥
√

2(1− η) log n− (c0 − 1)
√

log log n. (2.21)
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2. (Tanguy (2015)). There exists C > 0 such that for any n ≥ 2 and t > 0,

Pr [|Mn − E [Mn]| > t] ≤ 6e
−Ct

√
min{ 1

η , logn}. (2.22)

In constructing our specific dictionary, we will use the following lemma whose proof appears in
Section 2.3.3.

Lemma 2.4. For any integer K > 1 and any 0 ≤ µ < 1
K−1 , there exist vectors a1, . . . ,aK ∈ RK such

that for all i, j ∈ [K]

〈ai,aj〉 =

{
1 i = j

−µ i 6= j.
(2.23)

Proof of Theorem 2.3. Recall the notations Ñ = N −K and d̃ = d −K. Given the sparsity K and
coherence µ, we first construct vectors a1, . . . ,aK ∈ R

K as in Lemma 2.4. Next, we construct our
dictionary X = [x1, . . . ,xN ] ∈ RN×d as follows

X =

[
a1 . . . aK

√
µ̃ā . . .

√
µ̃ā

0 . . . 0
√

1− µ̃wK+1 . . .
√

1− µ̃wd

]
, (2.24)

where ā =
∑
i∈[K] ai

‖∑i∈[K] ai‖ and the constant µ̃ is defined in Eq. (2.8). For future use, note that

∥∥∥∥∥∥
∑
i∈[K]

ai

∥∥∥∥∥∥ =

√∑
i∈[K]

∑
i′∈[K]

〈ai,ai′〉 =
√
K (1− (K − 1)µ). (2.25)

The key requirements of the vectors wK+1, . . . ,wN ∈ RÑ is that they have unit norm ‖wi‖ = 1 and
that they satisfy the following condition

max
K+1≤i<j≤d

|〈wi,wj〉| ≤ L. (2.26)

As the following lemma shows, condition (2.26) implies that the coherence of X is µ. The proof
appears in Section 2.3.3.

Lemma 2.5. Assume that K,µ satisfy conditions (2.11) and (2.12). Then, under condition (2.26),
the coherence of the dictionary X of Eq. (2.24) is exactly µ.

Before proceeding we remark that such a dictionary X indeed exists. Specifically, Lemma 2.6 in
Section 2.3.3 shows that if wK+1, . . . ,wN are drawn independently and uniformly at random from the

unit sphere, and µ satisfies condition (2.12) with a (possibly) slightly higher value L = 2
√

log d̃

Ñ
, then

condition (2.26) holds with high probability.
Let us now analyze the inability of OMP to successfully recover the support of an underlying K-sparse

vector θ, given y = Xθ + σξ. Consider a dictionary X of the form (2.24) and the vector

θ = ν

K∑
j=1

ej , (2.27)

which implies that S = {1, . . . ,K} and θmin = ν. Note that Xθ = ν
∑
i∈[K] xi = ν

( ∑
i∈[K] ai

0

)
.

From this point on we view X and θ as fixed and the randomness is only over realizations of the noise
vector ξ.
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Our goal is to show that if ν is sufficiently small such that condition (2.13) holds, then with high
probability OMP fails to recover the support S. For future use, we introduce the following two random
variables that depend on the noise ξ,

Aout = max
i/∈S
|〈xi,y〉| (2.28)

and
Ain = max

k∈S
|〈xk,y〉| . (2.29)

A sufficient condition for the failure of OMP, as described in Algorithm 1, is that it would choose a
non-support atom in the first step of the algorithm with probability ≥ P0, or equivalently if

Pr [Aout > Ain] ≥ P0.

As we shall see below, due to dependencies between various inner products 〈xi,y〉, the probability
that Aout > Ain is difficult to analyze. Instead, we will introduce two other random variables Bout and
Bin which satisfy Aout ≥ Bout, Bin ≥ Ain and for which Pr [Bout > Bin] is simpler to analyze.

First, we decompose the noise into its support elements ξK ∈ R
K and non-support elements

ξÑ ∈ RÑ , such that ξ =

(
ξK
ξÑ

)
. Next, we analyze the random variable Aout and define the random

variable Bout. Using the value for µ̃ in Eq. (2.8) and value of the norm in Eq. (2.25), the inner product
of the observed signal y = Xθ + σξ with a non-support atom i /∈ S is

〈xi,y〉 =

〈
xi, ν

K∑
j=1

xj

〉
+ 〈xi, σξ〉

=

〈( √
µ̃ā√

1− µ̃wi

)
, ν

K∑
j=1

(
aj
0

)〉
+ 〈xi, σξ〉

= ν

K∑
j=1

〈√
µ̃ā,aj

〉
+ σ 〈xi, ξ〉 =

ν
√
µ̃√

K (1− (K − 1)µ)

K∑
j=1

K∑
j′=1

〈aj′ ,aj〉+ σ 〈xi, ξ〉

=
νµ

1− (K − 1)µ
(K (1− (K − 1)µ)) + σ 〈xi, ξ〉 = νKµ+ σ 〈xi, ξ〉

= νKµ+ σ
√
µ̃ 〈ā, ξK〉+ σ

√
1− µ̃ 〈wi, ξÑ 〉 . (2.30)

We define Bout by
Bout = νKµ− σ

√
µ̃ |〈ā, ξK〉|+ σ

√
1− µ̃max

i/∈S
〈wi, ξÑ 〉 . (2.31)

Using Eq. (2.28) and (2.30),

Aout = max
i/∈S
|〈xi,y〉| ≥ max

i/∈S
〈xi,y〉

= νKµ+ σ
√
µ̃ 〈ā, ξK〉+ σ

√
1− µ̃max

i/∈S
〈wi, ξÑ 〉

≥ νKµ− σ
√
µ̃ |〈ā, ξK〉|+ σ

√
1− µ̃max

i/∈S
〈wi, ξÑ 〉 = Bout.

We now analyze the random variable Ain and define the random variable Bin. The inner product
of the observed signal y with a support atom k ∈ S is

〈xk,y〉 =

〈
xk, ν

K∑
j=1

xj

〉
+ 〈xk, σξ〉

= ν

K∑
j=1

〈ak,aj〉+ σ 〈xk, ξ〉 = ν (1− (K − 1)µ) + σ 〈ak, ξK〉 . (2.32)
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To circumvent the dependence between the random variables 〈ak, ξK〉 and 〈ā, ξK〉, we decompose

each ak into two components, a
‖
k which is parallel to ā and a⊥k which is orthogonal to ā. Using Eq.

(2.7) and (2.25), for each k ∈ S

〈ak, ā〉 =
1∥∥∥∑i∈[K] ai

∥∥∥
∑
i∈[K]

〈ak,ai〉 =
1− (K − 1)µ√
K (1− (K − 1)µ)

= ρ. (2.33)

Thus a⊥k = ak − 〈ak, ā〉 ā = ak − ρā. Combining this relation with Eq. (2.32), we can rewrite Ain as

Ain = max
k∈S

∣∣ν (1− (K − 1)µ) + σ
〈
a⊥k + ρā, ξK

〉∣∣ .
We define Bin by

Bin = ν (1− (K − 1)µ) + σρ |〈ā, ξK〉|+ σmax
k∈S

∣∣〈a⊥k , ξK〉∣∣ . (2.34)

By the triangle inequality Ain ≤ Bin.
Now that we defined Bout and Bin, we proceed to analyze the probability that Bout > Bin, or

equivalently, √
1− µ̃max

i/∈S
〈wi, ξÑ 〉 >

ν

σeff(K,µ)
+
(
ρ+

√
µ̃
)
|〈ā, ξK〉|+ max

k∈S

∣∣〈a⊥k , ξK〉∣∣ . (2.35)

For constants b1, b2 that will be determined later, denote the following three probabilities

P1 = Pr

[
max
i/∈S
〈wi, ξÑ 〉 > b1

]
,

P2 = Pr [|〈ā, ξK〉| < b2] ,

and

P3 = Pr

[
max
k∈S

∣∣〈a⊥k , ξK〉∣∣ <√1− µ̃b1 −
ν

σeff(K,µ)
−
(
ρ+

√
µ̃
)
b2

]
.

By the statistical independence of ξK and ξÑ and the linear independence of ā and a⊥k for all k ∈ S,

Pr [Bout > Bin] ≥ Pr

[
max
i/∈S
〈wi, ξÑ 〉 > b1

]
× Pr [|〈ā, ξK〉| < b2]

×Pr

[
max
k∈S

∣∣〈a⊥k , ξK〉∣∣ <√1− µ̃b1 −
ν

σeff(K,µ)
−
(
ρ+

√
µ̃
)
b2

]
= P1 · P2 · P3.

Hence, instead of proving that (2.35) holds with probability at least P0, it suffices to prove that
P1 · P2 · P3 ≥ P0.

We proceed by calculating each of these probabilities, beginning with P1. Since wK+1, . . . ,wN are
fixed unit vectors, each inner product between wi and the vector of standard normals ξÑ is a standard
normal random variable. Let

b1 =

√
2 (1− µ) log d̃− c0

√
log log d̃,

where c0 is the constant from Lemma 2.3. Denote by Md̃ = maxi/∈S 〈wi, ξÑ 〉. By the first part of
Lemma 2.3,

E
[
Md̃

]
≥

√
2(1− µ) log d̃− (c0 − 1)

√
log log d̃

= b1 +

√
log log d̃.
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Therefore, by the triangle inequality,

P1 = Pr
[
Md̃ > b1

]
≥ Pr

[
Md̃ > E

[
Md̃

]
−
√

log log d̃

]
≥ Pr

[∣∣Md̃ − E
[
Md̃

]∣∣ <√log log d̃

]
.

By the second part of Lemma 2.3,

P1 ≥ 1− 6e
−C
√

log log d̃min{µ−1, log d̃}.

Next, we calculate P2. Let b2 =
√

2 log log d. The term 〈ā, ξK〉 is simply a standard normal variable.
By Lemma 2.1 with parameters n1 = 1, n2 = log d and η = 1, we obtain that

P2 = Pr
[
|〈ā, ξK〉| <

√
2 log log d

]
> 1− 1

log d
√
π log log d

.

Lastly, we calculate P3. Recall that by construction θmin = ν. By Eq. (2.13),

ν

σeff(K,µ)
=
√

1− µ̃b1 −
(
ρ+

√
µ̃
)
b2 −

√
2β (1− ρ2) log d.

Therefore,

P3 = Pr

[
max
k∈S

∣∣〈a⊥k , ξK〉∣∣ <√1− µ̃b1 −
ν

σeff(K,µ)
−
(
ρ+

√
µ̃
)
b2

]
= Pr

[
max
k∈S

∣∣〈a⊥k , ξK〉∣∣ <√2β (1− ρ2) log d

]
= Pr

[
max
k∈S

∣∣∣∣∣
〈
a⊥k , ξK

〉√
1− ρ2

∣∣∣∣∣ <√2β log d

]
.

Note that for all k ∈ S,
∥∥a⊥k ∥∥ =

√
1− ρ2. Hence, each random variable

〈a⊥k ,ξK〉√
1−ρ2

is Gaussian with

zero mean and variance 1. We can apply Lemma 2.1 with n1 = K, n2 = d and η = β, and use the
inequality (2.10) to get

P3 ≥ 1− K

dβ
√
πβ log d

≥ 1− 1√
πβ log d

.

By a union bound, for sufficiently large N and d the probability that OMP fails to recover the support
S is at least P0, which completes the proof of Theorem 2.3.

2.3.3 Proofs of Lemmas

To conclude, we prove the auxiliary lemmas.

Proof of Lemma 2.1. The proof is similar to that of Ben-Haim et al. (2010, Lemma 2). By Šidák
(1967, Thm. 1), since X1, . . . , Xn1

are jointly Gaussian random variables, then

Pr

[
max
i∈[n1]

|Xi| <
√

2η log n2

]
≥
∏
i∈[n1]

Pr
[
|Xi| ≤

√
2η log n2

]
= Pr

[
|X1| ≤

√
2η log n2

]n1

. (2.36)

Each Xi is a standard normal random variable. Therefore,

Pr [|X1| ≤ x] = 1− 2Q (x) ,
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where Q(x) is the Gaussian tail probability function. Applying the inequality

Q (x) ≤ 1

x
√

2π
e−

x2

2 ,

with x =
√

2η log n2 gives

Pr
[
|X1| ≤

√
2η log n2

]
≥ 1− e−η logn2

√
πη log n2

= 1− 1

nη2
√
πη log n2

. (2.37)

Inserting Eq. (2.37) into (2.36) and using the inequality (1− a)
n ≥ 1− an completes the proof.

Proof of Lemma 2.4. Let G ∈ RK×K be the following symmetric matrix with entries

Gij =

{
1 i = j

−µ i 6= j.

Hence, G can be rewritten as a rank-one perturbation of the identity matrix

G = −µ11T + (1 + µ) I.

If µ < 1
K−1 , then G is positive definite. Therefore, it is the Gram matrix of a set of linearly independent

vectors, i.e., there exist a1, . . . ,aK such that condition (2.23) holds, which completes the proof (Horn
and Johnson, 2012, p. 441).

For completeness, we describe an explicit construction. Let V = [v1 . . .vK ] be an orthogonal
matrix where v1 = 1√

K
1 and

A =


√

1−(K−1)µ
K 1T√

1 + µvT2
...√

1 + µvTK

 .

Let us now prove that A indeed satisfies condition (2.23). Since V is orthogonal, its rows also form
an orthonormal basis of RK . First, consider the diagonal entries of the Gram matrix ATA. For all

i ∈ [K], 1−(K−1)µ
K = −µ+ (1 + µ) 1

K = −µ+ (1 + µ) V2
1i, and therefore

(ATA)ii =
1− (K − 1)µ

K
+ (1 + µ)

K∑
k=2

V2
ki = −µ+ (1 + µ)

K∑
k=1

V2
ki = 1.

Similarly, for all i 6= j ∈ [K], 1−(K−1)µ
K = −µ+ (1 + µ) 1

K = −µ+ (1 + µ) V1iV1j , and therefore

(ATA)ij =
1− (K − 1)µ

K
+ (1 + µ)

K∑
k=2

VkiVkj = −µ+ (1 + µ)

K∑
k=1

VkiVkj = −µ.

Proof of Lemma 2.5. To prove that the coherence of X is µ we need to analyze three types of dot
products 〈xi,xj〉. The first type is 1 ≤ i < j ≤ K, the second type is 1 ≤ i ≤ K < j ≤ d, and the
third is K + 1 ≤ i < j ≤ d.

Beginning with the first type, by construction, for any 1 ≤ i < j ≤ K,

|〈xi,xj〉| = |〈ai,aj〉| = µ.
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For the second type, by Eq. (2.8), for any 1 ≤ i ≤ K < j ≤ d,

|〈xi,xj〉| =
∣∣∣〈ai,

√
µ̃ā
〉∣∣∣ =

µ

ρ

1∥∥∥∑i′∈[K] ai′
∥∥∥
∣∣∣∣∣∣
∑
i′∈[K]

〈ai,ai′〉

∣∣∣∣∣∣ .
Inserting Eq. (2.7) and (2.25),

|〈xi,xj〉| = µ

√
K

1− (K − 1)µ

1− (K − 1)µ√
K (1− (K − 1)µ)

= µ.

Finally, we address the third type. By the triangle inequality and condition (2.26),

|〈xi,xj〉| = |µ̃+ (1− µ̃) 〈wi,wj〉| ≤ µ̃+ (1− µ̃) |〈wi,wj〉| ≤ µ̃+ (1− µ̃)L.

It remains to show that for values of µ in the range of Eq. (2.12),

µ̃+ (1− µ̃)L ≤ µ. (2.38)

Using the definition (2.8) of µ̃, condition (2.38) is

Kµ2

1− (K − 1)µ
+

(
1− Kµ2

1− (K − 1)µ

)
L ≤ µ.

In turn, this inequality can be rewritten as the following quadratic equation

µ2 (2K − 1− LK)− µ (L (K − 1) + 1) + L ≤ 0.

Notice that since L < 1, the term 2K− 1−LK > K− 1 ≥ 0. The above inequality is thus satisfied by

values of µ in Eq. (2.12). This range is not empty if 4L(2K−1−LK)

(L(K−1)+1)2
≤ 1. It is easy to verify that this

condition holds for K values in (2.11). Note that the above condition also holds for K ≥ 3−L+
√

8−8L
L ,

however this range is often not possible due to the MIP condition (1.4).

Lemma 2.6. Let wK+1, . . . ,wN be d̃ vectors drawn independently and uniformly at random from the

Ñ -dimensional unit sphere. Suppose d̃ = d̃Ñ → ∞ satisfies log d̃

Ñ
→ 0 as Ñ → ∞. Then as Ñ → ∞,

condition (2.26) with L = 2
√

log d̃

Ñ
holds with probability e−1/

√
8π log d̃.

To prove Lemma 2.6, we need the following auxiliary lemma which bounds the largest magnitude
of an inner product between random unit vectors.

Lemma 2.7 (Cai and Jiang (2012)). Let a1, . . .aN be i.i.d. vectors drawn uniformly at random from
the N -dimensional unit sphere and let

LN = max
1≤i<j≤d

|〈ai,aj〉| .

Suppose d = dN →∞ satisfies log d
N → 0 as N →∞. Then as N →∞, the random variable

N log(1− L2
N ) + 4 log d− log log d

converges weakly to an extreme value distribution with the distribution function F (y) = 1 − e−Key/2
for y ∈ R and K = 1√

8π
.
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Proof of Lemma 2.6. Note that in the regime stated in the lemma, LÑ → 0 as Ñ → ∞. Hence

log(1− L2
Ñ

) ≈ −L2
Ñ

. By Lemma 2.7 for y = − log log(d̃) and L = 2
√

log d̃

Ñ
, in the limit

Pr
[
Ñ log(1− L2

Ñ
) + 4 log d̃− log log d̃ ≥ − log log d̃

]
= Pr [LÑ ≤ L]

= e−Ke
− log log d̃/2

= e−1/
√

8π log d̃.

Therefore as Ñ → ∞, maxK+1≤i<j≤d |〈wi,wj〉| = LÑ ≤ L and condition (2.26) is satisfied with

probability e
−1/

√
8π log(d̃).
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Chapter 3

Distributed Sparse Normal Means
Estimation with Sublinear
Communication 1

We consider the problem of sparse normal means estimation in a distributed setting with communi-
cation constraints. We assume there are M machines, each holding d-dimensional observations of a
K-sparse vector θ corrupted by additive Gaussian noise. The M machines are connected in a star
topology to a fusion center, whose goal is to estimate the vector θ with a low communication budget.
In Section 3.1 we formalize the distributed sparse normal means problem and characterize the relevant
SNR regime.

Previous works have shown that to achieve the centralized minimax rate for the `2 risk, the total
communication must be high – at least linear in the dimension d. This phenomenon occurs, however,
at very weak signals. We show that at signal-to-noise ratios (SNRs) that are sufficiently high – but
not enough for recovery by any individual machine – the support of θ can be correctly recovered with
significantly less communication.

In Section 3.2, we present two algorithms for distributed estimation of a sparse mean vector cor-
rupted by either Gaussian or sub-Gaussian noise. We then prove that above certain SNR thresholds,
with high probability, these algorithms recover the correct support with total communication that is
sublinear in the dimension d. Furthermore, the communication decreases exponentially as a function of
signal strength. Section 3.3 discusses the relation between exactly recovering the support of a vector
and estimating it with small `2 risk, and shows a reduction from the latter to the former with one
additional round of sublinear communication.

Section 3.4 elaborates on how our results relate to the lower bounds of Braverman et al. (2016), Han
et al. (2018) and Shamir (2014). In Section 3.5, we present simulations that illustrate the performance
of our algorithms in different parameter regimes. All proofs appear in Section 3.6 and simulation
details in Section 3.7.

Notation. We use the standard O(·),Ω(·),Θ(·) notation to hide constants independent of the prob-
lem parameters and the notation Õ(·) to hide terms that are at most polylogarithmic in d. For functions
f, g the notations f = o(g) and f � g imply that f/g → 0 as d → ∞. The term exact recovery of
the support S with high probability means that an estimator Ŝ correctly estimates the support, i.e.,

Pr
[
Ŝ = S

]
→ 1 as d→∞ and the number of machines M = M(d) tends to infinity at a suitable rate,

as detailed in each theorem. We use the notation dxe for the smallest integer larger than or equal to

1The results presented in this chapter have been published in Amiraz et al. (2022). The notations have been changed
for consistency with the other chapters of the thesis.
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x.

3.1 Problem Setup

Each machine has n independent samples corrupted by additive Gaussian noise of a known level σ,
implying that their empirical mean is a sufficient statistic. Thus, we simplify by assuming that each
machine i stores a single observation of θ under an effective noise level of σeff = σ√

n
. Since σ is known,

without loss of generality, we assume that the noise level across all machines is standardized to σeff = 1.
This leads to an equivalent model where each machine has a single observation

si = θ + ξi, (3.1)

where ξi ∼ N (0, Id) and θ is exactly K-sparse.
For simplicity we assume that the sparsity level K is known to the fusion center and that θj ≥ 0 for

all j ∈ [d]. However, with slight variations our methods can work when K is unknown or for vectors
θ that have both positive and negative entries. We further assume a lower bound θmin on its smallest
non-zero coordinate, namely θj ≥ θmin for all j ∈ S = {i |θi > 0}. It will be convenient to use the
natural scaling

θmin =
√

2r log (d−K). (3.2)

We focus on the following question: Given a lower bound on the signal-to-noise ratio (SNR) r, how
much communication is sufficient for exact recovery of the support S of a K-sparse vector θ with high
probability?

Let us first discuss what is the interesting regime for the SNR parameter r. Recall that for
d−K � 1, the maximum of d−K i.i.d. standard Gaussian random variables is tightly concentrated
around

√
2 log (d−K). At a high SNR r > 1, each individual machine can thus exactly recover

the support set S with high probability. Hence, it suffices that only one machine sends O(K log d)
bits to the fusion center. At the other extreme, let r < c

M for a fixed 0 < c < 1. Here, even in a
centralized setting, exact support recovery with high probability is not possible. To see this, note that
the empirical mean of all samples is a sufficient statistic, and its effective SNR is c < 1. Therefore, with
probability tending to 1 as d → ∞, its smallest support entry is smaller than its largest non-support
entry. If the index of θmin is chosen uniformly at random, then any algorithm would fail to recover the
support. Hence, the relevant SNR values are

1

M
< r < 1. (3.3)

In this range, a single machine cannot individually recover the support with high probability. Yet, as
we show next, for a large subrange of the SNR values given in Eq. (3.3), exact support recovery by
the fusion center is possible with total communication o(d) bits. Furthermore, as r increases towards
1, the total communication decays exponentially fast to O

(
K log1+c d

)
for an appropriate constant

c > 0.

3.2 Distributed Algorithms for Sparse Normal Means

We present two one-shot algorithms for the distributed sparse normal means problem and derive non-
asymptotic bounds on their performance, namely, their probability of exact recovery and their total
communication. For both algorithms, the lower bound r on the SNR is assumed to be known to the
center and is used to decide how many machines to communicate with and what messages to send them.
We use the notation Mc for the number of contacted machines, which is different in each theorem. For
our analysis below, we assume the total number of machines is sufficiently large, in particular M ≥Mc,
which is a stronger condition than the centralized lower bound M > 1/r.
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Figure 3.1: Illustration of communication regimes as a function of (r,M), where M is on a logarithmic
scale. In the pink area, exact support recovery is information-theoretically impossible even in the
centralized setting. In the green areas, our distributed algorithms achieve exact support recovery with
communication that is sublinear in d.

In our first algorithm, denoted Top-L, the center sends a parameter L to Mc machines. Each
contacted machine i sends back a message Si with the indices of the L highest coordinates of its sample
si. Our second algorithm is threshold-based; the center sends a threshold tm to Mc machines, and each
contacted machine i sends back all indices j with si,j > tm. In both two algorithms, the center then
estimates the support of θ by a voting procedure. We prove in Theorems 3.1 and 3.2 that under suitable
assumptions, and in particular for a sufficiently high SNR, both algorithms achieve exact support
recovery with high probability using sublinear communication. In particular, we show in Theorem 3.2.A
that if r = Ω

(
log−1 (d−K)

)
, then with high probability Thresholding with Mc = O(log d) machines

and tm =
√

2r log(d−K) recovers the support of the K-sparse vector θ using Õ
(

(d−K)
1−r

+K
)

communication bits in expectation. The total communication cost is sublinear in d provided that

K � d and r = Ω
(

log log d
log d

)
. Moreover, increasing the threshold allows for a tradeoff between Mc and

the expected message length per machine. As we show in Theorems 3.2.B and 3.2.C, perhaps counter-
intuitively, given more than O (log d) machines, the fusion center can recover the support using less
total communication, by setting a higher threshold. Specifically, if r = Ω

(
log−2 (d−K)

)
, then with

high probability Thresholding with Mc = Õ

(
(d−K)(

1−
√
r)

2
)

machines and tm =
√

2 log (d−K)

recovers the support of the K-sparse vector θ using Õ

(
K (d−K)(

1−
√
r)

2
)

communication bits. Note

that the resulting total communication cost is sublinear in d, provided thatK is at most polylogarithmic

in d and r = Ω
(

log2 log d
log2 d

)
, or equivalently θmin = Ω

(
log log d√

log d

)
We also prove a similar result for the

Top-L algorithm with L = K in Theorem 3.1. Finally, in Section 3.2.3 we extend some of these results
to the case of additive sub-Gaussian noise.

To put our results in context, we illustrate in Figure 3.1 the different communication regimes as
a function of the SNR r and the number of machines M for K = 1. As discussed above, if r < 1

M ,
then even with infinite communication, exact support recovery with high probability is information-
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Algorithm 2: Top-L

1 At the fusion center
input : dimension d, number of machines M , SNR r, sparsity level K, parameter L
output: setup message q

2 if L = K = 1, then Mc is given by Eq. (3.4), otherwise it is given by Eq. (3.7)
3 send message q that contains the value L to each of the first Mc machines

4 At each machine i = 1, . . . ,Mc

input : setup message q, sample si
output: message Si to center

5 compute permutation αi that sorts the vector si in descending order,
si,αi(1) ≥ · · · ≥ si,αi(d)

6 send to the center the L indices with the largest coordinates, Si = {αi (1) , . . . , αi (L)}
7 At the fusion center

input : messages S1, . . . , SMc
, sparsity level K

output: estimated support Ŝ
8 for each coordinate j ∈ [d], let the set of votes it received be Vj = {i ∈ [Mc] : j ∈ Si} and

let their number be vj = |Vj |
9 compute permutation π that sorts the indices by descending number of votes,

vπ(1) ≥ · · · ≥ vπ(d)

10 return Ŝ = {π(1), . . . , π(K)}

theoretically impossible. The corresponding (r,M) values are in the pink area below the red curve
which delineate the relation r ·M = 1. By our Theorems 3.1 and 3.2, exact recovery with sublinear
communication is possible in the light green and dark green areas. In the white area, distributed exact
support recovery is possible using communication that is at least linear in d. An example of a recovery
scheme in this range is to send the entire sample (up to a quantization error). It remains an open
question whether exact support recovery with sublinear communication is possible for (r,M) values in
the white area.

3.2.1 Top-L Algorithm

In the Top-L algorithm, the center uses its knowledge of the parameters d,M, r,K to determine the
number of machines Mc to contact, and sends them a parameter L ∈ N. The i-th contacted machine
then sends a message Si consisting of the L indices with the largest coordinates of its vector si. Given
the messages S1, . . . , SMc , the fusion center counts how many votes each index received and estimates
the support to be the K indices with the highest number of votes. Voting ties can be broken arbitrarily.
This scheme is outlined in Algorithm 2. Its total communication cost is B = O(LMc log d) bits.

Remark 3.1. The above description assumes that the fusion center knows the sparsity level K. How-
ever the following simple variant can handle a case where only an upper bound Kmax ≥ K is known.
In this case, the number of contacted machines Mc is determined using Kmax instead of K, and each
contacted machine sends its top L ≥ Kmax indices to the fusion center. The center then estimates the
support as the set of indices that received more votes than a suitable threshold tc (d).

We prove that for sufficiently high SNR, the Top-L algorithm recovers the exact support of θ with
high probability. To ease the presentation and highlight the main ideas of the proof, we first analyze
the case L = K = 1 and then extend the analysis to general L ≥ K ≥ 1. The proofs of the theorems
stated below appear in Appendix 3.6.1.
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Motivated by the required number of machines for proving Theorem 3.1.A, we define the quantity

M0 (d, r) =

max

1,

√
2πe

(
2 (1−√r)2

log d+ 1
)

(1−√r)√2 log d
· d(1−

√
r)

2

 · 8 log d

 . (3.4)

Notice that for any fixed SNR r < 1, M0 (d, r) is sublinear in d, and up to polylogarithmic terms it

is proportional to d(1−
√
r)

2

< d. The following theorem provides a support recovery guarantee in the
setting K = L = 1.

Theorem 3.1.A. Assume r < 1 and that M0(d, r) ≤ min {M,d}. Then, if the center contacts
Mc = M0 machines, the Top-L algorithm with L = 1 recovers the support of a 1-sparse vector θ with
probability at least 1− d−1 − e3d−3. Its total communication is O(M0 log d) bits.

Several insights follow from Theorem 3.1.A. First, recall that for any r < 1 no machine can suc-
cessfully recover the support of θ on its own. Yet, for d � 1 and for any fixed r < 1, as implied
by the theorem, the fusion center can recover the support of θ by communicating with only M0 (d, r)
machines, receiving from each machine its own mostly inaccurate estimate of the support. Second,
as the SNR lower bound r increases towards 1, the algorithm needs to contact fewer machines and
thus less communication to succeed with high probability. Moreover, by Eq. (3.4), M0 (d, r) decreases
exponentially fast with r. Lastly, for a fixed r the required number of machines M0 (d, r) and thus the
total communication cost both increase sublinearly with d.

Next, we consider the more general case where the unknown vector θ is exactly sparse with sparsity
level at most K, and its support is estimated by the Top-L algorithm with parameter L ≥ K. To this
end, we define the auxiliary quantities

a = a (K,L, d) =

√
2 log

d−K
L−K + 1

, (3.5)

b = b (K,L, d, r) = a−
√

2r log (d−K), (3.6)

and the quantity

MK,L (d, r) =

⌈
max

{
1,

4
√

2π
(
b2 + 1

)
b

· (d−K)

(√
1− log(L−K+1)

log(d−K)
−
√
r

)2}
· 8 log d

⌉
. (3.7)

The following theorem provides a support recovery guarantee in this setting.

Theorem 3.1.B. Assume r < 1 and that MK,L(d, r) ≤ min
{
M, d−KL

}
. Then, if the center contacts

Mc = MK,L machines, the Top-L algorithm with K ≤ L < (d−K)/2 recovers the support of a K-sparse
vector θ with probability at least 1−Kd−1 − e3d−3 using O (LMK,L log d) communication bits.

While the expressions in Theorem 3.1.B are more involved than those of Theorem 3.1.A, similar
insights to those mentioned above continue to hold. In addition, it is easy to check that the total com-
munication is monotonically increasing in L. Hence, if K is a-priori known, it is best to choose L = K.

In this case, the Top-L algorithm incurs a total communication cost of O

(
K · (d−K)(

1−
√
r)

2

log2.5 d

)
,

which is sublinear in d provided that K is at most polylogarithmic in d and r = Ω
(

log2 log d
log2 d

)
.

Remark 3.2. One can consider a variant of the algorithm that sends L < K randomly selected indices
out of the top K. In such a variant, the message length per machine is shorter, and hence in general,
the center would need to contact more machines for exact support recovery with high probability. A
theoretical analysis of this scheme is beyond the scope of the current manuscript.
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Algorithm 3: Thresholding

1 At the fusion center
input : dimension d, number of machines M , SNR r, sparsity level K
output: setup message q

2 depending on M , calculate Mc and tm by their expressions in Theorem 3.2.A or 3.2.B or
3.2.C

3 send message q = Trunc(tm, blog2 tmc , dlog2 de) to each of the first Mc machines

4 At each machine i = 1, . . . ,Mc

input : setup message q, sample si
output: message Si to center

5 construct threshold t̂m = Approx(q, blog2 tmc , dlog2 de)
6 let Si =

{
j ∈ [d] : si,j > t̂m

}
7 send Si to center

8 At the fusion center
input : messages S1, . . . , SMc , sparsity level K
output: estimated support Ŝ

9 for each coordinate j ∈ [d], let the set of votes it received be Vj = {i ∈ [Mc] : j ∈ Si} and
let their number be vj = |Vj |

10 compute permutation π that sorts the indices by descending number of votes,
vπ(1) ≥ · · · ≥ vπ(d)

11 return Ŝ = {π(1), . . . , π(K)}

3.2.2 Thresholding Algorithm

In our second algorithm, the fusion center chooses a threshold tm = tm (d, r,M,K) and sends (a
truncated binary representation of) it to a subset of the machines Mc = Mc (d, r,M,K) ≤ M . Each
contacted machine i sends back all indices j such that si,j > tm. Similarly to the Top-L algorithm,
given the messages S1, . . . , SMc

and the sparsity level K, the fusion center estimates the support as
the K indices with the highest number of votes. Voting ties can be broken arbitrarily. The scheme is
outlined in Algorithm 3. If instead of the sparsity level K only an upper bound on it Kmax ≥ K is
known, and Kmax � d, then the fusion center can set tm and Mc by approximating d − K ≈ d. In
addition, the center estimates the support as outlined in Remark 3.1.

The Thresholding algorithm has several desirable properties. First, it is simple to implement in
a distributed setting. Second, in the centralized setting, thresholding algorithms were shown to be
optimal in various aspects (see Section 3.3 for further details). Third, adjusting the threshold allows
for a tradeoff between the number of contacted machines and the expected message length per machine.
Notice that if the SNR is sufficiently high, but still r < 1, i.e., not high enough for recovery by any
individual machine, there may not even be a need to contact all machines to recover the support. By
the same logic, when the SNR is lower, one can lower the threshold. Of course, this would incur a
higher communication cost. Hence, since the fusion center knows both r and M , it can set an optimal
threshold tm and send it only to Mc ≤ M machines, which ensures exact support recovery with high
probability at minimal communication cost (among all possible thresholds).

To complete the description of the algorithm, we now describe our approximation of a real number
by a finite amount of bits. Recall that the scientific binary representation of a number x ∈ R consists

of a bit representing its sign and bits {bj}j∈Z, such that |x| =
∑blog2 |x|c
j=−∞ bj2

j . One can approximate
x by truncating its binary representation at a predetermined precision level. Specifically, given two
parameters U,P ∈ N, let the procedure q = Trunc(x, U, P ) output a truncated binary representation
of x of length U + P + 2 such that q = (1 {x ≥ 0} , b−P , . . . , bU ). Given q, let the procedure x̂ =

Approx(q, U, P ) construct an approximation for x, given by x̂ = sign(x)·∑U
j=−P bj2

j . If U ≥ blog2 |x|c,
then x̂ and x consist of the same bits up to the P -th bit after the binary dot, and thus the resulting
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approximation error is bounded by |x̂− x| < 2−P . This scheme is a variant of Szabo and van Zanten
(2020, Algorithm 1).

In our analysis we assume that θmax = maxj∈S θj is at most polynomial in d. Thus taking U,P =
O(log d) ensures that with high probability all quantities of interest are approximated up to d−O(1)

error. In addition, since P,U only depend on d and on the bound θmax, they can be set in advance
without communication.

We analyze the performance of the Thresholding algorithm in three regimes, in terms of the
number of contacted machines Mc: small, intermediate, and large (clearly under the constraint that
M ≥Mc). For each regime, we derive a different threshold tm = tm (d, r,M), where the SNR parameter
r and sparsity level K are assumed to be known. In the small Mc regime, considered in Theorem 3.2.A,
the number of contacted machines is logarithmic in d. The corresponding threshold tm given by (3.8)
is relatively small. In the intermediate regime, considered in Theorem 3.2.B, all M machines are
contacted and the threshold tm, given by Eq. (3.11), increases as a function of M . Finally, when the
number of available machine is sufficiently large, as described in Theorem 3.2.C, the center contacts
only a subset Mc of all machines, where the value of Mc is chosen to minimize the total communication,
while still achieving exact support recovery with high probability. The proofs appear in Appendix 3.6.2.

Theorem 3.2.A. Assume that d ≥ 16 and M ≥ 16 log d. Further assume log 5
log(d−K) < r < 1. Then,

with probability at least 1− (K + 1) /d, Thresholding with Mc = d16 log de and

tm =
√

2r log (d−K) (3.8)

recovers the support of the K-sparse vector θ using

O
(

(d−K)
1−r

r−0.5 log1.5 d+K log2 d
)

(3.9)

communication bits in expectation.

The communication cost (3.9) is sublinear in d for all r > 2 log log d
log(d−K) and K � d/ log2 d. Note

that in the above theorem, the number of contacted machines is fixed at 16 log d and correspondingly,
the threshold does not depend on the total number of machines M . The next theorem shows that
contacting all machines with a higher threshold that depends on the total number of machines, can
lead to exact support recovery with even less communication than (3.9).

Theorem 3.2.B. Let d ≥ 15 and assume that 32
√
eπ log1.5 d ≤ M ≤ d. Further assume r < 1 and

that

r >

(√
2 log 5M√

2π4 log d
−
√

2 log M
32
√
π log1.5 d

+ 1
d

)2

2 log (d−K)
. (3.10)

Then, with probability at least 1− (K + 1) /d, Thresholding with Mc = M and

tm =
√

2r log (d−K) +

√
2 log

M

32
√
π log1.5 d

(3.11)

recovers the support of the K-sparse vector θ using

O

(
KM log d+ (d−K)

1−r
e
−2
√
r log(d−K) log M

32
√
π log1.5 d log2.5 d

)
(3.12)

communication bits in expectation.

It is interesting to study the behavior of the total communication cost in Eq. (3.12). The first
term increases with M , whereas the second term decreases with M . It is easy to show that the total
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communication cost is minimized at Mopt = Õ

(
(d−K)(

1−
√
r)

2
)

. This leads to a perhaps counter-

intuitive result, that in the range O
(
log1.5 d

)
< M < Mopt, as the number of machines increases exact

recovery is possible with less total communication. Once the number of available machines is larger
than Mopt, there is no benefit in contacting all machines. In terms of total communication, it is best
to simply contact Mc = Mopt of them, as stated in the following theorem.

Theorem 3.2.C. Assume that d−K ≥ 20 and
(

log 10
log(d−K)

)2

< r < 1. Let

Mc =


8
√

2π
(

(1−√r)2
2 log (d−K) + 1

)
(1−√r)

√
2 log (d−K)

(d−K)(
1−
√
r)

2

log d

 , (3.13)

and assume that M ≥Mc. Then, with probability at least 1− (K + 1) /d, Thresholding with

tm =
√

2 log (d−K) (3.14)

and Mc machines recovers the support of the K-sparse vector θ using

O

(
K (d−K)(

1−
√
r)

2

log2.5 d

)
(3.15)

communication bits in expectation.

Let us now compare the Top-L and Thresholding algorithms, in terms of communication cost and
recovery guarantees. By Theorems 3.1.B and 3.2.C, with appropriately set parameters the algorithms
exhibit qualitatively similar performances for high SNR and large number of machines M . The main
differences between the two algorithms occur when M is small, for example logarithmic in d. If the
SNR is low, for example r = O

(
log−2 d

)
, then the Top-L algorithm with L = K might fail to recover

the support, whereas, by Theorem 3.2.A, the Thresholding algorithm succeeds to recover it. However,
substituting r = O

(
log−2 d

)
in Eq. (3.15) results in total communication cost superlinear in d. In

contrast, if the SNR is slightly higher, namely r = O
(

log2 log d
log2 d

)
, then by Theorems 3.1.B and 3.2.A,

with high probability both algorithms succeed, and the Top-L algorithm with L = K incurs less total
communication cost than the Thresholding algorithm. However, the Thresholding algorithm is more
robust in the following sense. If the sparsity level K is fixed and the center only knows an upper bound
on it Kmax = cK for c > 1, then the Top-L algorithm with L = Kmax incurs a communication cost
that is linear in c, while the Thresholding algorithm incurs a communication cost that is roughly the
same as when c = 1.

3.2.3 Extension to sub-Gaussian noise

Let us outline in this section how some of our results above can be extended to the case of additive
sub-Gaussian noise. Specifically, we assume that each machine i has n i.i.d. samples of the form
sji = θ+ξji for j = 1, . . . , n, where the mean vector θ ∈ Rd is exactly K-sparse and all noise coordinates

ξji,k are i.i.d. sub-Gaussian random variables with parameter σ2 (also known as the variance proxy).

We assume all noise coordinates have the same variance σ̃2 = E

[(
ξji,k

)2
]

and finite third absolute

moment η = E
[
|ξji,k|3

]
. It is easy to show that σ2 ≥ σ̃2 (Rigollet, 2015, Lemma 1.4). In our analysis,

we shall assume that for some fixed 0 < λ ≤ 1,

σ̃2 ≥ λ2 · σ2. (3.16)
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To account for having n samples per machine, we generalize the definition of the scaling parameter r
as follows

θmin =
σ̃√
n

√
2r log (d−K). (3.17)

Denote by Thresholding∗ the following scheme, where each contacted machine i computes the
normalized empirical mean vector

s̃i =
1

σ̃
√
n

n∑
j=1

sji . (3.18)

Accordingly, each machine i computes its message as

Si =
{
j ∈ [d] : s̃i,j > t̂m

}
. (3.19)

Note that the effective signal strength in each machine, corresponding to its sample s̃i, is
√
nθmin

σ̃ =√
2r log (d−K), which matches Eq. (3.2) above.
Given sufficiently many samples per machine, results similar to those we proved for Gaussian noise

hold for the case of sub-Gaussian noise. As an example, the following theorem is a variant of Theorem
3.2.C for the Thresholding algorithm. Its proof appears in Appendix 3.6.3. A similar result can be
derived for the Top-L algorithm.

Theorem 3.3. Consider exact support recovery with n samples per machine, corrupted by additive
sub-Gaussian noise as described above. Assume that the SNR r satisfies the following, for a suitable
universal constant C > 0

Ω

(
1

log(d−K)

)
<
(
1−√r

)2
< Cλ2, (3.20)

that the sample size in each machine satisfies

n = Ω

(
η2

σ̃6
(1−√r)6 log3(d−K)

)
. (3.21)

and that d−K is sufficiently large. Let Mc = O

(
(d−K)(

1−
√
r)

2

log1.5 d

)
and assume that M ≥Mc.

Then, with probability at least 1−O
(
K
d

)
, the Thresholding∗ algorithm with

tm =
√

2 log (d−K) (3.22)

and Mc machines recovers the support of the K-sparse vector θ using

O

(
K (d−K)(

1−
√
r)

2

log2.5 d

)
(3.23)

communication bits in expectation.

The proof of Theorem 3.3 uses both lower bounds and upper bounds on the tail probability of the
noise. For the tail lower bound, we use a result of Nagaev (2002), which requires a minimal number
of samples per machine, as stated in Eq. (3.21). Note that this requirement is rather mild. For r
bounded away from one, only a polylogarithmic in d number of samples per machine suffices. For the
lower bound to hold, we also require in (3.20) that the SNR parameter r cannot be arbitrarily close
to 1, as otherwise n could tend to zero in Eq. (3.21). In contrast, such an upper bound on r does not
appear in Theorem 3.2.C.

Another key difference from Theorem 3.2.C is a strict lower bound on the SNR r, as stated in Eq.

(3.20), which implies r >
(

1−
√
Cλ
)2

. The reason for this is a rather crude upper tail probability
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approximation we apply in our proof, which uses the sub-Gaussian property of the noise. We remark
that by the central limit theorem, if we require a much larger number of samples per machine with
d and K fixed, then results similar to Theorem 3.2.C may be derived, even without assuming sub-
Gaussianity of the noise. In particular, with sufficient number of samples per machine, the lower bound
on the SNR r will be the same as in Theorem 3.2.C.

3.3 Sublinear Distributed Algorithms with Small `2 Risk

In the previous section we considered distributed estimation of the support of θ. Another common
task is to estimate the vector θ itself, with both small `2 risk and low total communication. We show
that this can be achieved with only a single additional round of communication. Furthermore, under
certain parameter regimes, specifically KM � d

log d , the resulting estimate achieves the centralized `2
risk, with sublinear total communication. The proof of this result is based on the fact that both of
our algorithms achieve exact support recovery with high probability. We thus first discuss the relation
between support recovery and `2 risk, as well as lower bounds for the centralized minimax risk.

3.3.1 On Exact Support Recovery and `2 Risk

Let us first briefly discuss estimation of θ in a centralized setting with M samples and noise level σ.
Without any assumptions on the vector θ, the empirical mean s̄ = 1

M

∑
i si is a rate-optimal estimator.

When θ is assumed to be sparse, various works suggested and theoretically analyzed the set of diagonal
estimators Odiag. An estimator θ̂ ∈ Odiag has the form θ̂j = aj (s̄j) s̄j for all j ∈ [d], where each aj (·)
is a scalar function. For further details see for example Mallat (1999, Chapter 11).

Projection oracle risk. In analyzing the lowest risk achievable in the set Odiag, a key notion is
the projection oracle risk, defined as the smallest expected `2 error of a diagonal projection estimator
θ̂oracle but with additional prior knowledge of θ, such that θ̂oracle

j = aj (θj) s̄j and aj ∈ {0, 1}. It is easy

to show that θ̂oracle
j = s̄j · 1(|θj | > σ/

√
M). Its corresponding risk is

R
oracle

(θ) = E

[∥∥∥θ − θ̂oracle

∥∥∥2
]

=

d∑
j=1

min

{
σ2

M
, θ2
j

}
≤ Kσ2

M
. (3.24)

Note that the projection oracle is not a realizable estimator, as it relies on knowledge of the underlying
θ for support recovery. However, the oracle risk provides a lower bound for the risk of any diagonal
estimator. Also note that given a lower bound on the SNR, of the form minj∈S |θj | > σ/

√
M , the

oracle risk is R
oracle

(θ) = Kσ2/M .

Centralized lower bound. Donoho and Johnstone (1994, Theorem 3) proved the following lower
bound on the asymptotic minimax rate among all diagonal estimators,

lim
d→∞

inf
θ̂∈Odiag

sup
θ∈Rd

E[‖θ̂ − θ‖2]
σ2

M +R
oracle

(θ)

1

2 log d
= 1. (3.25)

Moreover, they proved that thresholding at a suitable level achieves this minimax rate.
In the result above, no assumptions are made neither regarding the sparsity of θ, nor on its SNR

or equivalently on θmin. Indeed, the proof of (3.25) relies on a construction of vectors θ with log d
coordinates having values slightly smaller than σ√

M

√
2 log d, namely with a low SNR. Thus, it cannot

be used as a lower bound for the centralized minimax rate in our setting. In fact, if θ is K-sparse
and θmin is sufficiently high, then asymptotically as d → ∞ with KM log d

d → 0, the risk of a suitable
thresholding estimator is equal to R

oracle
(θ) (1 + o(1)). The reason is that in this case one can achieve

exact support recovery with high probability. We now prove a similar result for the distributed setting.
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Algorithm 4: Protocol Π

1 At the fusion center

input : estimated support set Ŝ
output: setup message q

2 send message q which contains the set Ŝ to each of the M machines

3 At each machine m = 1, . . . ,M
input : setup message q, sample si, precision parameters U,P
output: message wi to center

4 for each k ∈ Ŝ, calculate wi,k = Trunc(si,k, U, P )

5 send to center wi =
{

wi,k : k ∈ Ŝ
}

6 At the fusion center
input : messages w1, . . . ,wM

output: estimated vector θ̂
7 for each i ∈ [M ] and each k ∈ Ŝ, reconstruct zi,k = Approx(wi,k, U, P )

8 for each k ∈ Ŝ, calculate the mean z̄k = 1
M

∑
i∈[M ] zi,k

9 return θ̂Π where θ̂Π
j = z̄j · 1

{
j ∈ Ŝ

}

3.3.2 The `2 Risk of Top-L and Thresholding

The Top-L and Thresholding algorithms described in Section 3.2, output an estimated support set
Ŝ. As we describe now, using an additional round of communication, the center can also estimate the
vector θ itself. In particular, we consider the following protocol, denoted Π: First, the center sends the
indices of Ŝ to all M machines. Then, each machine i replies with the binary representation wi,k =

Trunc(si,k, U, P ) for the estimated support coordinates k ∈ Ŝ, for appropriately chosen U,P = O(log d).
The center computes zi,k = Approx(wi,k, U, P ) and calculates the empirical mean z̄k = 1

M

∑
i∈[M ] zi,k.

Finally, the center estimates θ as follows

θ̂Π
j = z̄j · 1

{
j ∈ Ŝ

}
.

The scheme is outlined in Algorithm 4.
The following corollary shows that applying Π to the set Ŝ computed by one of our algorithms

yields an estimator θ̂Π with `2 risk RΠ = E

[∥∥∥θ − θ̂Π
∥∥∥2
]

which is near-oracle. Its proof appears in

Appendix 3.6.4.

Corollary 3.1. Let d ≥ 5. Assume that the conditions of Theorem 3.1.B hold and let Ŝ ⊂ [d] be the
estimate computed by the Top-L algorithm. In addition, assume that θmax < dγ for γ > 0. Then, the

`2 risk of θ̂Π with precision parameters P = dlog2 de and U =
⌊
log2(dγ +

√
4(γ + 1) log d)

⌋
is bounded

as follows

RΠ ≤
K

M

(
1 + d−1 + d−2

)
+

2Kθ2
min

d
. (3.26)

The expected total communication cost of Π is O (KM log d). Thus, in an asymptotic setting where
K,M, d→∞ with KM log d

d → 0, the protocol Π has sublinear expected communication cost and its `2
risk is R

oracle
(θ) (1 + o(1)).

If we assume that the conditions of either Theorem 3.2.A, Theorem 3.2.B or Theorem 3.2.C hold,
then essentially the same proof shows that a two-round algorithm that first estimates the support of θ
by the respective Thresholding algorithm and then applies protocol Π as a second round to estimate
the vector θ itself can achieve near-oracle `2 risk as well. Similarly, the expected total communication
cost is sublinear in d if KM � d

log d .
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Remark 3.3. An interesting question is whether one round of sublinear communication suffices to
estimate θ with near-oracle `2 risk. A natural candidate solution is a variant of the Thresholding

algorithm where each machine sends its indices that pass the threshold tm and their corresponding
coordinate values truncated to O(log d) precision. If the number of machines is large, then our analysis
suggests that only a small fraction of the machines would send messages to the center, which would
result in high risk compared to the centralized risk. However, if M = O(log d), then by our analysis
of Theorem 2.A, at least half of the machines would send to the center each of the support elements,
which should be sufficient information for estimating θ with near-centralized rate. Note that the sent
coordinate values are biased, and thus simply computing their mean would result in an over-estimate
of each θj. Therefore, the analysis of Theorem 3.2.A and Corollary 3.1 cannot be applied directly to
this one-round variant. We believe that a more delicate fusion technique should result in estimating θ
with small `2 risk, but we do not investigate this further due to our focus on support recovery.

3.4 Relation to Previous Works

In the context of the distributed sparse normal means problem, several works derived communication
lower bounds for exact support recovery and for the `2 risk of any distributed scheme with total
communication budget B. We now describe in further detail three closely related previous works and
their relation to our results.

3.4.1 Lower Bounds on the `2 Risk in Distributed Settings

Braverman et al. (2016, Theorem 4.5) and Han et al. (2018, Theorem 7) derived communication lower
bounds for the distributed minimax `2 risk of estimating a K-sparse vector θ. Their results imply
that to achieve the centralized minimax rate, the required total communication by any distributed
algorithm must be at least linear in d. However, their proof relies on sparse vectors with a very low
signal-to-noise ratio. In contrast, in scenarios where the SNR is sufficiently high these bounds do not
apply, and as our theoretical analysis reveals, both exact support recovery and rate-optimal `2 risk are
achievable with sublinear communication, provided that KM � d

log d .

In more detail, Braverman et al. (2016) considered blackboard communication protocols, where all
machines communicate via a public blackboard and the total number of bits that they can write in the
transcript is bounded by B. Denote the set of estimators whose inputs are blackboard communication
protocols by OBB and the set of all K-sparse d dimensional vectors as Sd,K . Their Theorem 4.5 states
that if d > 2K, then the `2 risk of any distributed estimator in this model is lower bounded by

RBB = inf
θ̂∈OBB

sup
θ∈Sd,K

E[‖θ̂ − θ‖2] ≥ Ω

(
min

{
σ2K,max

{
σ2K

d

B
,
σ2K

M

}})
. (3.27)

Note that if the total communication B is sublinear in d, then the above simplifies to Ω(σ2K), which
is significantly larger than the centralized minimax rate, Eq. (3.25). The reason is that RBB involves a
supremum over all K-sparse vectors, without any assumptions on their SNR. Indeed, in their analysis
a vector θ with extremely low SNR is used to prove the bound.

Han et al. (2018) considered a more restricted case of one-shot protocols where each of the M
machines has a budget of at most b bits that are sent simultaneously to the center, i.e. B = Mb.
Denote by Osim the set of estimators based on such protocols. Their Theorem 7 states that if d ≥ 2K

and M ≥ Kd2 log(d/K)
min{b2,d2} , then the risk is lower bounded by

Rsim = inf
θ̂∈Osim

sup
θ∈Sd,K

E[‖θ̂ − θ‖2] ≥ Ω

(
σ2K

M
· log (d/K) ·max

{
d

b
, 1

})
. (3.28)

Two remarks are in place here. First, our protocol Π described in Section 3.3 requires two rounds
of two-way communication between the center and the machines instead of one-round of one-way
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communication from the machines to the center. In addition, during the first round a subset of the
machines may not be contacted and thus remain idle. For these reasons our estimator θ̂Π is not in
Osim, and thus the above lower bound does not apply to it.

Second, the lower bound (3.28) does not apply for estimators in Osim with sublinear communication,
since the condition on M translates to requiring B ≥ d. To show this, notice that if B < d then in
particular each machine has a sublinear communication budget, i.e., b = dβ for 0 < β < 1. The
requirement on the number of machines then translates to M ≥ Kd2−2β log (d/K), and thus the total
communication budget is B = Mb ≥ Kd2−β log (d/K), which is superlinear in d for all β < 1.

3.4.2 Lower Bound on Exact Support Recovery in a Distributed Setting

Shamir (2014) proved lower bounds for several distributed estimation problems under communication
constraints. The considered setting is of distributed (b, n,M) protocols whereby each machine i ∈ [M ]
constructs a message Si of length at most b bits based on its own n i.i.d. samples and the messages
S1, . . . Si−1 sent by the previous i − 1 machines. Shamir analyzed a specific problem of distributed
detection of a special coordinate j ∈ [d], whose mean is τ > 0, whereas the mean of all other coordinates
i 6= j is zero. The following corollary of Shamir’s Theorem 6 upper bounds the success probability of
detecting j by any distributed (b, n,M) protocol. For completeness, its proof appears in the appendix.

Corollary 3.2. Consider the class of exact support recovery problems in d ≥ 21 dimensions, and all
possible distributions of a d-dimensional random vector u such that:

1. There exists one coordinate j for which E [uj ] = τ > 0 with τ = O( 1
d log d ), whereas E [ui] = 0 for

all other coordinates i 6= j.

2. All coordinates i ∈ [d] have the same second moment σ̃2 = E[u2
i ] = 1

d .

3. For all coordinates i ∈ [d], the random variable (ui − E [ui]) ∼ subG(1).

Assume that n ≤ cd log d for a suitable constant c > 0. Then for any estimate Ĵ of j returned by a
(b, n,M) protocol, there exists a distribution as above such that

Pr
[
Ĵ = j

]
≤ O

(
1

d
+

√
Mb

d

)
. (3.29)

Let us discuss what is the effective signal to noise ratio that corresponds to the above result.
Assume that each of M machines has n i.i.d. samples of a vector s with a distribution as in Corollary
3.2. Similar to (3.17), we define the effective SNR parameter r via the relation τ = σ̃√

n

√
2r log d.

Taking τ = C
d log d and n = cd log d gives an effective SNR r = O( 1

log2 d
). Suppose that each machine

sends a message of length b bits, such that the total communication is sublinear in d, namely Mb� d.
Then by Corollary 3.2 the probability of exact support recovery by any (b, n,M) distributed scheme
with n = cd log d samples per machine is o (1).

It is important to note that the problem considered in our work and that in Corollary 3.2 are
different. Specifically, our setting involves measurements of the form sparse signal plus additive noise,
where the noise is assumed independent of the signal. Hence, in our setting the second moment of the
vector u depends on the signal, namely E[u2

j ] = θ2
j + σ2. In contrast, the distributions in Corollary 3.2

have a constant second order moment (see condition 2). Furthermore, the distribution constructed to
prove Corollary 3.2 is not of the form signal plus noise, with noise that is independent of the signal.
Hence, the above lower bound is not applicable to our setting. As we proved in Section 3.2, for SNR

parameters only slightly higher than O
(

1
log2 d

)
, namely r = Ω

(
log2 log d

log2 d

)
, exact support recovery for

signal plus Gaussian noise type observations is possible using sublinear communication. It would be
interesting to study if any distributed scheme can recover the support using sublinear communication
for SNR values below our aforementioned bound, and to derive tight lower bounds for signal plus noise
type distributions.
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(a) Setting 1: d = 215, M = 26, K = 1, L = 10
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(b) Setting 2: d = 215, M = 26, K = 5, L = 10
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(c) Setting 3: d = 215, M = 210, K = 1, L = 10

Figure 3.2: The plots on the left depict the success probability of the algorithms from Section 3.2 as a
function of r in Settings 1-3. The plots on the right depict the communication cost of the algorithms
on a logarithmic scale as a function of r in these settings. The blue curve corresponds to the Top-L

algorithm with L = K, the red curve corresponds to the Top-L algorithm with L > K, the orange
and purple curves correspond to variants A and B of the Thresholding algorithm, respectively. The
vertical black line is a lower bound on the performance of all algorithms. The colored vertical lines are
sufficient SNR bounds for the corresponding algorithms, as described in the main text.

3.5 Simulations

We present several simulations that illustrate the ability of our algorithms to detect the support of
a K-sparse d-dimensional vector θ with sublinear communication. We compare the performance of
the Top-L algorithm with L = K (blue), the Top-L algorithm with L > K (red), variant A of the
Thresholding algorithm which contacts all machines, i.e., Mc = M (orange), and variant B of the
Thresholding algorithm which limits the number of contacted machines, i.e., Mc < M (purple). See
Appendix 3.7 for details on optimizing simulation parameters.

Figure 3.2 depicts the success probabilities and communication costs (on a logarithmic scale) of the
aforementioned algorithms as a function of r, averaged over 100 noise realizations. We consider three
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different settings of parameters M and K. In all settings the dimension is d = 215 and in the Top-L

algorithm with L > K we set L = 10. In Setting 1, M = 26 and K = 1; in Setting 2, M = 26 and
K = 5; and in Setting 3 M = 210 and K = 1.

The vertical black dashed line is the centralized information theoretic lower bound of 1/M . This
line represents the necessary SNR, below which even centralized algorithms fail with high probability.
In addition, we define a sufficient SNR bound for each algorithm, above which it exactly recovers
the support with high probability 1 − O(K/d). The vertical blue and red dashed lines correspond to
sufficient SNR bounds for the Top-L algorithm with L = K and L > K, respectively. The vertical
orange dashed line corresponds to the sufficient SNR bounds for the Thresholding algorithms. Note
that these bounds are conservative, and while they are quite tight in the presented settings, the actual
range of SNRs where the algorithms are successful is often larger.

The simulation results reveal several interesting behaviors. First, when the SNR is extremely low,
i.e., to the left of the dashed black line, none of our algorithms succeeds with high probability. Second,
no algorithm uniformly outperforms the others for all parameter regimes. At low SNR values, the
Thresholding algorithms have a higher success probability compared to the Top-L algorithms, but
require higher communication costs. Similarly, at low SNR values the success probability of the Top-L

algorithm increases with L at the expense of higher communication. At high SNR values, all algorithms
succeed with high probability, but the communication costs of the algorithms depend on the parameter
settings. For example, the Top-L algorithm with L = K can either incur a lower communication cost
compared to the Thresholding B algorithm (Setting 1), or a higher one (Setting 2), or they can be
comparable (Setting 3). In addition, there is a wide range of SNR values for which the communication
costs of all algorithms decrease exponentially with r and their total communication costs are sublinear
in d.

To understand how a higher sparsity level K affects the performance of the algorithms, we compare
between Setting 1 and Setting 2. The communication cost of the Top-L algorithm with L = K increases
linearly with K. In contrast, dependence of the communication costs of the Thresholding algorithms
on K varies with the SNR. Specifically, at low SNR values they are comparable for different values of
K, but for high SNR values they increase linearly with K. This phenomenon is consistent with the
higher number of messages containing support indices.

Finally we compare between Setting 1 and Setting 3 to understand how the availability of more
machines affects the performance of the algorithms. With more machines, the Top-L algorithms
succeed at much lower SNR values, at the expense of higher communication costs. Variant A of the
Thresholding algorithm has a higher communication cost in Setting 3 compared to Setting 1 since it
uses all machines. However, there is still a large range of SNR values where it is smaller than d, due
to its adaptive threshold. As shown by our proofs, when M is large, variant B of the Thresholding

algorithm performs similarly to the Top-L algorithm with L = K, and they outperform the other
algorithms.

3.6 Proofs

Denote the complement of the standard normal cumulative distribution function by Φc(t) = Pr [Z > t]
where Z ∼ N (0, 1). In our proofs we shall use the following well known auxiliary lemmas.

Lemma 3.1 (Gaussian tail bounds). For t > 0,

t√
2π(t2 + 1)

e−t
2/2 ≤ Φc(t) ≤ 1√

2πt
e−t

2/2. (3.30)

If in addition t ≥ 1,

Φc(t) ≥ 1

2
√

2πt
e−t

2/2. (3.31)
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A consequence of Eq. (3.30) is that the maximum of n− 1 i.i.d. standard normal random variables
Z1, . . . , Zn−1 ∼ N (0, 1) is highly concentrated around

√
2 log n. In particular, by the well known

identity
(
1− 1

n

)n−1 ≥ 1
e , for all n ≥ 2

Pr

[
max
i∈[n−1]

Zi >
√

2 log n

]
= 1−

(
1− Φc

(√
2 log n

))n−1

≤ 1−
(

1− 1

n
√

4π log n

)n−1

≤ 1−
(

1− 1

n

)n−1

≤ 1− e−1, (3.32)

where the third step follows from 4π log n > 1.

Lemma 3.2 (Chernoff (1952)). Suppose X1, . . . , Xn are i.i.d. Bernoulli random variables and let X
denote their sum. Then, for any δ ≥ 0,

Pr [X ≥ (1 + δ) E [X]] ≤ e−
δ2E[X]
2+δ , (3.33)

and for any 0 ≤ δ ≤ 1,

Pr [X ≤ (1− δ) E [X]] ≤ e− δ
2E[X]

2 . (3.34)

Towards proving the main theorems, we introduce a few definitions. Denote by Ii,k the indicator
that machine i sends the index k to the fusion center. Note that for each k, the random variables
I1,k, . . . , IM,k are independent and identically distributed. Further denote pk = Pr [Ii,k = 1] and notice
that it is the same for all machines i. Our proofs use a stochastic dominance argument for lower
bounding the number of votes vk received by each support index k ∈ S. Towards this goal, we define
a Binomial random variable vmin ∼ Bin (Mc, pmin), where pmin is the probability that machine i sends
a support index whose nonzero coordinate is θmin. By definition of θmin, the random variable vmin is
stochastically dominated by vk ∼ Bin (Mc, pk) for each k ∈ S. For exact support recovery, it suffices
that for some threshold tc, each support index receives more than tc votes, and each non-support index
receives less than tc votes. For our proof, we set the threshold

tc = 4 log d. (3.35)

We conclude this subsection with two useful lemmas. First, we show that if pmin is sufficiently
high, then any support index receives a number of votes exceeding tc with high probability.

Lemma 3.3. Let pmin be the probability defined above, let Mc be the number of contacted machines,
and let tc be the threshold in Eq. (3.35). If pmin ≥ 2tc

Mc
, then

Pr[min
k∈S

vk < tc] ≤
K

d
. (3.36)

Proof. Let δ = 1− tc
Mcpmin

. By the Chernoff bound (3.34),

Pr[vmin < tc] = Pr [vmin < Mcpmin(1− δ)] ≤ exp
(
−Mcpminδ

2/2
)
. (3.37)

The assumption pmin ≥ 2tc
Mc

implies that δ > 1/2 and δMcpmin > tc. Thus

Pr[vmin < tc] ≤ exp (−tc/4) ≤ 1/d, (3.38)

where the last inequality follows from Eq. (3.35).
Now, fix k ∈ S. By the independence of the noises in different machines vk ∼ Bin (Mc, pk). By

definition of θmin, the coordinate θk ≥ θmin and thus pk ≥ pmin. Therefore,

Pr[vk < tc] ≤ Pr[vmin < tc].

By (3.38), applying a union bound over k ∈ S proves (3.36).
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Next, let us consider the non-support coordinates. The following lemma shows that if pj is suffi-
ciently low for each non-support index j /∈ S, then no non-support index receives more than tc votes
with high probability.

Lemma 3.4. Let Mc be the number of contacted machines and let tc be the threshold in Eq. (3.35).
If for each j /∈ S, the probability pj ≤ tc

5Mc
, then

Pr[max
j /∈S

vj > tc] ≤
1

d
.

Proof. The average number of messages at the fusion center containing index j is E[vj ] = Mcpj . Let

δ =
1

Mcpj
(tc −Mcpj) =

tc
Mcpj

− 1.

The assumption pj ≤ tc
5Mc

implies that δMcpj = tc −Mcpj ≥ 4tc
5 and δ ≥ 4, which in turn implies

that δ/(2 + δ) ≥ 2/3. Note that for each j ∈ [d] the random variables I1,j , . . . , IM,j are independent.
By a Chernoff bound (3.33),

Pr[vj > tc] = Pr [vj > Mcpj(1 + δ)] ≤ exp

(
− δ

2 + δ
δMcpj

)
≤ exp

(
−8tc

15

)
. (3.39)

By Eq. (3.35), the above probability is at most d−2. We conclude by applying a union bound,
Pr[maxj 6∈S vj > tc] ≤ (d− k) Pr[vj > tc] ≤ 1/d.

3.6.1 Proof of Theorem 3.1

We begin by proving Theorem 3.1.A where L = K = 1 and then outline the necessary changes in order
to prove Theorem 3.1.B for L ≥ K ≥ 1.

For future use, note that by definition of the Top-L algorithm, the probability that machine i sends
a coordinate k ∈ [d] is

pk = Pr
[
∃j1, . . . , jd−L ∈ [d] \ {k} : si,k > si,j1 , . . . , si,jd−L

]
. (3.40)

The communication of the Top-L algorithm is B = O (LMc log d) since the center sends one message
to each participating machine indicating L < d, and each of these machines sends back exactly L
indices.

Proof of Theorem 3.1.A. Without loss of generality, let the support index be S = {1}. Thus,

p1 = Pr

[
si,1 > max

j>1
si,j

]
.

We show that w.h.p. both v1 > tc and vj < tc for all j > 1.
By the law of total probability and the independence of the random variables ξi,j ,

pmin = Pr

[√
2r log d+ ξi,1 > max

j>1
ξi,j

]
≥ Pr

[√
2r log d+ ξi,1 >

√
2 log d | max

j>1
ξi,j <

√
2 log d

]
· Pr

[
max
j>1

ξi,j <
√

2 log d

]
= Pr

[
ξi,1 >

(
1−√r

)√
2 log d

]
· Pr

[
max
j>1

ξi,j <
√

2 log d

]
.
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Recall that the random variables ξi,j are i.i.d. standard Gaussians. By Eq. (3.32),

Pr

[
max
j>1

ξi,j <
√

2 log d

]
≥ e−1.

Therefore, by the Gaussian tail bound (3.30),

pmin ≥ e−1 · (1−√r)√2 log d
√

2π
(

2 (1−√r)2
log d+ 1

)d−(1−
√
r)

2

. (3.41)

Combining Eq. (3.41) with the bound (3.4) implies that pmin ≥ 2tc
Mc

, and thus we can apply Lemma

3.3 and get that Pr [v1 < tc] ≤ d−1.
Now consider a non-support index j > 1. By symmetry considerations, the probability that machine

i sends j to the center is

pj =
1− p1

d− 1
.

Recall that by definition of θmin, the coordinate θk ≥ θmin and thus p1 ≥ pmin. Since for any strictly
positive SNR p1 > pmin >

1
d , it follows that pj <

1
d for each j > 1. Hence, the expected number of

votes for index j is E [vj ] = Mcpj <
Mc

d . Let δ = tc
Mcpj

− 1 and note that the assumption M ≤ d

implies that Mcpj ≤ 1 and hence δ ≥ 4 log d− 1 > 0 . By the Chernoff bound (3.33),

Pr [vj > tc] = Pr

[
Mc∑
i=1

Ii,j > (1 + δ)Mcpj

]

≤ e−
δ2Mcpj
δ+2 = e

− (4 log d−Mcpj)
2

4 log d+Mcpj

= e
−4 log d−Mcpj+4Mcpj

4 log d
4 log d+Mcpj ≤ e3d−4.

By a union bound over all d− 1 non-support coordinates,

Pr

[
max
j>1

vj > tc

]
≤ (d− 1) · e3d−4 ≤ e3d−3.

By an additional union bound on the two events, the algorithm outputs the correct support index with
probability at least 1− d−1 − e3d−3.

Proof of Theorem 3.1.B. The proof is similar to that of Theorem 3.1.A, with the following changes.
For any threshold a ∈ R, the probability pk that k ∈ S is sent to the fusion center is lower bounded by

pk ≥ Pr

si,k > a ,
∑
j /∈S

1 {si,j > a} ≤ L−K


= Pr

ξi,k > a− θk ,
∑
j /∈S

1 {ξi,j > a} ≤ L−K

 .
Set a = a (K,L, d) and b = b (K,L, d, r) by Eqs. (3.5) and (3.6) respectively. Recall that ξi,j are i.i.d.
for all i ∈ [Mc] and j ∈ [d], i.e., the two events in the probability above are independent of each other.
Combining this with the definition of θmin yields

pmin ≥ Φc(b) · Pr

∑
j /∈S

1 {Zj > a} ≤ L−K

 , (3.42)
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where Zj ∼ N (0, 1).
We begin by bounding the first term of Eq. (3.42). If b ≤ 0 then Φc(b) ≥ 1/2. Otherwise, by the

Gaussian tail bound (3.30),

Φc(b) ≥ b√
2π (b2 + 1)

(d−K)
−
(√

1− log(L−K+1)
log(d−K)

−
√
r

)2

.

Next, we show that with probability ≥ 1
4 the number of non-support indices that pass the threshold

a is upper bounded by L−K. Denote by pa the probability that a standard normal random variable
passes the threshold a, i.e., pa ≡ Φc(a). By Eq. (3.30), pa is upper bounded by

pa ≤
1√
2πa
· L−K + 1

d−K . (3.43)

Next, let δ = L−K+1
pa(d−K) − 1. Note that the assumption K ≤ L < (d − K)/2 implies that

√
2πa ≥√

4π log 2 > 1, and thus δ > 0. By the Chernoff bound (3.33),

Pr

∑
j /∈S

1 {Zj > a} ≥ L−K + 1

 = Pr

∑
j /∈S

1 {Zj > a} ≥ (1 + δ) pa (d−K)


≤ e−δ

2pa(d−K)/(2+δ)

= e
−( L−K+1

pa(d−K)
−1)

2 pa(d−K)

1+ L−K+1
pa(d−K)

= e−
(L−K+1−pa(d−K))2

L−K+1+pa(d−K) .

For A1, A2 > 0 the function e−
(A1−A2)2

A1+A2 is monotonically increasing in A2. Letting A1 = L−K+1 and
A2 = pa (d−K), we can now apply the upper bound on A2 in Eq. (3.43) to the equation above. Thus
the complementary probability, i.e., the second term in Eq. (3.42), can be lower bounded as follows

Pr

∑
j /∈S

1 {Zj > a} ≤ L−K

 ≥ 1− e−(L−K+1)
(1−1/

√
2πa)2

1+1/
√

2πa

≥ 1− e−
(1−
√

4π log 2)2

1+
√

4π log 2 ≥ 1

4
,

where the second inequality follows from the assumption K ≤ L < (d−K)/2.
By Eq. (3.7) the probability pmin ≥ 2tc

Mc
and thus Pr [mink∈S vk < tc] ≤ Kd−1 by Lemma 3.3. Let

Wi ∼ Bin (K, pmin) be a binomial random variable that serves as a lower bound for how many of the
support coordinates machine i sends to the center. By the law of total probability and symmetry of
the non-support indices, the probability that machine i sends to the center a non-support index j /∈ S
is

pj ≤
K∑
n=0

Pr [i ∈ Vj |Wi = n] · Pr [Wi = n]

=

K∑
n=0

L− n
d−K Pr [Wi = n] =

L−Kpmin

d−K ≤ L

d−K . (3.44)

Using the requirement MK,L ≤ d−K
L , the rest of the proof continues in the same manner.
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3.6.2 Proof of Theorem 3.2

Note that we set the precision parameters P,U such that tm − 1/d ≤ t̂m ≤ tm. By definition of the
Thresholding algorithm, the probability that machine i sends a support coordinate k ∈ S is

pk = Pr
[
si,k > t̂m

]
≥ Pr [ξi,k > tm − θk] . (3.45)

Thus, for the extreme case θk = θmin,

pmin ≥ Φc (tm − θmin) . (3.46)

For a non-support coordinate j /∈ S, the Gaussian tail bound (3.30) implies that

pj = Pr
[
ξi,j > t̂m

]
≤ e−t̂

2
m/2

√
2πt̂m

≤ etm/d e−t
2
m/2

√
2π(tm − 1/d)

. (3.47)

In terms of communication, each coordinate j ∈ [d] appears in Mcpj messages on average. In
addition, in the setup stage the fusion center sends Mc messages with the truncated threshold t̂m,
whose binary representation is O(log d) bits long. Hence the average total communication is

E [B] = O

Mc log d+

∑
k∈S

pk +
∑
j /∈S

pj

Mc log d

 = O

K +
∑
j /∈S

pj

Mc log d

 , (3.48)

where the last step follows from the trivial bound pk ≤ 1 for each k ∈ S.
We now proceed to proving the sub-theorems.

Proof of Theorem 3.2.A. By Eqs. (3.8) and (3.46),

pmin ≥ Φc (0) =
1

2
. (3.49)

Since Mc = d16 log de and by Eq. (3.35), we have that pmin ≥ 2tc/Mc, and thus Pr[mink∈S vk < tc] ≤
K
d by Lemma 3.3. Now fix j /∈ S. Due to the assumptions d ≥ 16 and r > log 5

log(d−K) , by Eq. (3.47) we

have that

pj ≤
e
√

2r log(d−K)/d (d−K)
−r

√
2π
(√

2r log (d−K)− 1/d
) ≤ e

√
2 log 5/16

10
(√
π log 5− 1/16

) ≤ tc
5Mc

.

Applying Lemma 3.4 yields Pr[maxj 6∈S |vj > tc] ≤ 1/d.
Finally, the average total communication follows from inserting the expressions for pj and Mc into

Eq. (3.48).

Proof of Theorem 3.2.B. Note that the boundM >
√
e·32
√
π log1.5 d implies that 2 log M

32
√
π log1.5 d

≥
1. By the expression (3.11) for tm and the Gaussian tail bound (3.31),

pmin ≥ Φc

(√
2 log

M

32
√
π log1.5 d

)
≥ 1

2
√

2π
√

2 log M
32
√
π log1.5 d

e
− log M

32
√
π log1.5 d

=
1

2
· 16 log d

M

√
log d

log M
32
√
π log1.5 d

≥ 2tc
M
, (3.50)

where the last inequality follows from the upper bound on M . Thus, by Lemma 3.3, mink∈S vk < tc

with probability at most K/d. Due to Assumption (3.10), t̂m ≥
√

2 log 5M√
2π4 log d

, and thus by the first

inequality of Eq. (3.47),

pj ≤
1

√
2π
√

2 log 5M√
2π4 log d

e
− log 5M√

2π4 log d =
4 log d

5M
√

2 log 5M√
2π4 log d

<
tc

5M
, (3.51)
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where the last inequality follows from Eq. (3.35) and the condition on M . Thus by Lemma 3.4,
Pr[maxj 6∈S vj > tc] ≤ 1/d.

Towards computing the expected communication of the algorithm, we bound pj more carefully
using the second inequality of Eq. (3.47),

pj ≤ e

(√
2r log(d−K)+

√
2 log M

32
√
π log1.5 d

)
/d

(d−K)
−r
e
−2
√
r log(d−K) log M

32
√
π log1.5 d

√
2
(√

2r log (d−K) +
√

2 log M
32
√
π log1.5 d

− 1
d

) · 32 log1.5 d

M

≤ (d−K)
−r
e
−2
√
r log(d−K) log M

32
√
π log1.5 d · 32 log1.5 d

M
, (3.52)

where the second inequality follows from bounding
√

2r log (d−K) +
√

2 log M
32
√
π log1.5 d

− 1
d > 1 and

from d ≥ 15, which implies that e

(√
2r log(d−K)+

√
2 log M

32
√
π log1.5 d

)
/d
<
√

2. By inserting Eq. (3.52)
into Eq. (3.48), the expected communication of the algorithm is

E [B] = O

(
KM log d+ (d−K) · (d−K)

−r
e
−2
√
r log(d−K) log M

32
√
π log1.5 d

log1.5 d

M
·M log d

)
.

Rearranging completes the proof.

Proof of Theorem 3.2.C. Recall that Mc and tm are given by Eqs. (3.13) and (3.14), respectively.
By the Gaussian tail bound (3.30),

pmin ≥ Φc
((

1−√r
)√

2 log (d−K)
)

≥ (1−√r)
√

2 log (d−K)
√

2π
(

(1−√r)2
2 log (d−K) + 1

) (d−K)
−(1−

√
r)

2

=
2tc
Mc

. (3.53)

Thus by Lemma 3.3, mink∈S vk < tc with probability at most K/d.

Fix a non-support index j /∈ S. Note that the assumption d−K ≥ 20 implies that e
√

2 log(d−K)/d <√
2. Thus, by Eq. (3.47),

pj ≤
e
√

2 log(d−K)/d

√
2π
(√

2 log (d−K)− 1/d
) (d−K)

−1 ≤ 1
√
π
(√

2 log (d−K)− 1/d
) (d−K)

−1
. (3.54)

It is easy to verify that the aforementioned assumption and the condition r >
(

log 10
log(d−K)

)2

, or equiv-

alently, d2
√
r ≥ 100, imply that pj <

tc
5Mc

. Thus the desired bound Pr[maxj 6∈S vj > tc] ≤ 1/d follows
from Lemma 3.4.

By inserting Eq. (3.54) into Eq. (3.48), the expected communication of the algorithm is

E [B] = O

(
KMc log d+ (d−K) · 1√

2π
√

2 log (d−K)
(d−K)

−1 ·Mc log d

)
.

Using Eq. (3.13) concludes the proof.

3.6.3 Proof of Theorem 3.3

Towards proving Theorem 3.3, we first recall the definition of sub-Gaussian random variables and cite
a couple of useful results.
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Definition 3.1 ((Rigollet, 2015, Definition 1.2)). A random variable X ∈ R is said to be sub-Gaussian
with sub-Gaussian parameter (variance proxy) σ2 > 0 if E [X] = 0 and its moment generating function
satisfies E [exp(sX)] ≤ exp

(
σ2s2/2

)
for all s ∈ R. We write X ∼ subG(σ2).

Let X1, . . . , Xn ∼ subG
(
σ2
)

be i.i.d. sub-Gaussian random variables. We denote the variance of

each r.v. by σ̃2 = E
[
X2
j

]
and their third absolute moment by η = E|Xj |3, and assume that it is

finite η < ∞. In our proofs for the Gaussian noise case, we used the upper and lower bounds on tail
probabilities described in Lemma 3.1. We now show that similar bounds hold for sub-Gaussian noise.

To prove tail lower bounds, we need the following result.

Theorem 3.4 ((Nagaev, 2002, Corollary 3)). Let X1, . . . , Xn ∼ subG
(
σ2
)

be i.i.d. sub-Gaussian

random variables as defined above and let X̃ = 1
σ̃
√
n

∑n
i=1Xi. If 1.7 < t ≤ 1

25

√
n σ̃

3

η , then

Pr
[
X̃ > t

]
> Φc(t) exp

(
− (2.35η/σ̃3 + 0.2)t3√

n

)(
1− (16.88η/σ̃3 + 6.58)t√

n

)
. (3.55)

To prove tail upper bounds, we use the following lemma, which is an easy corollary of Lemma 1.3
and Corollary 1.7 of Rigollet (2015).

Lemma 3.5. Let X1, . . . , Xn ∼ subG
(
σ2
)

be i.i.d. sub-Gaussian random variables as defined above

and let X̃ = 1
σ̃
√
n

∑n
i=1Xi. Then, X̃ ∼ subG(σ2/σ̃2), and there exists a constant c > 0 such that for

any t > 0,

Pr
[
X̃ > t

]
≤ exp

(
−cσ̃2t2/σ2

)
. (3.56)

We now proceed to prove the theorem.

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.2.C, with the following changes,
pertaining to the probabilities of sending the support and non-support indices, i.e., Eqs. (3.53) and
(3.54). Let t = (1 − √r)

√
2 log(d−K) and let the number of samples in each machine satisfy Eq.

(3.21) as follows,

n ≥
(
2.35η/σ̃3 + 0.2

)2
log2 2

t6 =
8
(
2.35η/σ̃3 + 0.2

)2
log2 2

(1−√r)6 log3(d−K). (3.57)

Further assume that 1.7 < (1−√r)
√

2 log(d−K) ≤ 1
25

√
n σ̃

3

η . It is easy to verify that for the values

of n in Eq. (3.57), the SNR r satisfies the left inequality in (3.20). We begin with applying Theorem
3.4 to lower bound the probability that machine i sends a support index k ∈ S. The first term of Eq.
(3.55), i.e. Φc(t), is identical to that of Eq. (3.53). By Eq. (3.57), the second term is at least 1/2. By
Jensen’s inequality, η/σ̃3 ≥ 1. Thus, the third term is

1− (16.88η/σ̃3 + 6.58)
t√
n
> 1− 4 log 2

(1−√r)2 log(d−K)
,

which is also greater than 1
2 for sufficiently large d−K. Hence, Theorem 3.4 implies that

Pr
[
ξ̃i,k > (1−√r)

√
2 log(d−K)

]
>

1

4
Φc
(

(1−√r)
√

2 log(d−K)
)
. (3.58)

Let

Mc =

4 ·
8
√

2π
(

(1−√r)2
2 log (d−K) + 1

)
(1−√r)

√
2 log (d−K)

(d−K)(
1−
√
r)

2

log d

 . (3.59)
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Then, Eq. (3.53) can be replaced with

pmin >
1

4
· (1−√r)

√
2 log (d−K)

√
2π
(

(1−√r)2
2 log (d−K) + 1

) (d−K)
−(1−

√
r)

2

=
2tc
Mc

. (3.60)

The bound Pr [mink∈S vk < tc] ≤ K/d follows from Lemma 3.3.
As for the non-support indices, by Lemma 3.5 the r.v. ξ̃i,j ∼ subG(σ2/σ̃2). Thus, by the tail bound

(3.56) and by Condition (3.16),

pj = Pr
[
ξ̃i,j > t̂m

]
≤ exp

(
−cσ̃2t̂2m/σ

2
)
≤ exp

(
−cλ2t̂2m

)
.

As in the proof of Theorem 3.2.C, recall that the truncated threshold satisfies that t̂m > tm − 1/d.
Hence,

pj ≤ exp
(
−cλ2t2m

)
exp

(
2cλ2tm/d

)
.

Next, we insert into the right hand side above the value of tm, Eq. (3.22). For sufficiently large d−K,
the second term above is bounded by say 2. Hence,

pj ≤ O
(

(d−K)−2cλ2
)
. (3.61)

Condition (3.20) with a constant C > 2c implies that for sufficiently large d − K, as in the original
proof, pj ≤ tc

5Mc
where tc is given in Eq. (3.35). Thus the desired bound Pr[maxj 6∈S vj > tc] ≤ 1/d

follows from Lemma 3.4. The communication bound (3.23) follows directly from Eqs. (3.61) and
(3.59).

3.6.4 Proof of Corollary 3.1

We first analyze the total communication cost of Π. Each machine i sends a message wi consisting of
the truncated binary representations of si,k for k ∈ Ŝ. Recall that the length of each wi,k is P +U + 2
bits. Since P,U = O(log d), the expected total communication cost of Π is O (KM log d).

Let θ̂ be the output of protocol Π, and recall that θ̂j = z̄j · 1
{
j ∈ Ŝ

}
. By linearity of expectation

and the law of total probability,

E

[∥∥∥θ − θ̂
∥∥∥2

2

]
=
∑
j∈[d]

E

[(
θj − θ̂j

)2
]

=
∑
j∈[d]

(
E
[
(θj − z̄j)2

]
Pr
[
j ∈ Ŝ

]
+ θ2

j Pr
[
j /∈ Ŝ

])
. (3.62)

We now bound each of the terms in the RHS.
Fix j ∈ [d]. Since E [s̄j ] = θj , it follows that

E
[
(θj − z̄j)2

]
= E

[
(θj − s̄j + s̄j − z̄j)2

]
= E

[
(θj − s̄j)2

]
+ E

[
(s̄j − z̄j)2

]
.

Furthermore, since the noise in different machines is i.i.d.,

E
[
(θj − s̄j)2

]
=

1

M
E
[
(θj − si,j)2

]
=

1

M
,

and

E
[
(s̄j − z̄j)2

]
=

1

M
E
[
(si,j − zi,j)2

]
for any fixed i ∈ [M ].
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We now bound E
[
(si,j − zi,j)2

]
for any fixed j ∈ [d] and i ∈ [M ]. Since si,j ∼ N (θj , 1) and zi,j is

a deterministic function of it zi,j(si,j), then

E
[
(si,j − zi,j)2

]
=

∫ ∞
−∞

(s− z (s))
2

exp
(
− (s− θj)2

/2
)

√
2π

ds.

If s < 2U+1, then the truncation step of the protocol implies that the remainder is bounded such that
|s − z| ≤ 2−P . Otherwise, the value s is higher than the range that is representable using U + 1 bits
before the binary dot, and thus the magnitude |s− z| can be as large as |s| itself. Therefore,

E
[
(si,j − zi,j)2

]
≤ 2−P + 2

∫ ∞
2U+1

s2
exp

(
− (s− θj)2

/2
)

√
2π

ds.

Using integration by parts,∫ ∞
2U+1

s2 e
−(s−θj)2/2
√

2π
ds ≤ 1√

2π

(
2U+1 + θj

)
e−(2U+1−θj)

2
/2 +

(
1 + θ2

j

) ∫ ∞
2U+1

e−(s−θj)2/2
√

2π
ds.

By the Gaussian tail bound 3.30,∫ ∞
2U+1

s2 e
−(s−θj)2/2
√

2π
ds ≤ 1√

2π

(
2U+1 + θj +

1 + θ2
j

2U+1 − θj

)
e−(2U+1−θj)

2
/2

≤ 1√
2π

(√
4 (γ + 1) log d+ 2dγ +

1 + d2γ√
4 (γ + 1) log d

)
d−2(γ+1) ≤ 1

2d
,

where the second inequality follows from the bound θmax < dγ and the selection U , and the last
inequality holds for all d ≥ 5 and γ ≥ 0. Finally, Since P = dlog2 de,

E
[
(si,j − zi,j)2

]
≤ d−2 + d−1.

In addition, since E
[
|Ŝ|
]

= K, the sum
∑
j∈[d] Pr

[
j ∈ Ŝ

]
= K, and thus the first term in the RHS of

Eq. (3.62) is bounded by K
M

(
1 + d−2 + d−1

)
.

It remains to prove that for each support index k ∈ S,

θ2
k Pr

[
k /∈ Ŝ

]
≤ 2θ2

min/d.

Denote by G the “good” event that each non-support index j /∈ S receives less than tc = 4 log d
votes. Fix k ∈ S. By the law of total probability,

Pr
[
k /∈ Ŝ

]
≤
(

Pr
[
k /∈ Ŝ|G

]
Pr [G] + (1− Pr [G])

)
.

Conditioned on G, the index k ∈ Ŝ if vk > tc. The complementary probability can be bounded by
Chernoff (3.34),

Pr
[
k /∈ Ŝ|G

]
≤ Pr [vk < tc] ≤ e−

1
2 (Mcpk−tc)

(
1− tc

Mcpk

)
.

Recall that under the conditions of Theorem 3.1.B, pj ≤ tc
5Mc

for each non-support index j /∈ S.
Therefore Pr [G] ≥ 1− 1/d by Lemma 3.4. Thus,

θ2
k Pr

[
k /∈ Ŝ

]
≤ θ2

k

(
e
− 1

2 (Mcpk−tc)
(

1− tc
Mcpk

)
(1− 1/d) + 1/d

)
. (3.63)
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In addition, recall that pk is defined by Eq. (3.40) for the Top-L algorithm (or by Eq. (3.45) for the
Thresholding algorithm), and decays exponentially with θk. Therefore, the right hand side of Eq.
(3.63) is monotonically decreasing in θk, and thus upper bounded by

θ2
min

(
e
− 1

2 (Mcpmin−tc)
(

1− tc
Mcpmin

)
(1− 1/d) + 1/d

)
.

Recall that the assumption pmin ≥ 2tc
Mc

also holds under the conditions of Theorem 3.1.B. Thus we can
apply Eq. (3.38) and get the desired bound

θ2
k Pr

[
k /∈ Ŝ

]
≤ θ2

min

(
1

d
(1− 1/d) + 1/d

)
≤ 2θ2

min

d
.

We now turn to proving the last part of the corollary. The lower bound in Condition (3.3) implies
that θmin > 1/

√
M . Thus, by Eq. (3.24), the oracle risk is R

oracle
(θ) = K/M . In addition, the upper

bound in Condition (3.3) implies that θ2
min ≤ 2 log d. Taking K,M, d → ∞ with KM log d

d → 0 yields
the desired result.

3.6.5 Proof of Corollary 3.2

The proof is similar to that of Theorem 5 of Shamir (2014). The main step of the proof, which is
proved in Shamir’s Theorem 6, is deriving an upper bound on the probability of detecting the special
coordinate j for some “hard” distribution. It remains to prove that this distribution indeed satisfies
the conditions specified in Corollary 3.2.

Within the proof of his Theorem 5, Shamir (2014) defined the following problem, which he referred
to as hide-and-seek 2.

Definition 3.2 (Hide-and-seek Problem 2). Let 0 < ρ < 1
2 . Consider the set of distributions

{Prj(·)}dj=1 over {−ei,+ei}di=1, defined as

Pr
j

(ei) =

{
1
2d i 6= j
1
2d + ρ

d i = j
Pr
j

(−ei) =

{
1
2d i 6= j
1
2d −

ρ
d i = j

.

Given an i.i.d. sample of Mn instances generated from Prj(·), where j is unknown, detect j.

Let u ∈ Rd be a random vector sampled from Prj(·). We now verify that it satisfies the conditions
specified in Corollary 3.2.

1. By construction, there exists j for which E[uj ] = 2ρ/d, whereas E[ui] = 0 for all other coordinates
i 6= j. Thus, the first condition holds for τ = 2ρ/d > 0.

2. For each coordinate i ∈ [d], the value u2
i = 1 with probability 1/d and 0 otherwise, and thus

E[u2
i ] = 1/d.

3. For each coordinate i ∈ [d], the random variable (ui − E [ui]) equals +1 w.p. 1/2d, −1 w.p.
1/2d, and 0 w.p. 1− 1/d. Its absolute values are bounded by 1, and thus it is sub-Gaussian with
parameter 1.

Shamir proved the following theorem, which bounds the success probability of detecting j.

Theorem 3.5 ((Shamir, 2014, Theorem 6)). Consider the hide-and-seek problem 2 on d > 1 coordi-

nates, with some bias ρ ≤ min
{

1
27 ,

1
9 log d ,

d
14n

}
and sample size Mn. Then for any estimate Ĵ of the

biased coordinate returned by any (b, n,M) protocol, there exists some coordinate j such that

Pr
j

[
Ĵ = j

]
≤ 3

d
+ 11

√
Mb

d
. (3.64)
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To complete the proof of Corollary 3.2, note that if d ≥ 21 and n ≤ 9
14d log d, then 1

9 log d ≤
min

{
1
27 ,

d
14n

}
. Thus, Shamir’s Theorem 6 with τ = 2ρ

d ≤ 2
9d log d proves the corollary.

3.7 Simulation Parameter Settings

For simplicity of the proofs we did not fully optimize the choices of Mc and thresholds. We outline
below the choices used for our simulations in Section 3.5. In terms of setup message length, in all
simulations L is represented by log2 L bits and t̂m is represented with U = 3 bits before the binary
dot and P = 3 bits after the binary dot.

Top-L Algorithm. We define the following random variables that represent bounds on the number
of votes that a support coordinate k ∈ S receives Y tops (d, r,K,L) = Bin (Mc, p

top
s ) and on the number

of votes that a non-support coordinate j /∈ S receives Y topn (d, r,K,L) = Bin (Mc, p
top
n ), where ptops =

ps (d, r,K,L) is the probability that k ∈ S is sent by machine i, defined in Eq. (3.42), and ptopn =
pn (d, r,K,L) is the probability that j /∈ S is sent by machine i, defined in Eq. (3.44).

With high probability Y thn does not deviate from its expectation by more than a log(d−K)
log log(d−K) mul-

tiplicative bound. Thus, we set the number of contacted machines as

Mc = max

{⌈
1

ptops (d, r,K,L)
· log(d−K)

log log(d−K)

⌉
, 1

}
. (3.65)

Intuitively, this selection ensures that the expected number of votes for a fixed support index is equal
to the maximal expected number of votes for any non-support index.

In all of our simulations log(d−K)
log log(d−K) · EY topn < 1. Hence, the sufficient SNR bound for the Top-L

algorithm (vertical blue/red line) is the minimal r for which EY tops ≥ 2, i.e., the support indices have
at least 2 votes in expectation while the non-support indices have at most 1.

Thresholding Algorithm. Similarly to the calculation for the Top-L algorithm, we define Y ths (d, r,K, tm) =
Bin

(
Mc, p

th
s

)
and Y thn (d, r,K, tm) = Bin

(
Mc, p

th
n

)
as the number of votes for a support coordinate

and non-support coordinate respectively, where pths is by Eq. (3.46) and pthn is by Eq. (3.47).
For variant A, given r and M , we set the number of contacted machines Mc = M and the threshold

tm as the highest t s.t.

Pr

[
Y ths (d, r,K, t) < EY thn (d, r,K, t)

log (d−K)

log log (d−K)

]
<

1

d
. (3.66)

Intuitively, Eq. (3.66) requires that the probability that the number of votes for a fixed support index
is higher than the maximal expected number of votes for any non-support index is lower than d−1.

In variant B, the parameters tm and Mc are set in the following manner. If for Mc = M the

threshold t <
√

2 log d−K
K , then tm = t as in variant A. Otherwise, we set tm =

√
2 log d−K

K and take

the lowest Mc for which Eq. (3.66) with t = tm holds.
Let rmin and tmin denote the minimal r value and the corresponding t value for which Eq. (3.66)

holds, respectively. rmin is the sufficient SNR bound for the Thresholding algorithm (vertical orange
line). Note that when r < rmin, there is no value of t for which this Eq. (3.66) holds. For completeness
of the simulations, in this case we set t = tmin.
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Chapter 4

Recovery Guarantees for
Distributed-OMP1

This Chapter studies high-dimensional sparse linear regression, a problem we formalize in Section 4.1.
In Section 4.2, we present distributed schemes for this problem, based on orthogonal matching pursuit
(OMP). Such schemes are particularly suited for settings where a central fusion center is connected to
end machines, that have both computation and communication limitations.

Section 4.3 details our theoretical contributions. We prove that under suitable assumptions,
distributed-OMP schemes recover the support of the regression vector with communication per ma-
chine linear in its sparsity and logarithmic in the dimension. Remarkably, this holds even at low
signal-to-noise-ratios, where individual machines are unable to detect the support. In Section 4.4, we
introduce simulations showing that distributed-OMP schemes are competitive with more computation-
ally intensive methods, and in some cases even outperform them. In Section 4.5, we contextualize our
work by discussing the gap in communication required for support recovery between high-SNR and
low-SNR settings.

Detailed proofs are provided in Section 4.6. In Section 4.7 we show both theoretically and via
simulations that, in some cases, a distributed-OMP scheme can recover the support of θ even when
the sparsity level K is unknown. Additional simulation results and implementation details appear in
Sections 4.8 and 4.9, respectively.

Notation We use the standard O(·),Ω(·),Θ(·) notation to hide constants independent of the problem
parameters and Õ(·) to hide terms polylogarithmic in d. For functions f, g, the notations f = o(g)
and f � g mean that f(d)/g(d) → 0 as d → ∞. We say that an estimator Ŝ achieves exact support

recovery with high probability if Pr
[
Ŝ = S

]
→ 1 as both d → ∞ and the number of machines

M = M(d)→∞ at a suitable rate. The smallest integer larger than or equal to x is denoted dxe. The
set of integers 1, 2, . . . ,M is denoted as [M ]. For a standard Gaussian Z ∼ N (0, 1), the complement of
its cumulative distribution function is Φc(t) = Pr[Z > t]. We denote the inner product of two vectors
u,v by 〈u,v〉 = u>v.

4.1 Problem Setup

We consider linear regression with a sparse coefficient vector in a distributed setting, where M machines
are connected in a star topology to a fusion center. Each machine m ∈ [M ] holds n samples from the

1The results presented in this chapter have been accepted for publication in the Proceedings of the Conference on
Artificial Intelligence and Statistics (AISTATS) Amiraz et al. (2024).
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Algorithm 5: OMP Step

input : X ∈ Rn×d, y ∈ Rn, support set S
output: support index j

1 compute θ̂ = argminz∈Rd,supp(z)=S ‖y −Xz‖2
2 compute residual r = y −Xθ̂

3 output index j = arg max
{
|〈xi,r〉|
‖xi‖ : i ∈ [d]

}

sparse regression model (1.5), i.e., a design matrix X(m) ∈ R
n×d and a response vector y(m) ∈ R

n,
related via

y(m) = X(m)θ + σξ(m), (4.1)

where ξ(m) ∼ N (0, In) and σ is the unknown noise level. While the M machines may have the same
or similar design matrices, their noises ξ(m) are assumed to be independent. We assume θ is K-sparse,
namely ‖θ‖0 = |supp(θ)| = K, with the value of K known to the center.

The problem we consider is exact recovery of the support of θ, which is a standard goal in sparse
linear regression, and has been widely studied in both non-distributed and distributed settings. We
study this problem under the constraints that the M machines have limited computational resources
and limited communication with the fusion center. This setting is relevant in various applications
including distributed compressed sensing and sensor networks.

4.2 Distributed-OMP Schemes

OMP-based schemes are popular for sparse support recovery, and are highly attractive in distributed
settings where computation and communication are limited. We consider two distributed OMP schemes
to estimate the support of θ. Both schemes use the following subroutine, denoted OMP Step, which
performs a single step of the OMP algorithm, and outputs a new variable to be added to the current
support set. As outlined in Algorithm 5, given a matrix X, a vector y, and a current support set S,
the subroutine computes θ̂, the least squares approximation of θ on the support S and its residual
vector r. It then outputs an index j ∈ [d] whose column xj has maximal correlation with r. A key
property of OMP Step is the orthogonality of the residual to the columns of X in the set S. Hence, the
output of OMP Step is a new index j /∈ S.

The simplest distributed OMP method is for each machine to separately run OMP for K steps and
send its K locally-computed indices to the fusion center. The center estimates the support of θ by the
K indices that received the largest number of votes. To cope with low-SNR regimes where the top K
indices at individual machines may not include all support indices, we propose a variant where each
machine runs OMP for a larger number of steps and thus sends a support of size L > K. This scheme,
which we call Distributed OMP (D-OMP), is outlined in Algorithm 6.

A second scheme, which we call Distributed Joint OMP (DJ-OMP), computes the support set one
index at a time, using K communication rounds. Starting with an empty support set S0 = ∅, at each
round t = 1, . . . ,K, the center sends the current set St−1 to the M machines. Then, each machine
calls OMP Step and sends the resulting index j(m,t) to the center. At the end of each round, the center
adds to the support set an index jt that received the most votes, St = St−1∪{jt}. After K rounds, the
center outputs the support set SK . Since OMP Step outputs an index not in the current set St−1, at
each round t of DJ-OMP, a new index is indeed added by the center, jt /∈ St−1. This scheme is outlined
in Algorithm 7.

Computation and Communication Complexity. Let us first analyze the number of operations
in a single execution of OMP Step. Given a support set S, computing θ̂ via least squares involves
multiplying a |S| × n matrix by its transpose, and then inverting the resulting |S| × |S| matrix. Next,
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Algorithm 6: Distributed OMP (D-OMP)

1 At each machine m = 1, . . . ,M
input : X(m) ∈ Rn×d, y(m) ∈ Rn, integer L

output: message S
(m)
L to center

2 initialize S
(m)
0 = ∅

3 for round t = 1, . . . , L do

4 j(m,t) = OMP Step
(
X(m),y(m), S

(m)
t−1

)
5 update support set S

(m)
t = S

(m)
t−1 ∪

{
j(m,t)

}
6 end

7 send S
(m)
L to the center

8 At the fusion center

input : messages
{
S

(m)
L

}
m∈[M ]

, sparsity K

output: estimated support S

9 for each index j ∈ [d], calculate the number of votes it received vj =
∑
m∈[M ] 1

{
j ∈ S(m)

L

}
10 sort indices by number of votes, vπ(1) ≥ · · · ≥ vπ(d)

11 return K indices with most votes S = {π(1), . . . , π(K)}

Algorithm 7: Distributed Joint OMP (DJ-OMP)

1 initialize S0 = ∅
2 for round t = 1, . . . ,K do
3 At each machine m = 1, . . . ,M
4 j(m,t) = OMP Step

(
X(m),y(m), St−1

)
5 send index j(m,t) to fusion center

6 At the fusion center
input : messages j(m,t), sparsity K

7 calculate number of votes for each index j, v
(t)
j =

∑
m∈[M ] 1

{
j = j(m,t)

}
8 find most voted index jt = argmaxjv

(t)
j

9 add jt to support set St = St−1 ∪ {jt}
10 send jt to all machines
11 if t = K output SK
12 end

finding the index j most correlated to the residual requires d inner products of vectors in R
n. For |S|

sufficiently small, say o
(
d1/3

)
, the computational cost of OMP Step is dominated by the latter step

whose cost is O(nd).
We now compare the two schemes DJ-OMP and D-OMP with L = K. In terms of computational

complexity, in both schemes each machine performs the same number of operations. Thus, for K =
o
(
d1/3

)
their computational complexity per machine is O(ndK). In terms of communication, in

both schemes each machine sends (and in DJ-OMP also receives) a total of K indices, and so the
communication per machine is O(K log d) bits. The main difference is that D-OMP performs a single
round, whereas DJ-OMP performs K rounds. Hence, DJ-OMP requires synchronization and is slower in
comparison to D-OMP.

Related Works. Various distributed-OMP methods were proposed in the past decade. Wimalajeewa
and Varshney (2013) considered the same D-OMP scheme as we do, with L = K. In addition, they
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proposed a DC-OMP algorithm, which is similar to DJ-OMP. In DC-OMP, at each round, instead of adding
just one index to the support, the fusion center adds all indices that received at least two votes. A
distributed-OMP approach for a different setting where each machine has its own regression vector θ(m)

was proposed by Sundman et al. (2014). In their setting, the support sets of the M vectors θ(m)

are assumed to be similar, and the M machines are connected in a general topology without a fusion
center.

4.3 Theoretical Results

Despite their simplicity, to the best of our knowledge, distributed-OMP schemes lack rigorous mathe-
matical support and only limited theoretical results have been derived for them. Wimalajeewa and
Varshney (2014) proved a support recovery guarantee for DC-OMP, but only in a restricted noise-less
compressed-sensing setting, where the entries of the design matrices are all random and i.i.d. across
machines. In contrast, in this section we derive a support recovery guarantee for DJ-OMP, under a more
general setting, where the design matrices are deterministic and potentially structured, and the re-
sponses y are noisy. Specifically, we prove in Theorem 4.1 that if the SNR is high enough (the non-zero
entries of θ are sufficiently large in absolute value), then with high probability DJ-OMP recovers the
support set S. Remarkably, the SNR required by our theorem is well below that required for individual
machines to succeed. Its proof appears in Appendix 4.6.

Towards formally stating our result, we first review known recovery guarantees for OMP on a single
machine, and mathematically define the SNR in our problem.

Distributed Coherence Condition. The coherence of a matrix A with columns aj is defined as

µ (A) = max
i 6=j

|〈ai,aj〉|
‖ai‖2 ‖aj‖2

. (4.2)

A matrix A satisfies the Mutual Incoherence Property (MIP) with respect to a sparsity level K if

µ(A) <
1

2K − 1
. (4.3)

A fundamental result by Tropp (2004) is that in an ideal noise-less setting (σ = 0), the MIP condition
(4.3) is sufficient for exact support recovery by OMP.

In our distributed setting, each machine m has its own design matrix X(m) with coherence µ(m) =
µ(X(m)). We denote their maximal coherence by

µmax = µmax(X(1), . . . ,X(M)) = max
m∈[M ]

µ(m). (4.4)

We say that a set of matrices X(1), . . . ,X(M) satisfies the max-MIP condition w.r.t. a sparsity level K
if

µmax <
1

2K − 1
. (4.5)

Eq. (4.5) implies that all machines satisfy the MIP condition (4.3). Hence, in a noise-less setting, OMP
at each machine will correctly recover the support of θ.

Remark 4.1. Note that µmax depends on all M design matrices at the M machines. In general, if
they are random then µmax will also be random, and will increase with M . However, the max-MIP
condition (4.5) is not necessarily very restrictive. For example, the coherence of a matrix with random
i.i.d. Gaussian entries is tightly concentrated around its mean. In this case, assuming max-MIP (4.5)
instead of MIP (4.3) on a single machine is not significantly limiting.

The coherence plays a key role for OMP recovery also in the presence of noise, as we discuss next.

54



SNR Regime. We formally define the SNR in our distributed setting. We then focus on an inter-
esting regime, in which the SNR is sufficiently high for OMP to recover the support of θ in a centralized
setting, where the center has access to all the samples from all machines, and yet too low for OMP at
a single machine to individually recover it. For a K-sparse vector θ ∈ Rd, a matrix A ∈ Rn×d with
coherence µ whose columns have unit norm, and a noise level σ, define

θcrit(µ, d,K, σ) =
σ
√

2 log d

1− (2K − 1)µ
. (4.6)

Notice that θcrit(µ, d,K, σ) is well defined under the MIP condition (4.3).
As in previous works, to derive exact support recovery guarantees, we consider vectors θ whose

non-zero entries have magnitude lower bounded by θmin, namely mink∈S |θk| ≥ θmin. For a matrix

A with unit-norm columns, define the SNR as r =
(

θmin

θcrit(µ,d,K,σ)

)2

. Near the value r = 1, OMP (at a

single machine) exhibits a phase transition from failure to success of support recovery. If the SNR is

slightly higher, i.e., r >
(

1 +
√

logK
log d

)2

, then with high probability OMP exactly recovers the support

S (Ben-Haim et al., 2010). In contrast, if the SNR is slightly lower, i.e., r <
(

1−
√

logK
log d − µ

)2

,

then there are matrices A ∈ R
n×d with coherence µ and K-sparse vectors θ ∈ R

d for which given
y = Aθ + σξ, OMP fails with high probability to recover the support of θ. In addition, this occurs
empirically for several common families of matrices A and vectors θ (Amiraz et al., 2021).

In our distributed setting the matrices X(m) are assumed to be deterministic and do not necessarily
have unit-norm columns. However, (4.1) is equivalent to

y(m) = X̃(m)θ̃(m) + σξ(m), (4.7)

where each column x̃
(m)
j of the matrix X̃(m) is scaled to have unit norm, i.e., x̃

(m)
j = x

(m)
j /‖x(m)

j ‖, and

accordingly θ̃
(m)
j = ‖x(m)

j ‖θj . Clearly, the support of each θ̃(m) is identical to that of θ. We assume

that for a suitable θ̃min, the vector θ satisfies that

min
m
‖x(m)

k ‖ |θk| ≥ θ̃min, ∀k ∈ S. (4.8)

Given the above discussion, in our distributed setting we define the SNR parameter r as follows,

r =

(
θ̃min

θcrit(µmax, d,K, σ)

)2

. (4.9)

If r > 1 then θ̃min > θcrit(µ
(m), d,K, σ) at every machine m ∈ [M ], and hence in any single machine

OMP would recover the support of θ with high probability.
Next, consider a centralized setting where all N = Mn samples are available to the fusion center.

This setting corresponds to a response vector y ∈ RN and measurement matrix X ∈ RN×d formed by
stacking the vectors y(1), . . . ,y(M) and the rows of X(1), . . . ,X(M), respectively. In analogy to (4.9),
to guarantee support recovery in this case, a sufficient condition is that the centralized SNR r(c) =(

θ̃
(c)
min

θcrit(µ(X),d,K,σ)

)2

> 1. Here θ̃
(c)
min is a value such that for all support indices k ∈ S, |θk| ≥ θ̃(c)

min/‖Xk‖,

where Xk is the k-th column of X. Since ‖Xk‖ ≥
√
M minm

∥∥∥x(m)
k

∥∥∥, then in a centralized setting OMP

is guaranteed to succeed when
√
Mθ̃min > θcrit(µ(X), d,K, σ). Given the definition (4.6) for θcrit, an

SNR regime that is interesting to study in the distributed setting is

1

M

(
1− (2K − 1)µmax

1− (2K − 1)µ(X)

)2

< r < 1. (4.10)

In this range, the SNR is sufficiently high for recovery in the centralized setting, but too low to
guarantee recovery at individual machines. As we show next, for a subrange of the SNR values in Eq.
(4.10), the DJ-OMP scheme can still achieve exact support recovery.
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4.3.1 Support Recovery Guarantee

We present three assumptions for our recovery guarantee to hold. As OMP is based on dot products
between the residual and normalized columns of the design matrices, we first introduce the following
quantity that bounds how large these can be,

δ = δ (K,µmax) =
(K−1)µ2

max

1−(K−2)µmax
. (4.11)

As we show in Section 4.6.5, under the max-MIP condition (4.5), δ ≤ µmax. Our first assumption is
that the number of machines is sufficiently large, with the dependence on K encoded in the quantity
δ.

Assumption 4.1. M ≥Mc (d,K, µmax, r), where

Mc (d,K, µmax, r) = K

 16 log d

Φc
(

(1−
√
r)
√

2 log d√
1−δ(1−µmax)

)
 . (4.12)

In our analysis, we assume that d � 1 and that µmax is small. This implies that also δ is small
and hence

Mc (d,K, µmax, r) ≈ Kd
(

1−
√
r√

1−δ(1−µmax)

)2

, (4.13)

which follows from the approximation Φc(t) ≈ e−t2/2 and omitting O(log d) factors. Thus, larger SNR
values (though still smaller than one), require fewer machines to guarantee support recovery.

To guarantee support recovery by DJ-OMP, we also need to upper bound the probability that a
non-support index is sent to the fusion center. As described in the appendix, for this we use a recent
result on the left tail of the maximum of correlated Gaussian random variables (Lopes and Yao, 2022).
The SNR that guarantees recovery thus depends on a parameter ε = ε(K,µmax), with smaller values
of ε leading to a lower SNR. However, for our proof to work, ε cannot be arbitrarily small, and we set
it as follows.

Assumption 4.2. The scalar ε = ε(K,µmax) satisfies

√
µmax + δ

1 +
√
µmax + δ

< ε < 1. (4.14)

Importantly, for µmax small, ε can be chosen to be as small as O(
√
µmax). As detailed in the

theorem below, this allows recovery at low SNRs.
Finally, we define a few quantities that characterize the lower bound we impose on the SNR r. Let

Q0 (d,K) =
log(88

√
2K)

log d , (4.15)

and define Q1 (d,K, µmax, ε) and Q2 (d,K, µmax) by

Q1 =
1−(1−µmax)

√
1−δ((1−ε)

√
1−µmax−

√
Q0)

1−2µmaxK
√

1−δ 1−µmax
1−(2K−1)µmax

, (4.16)

Q2 =

√
2+2(µmax+δ)(1+

√
1−δ(1−µmax)

√
Q0)

√
1−δ(1−µmax)+

√
2+2(µmax+δ)

. (4.17)

Assumption 4.3 (SNR Condition). The SNR r is lower bounded as follows

√
r ≥

{
Q2 (4K − 1)µmax − 2Kµ2

max ≥ 1
min(Q1, Q2) otherwise

(4.18)
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We can now state our support recovery guarantee. The following theorem shows that under the
above assumptions, the DJ-OMP algorithm, which requires lightweight communication and computation,
recovers the support of θ, with high probability.

Theorem 4.1. Under the max-MIP condition (4.5) and Assumptions 4.1-4.3, for sufficiently large
d = d(ε), with probability at least 1 − 2

d

(
2K − 1

)
, DJ-OMP with K rounds recovers the support of the

K-sparse vector θ.

Let us analyze the implications of the theorem when K � d and µmax, ε, δ � 1. In this case Q1 ≈ ε
and Q2 ≈

√
2

1+
√

2
. Hence, Assumption 4.3 is approximately r > (min(Q1, Q2))2 ≈ ε2 or r & µmax. Thus,

there is a range of relatively low SNR values for which with a sufficiently large number of machines,
DJ-OMP is guaranteed to recover the support, even though individual machines fail to do so.

Remark 4.2. Several works considered distributed settings where each machine has a different vector
θ(m), but they all share the same support S (Duarte et al., 2005; Ling and Tian, 2011; Ling et al.,
2012; Wimalajeewa and Varshney, 2014; Li et al., 2015). Theorem 4.1 also holds in such cases, under
the following condition on the vectors θ(m), instead of (4.8),

min
m∈[M ]

∥∥∥x(m)
k

∥∥∥ ∣∣∣θ(m)
k

∣∣∣ ≥ θ̃min ∀k ∈ S.

Remark 4.3. Our approach can be extended to handle the case where the sparsity level K is unknown.
In this case, we may set a stopping criterion whereby the fusion center stops the communication rounds
with the M machines and returns its current support estimate if the number of votes for the most-
voted index falls below a predefined threshold. Corollary 4.1 shows that for a compressed sensing setting
where each matrix entry is i.i.d. Bernoulli, the success probability is almost the same as in Theorem
4.1. The corollary and corresponding simulation results can be found in Appendix 4.7.

Remark 4.4. The success probability in Theorem 4.1 is influenced by the inter-round dependency. It
can be improved by variants of our basic scheme. For instance, allocating half of the machines to the
first K/2 rounds and the rest to the remaining rounds boosts the success probability to 1 − 2K/2+1/d.
Maximizing this approach by using fresh M/K machines at each round increases the probability to
1 − 2K/d. However, this requires a higher SNR to offset the reduced number of machines in each
round. We believe that the success probability in Theorem 4.1 for the basic scheme may be improved
to 1− poly(K)/d, but this remains an open question for future research.

We now compare Theorem 4.1 to related works. Amiraz et al. (2022) studied distributed sparse
mean estimation, which is a special case of distributed sparse linear regression where the design matrices
are orthogonal. They designed low-communication distributed schemes that provably recover the
support for a wide range of SNR values. However, their proofs rely on the design matrices being
orthogonal, and do not generalize to incoherent matrices. Their schemes are single-round, essentially
using the orthogonality to recover all K support indices in parallel, in contrast to our DJ-OMP scheme
which has K iterations, and requires a careful analysis of error propagation. As mentioned above,
Wimalajeewa and Varshney (2014) considered a compressed-sensing setting with incoherent random
matrices whose entries are drawn i.i.d. from the same distribution, and with no noise (σ = 0). In
both of these papers, a key property that greatly simplifies the analysis is that at all machines the
probability for selecting a non-support index is the same for all k /∈ S. Our theorem shows that even
without this symmetry between the non-support indices, distributed-OMP algorithms can achieve exact
support recovery.

4.4 Simulation Results

We compare experimentally the following algorithms, which have different computation and commu-
nication costs (see Table 4.1): (i) Deb-Lasso where each machine computes a debiased-Lasso estimate
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Table 4.1: Communication and Computation Costs

Algorithm Communication cost Computational cost, K � d1/3

Single OMP Õ (K) O (ndK)

Deb-Lasso Õ (d)2 solving d + 1 Lasso optimization prob-
lemsDeb-Lasso-K Õ (K)

SIS-SCAD-K SNR dependent
O (nd)

SIS-OMP-K Õ (K)

D-OMP, L=K
Õ (K) O (ndK)

DJ-OMP

of θ ∈ R
d and sends it to the center. The center averages these M vectors and returns its top K

indices (Lee et al., 2017; Battey et al., 2018); (ii) Deb-Lasso-K, a variant of Barghi et al. (2021), where
each machine sends the top K indices of its debiased-Lasso estimate; (iii) SIS-SCAD-K, a distributed
SIS scheme, where each machine performs variable screening followed by SCAD (Fan and Lv, 2008). It
sends its resulting support set to the center, which selects the top K indices by majority voting; (iv)
SIS-OMP-K, another distributed SIS scheme where each machine estimates its support set using OMP

on the remaining features; (v) D-OMP with L = K; (vi) D-OMP with L = 2K; and (vii) DJ-OMP. To
illustrate the ability of DJ-OMP to recover the support when individual machines fail, for reference we
also ran OMP on a single machine, ignoring the data in all other M − 1 machines. Note that while OMP-
based schemes are essentially parameter free (beyond the sparsity K), in the debiased-Lasso schemes
all machines need to know the noise level σ.

We now describe the simulation setup. Each matrix X(m) is generated as follows. Each row is
drawn independently from N (0,Σ), where Σ is a Toeplitz matrix with Σii = 1 and Σij = α|i−j|

for i 6= j for some α ∈ [0, 1). In all settings, we generate M = 20 such matrices, each containing
n = 2000 samples. The noise level is σ = 1, and the vector θ has a sparsity K = 5, with θ =
θmin · [1,−1.5, 2,−2.5, 3, 0, . . . , 0]>. The tuning parameter in the debiased-Lasso methods, which scales

the `1 term of each of the d+1 Lasso objectives, is set to λ = 2σ
√

log d
n . We consider two settings both

of dimension d = 10000. In Setting (a), α = 0, i.e., all matrix entries are i.i.d. N (0, 1). In Setting
(b), α = 0.1, so the columns of X(m) are weakly correlated. Further implementation details appear
in Appendix 4.9. Code that reproduces the results presented in this chapter is publicly available on
GitHub.3

Figure 4.1 illustrates the empirical success probability of the various algorithms as a function of
θmin in the two settings outlined above. Formally, for an algorithm A,

pAsuccess (θmin) =
1

J

J∑
j=1

1
{
SAj (θmin) = S

}
,

where SAj (θmin) is the support set computed by algorithm A, for noise realization j and lower bound
θmin on the non-zero coefficients of θ, and J is the total number of noise realizations, set to J = 500.
The dashed vertical line in panel (a) is the lower bound θcrit(µ(X), d,K, σ) of Eq. (4.6), above which
in a centralized setting, OMP is guaranteed to recover the support with high probability. In panel (b),
the MIP condition does not hold and the dashed line is not shown. Nonetheless, distributed schemes
still succeed in this case.

1For Deb-Lasso, each machine sends the vector θ̂(m) itself, so the Õ(·) notation hides the number of bits used for
each quantized value.

3https://github.com/ChenAttias/Distributed-OMP
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(a) IID Design Matrices (α = 0)
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Deb-Lasso

Deb-Lasso-K

SIS-SCAD-K

SIS-OMP-K

Single OMP

D-OMP, L = K

D-OMP, L = 2K

DJ-OMP

(b) Correlated Design Matrices (α = 0.1)

Figure 4.1: Support Recovery as a Function of θmin.

Figure 4.1 reveals several phenomena. First, as anticipated, the performance of distributed-OMP
algorithms is inferior to Deb-Lasso, which incurs much higher computational and communication
costs. Second, in accordance with Theorem 4.1, distributed-OMP algorithms succeed at low SNR values,
where OMP on a single machine fails with high probability. Third, DJ-OMP’s performance is comparable
to D-OMP with L = K. For scenarios requiring one-shot communication, D-OMP with more steps,
L = 2K in this example, exceeds DJ-OMP’s performance, while incurring twice the communication
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Figure 4.2: Runtime as a Function of d.

cost, which is still much lower than d if K � d. In Setting (a) where all entries of the matrices X(m)

are i.i.d. Gaussian, the performance of distributed-OMP algorithms is on par with the computationally
demanding Deb-Lasso-K. Notably, in Setting (b) where the matrices X(m) have correlated columns,
distributed-OMP methods surpass Deb-Lasso-K. In the context of variable screening methods, for a
wide range of SNR values, a single machine often misses the full support set during the screening step.
Yet, incorporating voting schemes enables distributed support recovery. Similar to Deb-Lasso-K,
SIS-SCAD-K matches the performance of distributed-OMP algorithms in Setting (a) but lags behind
them in Setting (b). In all the studied settings, SIS-OMP-K performs similarly to D-OMP with L = K.

Figure 4.2 shows the runtime and error bars of several schemes, all implemented in Python, as a
function of d on a logarithmic scale. In this simulation, α = 0 and θmin = 0.1 and we averaged over
J = 20 realizations. The runtime of Deb-Lasso-K is similar to that of Deb-Lasso, and thus not shown.
As seen in the figure, distributed-OMP methods are more than three orders of magnitude faster than
Deb-Lasso. SIS-OMP-K achieves an additional improvement in runtime compared to distributed-OMP
methods. A theoretical study of SIS-OMP-K is an interesting topic for future research.

Finally, in Appendix 4.8 we show empirically that the number of machines to recover the support
scales as M ≈ dβ for some β < 1, in accordance with (4.13).

4.5 Discussion

In distributed sparse linear regression, a fundamental theoretical aspect is determining SNR-dependent
lower bounds on the communication required for exact support recovery. To the best of our knowledge,
there are no such established lower bounds. This necessitates a nuanced exploration of communication
requirements for exact support recovery under different SNRs. When the SNR is sufficiently high
so that an individual machine can recover the support of θ, for example by OMP, the fusion center
may recover the support S by contacting only one machine, incurring an incoming communication
of only O(K log d) bits. Note that even in a noise-less setting, for the fusion center to recover the
support, K indices must be sent to the center, so K log d bits is a lower bound on the total required
communication. On the other hand, when the SNR is low, distributed Deb-Lasso succeeds to recover
the support of θ but incurs a communication cost of Õ (d) bits per machine, which might be prohibitive
in high-dimensional settings.

We conjecture that at low-SNR values, no distributed algorithm can achieve exact support recovery
with communication per machine O(K log d) bits. We note that for closely related problems, achieving
the centralized minimax `2 risk or the centralized prediction error is possible at low SNRs but requires
a communication cost of Ω(d) bits (Shamir, 2014; Steinhardt and Duchi, 2015; Acharya et al., 2019;
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Barnes et al., 2020). Our work shows that for a range of SNR values between these two extremes,
distributed-OMP algorithms do recover the support of θ with communication per machine O(K log d).
An interesting open question is to determine the optimal rate at which the required communication
decreases as a function of the SNR by any distributed algorithm that achieves exact support recovery.
Another interesting direction for future research is to characterize the tradeoff between communication
costs and computational resources.

4.6 Proofs

In this section we prove Theorem 4.1. For ease of presentation, in Section 4.6.1 we state and prove
Theorem 4.2 which addresses the simpler case K = 1. The proof of Theorem 4.1 for the general case
K ≥ 1 appears in Section 4.6.2. The proofs of various auxiliary lemmas appear in Sections 4.6.3-4.6.6.

Towards proving both theorems, we first present a few preliminaries, state useful lemmas and
outline the proof.

Preliminaries. Recall that DJ-OMP is an iterative algorithm, whereby at each round t, all M ma-
chines call the subroutine OMP Step with the same input set St−1. In principle, except at the first round
where S0 = ∅, this input set depends on all the data in all M machines. This statistical dependency
significantly complicates the analysis. Instead, as discussed below, in our proof we will analyze a single
round of DJ-OMP, assuming all machines are provided with a fixed input set s.

Given an input set s to the subroutine OMP Step, each machine m computes a sparse vector sup-
ported on s, i.e.,

θ̂(m) = arg min
z∈Rd

∥∥∥y(m) −X(m)z
∥∥∥

2
s.t. supp(z) = s. (4.19)

Then, it calculates the corresponding residual vector

r(m) = y(m) −X(m)θ̂(m). (4.20)

Finally, each machine m sends to the fusion center the index

j(m) = arg max
i∈[d]
|〈x̃(m)

i , r(m)〉|, (4.21)

where x̃
(m)
i =

x
(m)
i∥∥∥x(m)
i

∥∥∥ is the i-th column of X(m) divided by its norm.

As also described in Algorithm 7, given the messages sent by all M machines, the fusion center
computes a vector v ∈ Rd, where vj counts the number of votes received by index j for all j ∈ [d].
As discussed in the main text, indices in s receive no votes and at each round a new index jcenter is
chosen by the center,

jcenter = jcenter (s) = arg max
j∈[d]\s

vj .

Towards proving that with high probability jcenter ∈ S \ s, we define an additional quantity ρ(m) =
ρ(m)(s) that corresponds to the local SNR at machine m given an input set s. Denote

θ̃(m)
max = θ̃(m)

max(s) = max
k∈S\s

{∥∥∥x(m)
k

∥∥∥ |θk|} . (4.22)

Similar to the definition of r in Eq. (4.9), we define

ρ(m) = ρ(m)(s) =

(
θ̃

(m)
max

θcrit (µmax, d,K, σ)

)2

, (4.23)

where θcrit is defined in Eq. (4.6). Where clear from the context and to simplify notation we will not
write the dependence on the input set s explicitly. Note that by its definition, for any input set s
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that is strictly contained in S, it follows that ρ(m) ≥ r. As discussed in Section 4.3, if ρ(m) > 1, then
with high probability machine m would recover a support index, namely j(m) ∈ S \ s (Amiraz et al.,
2021). Therefore, in what follows, we consider a worst case scenario whereby ρ(m) ≤ 1 in all machines
m ∈ [M ].

Proof outline and lemmas. For simplicity we prove the theorem assuming the number of machines
is the smallest that still satisfies Assumption 4.1, namely M = Mc (d,K, µmax, r), with Mc defined in
Eq. (4.12). A larger number of machines would only increase the probability of exact support recovery.
The main idea of the proof is to show that at each of the K rounds, with high probability the center
indeed chooses a support index. Specifically, consider a single round of DJ-OMP with a fixed input set
s ⊂ S. Then, for the center to choose an index jcenter ∈ S \ s, it suffices that there exists some support
index k ∈ S \ s that received more votes than any non-support index, namely,

vk > max
j /∈S

vj . (4.24)

A sufficient condition for (4.24) to occur is that for some suitable threshold tc = tc(s) > 0, both

vk > tc, (4.25)

and
max
j /∈S

vj < tc. (4.26)

As described below, our chosen threshold tc depends on the following quantity F , which provides a
lower bound for the probability that a support index is sent to the center by one of the machines,

F (d,K, µmax, r) =
1

2
Φc
(

(1−
√
r)
√

2 log d√
1−δ(1−µmax)

)
. (4.27)

Note that by this definition, Eq. (4.12) can be rewritten as

Mc (d,K, µmax, r) = K

⌈
8 log d

F (d,K, µmax, r)

⌉
. (4.28)

We will show that Eqs. (4.25) and (4.26) indeed hold with high probability with the following threshold

tc = tc(s) =

∑
m∈[M ] F

(
d,K, µmax, ρ

(m)(s)
)

M · F (d,K, µmax, r)
4 log d, (4.29)

where r, ρ(m) and F are defined in Eqs. (4.9), (4.23), and (4.27) respectively. Note that ρ(1), . . . , ρ(M)

and tc, which all depend also on the subset s, are not assumed to be known to the center and are only
used in the proof.

The following Lemma 4.1 provides a lower bound for the threshold tc, which will be useful in our
proofs. Its proof follows directly from the definition of F in Eq. (4.27) and appears in Section 4.6.3.

Lemma 4.1. Under the max-MIP condition (4.5), for any fixed s ⊂ S, the threshold tc = tc(s) defined
in Eq. (4.29) satisfies

tc ≥ 4 log d. (4.30)

The following Lemma 4.2 states that if the expected number of votes for an index k ∈ S \ s is
sufficiently high, then event (4.25) occurs with high probability. The next Lemma 4.3 shows that if
the expected number of votes for each non-support index j /∈ S is sufficiently low, then event (4.26)
occurs with high probability. These lemmas follow from Chernoff bounds and are proved in Section
4.6.3 as well.
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Lemma 4.2. Assume the max-MIP condition (4.5) holds. Fix s ⊂ S, and let tc = tc(s) be given by
Eq. (4.29). If E [vk] ≥ 2tc for some k ∈ S \ s, then

Pr [vk ≤ tc] ≤
1

d
.

Lemma 4.3. Assume the max-MIP condition (4.5) holds. Fix s ⊂ S, and let tc = tc(s) be given by
Eq. (4.29). If for all non-support indices j /∈ S it holds that E [vj ] ≤ tc

5 then

Pr

[
max
j /∈S

vj ≥ tc
]
≤ 1

d
.

It remains to bound E [vj ] from above for j ∈ S \ s and from below for j /∈ S. Towards this goal,

denote by p
(m)
j the probability that machine m sends index j, namely

p
(m)
j = Pr

[
j(m) = j

]
, (4.31)

where j(m) is defined in Eq. (4.21).

Since E [vj ] =
∑
m p

(m)
j , it suffices to bound the probability p

(m)
j . For ease of presentation, we first

derive these bounds for the case K = 1 in Section 4.6.1, and then extend them to the general case
K ≥ 1 in Section 4.6.2.

4.6.1 Support recovery guarantee for sparsity K = 1

For completeness, we rewrite Assumptions 4.1-4.3 for this case. Since K = 1, by its definition in Eq.
(4.11), δ (1, µmax) = 0. Hence, the quantity F simplifies to

F (d, 1, µmax, r) =
1

2
Φc
(

1−√r
1− µmax

√
2 log d

)
, (4.32)

and the quantity Mc from Eq. (4.28) reduces to

Mc (d, 1, µmax, r) =

⌈
8 log d

F (d, 1, µmax, r)

⌉
. (4.33)

Thus, for K = 1, Assumptions 4.1 and 4.2 read as follows:

Assumption 4.4. M ≥Mc (d, 1, µmax, r).

Assumption 4.5. The parameter ε = ε(µmax) satisfies

√
µmax

1 +
√
µmax

< ε < 1. (4.34)

The quantity Q0 reduces to

Q0 (d, 1) =
log
(
88
√

2
)

log d
. (4.35)

In addition, the expressions for Q1 and Q2 simplify to

Q1 (d, 1, µmax, ε) =
1− (1− µmax)

(
(1− ε)√1− µmax −

√
Q0

)
1− 2µmax

, (4.36)

Q2 (d, 1, µmax) =

√
2 + 2µmax

(
1 + (1− µmax)

√
Q0

)
1− µmax +

√
2 + 2µmax

. (4.37)

Finally, for K = 1, Assumption 4.3 on the SNR is:
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Assumption 4.6 (SNR Condition). The SNR is sufficiently high,

√
r ≥

{
Q2 µmax ≥ 1/2
min(Q1, Q2) otherwise

(4.38)

Theorem 4.2. Under Assumptions 4.4-4.6 and the max-MIP condition µmax < 1, for sufficiently
large d = d(ε), with probability at least 1 − 2/d, a single round of DJ-OMP recovers the support of a
1-sparse vector θ.

A few remarks are in place. First, note that when K = 1, D-OMP with L = 1 reduces to the same
algorithm as DJ-OMP, and thus this result holds for this algorithm as well. Second, as mentioned in
Section 4.3, when µmax � 1 condition (4.38) roughly translates to r & ε2, and hence r & µmax. Thus,
there is a range of relatively low SNR values for which DJ-OMP succeeds to recover the support, even
though the probability of any single machine to do so is very low.

Proof of Theorem 4.2

When K = 1, only a single round is performed with an input set s = ∅. Thus it trivially holds that
s ⊂ S. In addition, OMP Step simplifies to the following procedure. At each contacted machine m, the
residual is simply the response vector, i.e., r(m) = y(m). Thus, the index sent by machine m to the
fusion center is given by

j(m) = arg max
i∈[d]
|〈x̃(m)

i ,y(m)〉|. (4.39)

Another simplification in the case K = 1 is that the support set contains only one index, which we

denote by k, i.e., S = {k}. To prove Theorem 4.2, we derive a lower bound on the probability p
(m)
k

for the support index k in the following Lemma 4.4 and an upper bound on the probability p
(m)
j for

each non-support index j /∈ S in the following Lemma 4.5. Their proofs appear in Section 4.6.4 and
are based on a probabilistic analysis of the inner products between the response vector y(m), which
consists of signal and noise, and different columns x̃i.

Lemma 4.4. Assume that ‖θ‖0 = K = 1 and let S = {k} = supp {θ}. Further assume that the
max-MIP condition (4.5) holds. For sufficiently large d, for each machine m,

p
(m)
k ≥ F

(
d, 1, µmax, ρ

(m)
)
, (4.40)

where p
(m)
k and F are defined in Eqs. (4.31) and (4.32) respectively.

Lemma 4.5. Assume that ‖θ‖0 = K = 1 and let S = supp {θ}. Further assume that ρ(m) of
Eq. (4.23) satisfies ρ(m) ≤ 1 for each machine m and that the max-MIP condition (4.5) holds. If ε
satisfies Assumption 4.5, the SNR parameter r satisfies Assumption 4.6, and the dimension d = d(ε)
is sufficiently large, then for each machine m and each non-support index j /∈ S,

p
(m)
j ≤ F

(
d, 1, µmax, ρ

(m)
)

11
. (4.41)

We now formally prove Theorem 4.2 by combining the above lemmas.

Proof of Theorem 4.2. For simplicity, we assume that the number of machines isM = Mc (d, 1, µmax, r),
since a larger number of machines would only increase the probability of successful support recovery.
We first analyze the probability that event (4.25) occurs. By Lemma 4.4, for the support index

k ∈ S, its expected number of votes is E [vk] =
∑
m∈[M ] p

(m)
k ≥ ∑m∈[M ] F

(
d, 1, µmax, ρ

(m)
)
. By the

definitions of tc in Eq. (4.29) and Mc in Eq. (4.33),

E [vk] ≥ Mc · F (d, 1, µmax, r)

4 log d
· tc =

⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
· tc ≥ 2tc.
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By Lemma 4.2, the event (4.25) occurs with probability at least 1− 1/d.
Next, we analyze the probability that event (4.26) occurs. Fix a non-support index j /∈ S.

Since ρ(m) ≤ 1, then by Lemma 4.5, its expected number of votes is E [vj ] =
∑
m∈[M ] p

(m)
j ≤

1
11

∑
m∈[M ] F

(
d, 1, µmax, ρ

(m)
)
. By the definitions of tc in Eq. (4.29) and Mc in Eq. (4.33),

E [vj ] ≤
1

11

⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
tc <

tc
5
.

The last inequality is justified as follows. Recall that dxe ≤ x+ 1 for all x. Thus,⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
≤ 2 +

F (d, 1, µmax, r)

4 log d
.

By the definition of F in Eq. (4.32), it follows that F (d, 1, µmax, r) ≤ 1. Hence, when d ≥ 8,

then log d > 2, and the term F (d,1,µmax,r)
4 log d ≤ 1

8 . Hence, by Lemma 4.3, the event (4.26) occurs with

probability at least 1− 1/d. A union bound completes the proof.

4.6.2 Proof of Theorem 4.1

We now prove that with high probability, DJ-OMP succeeds to recover the support of θ with general
sparsity level K. The proof relies on the following lemma, which bounds the probability that, given a
fixed input set s, the center chooses an incorrect index at a single round of the algorithm.

Lemma 4.6. Let s ⊂ [d] be a fixed set of indices given as input to a single round of DJ-OMP and denote
by jcenter (s) the index chosen by the center at the end of this round. Under Assumptions 4.1-4.3 and
the max-MIP condition (4.5), for sufficiently large d = d(ε), if s ⊂ S then the index jcenter (s) also
belongs to the support set S with high probability. Specifically,

Pr [jcenter (s) /∈ S] ≤ 2d−1. (4.42)

First, let us show how Theorem 4.1 follows directly from Lemma 4.6.

Proof of Theorem 4.1. Recall that DJ-OMP starts with S0 = ∅, adds exactly one new index to the
estimated support set at each round, and runs for exactly K rounds. We denote by S1, S2, . . . , SK the
index sets found by the center after t = 1, 2, . . . ,K distributed rounds of DJ-OMP, respectively.

Our goal is to upper bound the probability that SK , the output of DJ-OMP after K rounds, is not
the true support set S. To this end we decompose this failure probability according to the round at
which the failure occurred,

Pr [SK 6= S] =

K∑
t=1

∑
st−1⊂S
|st−1|=t−1

Pr [jt (st−1) /∈ S and St−1 = st−1] .

Directly analyzing each of the terms above is challenging due to the statistical dependency between
the set of indices found so far St−1, and the new index found in the current round. To overcome this,
we use the inequality Pr[A ∩B] ≤ Pr[A], which gives

Pr [SK 6= S] ≤
K∑
t=1

∑
st−1⊂S
|st−1|=t−1

Pr [jt(st−1) /∈ S] .

Since now the set st−1 is fixed, we can bound each term via Lemma 4.6. This gives

Pr [SK 6= S] ≤ 2

d

K∑
t=1

(
K

t− 1

)
=

2

d

(
2K − 1

)
,

which completes the proof.
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Next, we prove Lemma 4.6. Since s ⊂ S, we need to bound the probability p
(m)
j of Eq. (4.31) for

j ∈ S \ s and for j /∈ S. We shall do so using the following two lemmas. The first one, Lemma 4.7,
lower bounds a different quantity q(m) defined as the probability that the index sent by machine m
belongs to the support S \ s,

q(m) = q(m)(s) = Pr
[
j(m) ∈ S \ s

]
. (4.43)

Lemma 4.8 upper bounds p
(m)
j for each j /∈ S. Their proofs appear in Section 4.6.5.

Lemma 4.7. Assume that the max-MIP condition (4.5) holds. For each machine m, for sufficiently
large d,

q(m) ≥ F
(
d,K, µmax, ρ

(m)
)
, (4.44)

where q(m) and F are defined in Eqs. (4.43) and (4.27) respectively.

Lemma 4.8. Assume that ρ(m) of Eq. (4.23) satisfies ρ(m) ≤ 1 for each machine m and that the max-
MIP condition (4.5) holds. If ε satisfies Assumption 4.2, the SNR parameter r satisfies Assumption
4.3, and the dimension d = d(ε) is sufficiently large, then for each machine m and each non-support
index j /∈ S,

p
(m)
j ≤ F

(
d,K, µmax, ρ

(m)
)

11K
, (4.45)

where p
(m)
j and F are defined in Eqs. (4.31) and (4.27) respectively.

We now formally prove Lemma 4.6 by combining the above lemmas.

Proof of Lemma 4.6. As mentioned above, for simplicity, we prove the lemma assuming that the num-
ber of machines is M = Mc (d,K, µmax, r), since a larger number of machines would only increase the
probability of exact support recovery. We first analyze the probability that event (4.25) occurs. Since
s ⊂ S, the set of support indices not yet found is S \ s. Let v(S \ s) =

∑
k∈S\s vk be the total number

of votes received for all these support indices combined. By Lemma 4.7, the expected number of votes
is E [v(S \ s)] =

∑
m∈[M ] q

(m) ≥∑m∈[M ] F
(
d,K, µmax, ρ

(m)
)
. By definition of tc in Eq. (4.29),

E [v(S \ s)] ≥ Mc (d,K, µmax, r)F (d,K, µmax, r)

4 log d
· tc.

By definition of Mc in Eq. (4.28),

E [v(S \ s)] ≥ K
⌈

8 log d

F (d,K, µmax, r)

⌉
F (d,K, µmax, r)

4 log d
· tc ≥ 2Ktc.

By an averaging argument, there exists a support index k ∈ S \ s for which E[vk] ≥ 1
|S\s|E [v(S \ s)] ≥

2tc. Thus, by Lemma 4.2, the event (4.25) occurs with probability at least 1− 1/d.
Similarly to the proof of Theorem 4.2, Lemmas 4.3 and 4.8 imply that the event (4.26) also occurs

with probability at least 1 − 1/d. The only change in the proof is that Mc now has a factor of K,
which cancels with the 1/K factor in Lemma 4.8. A union bound completes the proof.

4.6.3 Proofs of Lemmas 4.1, 4.2 and 4.3

We first prove Lemma 4.1 and then use it to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.1. By its definition in Eq. (4.27), the function F is monotonic increasing in its

fourth argument. Next, by Eq. (4.22), θ̃min ≤ θ̃(m)
max, and thus r ≤ ρ(m) for each m ∈ [M ]. Hence,

1

M

∑
m∈[M ]

F (d,K, µmax, ρ
(m))

F (d,K, µmax, r)
≥ 1

Inserting this inequality into the definition of tc, in Eq. (4.29) concludes the proof.
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In the proofs below we use the following Chernoff bounds.

Lemma 4.9 (Chernoff (1952)). Suppose X1, . . . , Xd are independent Bernoulli random variables and
let X denote their sum. Then, for any φ ≥ 0,

Pr [X ≥ (1 + φ) E [X]] ≤ e−
φ2E[X]
2+φ , (4.46)

and for any 0 ≤ φ ≤ 1,

Pr [X ≤ (1− φ) E [X]] ≤ e−φ
2E[X]

2 . (4.47)

Next, we introduce a few notations. Denote the indicator that machine m sends index k by

I
(m)
k = 1

{
j(m) = k

}
. The number of votes that k receives is thus vk =

∑
m∈[M ] I

(m)
k . Further denote

Ek = E[vk]. Recall that the noises
{
ξ(m)

}
m∈[M ]

are independent. Hence, for a fixed s, the indicators{
I

(m)
k

}
m∈[M ]

are independent of each other. We now combine Lemmas 4.9 and 4.1 to prove Lemmas

4.2 and 4.3.

Proof of Lemma 4.2. By the discussion above, we may apply the Chernoff bound (4.47) to the sum
vk. Using the assumption Ek ≥ 2tc and Lemma 4.1, we obtain

Pr [vk < tc] ≤ Pr
[
vk <

1
2Ek

]
≤ exp (−Ek/8) ≤ exp (−tc/4) ≤ 1/d.

Proof of Lemma 4.3. Fix j /∈ S and let φj = tc
Ej
− 1. The probability of interest is monotonically

increasing in Ej . Hence, it suffices to prove the lemma for Ej = tc/5. In this case φj = 4, and
φj/(2 + φj) = 2/3. Applying the Chernoff bound (4.46) to the sum vj , we obtain

Pr [vj > tc] = Pr [vj > (1 + φj)Ej ] ≤ exp

(
−

φ2
j

2 + φj
Ej

)
≤ exp

(
−8tc

15

)
.

By Lemma 4.1, the above probability is smaller than d−2, and by applying a union bound we conclude
that

Pr

[
max
j 6∈S

vj > tc

]
≤ (d−K) Pr [vj > tc] ≤ 1/d.

4.6.4 Proofs of Lemmas 4.4 and 4.5

We begin with a few definitions and notations. For a set of indices I, let u|I ∈ R|I| be the restriction

of the vector u to I. Similarly, for a matrix A ∈ R
n×d, let A|I ∈ R

n×|I| be the restriction of the

matrix A to the columns indexed by I. Further denote by A† the Moore-Penrose pseudo inverse of

the matrix A, i.e., A† =
(
A>A

)−1
A> and notice that A†A = I. Lastly, recall that X̃(m) ∈ R

n×d

is the column-normalized matrix in machine m and denote by P
(m)
I ∈ Rn×n an orthogonal projection

onto the span of X̃
(m)
|I , i.e.,

P
(m)
I = X̃

(m)
|I

(
X̃

(m)
|I

)†
. (4.48)

For simplicity of notation, in Sections 4.6.4-4.6.6 we fix a machine m and thus omit the index m
from the proofs.

In our proofs we shall use classical tail bounds for the Gaussian distribution (Lemma 4.10), a
technical lemma regarding the Gaussian distribution, Lemma 4.11, whose proof appears in Section
4.6.6, and Lemma 4.12, which bounds the left tail probability of the maximum of correlated Gaussian
random variables (Lopes and Yao, 2022).
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Lemma 4.10 (Gaussian tail bounds (Gordon, 1941)). For any t > 0,

t√
2π(t2 + 1)

e−t
2/2 ≤ Φc(t) ≤ 1√

2πt
e−t

2/2. (4.49)

Lemma 4.11. For any a, b ≥ 0,

Φc (a+ b) <
√

2e−b
2/2Φc (a) .

Lemma 4.12 ((Lopes and Yao, 2022)). Let (Z1, . . . , Zd) ∼ N (0,Σ) where Σii = 1 for all i ∈ [d]
and Σij ≤ η < 1 for some fixed η > 0 for all i 6= j ∈ [d]. Fix ζ ∈ (0, 1). There is a constant C > 0
depending only on (η, ζ) such that

Pr

[
max
i∈[d]

Zi < ζ
√

2(1− η) log d

]
≤ Cd−

(1−η)(1−ζ)2
η (log d)

1−η(2−ζ)−ζ
2η . (4.50)

To put Lemma 4.12 in context, recall that the maximum of d independent Gaussians is sharply
concentrated at

√
2 log d. In general, for correlated Gaussian random variables, their maximum is

lower. However, as the lemma shows, it is unlikely to be much lower than
√

2(1− η) log d, where η is
an upper bound on the correlation. We use this result with η = µmax and ζ = 1− ε, where ε satisfies
Assumption 4.2, in order to bound the probability that a non-support index is sent to the center and
prove Lemma 4.5.

Since here we are considering the case K = 1, the support of θ is a single index S = {k}. In this
case, omitting the index of machine m, by Eq. (4.7) its response vector y = y(m) admits the following
form

y = θ̃kx̃k + σξ. (4.51)

Recall that by its definition in Eq. (4.22), θ̃max = ‖xk‖ |θk| = |θ̃k|. By Eq. (4.23) for ρ and Eq. (4.6)
for θcrit with K = 1,

θ̃max =
σ
√

2ρ log d

1− µmax
. (4.52)

We now prove the lemmas.

Proof of Lemma 4.4. Recall that pk, defined in Eq. (4.31), is the probability that the support index
k is selected by OMP Step. This occurs if out of all columns of X̃(m), the k-th column has the highest
correlation with the response vector. Hence, to prove the lemma we need to lower bound the probability
of the following event,

|〈x̃k,y〉| ≥ max
i/∈S
|〈x̃i,y〉| . (4.53)

where y is given by (4.51). To this end, we decompose the noise ξ in Eq. (4.51) as the sum of two
components, the first ξ‖ = Pkξ = 〈x̃k, ξ〉 x̃k is parallel to x̃k, namely

〈
x̃k, ξ‖

〉
= 〈x̃k, ξ〉, and the second

ξ⊥ = ξ − ξ‖ = (I−Pk) ξ, is orthogonal to x̃k, i.e., 〈x̃k, ξ⊥〉 = 0.
Next, we use this decomposition to bound the two terms in (4.53). Combining the expression (4.51)

for y, the decomposition of ξ and the fact that θ̃max = |θ̃k|, the LHS of (4.53) can be bounded by

|〈x̃k,y〉| ≥ sign
(
θ̃k

)
〈x̃k,y〉 = sign

(
θ̃k

)(
θ̃k 〈x̃k, x̃k〉+ σ 〈x̃k, ξ〉

)
= θ̃max + σ sign

(
θ̃k

) 〈
x̃k, ξ‖

〉
. (4.54)

Similarly, the RHS of (4.53) can be bounded by

max
i/∈S
|〈x̃i,y〉| = max

i/∈S

∣∣∣θ̃k 〈x̃i, x̃k〉+ σ
〈
x̃i, ξ‖ + ξ⊥

〉∣∣∣
≤

(
θ̃max + σ |〈x̃k, ξ〉|

)
max
i/∈S
{|〈x̃i, x̃k〉|}+ σmax

i/∈S
|〈x̃i, ξ⊥〉|

≤
(
θ̃max + σ

∣∣〈x̃k, ξ‖〉∣∣)µmax + σmax
i/∈S
|〈x̃i, ξ⊥〉| . (4.55)
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where the second step follows from the triangle inequality and the definitions of θ̃max and ξ‖, and the
last step follows from the definition of µmax. Combining Eq. (4.54) with Eq. (4.55) implies that a
sufficient condition for (4.53) to hold is that

max
i/∈S
|〈x̃i, ξ⊥〉| ≤ sign

(
θ̃k

) 〈
x̃k, ξ‖

〉
− µmax

∣∣〈x̃k, ξ‖〉∣∣+
θ̃max

σ
(1− µmax) .

By Eq. (4.52), the above event may be written as

max
i/∈S
|〈x̃i, ξ⊥〉| ≤ sign

(
θ̃k

) 〈
x̃k, ξ‖

〉
− µmax

∣∣〈x̃k, ξ‖〉∣∣+
√

2ρ log d. (4.56)

A key property is that ξ‖ and ξ⊥ are independent random variables. Hence, the left-hand side and
right-hand side in the above inequality, which we denote by A and B, respectively, are also independent
random variables. Now, for any threshold T ∈ R, with A,B independent random variables,

Pr [A ≤ B] ≥ Pr [A ≤ T ∩B ≥ T ] = Pr [A ≤ T ] · Pr [B ≥ T ] . (4.57)

Thus,
pk ≥ Pr[A ≤ T ] · Pr]B ≥ T ] (4.58)

and it suffices to lower bound these two probabilities.
In what follows we consider T =

√
2 log d. We begin with bounding Pr

[
A ≤ √2 log d

]
. Fix i /∈ S

and consider the quantity 〈x̃i, ξ⊥〉. We may write x̃i = Pkx̃i + (I − Pk)x̃i Since ξ⊥ = (I−Pk) ξ,
then 〈Pkx̃i, ξ⊥〉 = 0, and 〈x̃i, ξ⊥〉 = 〈(I−Pk) x̃i, ξ⊥〉 . Normalizing the inner product by the norm of

(I−Pk)x̃i yields a standard normal random variable Zi = 〈x̃i,ξ⊥〉
‖(I−Pk)x̃i‖2

∼ N (0, 1). By the definition of
µmax,

‖(I−Pk) x̃i‖2 = x̃Ti (I−Pk) x̃i = 1− 〈x̃i, x̃k〉2 ≥ γ2
1 ,

where γ1 =
√

1− µ2
max. Hence,

Pr [A ≤ T ] ≥ Pr

[
max
i/∈S
|Zi| ≤

T

γ1

]
.

Since {Zi}i/∈S are jointly Gaussian, by (Šidák, 1967, Thm. 1), regardless of their covariance structure,

Pr

[
max
i/∈S
|Zi| ≤

T

γ1

]
≥
∏
i/∈S

Pr

[
|Zi| ≤

T

γ1

]
.

Applying the Gaussian tail bound (4.49) with T =
√

2 log d,

Pr

[
|Zi| ≤

√
2 log d

γ1

]
≥ 1− γ1√

π log d
d−1/γ2

1 .

Combining the above three inequalities with Bernoulli’s inequality (1 − a)d ≥ 1 − da which holds for
any a ∈ [0, 1], gives

Pr
[
A ≤

√
2 log d

]
≥
(

1− γ1√
π log d

d−1/γ2
1

)d−1

≥ 1− γ1√
π log d

d1−1/γ2
1 ≥ 1

2
, (4.59)

where the last inequality holds for sufficiently large d and follows from noting that 0 < γ1 ≤ 1.
We now bound Pr [B ≥ T ], where B is the RHS of (4.56). Since x̃k has unit norm, by the definition

of ξ‖, then Z =
〈
x̃k, ξ‖

〉
= 〈x̃k, ξ〉 ∼ N (0, 1). By the law of total probability,

Pr [B ≥ T ] = Pr
[
sign

(
θ̃k

) 〈
x̃k, ξ‖

〉
− µmax

∣∣〈x̃k, ξ‖〉∣∣ ≥ T −√2ρ log d
]

≥ Pr
[
γ2 |Z| ≥ T −

√
2ρ log d | sign (Z) = sign

(
θ̃k

)]
· Pr

[
sign (Z) = sign

(
θ̃k

)]
,
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where γ2 = 1 − µmax. Since Z is symmetric around zero, Pr
[
sign (Z) = sign

(
θ̃k

)]
= 1

2 and its

magnitude is independent on its sign. Thus, for T =
√

2 log d,

Pr
[
B ≥

√
2 log d

]
≥ 1

2
Pr
[
γ2 |Z| ≥

√
2 log d−

√
2ρ log d

]
≥ Φc

(
1−√ρ
γ2

√
2 log d

)
. (4.60)

Inserting (4.59) and (4.60) with γ2 = 1 − µmax into (4.58) and recalling the definition of F in (4.32)
completes the proof of Lemma 4.4.

Proof of Lemma 4.5. Fix a non-support index j /∈ S. Recall that pj , defined in Eq. (4.31), is the
probability that index j is selected by OMP Step. This occurs if j has the highest correlation with the
response vector, i.e.,

pj = Pr

[
|〈x̃j ,y〉| > max

i 6=j
|〈x̃i,y〉|

]
. (4.61)

In particular, for the j-th index to be chosen, the correlation of the j-th column with the response
vector must exceed both that of the support column k, as well as that of any other non-support column
i /∈ {k, j}. Indeed, in what follows we separately upper bound

Pr

[
|〈x̃j ,y〉| > max

i/∈{k,j}
|〈x̃i,y〉|

]
(4.62)

and
Pr [|〈x̃j ,y〉| > |〈x̃k,y〉|] , (4.63)

and then use the following inequality to upper bound (4.61) by their minimum. Specifically, denote
A = |〈x̃j ,y〉|, B = maxi/∈{k,j} |〈x̃i,y〉| and C = |〈x̃k,y〉|, then

Pr [A > max {B,C}] ≤ min {Pr [A > B] ,Pr [A > C]} . (4.64)

For later use in both bounds, by the triangle inequality, the random variable A can be upper bounded
as follows

|〈x̃j ,y〉| =
∣∣∣θ̃k 〈x̃j , x̃k〉+ σ 〈x̃j , ξ〉

∣∣∣ ≤ θ̃maxµmax + σ |〈x̃j , ξ〉| . (4.65)

We first bound (4.62). For each non-support index i /∈ S such that i 6= j,

|〈x̃i,y〉| ≥ 〈x̃i,y〉 = θ̃k 〈x̃i, x̃k〉+ σ 〈x̃i, ξ〉 ≥ −θ̃maxµmax + σ 〈x̃i, ξ〉 .

Combining this with Eq. (4.65), rearranging terms, and recalling the relation between θmax and ρ in
(4.52) yields

Pr

[
|〈x̃j ,y〉| > max

i/∈{k,j}
|〈x̃i,y〉|

]
≤ Pr

[
|〈x̃j , ξ〉|+ 2µmax

√
2ρ log d

1− µmax
> max
i/∈{k,j}

〈x̃i, ξ〉
]
. (4.66)

Next, we use the following inequality which holds for any pair of random variablesD,E and constant
T ∈ R,

Pr [D > E] ≤ Pr [D ≥ T ] + Pr [E < T ] . (4.67)

Applying this inequality with T = (1 − ε)
√

2 (1− µmax) log d and ε ∈ (0, 1) as in Eq. (4.34), we can
upper bound (4.66) by

Pr
[
|〈x̃j , ξ〉| ≥ a

√
2 log d

]
+ Pr

[
max
i/∈{k,j}

〈x̃i, ξ〉 < (1− ε)
√

2 (1− µmax) log d

]
,

where

a = (1− ε)
√

1− µmax −
2µmax

√
ρ

1− µmax
.
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Since x̃j has unit norm, 〈x̃j , ξ〉 ∼ N (0, 1). Hence, the first term is bounded by

2Φc
(
a
√

2 log d
)
. (4.68)

We now bound the second term. It involves the maximum of d − 2 correlated Gaussians, whose
covariance matrix Σ has Σii = 1 for all i, and Σij = Cov (〈x̃i, ξ〉 , 〈x̃l, ξ〉) = 〈x̃i, x̃l〉 ≤ µmax. Hence, we
can apply Lemma 4.12 with η = µmax and ζ = 1− ε, which gives the following bound

C (d− 2)
− 1−µmax

µmax
ε2

(log(d− 2))
ε−µmax(1+ε)

2µmax . (4.69)

We now show that (4.68) is larger than (4.69), and thus

Pr

[
|〈x̃j ,y〉| > max

i/∈{k,j}
|〈x̃i,y〉|

]
≤ 4Φc

(
a
√

2 log d
)
. (4.70)

First note that if ρ is sufficiently large such that a ≤ 0, then (4.68) is larger than 1, and thus larger
than (4.69). Otherwise, a > 0 and using the lower bound for the Gaussian tail of (4.49), we may

lower bound (4.68) by d−a
2−o(1), where o(1) hides factors that are asymptotically smaller than 1. The

term (4.69) can be upper bounded by d−b
2+o(1), where b =

√
1−µmax

µmax
ε. Next, let us show that for a

fixed ε > 0, b − a is positive and bounded away from 0. This, in turn, implies that for sufficiently

large d = d (ε), (4.68) is larger than (4.69). Indeed, under condition (4.34), ε =
√
µmax

1+
√
µmax

+ ε0 for some

ε0 > 0. Thus, b−a = ε0
√

1− µmax

(
1 + 1√

µmax

)
+

2µmax
√
ρ

1−µmax
, which is a sum of positive terms and hence

bounded away from 0 as desired. Therefore, condition (4.34) implies that (4.62) can be bounded by
(4.70).

We now bound (4.63). For the support index k, by (4.51),

|〈x̃k,y〉| ≥ sign
(
θ̃k

)
〈x̃k,y〉 = sign

(
θ̃k

)(
θ̃k 〈x̃k, x̃k〉+ σ 〈x̃k, ξ〉

)
= θ̃max + σ sign

(
θ̃k

)
〈x̃k, ξ〉 .

Combining this with (4.65) and plugging θ̃max in Eq. (4.52), the probability (4.63) is upper bounded
by

Pr
[
|〈x̃j , ξ〉| − sign

(
θ̃k

)
〈x̃k, ξ〉 >

√
2ρ log d

]
. (4.71)

We now upper bound this probability. Let H = 〈x̃j , ξ〉, G = sign
(
θ̃k

)
〈x̃k, ξ〉 and c =

√
2ρ log d.

For any pair of random variables G,H and constant c,

Pr [|H| −G > c] ≤ Pr [H −G > c] + Pr [−H −G > c] . (4.72)

By their definition, H,G are jointly Gaussian with mean zero and covariance matrix(
σ2
H σHG

σHG σ2
G

)
.

Hence, H−G ∼ N (0, σ2
H +σ2

G−2σHG) and −H−G ∼ N (0, σ2
H +σ2

G+ 2σHG). Similarly to the above

discussion, the diagonal entries σ2
H = σ2

G = 1 and the off-diagonal entry σHG = sign
(
θ̃k

)
〈x̃k, x̃j〉.

Since |σHG| ≤ µmax, then by (4.72),

Pr [|H| −G > c] ≤ Φc
(

c√
2− 2σHG

)
+ Φc

(
c√

2 + 2σHG

)
≤ 2Φc

(
c√

2 + 2µmax

)
.

Inserting c =
√

2ρ log d yields

Pr [|〈x̃j ,y〉| > |〈x̃k,y〉|] ≤ 2Φc

(√
2ρ log d

2 + 2µmax

)
. (4.73)
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By Eq. (4.64), the probability (4.61) is at most the minimum between (4.70) and (4.73). By the
monotonicity of the Gaussian CDF, it is upper bounded by

4Φc
(

max

{(
(1− ε)

√
1− µmax −

2µmax
√
ρ

1− µmax

)
,

√
ρ

2 + 2µmax

}√
2 log d

)
. (4.74)

Finally, to prove (4.41) of the lemma, we note that with Q1 and Q2 defined in Eqs. (4.36) and
(4.37) respectively, by splitting to cases and applying some algebraic manipulations4, condition (4.38)
implies that

1−√r
1− µmax

+
√
Q0 < max

{(
(1− ε)

√
1− µmax −

2µmax
√
r

1− µmax

)
,

√
r

2 + 2µmax

}
. (4.75)

The definitions of r and ρ in Eqs. (4.9) and (4.23) imply that ρ ≥ r. Thus, ρ satisfies condition (4.38)
and hence condition (4.75). The RHS of (4.75) is the same as the maximum in (4.74) above. Thus,
(4.74) is upper bounded by

4Φc
((

1−√ρ
1− µmax

+
√
Q0

)√
2 log d

)
. (4.76)

Since ρ ≤ 1, we can apply Lemma 4.11. Hence, by the definition of Q0 in Eq. (4.35), and by the
definition of F in Eq. (4.32),

pj ≤ 4Φc
((

1−√ρ
1− µmax

+
√
Q0

)√
2 log d

)
≤ 4
√

2d−Q0Φc
(

1−√ρ
1− µmax

√
2 log d

)
= 4
√

2
1

88
√

2
Φc
(

1−√ρ
1− µmax

√
2 log d

)
=
F (d, 1, µmax, ρ)

11
,

which completes the proof of Lemma 4.5.

4.6.5 Proof of Lemmas 4.7 and 4.8

We first make a few definitions and present a useful technical lemma. We begin by rewriting the
residual r(m) using the notations introduced in Section 4.6.4. Recall that given an input support
set s, each machine m estimates its vector θ̂(m) by solving the least squares problem (4.19). Thus,

supp
(
θ̂(m)

)
= s and

θ̂
(m)
|s =

(
X

(m)
|s

)†
y(m).

Denote by ξ̃(m) the projection of the noise ξ(m) to the subspace orthogonal to the span of the columns

of X
(m)
|s , i.e., ξ̃(m) =

(
I−P

(m)
s

)
ξ(m). Given that s ⊂ S, the residual r(m) defined in Eq. (4.20) can

4First, consider the case µmax ≥ 1/2. By the max-MIP condition (4.5), µmax < 1, and hence the term
1−µmax+

√
2+2µmax

(1−µmax)
√

2+2µmax
is positive, and thus can multiply both sides of the inequality

√
r > Q2 without altering its di-

rection. Rearranging yields that the LHS of (4.75) is smaller than
√

r
2+2µmax

and thus smaller than the RHS of (4.75).

Now consider the case µmax < 1/2. By (4.38),
√
r > Q1 or

√
r > Q2. By the same reasoning, the latter implies

that the LHS of (4.75) is smaller than
√

r
2+2µmax

. Similarly, the term 1−2µmax
1−µmax

is positive in this case, and thus

multiplying the inequality
√
r > Q1 by it and rearranging the terms implies that the LHS of (4.75) is smaller than

(1− ε)
√

1− µmax − 2µmax
√
r

1−µmax
. Finally, the logical or relation between these conditions implies that the LHS of (4.75) is

smaller than the maximum between the aforementioned terms.
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be written in the following form

r(m) = y(m) −X(m)θ̂(m) = y(m) −X
(m)
|s θ̂

(m)
|s =

(
I−X

(m)
|s

(
X

(m)
|s

)†)
y(m)

=
(
I−P(m)

s

)
y(m) =

(
I−P(m)

s

)(
X̃(m)θ̃(m) + σξ(m)

)
=

(
I−P(m)

s

) ∑
l∈S\s

θ̃
(m)
l x̃

(m)
l + σξ̃(m), (4.77)

where X̃(m) and θ̃(m) are the scaled versions of X(m) and θ, as discussed after Eq. (4.7), and the last

equality follows from the definition of P
(m)
s as a projection operator, so that

(
I−P

(m)
s

)
x̃

(m)
k = 0 for

any k ∈ s.
Denote by Kd the size of the detected support set, i.e., Kd = |s|, and by Ku the size of the

undetected support set, i.e., Ku = |S \ s|. Since s ⊂ S, then Kd +Ku = K. Finally, we introduce the
following quantity

µs = µs (Kd, µmax) =
Kdµ

2
max

1− (Kd − 1)µmax
. (4.78)

The following Lemma 4.13 bounds the effect of the projection I − P
(m)
s on the inner products and

norms of columns of X̃(m). Its proof appear in Appendix 4.6.6.

Lemma 4.13. Assume that the max-MIP condition (4.5) holds and that s ⊂ S. Then, the following
inequalities hold for any 0 ≤ Kd ≤ K − 1 and 1 ≤ Ku ≤ K such that Kd +Ku = K:

1. The quantity µs of Eq. (4.78) satisfies

µs ≤ µmax, (4.79)

and
Ku (µmax + µs) < Kµmax. (4.80)

2. For each index i /∈ s,
1− µs ≤

∥∥∥(I−P(m)
s

)
x̃

(m)
i

∥∥∥2

2
≤ 1. (4.81)

3. For each pair of distinct indices i 6= k such that i, k /∈ s,∣∣∣〈x̃
(m)
k ,

(
I−P(m)

s

)
x̃

(m)
i

〉∣∣∣ ≤ µmax + µs, (4.82)

and ∥∥∥(I−P(m)
s

)(
I−P

(m)
k

)
x̃

(m)
i

∥∥∥2

2
≥ 1− µ2

max − µs (1 + µmax)
2
. (4.83)

Furthermore, 1− µ2
max − µs (1 + µmax)

2
> 0.

For future use, notice that by its definition in Eq. (4.78), µs is an increasing function of Kd. Since
Kd ≤ K − 1, then the quantity δ of Eq. (4.11) satisfies

δ (K,µmax) = µs (K − 1, µmax) ≥ µs (Kd, µmax) . (4.84)

In addition, by Eq. (4.79), under max-MIP condition (4.5), δ ≤ µmax < 1, and hence the quantities in
Section 4.3 are well defined.

For simplicity of notation, from now on we omit the dependence on the machine index m. Given
the current estimated support set s, recall the definition of θ̃max in Eq. (4.22) and let k ∈ S \ s be an
index for which

‖x̃k‖ · |θk| = θ̃max (4.85)
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(chosen arbitrarily in case of ties). By Eq. (4.23) for ρ and Eq. (4.6) for θcrit,

θ̃max =
σ
√

2ρ log d

1− (2K − 1)µmax
. (4.86)

We now prove Lemmas 4.7 and 4.8.

Proof of Lemma 4.7. Recall that q, defined in Eq. (4.43), is the probability that some support index is
selected by OMP Step. A sufficient condition for this to occur is that the index k defined in Eq. (4.85)
has a higher correlation with the current residual than any non-support index j /∈ S. Thus, q is lower
bounded by the probability of the following event

|〈x̃k, r〉| ≥ max
i/∈S
|〈x̃i, r〉| . (4.87)

Thus, to prove the lemma it suffices to lower bound the probability of event (4.87). Similarly to the
proof of Lemma 4.4, we decompose the noise ξ̃ in Eq. (4.77) as the sum of two components, the first

ξ̃‖ = Pkξ̃ =
〈
x̃k, ξ̃

〉
x̃k is parallel to x̃k, namely

〈
x̃k, ξ̃‖

〉
=
〈
x̃k, ξ̃

〉
, and the second ξ̃⊥ = ξ̃ − ξ̃‖ =

(I−Pk) ξ̃, is orthogonal to x̃k, i.e.,
〈
x̃k, ξ̃⊥

〉
= 0.

Next, we use this decomposition to bound each of the terms in (4.87). By Eq. (4.77), for any index
i,

〈x̃i, r〉 =
∑
l∈S\s

θ̃l 〈x̃i, (I−Ps) x̃l〉+ σ
〈
x̃i, ξ̃

〉
.

For the index k, ‖(I−Ps) x̃k‖22 = 〈x̃k, (I−Ps) x̃k〉 ≥ 1− µs by Eq. (4.81). For any other undetected

support index l ∈ S \{s ∪ k}, |〈x̃k, (I−Ps) x̃l〉| ≤ µmax +µs by (4.82) and
∣∣∣θ̃l∣∣∣ ≤ θ̃max by its definition

in Eq. (4.22). Combining these bounds with the definition of ξ̃‖ implies that the LHS of (4.87) can
be bounded by

|〈x̃k, r〉| ≥ sign
(
θ̃k

)
〈x̃k, r〉

≥ θ̃max

〈x̃k, (I−Ps) x̃k〉 −
∑

l∈S\(s∪{k})

|〈x̃k, (I−Ps) x̃l〉|

+ sign
(
θ̃k

)
σ
〈
x̃k, ξ̃

〉
≥ θ̃max (1− µs − (Ku − 1) (µmax + µs)) + σ sign

(
θ̃k

)〈
x̃k, ξ̃‖

〉
. (4.88)

The RHS of (4.87) can be bounded by

max
i/∈S
|〈x̃i, r〉| = max

i/∈S

∣∣∣∣∣∣
∑
l∈S\s

θ̃l 〈x̃i, (I−Ps) x̃l〉+ σ
〈
x̃i, ξ̃⊥ + ξ̃‖

〉∣∣∣∣∣∣
≤ θ̃max max

i/∈S

∑
l∈S\s

|〈x̃i, (I−Ps) x̃l〉|+ σmax
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣+ σ
∣∣∣〈x̃k, ξ̃

〉∣∣∣max
i/∈S
|〈x̃i, x̃k〉|

≤ Kuθ̃max (µmax + µs) + σmax
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣+ σµmax

∣∣∣〈x̃k, ξ̃‖

〉∣∣∣ . (4.89)

where the first step follows from Eq. (4.77) and the definitions of ξ̃⊥ and ξ̃‖, the second step follows

from the triangle inequality and the definitions of ξ̃‖ and θ̃max, and the last inequality follows from
Eq. (4.82) and the definitions of µmax in Eq. (4.4). Combining Eq. (4.88) with Eq. (4.89) implies
that a sufficient condition for (4.87) to occur is

max
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣ ≤ sign
(
θ̃k

)〈
x̃k, ξ̃‖

〉
− µmax

∣∣∣〈x̃k, ξ̃‖

〉∣∣∣+
θ̃max (1− 2Ku (µmax + µs) + µmax)

σ
.
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By Eq. (4.86) and by the inequality (4.80), a sufficient condition for the previous event to occur is

max
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣ ≤ sign
(
θ̃k

)〈
x̃k, ξ̃‖

〉
− µmax

∣∣∣〈x̃k, ξ̃‖

〉∣∣∣+
√

2ρ log d. (4.90)

As in the proof of Lemma 4.4, denote the LHS of (4.90) by A, its RHS by B and let T =
√

2 log d. By
Eq. (4.57), it suffices to bound the probabilities of A ≤ T and B ≥ T .

We begin with bounding Pr [A ≤ T ]. Fix i /∈ S. By definition ξ̃⊥ = (I−Pk) ξ̃ = (I−Pk) (I−Ps) ξ.

By the symmetry of projections,
〈
x̃i, ξ̃⊥

〉
= 〈x̃i, (I−Pk) (I−Ps) ξ〉 = 〈(I−Ps) (I−Pk) x̃i, ξ〉 . Nor-

malizing the inner product results in a standard normal random variable Zi =
〈x̃i,ξ̃⊥〉

‖(I−Ps)(I−Pk)x̃i‖2
∼

N (0, 1). By Eq. (4.83), ‖(I−Ps) (I−Pk) x̃i‖2 ≥ γ1, where γ1 =

√
1− µ2

max − µs (1 + µmax)
2
. As in

the proof of Lemma 4.4, it follows that

Pr [A ≤ T ] ≥ 1− γ1√
π log d

d
− 1

γ21
+1 ≥ 1

2
, (4.91)

where the last inequality holds for sufficiently large d and follows from noting that γ1 ≤ 1 by the
max-MIP condition (4.5).

We now bound Pr [B ≥ T ], where B is the RHS of Eq. (4.90). By definition of ξ̃‖, the inner product〈
x̃k, ξ̃‖

〉
=
〈
x̃k, ξ̃

〉
= 〈x̃k, (I−Ps) ξ〉. This random variable is equal in distribution to a Gaussian

random variable Z ∼ N
(

0, ‖(I−Ps) x̃k‖22
)

. By Eq. (4.81), ‖(I−Ps) x̃k‖2 ≥
√

1− µs. As in the

proof of Lemma 4.4,

Pr [B ≥ T ] ≥ Φc
(

1−√ρ
γ2

√
2 log d

)
, (4.92)

where γ2 =
√

1− µs (1− µmax). Recall the definition of δ in Eq. (4.11). By Eq. (4.84), γ2 ≥√
1− δ(1 − µmax). Combining this with the bounds (4.91) and (4.92) completes the proof of Lemma

4.7.

Proof of Lemma 4.8. Fix a non-support index j /∈ S. Recall that pj , defined in Eq. (4.31), is the
probability that index j is selected by OMP Step. This occurs if j has the highest correlation with the
current residual, i.e.,

pj = Pr

[
|〈x̃j , r〉| ≥ max

i∈[d]\s
|〈x̃i, r〉|

]
.

Clearly, by taking the maximum over a subset of the indices A ⊆ [d]\s that includes j, the probability
can only be higher. Namely,

pj ≥ Pr

[
|〈x̃j , r〉| ≥ max

i∈A
|〈x̃i, r〉|

]
. (4.93)

Here we take A as the set of all non-support indices plus the index k, i.e., A = ([d] \ S) ∪ {k}, where
k is defined in Eq. (4.85). Next, we separately upper bound

Pr

[
|〈x̃j , r〉| > max

i/∈S∪{j}
|〈x̃i, r〉|

]
(4.94)

and
Pr [|〈x̃j , r〉| > |〈x̃k, r〉|] (4.95)

and then upper bound pj using (4.64) with A = |〈x̃j , r〉|, B = maxi/∈(S∪{j)} |〈x̃i, r〉|, and C = |〈x̃k, r〉|.
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For later use in both bounds, the random variable A can be upper bounded as follows

|〈x̃j , r〉| =

∣∣∣∣∣∣
∑
l∈S\s

θ̃l 〈x̃j , (I−Ps) x̃l〉+ σ
〈
x̃j , ξ̃

〉∣∣∣∣∣∣
≤ θ̃max

∑
l∈S\s

|〈x̃j , (I−Ps) x̃l〉|+ σ
∣∣∣〈x̃j , ξ̃

〉∣∣∣ ≤ θ̃maxKu (µmax + µs) + σ
∣∣∣〈x̃j , ξ̃

〉∣∣∣ ,(4.96)

where the first equality follows from Eq. (4.77), the next inequality follows from the triangle inequality
and the definition of θ̃max in Eq. (4.22), and the last inequality follow from (4.82). We now begin with
event (4.94). By Eqs. (4.82) and (4.80), for each non-support index i /∈ S such that i 6= j,

|〈x̃i, r〉| ≥ 〈x̃i, r〉 =
∑
l∈S\s

θ̃l 〈x̃i, (I−Ps) x̃l〉+ σ
〈
x̃i, ξ̃

〉
≥ −θ̃maxKu (µmax + µs) + σ

〈
x̃i, ξ̃

〉
.

Combining the above bound with Eq. (4.96), rearranging the terms, recalling the relation between
θ̃max and ρ in (4.86) and applying inequality (4.80) yields

Pr

[
|〈x̃j , r〉| > max

i/∈S∪{j}
|〈x̃i, r〉|

]
≤ Pr

[∣∣∣〈x̃j , ξ̃
〉∣∣∣+

2Kµmax

√
2ρ log d

1− (2K − 1)µmax
> max
i/∈S∪{j}

〈
x̃i, ξ̃

〉]
. (4.97)

As in the proof of Lemma 4.5, applying (4.67) with T = (1 − ε)
√

2 (1− µmax) log d and ε ∈ (0, 1)
as in (4.14), we can upper bound (4.97) by

Pr
[∣∣∣〈x̃j , ξ̃〉∣∣∣ ≥ a√2 log d

]
+ Pr

[
max

i/∈S∪{j}
〈x̃i, ξ̃〉 < (1− ε)

√
2 (1− µmax) log d

]
, (4.98)

where

a = (1− ε)
√

1− µmax −
2Kµmax

√
ρ

1− (2K − 1)µmax
.

By the symmetry of projection matrices, 〈x̃j , ξ̃〉 = 〈(I−Ps) x̃j , ξ〉. By Eq. (4.81), the norm ‖(I−Ps) x̃j‖2 ≤
1 and thus the first term in (4.98) is bounded by

2Φc
(
a
√

2 log d
)
. (4.99)

We now bound the second term in (4.98) using Lemma 4.12 with Zi =
〈

(I−Ps)x̃i
‖(I−Ps)x̃i‖2

, ξ
〉

. Towards this

goal, notice that by Eq. (4.81), ‖(I−Ps) x̃i‖2 ≥
√

1− µs. Thus, the second term in (4.98) is upper
bounded by

Pr

[
max

i/∈S∪{j}
Zi <

(1− ε)
√

2 (1− µmax) log d√
1− µs

]
. (4.100)

Furthermore, by Eqs. (4.81) and (4.82), for each i, l /∈ S ∪ {j} such that i 6= l, E [ZiZl] ≤ µmax+µs
1−µs .

Thus, we can apply Lemma 4.12 with η = µmax+µs
1−µs and ζ = 1− ε to obtain that (4.100) is bounded by

C (d−K − 1)
− 1−µmax
µmax+µs

ε2
log( 1−µmax

µmax+µs
ε−1)/2 (d−K − 1) . (4.101)

Similarly to the proof of Lemma 4.5, under condition (4.14) on ε and for sufficiently large d = d(ε),
(4.99) is larger than (4.101), and thus

Pr

[
|〈x̃j , r〉| > max

i/∈S∪{j}
|〈x̃i, r〉|

]
≤ 4Φc

(
a
√

2 log d
)
. (4.102)
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We now turn to bounding (4.95). For the support index k, similarly to (4.88),

|〈x̃k, r〉| ≥ sign
(
θ̃k

)
〈x̃k, r〉 ≥ θ̃max (1− µs)− θ̃max(Ku − 1) (µmax + µs) + σ sign

(
θ̃k

)〈
x̃k, ξ̃

〉
.

Combining the bound above with Eq. (4.96), recalling the relation between θ̃max and ρ in (4.86) and
applying the inequality (4.80) yields

Pr [|〈x̃j , r〉| > |〈x̃k, r〉|] ≤ Pr
[∣∣∣〈x̃j , ξ̃

〉∣∣∣− sign
(
θ̃k

)〈
x̃k, ξ̃

〉
>
√

2ρ log d
]
.

We now upper bound this probability. LetH =
〈
x̃j , ξ̃

〉
= 〈(I−Ps) x̃j , ξ〉 andG = sign

(
θ̃k

)〈
x̃k, ξ̃

〉
=

sign
(
θ̃k

)
〈(I−Ps) x̃k, ξ〉. Notice that by Eqs. (4.81), (4.82), and (4.79), σ2

H , σ
2
G ≤ 1. Combining Eqs.

(4.11) and (4.84) implies that µs ≤ δ. Hence, |σHG| ≤ µmax + µs ≤ µmax + δ. Thus, as in the proof of
Lemma 4.5,

Pr [|H| −G > c] ≤ 2Φc

(√
2ρ log d

2 + 2 (µmax + δ)

)
. (4.103)

By Eq. (4.64), the probability (4.93) is at most the minimum between (4.102) and (4.103). By the
monotonicity of the Gaussian CDF, (4.93) is upper bounded by

4Φc
(

max

{√
ρ

2 + 2 (µmax + δ)
,

(
(1− ε)

√
1− µmax −

2Kµmax
√
ρ

1− (2K − 1)µmax

)}√
2 log d

)
. (4.104)

Similarly to the proof of Lemma 4.5, inserting the definitions of Q1 and Q2 in Eqs. (4.16) and (4.17)
respectively, into Eq. (4.18) and rearranging various terms yields

1−√r√
1− δ (1− µmax)

+
√
Q0 < max

{√
r

2 + 2 (µmax + δ)
,

(
(1− ε)

√
1− µmax −

2Kµmax
√
r

1− (2K − 1)µmax

)}
.

(4.105)
The definitions of r and ρ in Eqs. (4.9) and (4.23) imply that ρ ≥ r. Thus, ρ satisfies Eq. (4.18) and
hence Eq. (4.105). The RHS of Eq. (4.105) is the same as the maximum in Eq. (4.104) above. Thus,
Eq. (4.104) is upper bounded by

4Φc
((

1−√ρ√
1− δ (1− µmax)

+
√
Q0

)√
2 log d

)
. (4.106)

By the assumption ρ ≤ 1, we can apply Lemma 4.11. Hence, by the definition of Q0 in Eq. (4.15),
and by the definition of F in Eq. (4.27),

pj ≤ 4Φc
((

1−√ρ√
1− δ (1− µmax)

+
√
Q0

)√
2 log d

)
≤ 4
√

2d−Q0Φc
(

1−√ρ√
1− δ (1− µmax)

√
2 log d

)
= 4

√
2

1
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√

2K
Φc
(

1−√ρ√
1− δ (1− µmax)

√
2 log d

)
=
F (d,K, µmax, ρ)

11K
,

which completes the proof of Lemma 4.8.

4.6.6 Proofs of technical lemmas

Proof of Lemma 4.11. Classical results by Birnbaum (1942) and Komatu (1955) are that for all x ≥ 0,
the following inequalities hold

2e−x
2/2

√
2π
(√
x2 + 4 + x

) < Φc (x) <
2e−x

2/2

√
2π
(√
x2 + 2 + x

) . (4.107)

77



Hence,

Φc (a+ b) <
2e−(a+b)2/2

√
2π
(√

(a+ b)2 + 2 + a+ b
) ,

and

Φc (a) >
2e−a

2/2

√
2π
(√
a2 + 4 + a

) .
Combining the two yields the following

Φc (a+ b) <

(√
a2 + 4 + a

)
e−ab(√

(a+ b)2 + 2 + a+ b
)e−b2/2Φc (a) .

Notice that for any a ≥ 0, the fraction in the above display is a decreasing function of b. Since b ≥ 0,

it suffices to note that
(
√
a2+4+a)

(
√
a2+2+a)

≤
√

2 for any a ≥ 0.

Towards proving Lemma 4.13, we prove the following Lemma 4.14, which bounds the inner product
between vectors projected to the subspace orthogonal to X̃|s under the assumption s ⊂ S.

Lemma 4.14. Let s ⊂ S and denote Kd = |s|. Assume that (Kd − 1)µmax < 1. Then, for any pair
of vectors a1,a2 ∈ Rn

〈a1,a2〉 −

∣∣∣∑j∈s 〈x̃j ,a1〉 〈x̃j ,a2〉
∣∣∣

1− (Kd − 1)µmax
≤ 〈a1, (I−Ps) a2〉 ≤ 〈a1,a2〉+

∣∣∣∑j∈s 〈x̃j ,a1〉 〈x̃j ,a2〉
∣∣∣

1− (Kd − 1)µmax
. (4.108)

If in addition a1 = a2 = a, then

‖a‖22 −
∑
j∈s 〈x̃j ,a〉

2

1− (Kd − 1)µmax
≤ ‖(I−Ps) a‖22 ≤ ‖a‖

2
2 −

∑
j∈s 〈x̃j ,a〉

2

1 + (Kd − 1)µmax
. (4.109)

Proof of Lemma 4.14. First, if s = ∅ then clearly 〈a1, (I−Ps) a2〉 = 〈a1,a2〉 and both (4.108) and
(4.109) trivially hold. Therefore, assume that Kd ≥ 1. In this case

〈a1, (I−Ps) a2〉 = 〈a1,a2〉 − 〈a1,Psa2〉 . (4.110)

By definition of Ps in Eq. (4.48),

〈a1,Psa2〉 =

〈
a1, X̃|s

(
X̃T
|sX̃|s

)−1

X̃T
|sa2

〉
=

〈
X̃T
|sa1,

(
X̃T
|sX̃|s

)−1

X̃T
|sa2

〉
. (4.111)

We now bound this term in absolute value. For a matrix A ∈ Rn×n, denote by λmin (A) and λmax (A)
its minimal and maximal eigenvalues, respectively. Consider A = X̃T

|sX̃|s. Each of its entries Ai,j is an

inner product 〈x̃i, x̃j〉 where i, j ∈ s. Hence, all of its diagonal entries are 1 and all of its off-diagonal
entries are bounded in absolute value by µmax. By the Gershgorin circle theorem, the eigenvalues of
A lie in the interval 1 ± (Kd − 1)µmax. Since (Kd − 1)µmax < 1, all eigenvalues are strictly positive.
Thus A is invertible, and the eigenvalues of A−1 satisfy

1

1 + (Kd − 1)µmax
≤ λmin

(
A−1

)
≤ λmax

(
A−1

)
≤ 1

1− (Kd − 1)µmax
. (4.112)

Since the eigenvalues of A−1 are strictly positive, for any pair of vectors u,v ∈ Rn,

λmin

(
A−1

)
|〈u,v〉| ≤

∣∣〈u,A−1v
〉∣∣ ≤ λmax

(
A−1

)
|〈u,v〉| .
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Inserting u = X̃T
|sa1, v = X̃T

|sa2 and Eq. (4.111) yields

λmin

(
A−1

) ∣∣∣〈X̃T
|sa1, X̃

T
|sa2

〉∣∣∣ ≤ |〈a1,Psa2〉| ≤ λmax

(
A−1

) ∣∣∣〈X̃T
|sa1, X̃

T
|sa2

〉∣∣∣ .
Combining the bounds in Eq. (4.112) with the decomposition X̃|sX̃

T
|s =

∑
j∈s x̃jx̃

T
j gives∣∣∣∑j∈s 〈x̃j ,a1〉 〈x̃j ,a2〉

∣∣∣
1 + (Kd − 1)µmax

≤ |〈a1,Psa2〉| ≤

∣∣∣∑j∈s 〈x̃j ,a1〉 〈x̃j ,a2〉
∣∣∣

1− (Kd − 1)µmax
. (4.113)

When a1 6= a2, the term 〈a1,Psa2〉 can have an arbitrary sign. Thus, inserting the upper bound into
Eq. (4.110) proves the inequality (4.108).

We now prove the inequality (4.109). Let a1 = a2 = a. Since each of the terms in the two sums in
Eq. (4.113) is positive, we may remove the absolute values, i.e.,∑

j∈s 〈x̃j ,a〉
2

1 + (Kd − 1)µmax
≤ 〈a,Psa〉 ≤

∑
j∈s 〈x̃j ,a〉

2

1− (Kd − 1)µmax
. (4.114)

Recall that since (I−Ps) is a projection matrix, it is symmetric and idempotent. Thus,

(I−Ps)
T

(I−Ps) = (I−Ps) (I−Ps) = (I−Ps) . (4.115)

Hence,
‖(I−Ps) a‖22 = 〈a, (I−Ps) a〉 = ‖a‖2 − 〈a,Psa〉 .

Inserting inequality (4.114) completes the proof of (4.109) and of Lemma 4.14.

Proof of Lemma 4.13. We begin with proving inequalities (4.79) and (4.80). By the max-MIP condi-
tion (4.5), 1− (2K − 1)µmax > 0. Rearranging implies that

1− (K − 2)µmax > (K + 1)µmax.

Combining this with the bound on µs in (4.84) gives

µs ≤
K − 1

K + 1
µmax ≤ µmax,

which proves (4.79). The max-MIP condition (4.5) implies that 1−(K − 1)µmax > 0. Using Kd+Ku =
K and rearranging yields Kuµmax

1−(Kd−1)µmax
< 1. Combining the definition of µs in (4.78) with this bound

implies that

Kuµs = Kd
Kuµ

2
max

1− (Kd − 1)µmax
< Kdµmax.

Hence,
Kµmax = Kuµmax +Kdµmax > Kuµmax +Kuµs,

which proves (4.80).
We now prove the remaining inequalities using Lemma 4.14, beginning with (4.81). Since Ps is a

projection matrix, for any index i /∈ s,

‖(I−Ps) x̃i‖22 ≤ ‖x̃i‖
2
2 = 1.

Recall that for any distinct pair of indices i 6= j, it holds that 0 ≤ 〈x̃j , x̃i〉2 ≤ µ2
max. By Eq. (4.109)

with a = x̃i,

‖(I−Ps) x̃i‖22 ≥ 1−
∑
j∈s 〈x̃j , x̃i〉

2

1− (Kd − 1)µmax
≥ 1− Kdµ

2
max

1− (Kd − 1)µmax
= 1− µs,
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which concludes the proof of (4.81).
Next, we prove inequality (4.82). By the right inequality in (4.108) with a1 = x̃k and a2 = x̃i,

〈x̃k, (I−Ps) x̃i〉 ≤ 〈x̃k, x̃i〉+

∣∣∣∑j∈s 〈x̃j , x̃k〉 〈x̃j , x̃i〉
∣∣∣

1− (Kd − 1)µmax
.

Thus, by the triangle inequality and by the definitions of µmax and µs in Eqs. (4.4) and (4.78)
respectively,

|〈x̃k, (I−Ps) x̃i〉| ≤ |〈x̃k, x̃i〉|+

∣∣∣∑j∈s 〈x̃j , x̃k〉 〈x̃j , x̃i〉
∣∣∣

1− (Kd − 1)µmax

≤ µmax +
Kdµ

2
max

1− (Kd − 1)µmax
= µmax + µs.

Finally, we prove inequality (4.83). Recall that by the max-MIP condition (4.5), µmax <
1

K−1 . For
any distinct pair of indices i 6= k such that i, k /∈ s, Eq. (4.109) with a = (I−Pk) x̃i gives

‖(I−Ps) (I−Pk) x̃i‖22 ≥ ‖(I−Pk) x̃i‖22 −
∑
j∈s 〈x̃j , (I−Pk) x̃i〉2

1− (Kd − 1)µmax

= 1− 〈x̃k, x̃i〉2 −
∑
j∈s (〈x̃j , x̃i〉 − 〈x̃k, x̃i〉 〈x̃j , x̃k〉)2

1− (Kd − 1)µmax

≥ 1− µ2
max −

Kd

(
µmax + µ2

max

)2
1− (Kd − 1)µmax

= 1− µ2
max − µs(1 + µmax)2,

which concludes the proof of Eq. (4.83). It remains to prove that

1− µ2
max − µs(1 + µmax)2 > 0.

First, let K = 1. This implies that s = ∅ and thus

‖(I−Ps) (I−Pk) x̃i‖2 = ‖(I−Pk) x̃i‖2 ≥ 1− µ2
max,

which is positive by the max-MIP condition (4.5). Now let K > 1. By the max-MIP condition (4.5),
µmax < 1 and Kdµmax

1−(Kd−1)µmax
< 1. Thus,

1− µ2
max − µs(1 + µmax)2 > 1− µ2

max − µmax (1 + µmax)
2

= 1− µmax

(
1 + 3µmax + µ2

max

)
> 1− µmax (1 + 4µmax) .

Note that for each K > 1, it holds that µmax <
K−1

2 . Thus,

1− µmax (1 + 4µmax) > 1− µmax (1 + 2K − 2) > 0,

where the last inequality is another application of the max-MIP condition (4.5).

4.7 Unknown Sparsity Level

As mentioned in Remark 4.3, when the sparsity level K is unknown, a threshold-based variant of
DJ-OMP can be used to recover the support. In the following Corollary 4.1, we prove that this variant,
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Figure 4.3: Support Recovery by DJ-OMP and DJ-OMP∗ as a Function of θmin

denoted DJ-OMP∗, succeeds with high probability in estimating both K and the support of θ when the
design matrices are composed of i.i.d. Bernoulli entries. Note that the corollary assumes that M > Mc

and Mc depends on K, however this is solely for the purpose of the proof. The corollary holds for a
wide range of M values and DJ-OMP∗ does not receive K nor Mc as input. After stating the corollary
we present simulation results comparing DJ-OMP and DJ-OMP∗. The proof of Corollary 4.1 completes
this section.

Corollary 4.1. Denote by DJ-OMP∗ a variant of DJ-OMP in which the fusion center stops the commu-
nication rounds with the M machines and outputs its current support set estimation when the number
of votes for the most-voted index in the current round falls below a threshold of t̃c = 4 log d. If the
matrices X(m) have i.i.d. Bernoulli ± 1√

n
entries and n ≥ 2(2K − 1)2 log(2Md3), then under the

conditions of Theorem 4.1, DJ-OMP∗ with Mc ≤ M ≤ 2e−1(d −K) log d machines detects the correct

support w.p. at least 1− 2K+1

d .

Figure 4.3 compares the empirical support recovery probabilities of DJ-OMP and DJ-OMP∗ as a
function of θmin. The parameters are the same as those used for Figure 4.1(a), i.e., we generated
M = 20 matrices of dimensions n = 2000 and d = 10000, with i.i.d. N (0, 1) entries (α = 0). The noise
level is σ = 1, and the vector θ has sparsity K = 5, with θ = θmin · [1,−1.5, 2,−2.5, 3, 0, . . . , 0]>. Since
assumption 4.1 does not hold and M is small compared to the theoretical value Mc, the simulations
use the threshold t̃c = 2 for DJ-OMP∗, i.e., the center stops and returns its support set estimation once
the top-voted index receives less than 2 votes. As the figure demonstrates, the success probability is
not greatly affected by the use of a threshold-based stopping criterion that does not depend on K.

Proof of Corollary 4.1. Denote by B an event where the max-MIP condition (4.5) is not satisfied. We
first show that this event occurs with probability at most 1/d. For each machine m ∈ [M ], each entry of
the design matrix X(m) is an i.i.d. Bernoulli ± 1√

n
random variable. Thus, the inner product between

two vectors x
(m)
i ,x

(m)
j ∈ Rn where i 6= j ∈ [d] is a sum of n i.i.d. Bernoulli ± 1

n random variables. In
addition, by design each vector has unit `2 norm. By Hoeffding’s inequality (Hoeffding, 1963),

∀t > 0, Pr
[∣∣∣〈x

(m)
i ,x

(m)
j

〉∣∣∣ > t
]
< 2 exp

(
−nt2/2

)
.
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The max-MIP condition (4.5) requires that the maximal inner product among all M
(
d
2

)
pairs in all

machines is bounded by 1/(2K−1). Combining the Hoeffding bound above with a union bound yields

Pr[B] = Pr

[
max
m∈[M ]

max
i 6=j

∣∣∣〈x
(m)
i ,x

(m)
j

〉∣∣∣ > 1

2K − 1

]
< 2Md2 exp

(
− n

2(2K − 1)2

)
≤ 1

d
.

We now show that when event B does not occur, i.e., when the max-MIP condition (4.5) is satisfied,

then DJ-OMP∗ recovers the support of θ with probability at least 1 − 2K+1−1
d . By Lemma 4.1, the

threshold tc of the proof of Theorem 4.1 satisfies tc ≥ 4 log d. Thus, by essentially the same proof,

with probability at least 1 − 2K+1−2
d the algorithm DJ-OMP∗ does not stop early, and recovers all K

support indices after K rounds. It remains to show that the probability that it does not stop after K
rounds and adds another (non-support) element to its estimate is at most 1

d .

Assume that s = S. Hence, in each machine m ∈ [M ], similarly to Eq. (4.77), the residual r(m) is

r(m) =
(
I−P

(m)
S

)
y(m) =

(
I−P

(m)
S

)(
X(m)θ(m) + σξ(m)

)
= σ

(
I−P

(m)
S

)
ξ(m). (4.116)

In other words, since the residual r(m) is orthogonal to the set of vectors
{

x
(m)
k

}
k∈S

, it is composed

only of (projected) noise. Recall that an index that has already been added to the support cannot be

sent again. Thus, the probability p
(m)
j that machine m sends a fixed non-support index j /∈ S is

p
(m)
j = Pr

[
j = arg max

i/∈S

∣∣∣〈x
(m)
i , r(m)

〉∣∣∣] = Pr

[
j = arg max

i/∈S

∣∣∣〈x
(m)
i ,

(
I−P

(m)
S

)
ξ(m)

〉∣∣∣] . (4.117)

Since each entry of each matrix is i.i.d., then by symmetry considerations the above probability is

uniform across the non-support indices, i.e., p
(m)
j = 1

d−K . To bound the probability that a non-

support index j /∈ S receives more than t̃c votes, we use the following Chernoff bound. For a Binomial
random variable X ∼ B(M,p), the multiplicative Chernoff bound (Chernoff, 1952) implies that

∀δ > 0, Pr [X ≥ (1 + δ)Mp] ≤
(

e−δ

(1 + δ)1+δ

)Mp

.

In the case 1 + δ ≥ 2e, a simple calculation shows that

∀t ≥ 2e ·Mp, Pr [X ≥ t] ≤ 2−t.

Since p = 1
d−K , the assumption M ≤ 2e−1(d −K) log d implies that the above bound can be applied

and hence the probability that a non-support index j /∈ S receives more than t̃c votes can be bounded
by

Pr
[
vj ≥ t̃c

]
≤ 2−4 log d = d−4 log 2.

A union bound over all d−K non-support indices j /∈ S implies that the probability that the maximal
number of votes for a non-support element is larger than t̃c is bounded by

Pr

[
max
j /∈S

vj ≥ t̃c
]
≤ (d−K)d−4 log 2 < d−1.

Finally, a union bound concludes the proof.
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Figure 4.4: Number of Machines for Support Recovery by DJ-OMP vs. Dimension d

4.8 Additional Simulation Results

Theorem 4.1 holds under the max-MIP condition (4.5) and assumptions 4.1-4.3. However, in practice,
DJ-OMP succeeds even if these assumptions are not met. For example, the max-MIP condition does
not hold in the setting used in Figure 4.1(b), and thus none of the additional assumptions hold either.
To examine assumption 4.1 further, we performed the following simulation, whose results are depicted
in Figure 4.4. As described in Section 4.4, we generated matrices with i.i.d. Gaussian entries, i.e.,
α = 0, with a fixed number of samples n = 2000, varying dimension d, varying number of machines M ,
and varying sparsity level K. In each simulation, the noise level is σ = 1, and each of the K nonzero
values of the sparse vector θ equals θmin = 0.06. We then used linear extrapolation to estimate for
each dimension the number of machines needed to reach a given success probability, in our example
0.5, and displayed them on a logarithmic scale. In addition, we display a least-squares-based linear
estimation of the relation between log(M) and log(d). The small resulting sum of squared residuals
(SSR) support our result that the relationship is of the form M = O(dβ) for some 0 < β < 1, even
when the max-MIP condition does not hold, and in fact β is empirically smaller than the exponent
derived in Eq. (4.12). In addition, the estimated number of machines increases with K, which is also
in accordance with Eq. (4.12). We obtained similar results when the matrices were slightly correlated,
with slightly higher estimated number of machines.

4.9 Implementation Details

The code used to generate the simulations in Section 4.4 was implemented in Python and was exe-
cuted on an internal cluster (v3.8; Python Core Team, 2019, PSF licensed). For SIS-based methods,
we used the SIS package by Saldana and Feng (2018), which was implemented using R statistical
software (v4.0.3; R Core Team, 2023) and embedded into the Python code using the rpy2 package
(https://rpy2.github.io/), all licensed by GPL-2 licenses. Lasso-based methods were implemented us-
ing the scikit-learn package by Pedregosa et al. (2011, BSD License). Other libraries that were used
include NumPy (Harris et al., 2020, liberal BSD license), SciPy (Virtanen et al., 2020, BSD license),
and Matplotlib (Hunter, 2007, BSD compatible license).
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