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Abstract

Modern data science is centered around learning from large-scale, high-dimensional, and noisy datasets.
A key strategy for addressing this complexity involves identifying a simple model that captures the
important features of the data, such as assuming that the parameter of interest is a sparse vector,
meaning it has only a few non-zero values. Over the past few decades, sparse models have been used
in various domains, ranging from signal and image processing to genomics analysis. However, even in
the absence of noise, recovering the sparsity pattern of vectors (also known as their support set) is in
general computationally challenging, and becomes even more difficult in extremely noisy settings.

An additional source of complexity is that the process of data collection and analysis is becoming
more and more decentralized. From mobile phones, through autonomous vehicles, to geographically
spread-out data centers — modern distributed networks gather and store enormous amounts of data.
This shift poses new challenges for designing learning algorithms, that must process data from dis-
tributed sources while carefully navigating constraints related to communication, computation, and
privacy.

In this dissertation, we study three sparse estimation problems in both centralized and distributed
settings. In each problem, the goal is to recover a sparse signal, or its support set, based on mea-
surements from a linear model corrupted by Gaussian (or sub-Gaussian) noise. We analyze sparse
recovery algorithms, derive novel guarantees for their success based on the signal-to-noise ratio (SNR),
and substantiate our results by simulation studies.

We first consider sparse linear regression in the presence of Gaussian noise. Orthogonal Matching
pursuit (OMP) is a popular greedy algorithm for this problem, and we improve upon previous works
studying this algorithm in two ways. First, we derive a slightly sharper sufficient condition for exact
support recovery by OMP with high probability, and second, we show both theoretically and empirically
that this sharper sufficient condition is tight. Thus, we uncover an SNR regime in which OMP succeeds.

Next, we focus on distributed settings with communication constraints. We study distributed sparse
normal means estimation, where noisy observations of a high-dimensional sparse vector are distributed
across multiple machines, with limited communication to a fusion center. Previous works showed that
to achieve the centralized minimax rate for the /5 risk, the total communication must be high — at
least linear in the dimension. This phenomenon occurs, however, at very weak signals. We show that
at SNRs that are sufficiently high — but not enough for recovery by any individual machine — the
support of the sparse vector can be correctly recovered with communication sublinear in its dimension.
Furthermore, the communication decreases exponentially as a function of signal strength.

Finally, we leverage our insights from the first two studies and consider distributed OMP-based
schemes for high-dimensional sparse linear regression. Such schemes are particularly suited for settings
where end machines have both limited communication and computational resources. We prove that
under suitable assumptions, distributed-OMP schemes recover the support of a sparse regression vector
with communication per machine that is linear in its sparsity and logarithmic in the dimension. Again,
this holds even at low SNRs, where individual machines are unable to recover the support on their
own. Furthermore, our simulations show that distributed-OMP schemes are competitive with more
computationally intensive methods, and in some cases even outperform them.

Collectively, the results in this thesis advance our statistical and algorithmic understanding of
sparse estimation under noise in both centralized and distributed settings.
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Chapter 1

Introduction

A key challenge in statistical machine learning is to efficiently distill complex, high-dimensional data
into understandable and manageable forms. One way of achieving this objective is through assuming
that a simple sparse model underlies the data. Indeed, sparsity is a natural modeling assumption in
high-dimensional settings, widely adopted across numerous studies over the past few decades (Foucart
and Rauhut, 2013; Tibshirani et al., 2015).

Learning and estimation under sparsity assumptions has been applied in various fields. In fact,
many natural signals such as acoustics, images, or video, have a sparse (or approximately sparse)
representation in some appropriate basis, as demonstrated by transform-domain methods and tech-
nologies like JPEG compression (Wallace, 1991; Mallat, 1999). Moreover, redundant over-complete
dictionaries enable even sparser representations of natural signals (Elad, 2010). This leads to a sparse
linear regression problem, as discussed in Section 1.1.

Furthermore, in modern applications such as spectrum sensing and wireless sensor networks, ma-
chines constrained by limited computational resources and communication bandwidth are tasked with
jointly estimating sparse quantities (Bazerque and Giannakis, 2010; Sharma et al., 2016; Ling and
Tian, 2010). This requires distributed algorithms that balance accuracy, communication costs, com-
putational efficiency, and privacy, as discussed in Section 1.2.

Despite the broad applications and theoretical foundations of sparsity, there are still open questions
regarding the effect of the signal-to-noise ratio (SNR) on the success of sparse estimation algorithms.
Such guarantees are essential to understanding the limits of existing algorithms and for guiding the
development of new methodologies. In this thesis, we advance the theoretical foundations of sparse
estimation by deriving SNR-based recovery guarantees for both centralized and distributed algorithms.
Our contributions are summarized in Sections 1.1 and 1.2 below. We then propose in Section 1.3 several
directions for future work.

1.1 Sparse Linear Regression

A fundamental inverse problem arising in machine learning, statistics and signal processing is to esti-
mate an unknown sparse vector @ € R? from N linear measurements of it, often with N < d. Notable
examples in signal processing include sparse recovery in a redundant representation and compressed
sensing (Elad, 2010; Eldar and Kutyniok, 2012; Foucart and Rauhut, 2013). A notable example in
statistics is linear regression with a sparse coefficient vector, in particular when there are more variables
than observations (Tibshirani et al., 2015). A sparsity assumption gives rise to the variable selection
problem, of identifying a small subset of variables which are most informative for a given prediction
problem (Miller, 2002).

Assuming that the measurements are corrupted by additive Gaussian noise, the observed signal



y € RY has the following form
y = X0 + ¢ (1.1)

where X € RV*? is a known matrix, & € R? is an unknown sparse vector, £ € RY is a random
Gaussian noise vector £ ~ N (0,Iy) and o > 0 is the noise level. We say that 0 is K-sparse if
0], = |supp(@)| = K and denote its support by S = supp(@). In statistics X is referred to as the
design matrix, whereas in the signal processing literature it is often called the dictionary.

In sparse recovery, given the observed signal or response vector y, the design matrix or dictionary
X and the sparsity level K, the goal is to output an estimate 6 that is close to the unknown vector of
regression coefficients 8. Under the assumption that £ is Gaussian and independent of 8, the maximum
likelihood solution is

0 = argmin {||y — Xz||, : [|z||, < K}. (1.2)

In the noiseless case o = 0, minimizing (1.2) is equivalent to finding a K-sparse vector @ such that
y = X6. For N < d this linear system is underdetermined and may have multiple solutions. Hence,
for any o > 0, Eq. (1.2) may in general also have multiple solutions. In certain regimes there exists a
unique solution, for example when K is small compared to the size of the smallest linearly-dependent
subset of design matrix columns (Donoho and Elad, 2003). Furthermore, even if a unique solution
exists, finding it is in general NP-hard because the sparsity constraint is non-convex (Davis et al.,
1997). In recent decades, several polynomial-time methods were developed for estimating 6. Convex
optimization-based methods such as Basis Pursuit use a relaxation of the [p-norm of 8 to its [;-norm
(Tibshirani, 1996; Chen et al., 2001). Other recovery methods use non-convex penalty functions that
promote sparsity (Figueiredo et al., 2007; Blumensath and Davies, 2008; Chartrand and Yin, 2008;
Daubechies et al., 2010; Amir et al., 2021), or Bayesian approaches (Tipping, 2001; Wipf and Rao,
2004; Ji et al., 2008). Greedy methods estimate @ by iteratively selecting columns that have high
correlation with the residual part of the signal (Dai and Milenkovic, 2009; Needell and Tropp, 2009;
Needell and Vershynin, 2010). For a review of sparse recovery algorithms, see (Marques et al., 2019)
and the references therein.

In our first study, we focus on Orthogonal Matching Pursuit (OMP), which is one of the simplest
and fastest greedy methods for sparse recovery (Chen et al., 1989; Pati et al., 1993; Mallat and Zhang,
1993). One key challenge in computing an estimate 6 close to 0 is to accurately estimate its support.
Hence, several authors studied conditions under which OMP exactly recovers the support of 6.

Several conditions for exact support recovery by OMP and by other methods have been studied.
These include the Restricted Isometry Property (RIP) (Candes and Tao, 2005), the Exact Recovery
Condition (ERC) (Tropp, 2004) and the Mutual Incoherence Property (MIP) (Donoho and Huo, 2001).
For RIP and ERC based guarantees, see (Cai et al., 2018; Hashemi and Vikalo, 2016) and the references
therein. While MIP is more restrictive than the other conditions, it is simple and tractable to compute
for arbitrary dictionaries. We thus restrict our attention to coherence-based guarantees. Specifically,
the coherence of the matrix X is defined as

(i, ;)
p= p(X) = max oL (13)
o Tocally T

where x; it the i-th column of X. The sparsity K of a sparse vector 6 is said to satisfy the Mutual
Incoherence Property (MIP) if

1
2K —1°
A fundamental result by Tropp (2004) is that the MIP condition is sufficient for exact support recovery
by OMP in the noiseless case. Cai et al. (2010) proved that the MIP condition is sharp in the following
setting: for each pair of positive integers (n, K), there exist a dictionary of size 2Kn x (2K — 1) n with
coherence p = ﬁ and a K-sparse vector such that OMP fails to recover its support.

In the presence of additive Gaussian noise with noise level o > 0, even if a K-sparse vector 0 satisfies
the MIP condition (1.4), its exact support recovery will depend on the specific noise realization in the

< (1.4)



observed signal y. Hence, exact support recovery can only be guaranteed with a success probability
Psuce < 1, which in general depends on the noise level o, the sparsity level K, the magnitude of the
non-zero coefficients of @, the matrix dimensions N and d and the coherence p. As we review in
Chapter 2, Ben-Haim et al. (2010) developed a sufficient condition for OMP to recover the support of
0 in the presence of additive Gaussian noise with high probability. A similar result for a variant of
OMP was proved by Cai and Wang (2011). Miandji et al. (2017) derive a similar sufficient condition
in a different model where the nonzero elements of @ are random variables. An interesting question is
whether this sufficient condition is sharp, or can it be lowered further.

Our Contributions. Towards answering this question, we make two key contributions, presented in
Chapter 2 and published in Amiraz et al. (2021). First, in Theorem 2.2 we derive a sharper sufficient
condition for exact support recovery by OMP than that of Ben-Haim et al. (2010) and Cai and Wang
(2011) by performing a tighter analysis of their proof. Our main result, stated formally in Theorem
2.3, shows that our sharper sufficient condition is tight, in the following sense. For a wide range of
sparsity levels K, dictionary dimensions N, d and coherence values p, there exist a dictionary X and
a vector @ with a signal-to-noise ratio that is slightly lower than that of our sufficient condition, for
which with high probability OMP fails to recover its support. More specifically, we prove the following
result.

Theorem 1.1 (Informal statement of Theorems 2.2 and 2.3.). Let Oin = minges |0;|. Under the MIP
condition (1.4), around

o+v/2logd
1= 2K — )u(X)

the following transition in the behavior of OMP occurs:

ocmt =

e If the SNR is slightly higher, namely Owin = 0., (1 + lf;gglj
S.

N—

, then w.h.p. OMP exactly recovers

o If the SNR is slightly lower, namely O < 0

~ crit

K-sparse @ for which w.h.p. OMP fails to recover S.

(1 — llc:)gglg — u(X)), then there exist X and

In Section 2.2 we present several simulations that support our theoretical analysis and show that
this phase transition occurs for many common families of matrices X and sparse vectors 8. Thus, we
identify the SNR regime in which OMP succeeds.

1.2 Distributed Statistical Estimation

In many modern applications, the collected datasets are too large to be stored or analyzed on a single
machine. Moreover, due to communication or privacy constraints, the data at each machine cannot be
sent to other machines in the network. This has sparked the development of distributed approaches
for machine learning, statistical analysis, and data mining. A few examples of this vast body of work
are McDonald et al. (2009); Bekkerman et al. (2011); Duchi et al. (2012); Guha et al. (2012). For a
recent survey see Wimalajeewa and Varshney (2019).

In this thesis, we consider a popular distributed setting where M machines, each holding an in-
dependent set of n samples from some unknown distribution, are connected in a star topology to a
central node, also called a fusion center or simply the center. The task of the fusion center is to
estimate 0, a parameter of the distribution, using little communication with the M machines. In each
round of communication, the fusion center may send a message to the machines (or a subset of them).
Then, each contacted machine performs a local computation and sends its result back to the center.
Finally, after the last communication round, the fusion center forms a global estimator 6 based on
these messages.



An interesting special case of this distributed setting is known as one-shot, embarrassingly parallel
or split-and-merge schemes, where there is only a single round of two-way communication. A clear
advantage of such one-shot schemes is their simplicity and ease of implementation.

Statistical inference in a distributed setting, in particular under communication constraints, raises
several fundamental theoretical and practical questions. One question is what is the loss in statistical
accuracy incurred by the scheme being distributed, i.e., compared to a centralized setting, whereby a
single machine has access to all of the samples. Various works proposed multi-round communication-
efficient schemes and analyzed their accuracy, see for example (Shamir et al., 2014; Zhang and Lin,
2015; Wang et al., 2017; Jordan et al., 2019). In the context of one-shot schemes, several works analyzed
the case where the fusion center simply averages the estimators computed by the individual machines
or for robustness, takes their median (Zhang et al., 2013b; Rosenblatt and Nadler, 2016; Minsker et al.,
2019). In a high dimensional setting where the parameter of interest is a-priori known to be sparse,
Lee et al. (2017) and Battey et al. (2018) considered a variant where the averaged estimator is further
thresholded at the fusion center. A key finding in many of these papers is that in various scenarios
and under suitable regularity assumptions, the ¢ risk of the distributed estimate attains the same
convergence rate as the centralized one, provided that the data is not split across too many machines.

Another important theoretical aspect in distributed learning is fundamental lower bounds on the
achievable accuracy under communication as well as memory constraints, regardless of any specific
inference scheme, see e.g. (Zhang et al., 2013a; Garg et al., 2014; Steinhardt et al., 2016; Cai and Wei,
2020; Zhu and Lafferty, 2018; Szabo and van Zanten, 2020; Acharya et al., 2020b), and similarly for
the closely related problem of distributed detection (Acharya et al., 2020a; Szabo et al., 2020). Lower
bounds on the estimation accuracy were also studied for problems involving a sparse quantity, including
sparse linear regression, correlation detection and more (Steinhardt and Duchi, 2015; Braverman et al.,
2016; Dagan and Shamir, 2018; Han et al., 2018). A central finding in these works is that to achieve
the centralized minimax rate for the ¢ risk, the communication must scale at least linearly in the
ambient dimension.

However, when the task is to estimate a sparse quantity, then intuitively the communication should
increase linearly with its sparsity level, and logarithmically with the ambient dimension, the latter being
necessary for encoding the indices. Indeed, in the context of supervised learning, Acharya et al. (2019)
showed that in various linear models with a sparse vector, optimal prediction error rates are achievable
with total communication logarithmic in the dimension. However, they consider connectivity topology
of a chain where each machine ¢ sends a message only to machine ¢ 4+ 1, and thus their algorithm
is sequential and not compatible with one-shot inference schemes. An interesting question is the
following: can problems that involve a sparsity prior admit one-shot algorithms with communication
that is sublinear in the ambient dimension?

1.2.1 Distributed Sparse Normal Mean Estimation

In our second study, we consider sparse normal mean estimation, which is one of the simplest and
most well-studied inference problems with sparsity priors, but in a distributed setting of M machines
connected in a star topology to a fusion center. For simplicity we assume that each machine has the
same number n of i.i.d. samples of the form

S; :0+J£ia

where the mean vector @ € R? is exactly K-sparse, the noise is Gaussian, & ~ N(0,13), and o > 0
is the noise level. Note that this problem can be viewed as a special case of distributed sparse linear
regression where the design matrices are orthogonal.

We consider a one-shot communication scheme where the fusion center sends a setup message to
each of the machines (or a subset of them), and then each contacted machine sends back its message
to the center. We emphasize that in our setting the machines communicate only with the center and
not with each other. Note that if the machines have prior knowledge of all problem parameters, then
setup messages are not required. However, in any case the communication of this setup stage is often



negligible. The goal of the center is to recover the support of & under the constraint that the total
communication between the fusion center and the machines (including the setup stage) is bounded by
a budget of B < d bits. As we discuss in Section 3.3, if KM <« % then achieving this goal implies
that the vector 0 itself can be estimated with small /5 risk using communication sublinear in d.

For this sparse normal means problem, Braverman et al. (2016) and Han et al. (2018) derived
communication lower bounds for the /5 risk of any estimator, and proved that to achieve the minimax
rate, the total communication must be at least Q(d). Shamir (2014) derived lower bounds for several
other distributed problems involving M machines, each allowed to send a message of length at most
b bits. His work implies that there exist d-dimensional distributions whose mean is a 1-sparse vector
of sufficiently large magnitude, such that with n = O(dlogd) samples per machine, any scheme with
communication sublinear in d has only an o(1) probability of exact support recovery. These works paint
a pessimistic view, that to achieve the performance of the centralized solution, distributed inference
must incur high communication costs.

Our contributions. Our main contribution, presented in Chapter 3 and published in Amiraz et al.
(2022), is that in contrast to the previous works presented above, at SNRs that are sufficiently high, but
not high enough for recovery by any individual machine, the support of 8 can be exactly recovered with
total communication sublinear in the dimension d. Specifically, we present and analyze the performance
of two distributed schemes. In the first scheme, which we denote Top-L, the center sends a parameter
L to each contacted machine, which then sends back the indices of its top L coordinates in terms of
magnitude. In the second scheme, which we denote Thresholding, the center sends a suitably chosen
threshold ¢,, to each contacted machine, which then sends back the indices of coordinates that exceed
the threshold. Our analysis is non-asymptotic, but the setting we have in mind is of a sparse vector in
high dimension, namely d > 1 and K < d. Assuming that 6,,;, = min;cs |6;] is known to the center,

we define the SNR scaling r such that 6,;, = o4/ % and prove the following results.

logd
r <1, and that d is sufficiently large. Then, with high probability, Thresholding with t,, = /2rlogd
recovers the support of the K-sparse vector 8 with O (K + dl_") expected total communication bits.

Theorem 1.2 (Informal statement of Theorem 3.2.A.). Assume that M > Q(logd), that (i) <

Note that since r < 1, the total communication is sublinear in d. As we show next, when the
number of machines M is higher, the total communication can be lowered even further.

Theorem 1.3 (Informal statement of Theorem 3.2.B.). Assume that M > Q (log"® d), that Q (lf’oggjg) <

r < 1, and that d is sufficiently large. Then, with high probability, Thresholding with an appropri-
ately chosen threshold t,, recovers the support of the K-sparse vector @ with expected communication
of 0) (KM +d-r. e’f(M’T’d)) bits, for an appropriately chosen function f(M,r,d) that increases in
all of its parameters.

The function f(M,r,d) increases in r in a way that the communication cost decreases exponentially
as r increases towards 1, at which point the support of @ may be found by a single machine using
O(K logd) communication bits. In addition, Theorem 3.2.B implies the following counter-intuitive
behavior of our Thresholding scheme: more machines enable less communication. Specifically, as
discussed after Theorem 3.2.B, for some range of the problem parameters, as the number of machines
is increased, exact support recovery is possible with less total communication. The reason is that
a larger number of machines allows the center to set a higher threshold, which in turn implies that
on average, each machine sends fewer indices back to the center. As we show, with a suitably chosen
threshold, the total communication decreases, while the probability of exact recovery still remains close
to one. In addition, if the number of machines M is sufficiently high, then the total communication
cost can be further optimized by letting the center contact a subset of the machines, as presented in
the next theorem.



Theorem 1.4 (Informal statement of Theorem 3.2.C.). Assume that §2 (@) <r <1 and let

~ 2
M. =0 (d(l_*/;) ) Further assume that M > M, and that d is sufficiently large. Then, with high
probability, by contacting M. machines, Thresholding with t,, = \/2logd recovers the support of the
~ 2
K -sparse vector @ with O (Kd(lfﬁ) ) expected total communication bits.

In Theorem 3.1 we prove a similar result for Top-L with L = K. In the reminder of Chapter 3 we
further extend some of these results to the case of sub-Gaussian additive noise. Finally, we prove that
if KM <« @7 then an additional single round of communication, also sublinear in d, results in an
estimator for @ that achieves the centralized rate for the /5 risk.

This idealized setting allows for a relatively simple analysis that showcases a tradeoff between the
number of machines, SNR, and communication. Our work raises several issues for future research.
First, it remains an open problem whether the SNR-communication tradeoff of our algorithms is
optimal. Indeed, the derivation of tight SNR-dependent communication lower bounds for the sparse
normal means problem is an interesting research topic. Second, we focus on the simple case where all
machines have the same number of samples n and all samples have the same noise level o. Another
interesting research direction is to consider a more general setting where each machine 7 has a different
number of samples n;, or a different noise level ;. An additional interesting setting is where each
machine observes different sparse vectors 8; with the same support S (or very similar supports S;).
Note that there is no single SNR parameter in these cases since different machines have different
effective SNRs. Lastly, building on the insights gained in this simple setting, we believe a similar
behavior should hold for other popular statistical learning problems involving estimation of a sparse
quantity in a high dimensional setting.

1.2.2 Distributed Sparse Linear Regression

In our third study, we revisited the sparse linear regression model with Gaussian noise, but in a
distributed setting where M machines are connected in a star topology to a fusion center. Each
machine m € [M] has for simplicity a vector of observations y("™) € R™ of size n = N/M and a design
matrix X(™ € R"*?_ related via

y(™ = Xmg 4 ggm), (1.5)

where the vector @ € R? is the unknown K-sparse vector of regression coefficients, £™ € R™ is a
Gaussian noise vector, i.e., €™ ~ N (0,1,,), independent across machines, and o > 0 is the noise
level. Recall that in a centralized setting, as described in (1.1), all entries of the response vector and
design matrix are provided as input, and common tasks are to accurately estimate @ as well as its
support S = supp(0) = {i | 6; # 0}.

Some distributed methods attempt to recover the centralized solution that would have been com-
puted by the fusion center, if it had access to all N = nM observations of the M machines. Examples
include optimization-based methods (Mateos et al., 2010; Ling and Tian, 2011; Mota et al., 2011; Ling
et al., 2012; Fosson et al., 2016; Smith et al., 2018; Scaman et al., 2019; SarcheshmehPour et al., 2023),
Bayesian approaches (Makhzani and Valaee, 2013; Khanna and Murthy, 2016), and greedy schemes
(Sundman et al., 2012; Li et al., 2015; Patterson et al., 2014; Han et al., 2015; Chouvardas et al.,
2015). These methods are in general communication intensive, as they are iterative and may require
many rounds to converge. A single round divide-and-conquer scheme is for each machine to send its
own dense estimate of 8, each of size d, to the fusion center, which then averages these estimates.
For a wide range of problems, the resulting estimator has a risk comparable to that of the centralized
solution (Rosenblatt and Nadler, 2016; Wang et al., 2017; Jordan et al., 2019; Liu et al., 2023). For the
sparse linear regression model (1.5), Lee et al. (2017) and Battey et al. (2018) proposed a single round
distributed debiased-Lasso scheme, and proved that under suitable conditions it achieves the same
error rate as the centralized solution. Yet, these debiased-Lasso methods have two limitations: (i) the
communication per machine is at least linear in d; and (ii) the computational costs are considerable,



as each machine has to solve d+ 1 Lasso problems. Barghi et al. (2021) and Fonseca and Nadler (2023)
proposed debiased-Lasso methods with much less communication, where each machine sends to the
center only the indices of its few largest coordinates.

In Chapter 4 we consider distributed estimation of the sparse vector 6 in the model (1.5), under the
following setting: The M end machines have both limited processing power and a restricted commu-
nication budget. This is motivated by modern applications where end machines are computationally
weak, but collect high dimensional data. For example, in spectrum sensing, a network of sensors
continuously monitor and collect high dimensional data, and repeatedly need to estimate the current
vector 6. In this setting, computationally intensive methods such as debiased Lasso may be infeasible
or prohibitively slow. In addition, under communication constraints, regardless of computational con-
siderations, most of the above methods are not applicable in high dimensions, as their communication
per machine is at least linear in d.

As the quantity of interest 8 is K-sparse with K < d, this gives rise to the following challenge:
develop a scheme that accurately estimates the vector @ with number of operations per machine linear
in d and communication sublinear in d, and derive theoretical guarantees for it. Here we focus on
accurately estimating the support of 6. Indeed, as discussed in Battey et al. (2018); Fonseca and
Nadler (2023), given an accurate estimate of the support, an additional single round of communication
allows distributed estimation of @ with the same error rate as in the centralized setting.

A natural base algorithm for machines with low computational resources is Orthogonal Matching
Pursuit (OMP), as it is one of the fastest methods for sparse recovery (Chen et al., 1989; Pati et al.,
1993; Mallat and Zhang, 1993). Several distributed-OMP schemes, which are computationally fast and
incur little communication, were proposed in Duarte et al. (2005); Wimalajeewa and Varshney (2013);
Sundman et al. (2014). To the best of our knowledge, the only work to derive support recovery
guarantees for distributed-OMP methods is by Wimalajeewa and Varshney (2014). However, their
analysis is restricted to a noise-less compressed-sensing setting, where each vector x; at each machine
was independently sampled at random, and their proofs rely heavily on the symmetry between all
non-support variables. Thus, they are inapplicable in our framework.

Our Contributions. In Chapter 4 we analyze several distributed-OMP schemes that estimate the
support of 8. The first scheme, D-0MP, is a one-shot scheme, while the second scheme, DJ-0MP, requires
K rounds of communication between the machines and the fusion center. Our results detailed below
have been accepted for publication in the Proceedings of the Conference on Artificial Intelligence and
Statistics (AISTATS) Amiraz et al. (2024).

Our key contribution is the derivation of the following recovery guarantee for DJ-0MP.

Theorem 1.5 (Informal statement of Theorem 4.1.). Let Opin = min;es |0;|, and define the SNR

scaling v such that O, = 1_‘(727 m, where fimax = Pmax (X(l), ce X(M)) = MaX,,c[n] M(X(m)).

Suppose that the MIP condition (1.4) holds for each of the M matrices X(™) | that v > pimax, that

1—v7)?2

- a—v7)
M > Q| KdG-sma® |, and that d is sufficiently large. Then, w.h.p. DJ-OMP with K communication

rounds recovers the support of the K-sparse vector 6.

Remarkably, our guarantee holds even at low SNRs, where each individual machine fails to recover
the support. The main challenge in our analysis is that the matrices X (™), assumed deterministic,
may be similar (or even identical) across machines. Hence, at low SNRs, several machines might send
the same incorrect support variable to the fusion center. Deriving a theoretical guarantee in this case
requires a different and more delicate analysis than that of previous works. Specifically, to bound the
probability that a non-support variable is sent to the fusion center we use recent lower bounds on the
maximum of correlated Gaussian random variables (Lopes and Yao, 2022). Thus, our analysis goes
significantly beyond the limitations of previous works by providing theoretical guarantees in a more
general setting, where the design matrices may be correlated, deterministic or even structured, and for
noisy signals.



To complement our theoretical analysis, we compare via simulations the support-recovery success
of the distributed-OMP algorithms D-OMP and DJ-OMP with debiased Lasso schemes (Lee et al., 2017;
Battey et al., 2018; Barghi et al., 2021). In addition we compare to distributed sure independence
screening (SIS) schemes (Fan and Lv, 2008), which are also suitable for computationally weak machines.
In distributed SIS schemes, each machine first excludes variables weakly correlated to the response,
and then estimates the sparse vector 8 on the remaining ones via any appropriate algorithm. In our
experiments we considered smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and OMP.
Our simulations show that, as expected, the best performing scheme is debiased Lasso, but at the
expense of significantly higher communication and computational costs. Interestingly, in comparison
to a communication-restricted thresholded variant of debiased Lasso, distributed-O0MP methods perform
comparably, and in some cases even outperform it, while being orders of magnitude faster.

1.3 Directions for Future Research

In summary, this thesis advances the field of sparse estimation by establishing novel guarantees for
recovering sparse vectors from linear measurements corrupted by Gaussian (and sub-Gaussian) noise
in both centralized and distributed settings. For each of the three problems considered in this thesis,
there are various questions for future research that are outlined in each chapter.

On a broader scale, we believe that our results could be extended to a wide array of sparse estimation
problems. For instance, our methodologies could be adapted to distributed sparse logistic regression
and other generalized linear models. Another intriguing direction for future research is the online or
streaming setting, where the goal is to recover a support set shared between multiple measurement
vectors that are observed sequentially, where the support set may vary over time. Thus, the insights
from our work offer a foundation for developing algorithms and deriving SNR-based bounds for diverse
sparse recovery problems.



Chapter 2

Tight Recovery Guarantees for OMP
under Gaussian Noise!

Orthogonal Matching pursuit (OMP), described in Algorithm 1, is a popular algorithm to estimate an
unknown sparse vector from multiple linear measurements of it. Assuming exact sparsity and that
the measurements are corrupted by additive Gaussian noise, the success of OMP is often formulated as
exactly recovering the support of the sparse vector. Several authors derived a sufficient condition for
exact support recovery by OMP with high probability depending on the signal-to-noise ratio, defined as
the magnitude of the smallest non-zero coefficient of the vector divided by the noise level. We make
two contributions, presented in Section 2.1. First, we derive a slightly sharper sufficient condition for
two variants of OMP, in which either the sparsity level or the noise level is known. Next, we show that
this sharper sufficient condition is tight, in the following sense: for a wide range of problem parameters,
there exist a dictionary of linear measurements and a sparse vector with a signal-to-noise ratio slightly
below that of the sufficient condition, for which with high probability OMP fails to recover its support.
In Section 2.2, we present simulations which illustrate that our condition is tight for a much broader
range of dictionaries. All proofs appear in Section 2.3.

2.1 Main Results

We first introduce key notations and assumptions that will hold throughout the chapter. We denote
Omin = min;es |6;| and define the following effective noise factor

o
O'eff(K,,LL) = 1— (QK— 1)'“
We assume that the MIP condition (1.4) holds, so g (K, ) is well defined and strictly positive.
Moreover, we refer to the columns x; of X as the atoms of the dictionary and assume for simplicity
that they are normalized to have unit norm ||x;|| = 1.
For measurements that are corrupted by additive Gaussian noise, Ben-Haim et al. (2010) derived
the following sufficient condition for OMP to recover the support of @ with high probability.

Theorem 2.1 (Ben-Haim et al. (2010)). Let @ be an unknown vector with known sparsity K, and
let y = X0 + o€, where X € RN*? is a dictionary with normalized columns and coherence i, and
&~ N(0,Iy). Suppose that the MIP condition (1.4) holds and that for some o > 0

Omin > 20e (K, 1)1/2 (1 + ) logd. (2.1)

IThe results presented in this chapter have been published in Amiraz et al. (2021). The notations have been changed
for consistency with the other chapters of the thesis.



Algorithm 1: Orthogonal Matching Pursuit (OMP)

input : dictionary X € RV*? signal y € RV, sparsity level K
output: estimated vector Ok € R?

initialize the residual ro = y and the estimated support So=0
2 fort=1,...,K do

3 | calculate j = argmax {% 10 € [d]}
4 | add & =8_,U{j}
5 calculate §; = arg min {||y — Xzl|, : z € R%, supp(z) = S’t}

=

6 update ry =y — X6,
7 end

Then, OMP with K iterations successfully recovers the support of @ with probability at least

- ! (2.2)

doy/m (1+a)logd

In many practical cases K is unknown while the noise level ¢ is known. Denote by OMP* a variant
of Algorithm 1 where instead of performing K iterations, the algorithm stops when the maximal
correlation of the residual with any dictionary atom is smaller than a threshold 7, i.e., | XTr, HOO <.
Cai and Wang (2011, Thm. 8) proved the following analogue of Theorem 2.1 for this OMP* variant:
under the MIP condition (1.4) and condition (2.1), OMP* with threshold 7 = oy/2(1 + «) log d recovers
the support of @ with probability at least 1 — K/d*y/2logd.

2.1.1 Sharper sufficient condition

By performing a tighter analysis of the proofs of Ben-Haim et al. (2010) and Cai and Wang (2011),
we derive a sharper sufficient condition than (2.1) for exact support recovery by both OMP and OMP*.
However, this sharper sufficient condition comes at a price, whereby the success probability is a function
not only of the vector length d, but also of its sparsity level K. The following theorem formalizes this
statement and is proved in Section 2.3.1.

Theorem 2.2. Let 0 be an unknown fized vector with known sparsity K, and let y = X0 + o€, where
X € RV*4 s q dictionary with normalized columns and coherence u, and & ~ N (0,1x). Suppose that
the MIP condition (1.4) holds, that K < d® for some 0 < 3 < 1 and that for some a > 0

Ouin = oot (K, ) (14 V/B) 21+ ) log d. (2.3)

Then, OMP with K iterations successfully recovers the support of @ with probability at least

1 1 1
b 7 (1+ «a)logd (Claer“ﬁ\/B)' @4

Moreover, under the same conditions OMP* with threshold T = o+/2(1 + «)logd successfully recovers
the support of @ with probability at least (2.4).

We emphasize that in both Theorem 2.1 and Theorem 2.2 the vector 0 is fixed and the probability
of success is over the realizations of the noise vector €. Eq. (2.3) is sharper than Eq. (2.1) since g < 1.
Simulations in Section 2.2 illustrate the tightness of this result.

10



2.1.2 Near-tightness of the OMP recovery guarantee

According to either Eq. (2.2) or (2.4), the smallest « that still guarantees exact support recovery with
probability tending to 1 as d — oo is a = 0. Therefore, the weakest sufficient condition for OMP to
recover the exact support of @ with high probability for d > 1 is

emln > Ueﬁ K :u’ (]- + \/>) V 210g (25)

An interesting question is thus whether this sufficient condition is sharp, or could the right hand side
n (2.5) be lowered further.

The main result of this chapter, formalized in Theorem 2.3 below, is that the above condition is
quite tight. Informally, our result can be stated as follows: for a wide range of sparsity levels K,
dictionary dimensions N, d and coherence values j, there exist a dictionary X € RV*?¢ and a K-sparse

vector 8 € R? with
emin ~ O—eff(Khu (1 —H— f) V 210g (26)

for which OMP fails to recover its support with probability 1 —o(1). In particular, the failure probability
for this specific X and 6 tends to 1 as d — co. As shown by the simulations in Section 2.2, OMP fails
with high probability under condition (2.6) in a much broader range of cases. These include a case
where the dictionary atoms are drawn independently and uniformly at random from the unit sphere
and a case where the dictionary is composed of two orthogonal matrices (the identity matrix and the
Hadamard matrix with normalized columns).

If K is constant or polylogarithmic in d, then as d — oo we can take 8 > 0 arbitrarily small.
In this case, the bounds (2.5) and (2.6) match, up to a multiplicative factor of 1 — u. Finally, for
various dictionaries the coherence p is itself small. For example, if each entry of the dictionary is
drawn independently and uniformly at random from +1/4/N, then with probability exceeding 1 — §2

the coherence is p < 24/ N1 logg (Tropp and Gilbert, 2007). Hence, p — 0 if d is sub-exponential in
N.
To formally state our theorem, we introduce the following notations. First, let

B 1= (K —=1)u
p=p(K,p) = K (2.7)
and ) 2 g
P M H
MZM(K7M)=?=m~ (2.8)

Both quantities are well defined, since by the MIP condition (1.4), 1 — (K — 1)u > 0. It can be easily
shown that /fi < p < 1/VK and i < p. Next, denote N=N-Kandd=d— K. Let fimin (a,b) be
the smallest possible coherence of an a x b overcomplete dictionary with a < b. To prove our theorem
we construct a dictionary that consists of several parts. One of these parts is a N xd dictionary with

coherence L = L (N ; ci) = [min (N , J) By the theory of Grassmannian frames,

L> (2.9)

d— N

N(d—1)
(see for example Strohmer and Heath, 2003). In fact, L may be strictly higher since Grassmannian
frames do not exist for every pair (V,d). However it can not be much higher, since by Tropp and

Gilbert (2007) L < 24/ N—logd.
We now give a rigorous statement of our result, whose proof appears in Section 2.3.2.
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Theorem 2.3. Let N,d be integers such that N < d. Let K be an integer and let u be a number that
satisfy the MIP condition (1.4) and the following set of inequalities:

K <min{d’, N} (2.10)
where 0 < B < 1,
—L—+8-8L
K<? i 88 , (2.11)
and
B B ALEE-1-LK) B IL2K—1-LK)
(1+ L(K-1)) (1 \/1 (1+L(K-1))? ) <u< I+ L(K-1) (1+ \/1 T(A+L(K-1))% )

2(2K —1- LK) 2(2K —1- LK)
(2.12)
Then, there exists a dictionary X € RN*? with coherence p and a corresponding K -sparse vector

0 € RY satisfying

Ornin = oert (K, 1) - {\/21 )(1— fi)logd — /23 (1 — p2)logd

—co\/ (1 — i) loglogd — <p+ \[) v/2loglogd } (2.13)

where p is given in (2.7), & is given in (2.8) and ¢o > 0 is a universal constant, such that with
probability at least

Ph=1- Ge_c\ﬁoglogjmin{“fl’ logd} _ (logd\/wlog log d>_1 — (\/7‘(6 log d)_1 ,

OMP fails to recover the support of @ fromy = X0 + c€.

Remark 2.1. Let us now illustrate that conditions (2.11) and (2.12) are not very restrictive. It is
instructive to consider the over-complete case with d = JN for J > 1, with d, N > 1 and sparsity K

much smaller than N, such that N =~ N. By the theory of Grassmannian frames L ~ @ for an
appropriate C(J) > 0 (Strohmer and Heath, 2003). Under the MIP condition (1.4), K < 0. 50\/(;),
while under condition (2.11), K < (3 — \/g)m ~ 0. 17(}(])

For values of K such that LK is much smaller than 1, condition (2.12) can be approximated by a
AL(2K—1-LK)

binomial approximation /1 —e =~ 1—¢/2 for small e = MrLE-1)?

as
L<u<

ook -1
The inequality L < u follows essentially from frame lower bounds whereas the other inequality is very

close to the MIP condition (1.4). Hence, condition (2.12) is only slightly more restrictive than MIP.
This comparison is visualized in Figure 2.1.

Remark 2.2. We now show how Eq. (2.13) may be approximated by Eq. (2.6). First, for Theorem 2.3
to be meaningful, the right hand side of Eq. (2.13) must be positive. We now show that this is indeed
the case for typical parameter values. If K = dP for B < 1, then logcz = logd+log ( = 5) log d.
Recall that i < p and that p > 0. Hence, the first two terms on the right hand side of (2.13) can be
approximated as follows

\/2(1—/1)(1—/1)10{;(5—\/25(1—p2)10gd > (1—p)\/2logd — \/2Blogd
~ (1-p-— f\/Qlog

In addition, the last two terms on the right hand side of equation (2.13) are small compared to the first
term, since they are of order v/loglogd. Hence, (2.13) may be approzimated by (2.6).
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Figure 2.1: Comparison of various conditions on (K, 1) for a dictionary of size N = 1020 and d = 2040.
In the left panel, the green curve is the MIP condition (1.4) and the red curve is the frame lower bound
from Eq. (2.9). The vertical dashed line is the maximal sparsity K where the two curves intersect.
The solid black lines between these two curves are values of (K, u) for which if 0y, is sufficiently
large, then support recovery is guaranteed with high probability. In the right panel, the blue curve is
condition (2.12) and the black lines are the values of (K, u) where our Theorem 2.3 holds. Namely, if
Omin is small then there are provable cases where OMP will fail. Comparing the two panels shows that
Theorem 2.3 applies to most but not all values of (K, ) where Theorems 2.1 and 2.2 hold.

2.2 Simulations

We present several simulations to illustrate our sharper sufficient condition in Theorem 2.2 and our
near-tightness result in Theorem 2.3. We generated N x d dictionaries and K-sparse vectors with
coefficients of equal magnitude v. For each vector 8, we drew random noise & ~ N (0,I,) with noise
level 0 = 1 and computed the signal y as in Eq. (1.1).

In Setting 1, we considered the probability of exact support recovery of K-sparse vectors with
sparsity K = 3 using three dictionaries of size (N, d) = (4096, 8192). The first is a two-ortho dictionary
X1 = [ITH] composed of two orthogonal matrices — the identity matrix and the Hadamard matrix
with normalized columns. The second X5 is a dictionary whose atoms are drawn independently and
uniformly at random from the unit sphere. For these two dictionaries the K-sparse vectors were
drawn independently and uniformly at random from the ( I‘é) possible vectors. The third dictionary
X3 and its corresponding K-sparse vector are the ones used to construct the near-tightness example
in the proof of Theorem 2.3 (see Eqgs. (2.24) and (2.27)). Figure 2.2 depicts the empirical probability
that OMP recovered the exact support of the unknown sparse vector in Setting 1, averaged over 500
realizations. It is interesting to note that our sufficient condition in Theorem 2.2 indeed improves over
that of Ben-Haim et al. (2010). In addition, our sufficient condition is relatively sharp for small values
of K. Another important observation is that even though condition (2.6) was derived considering X3
corresponding to the third panel, we see that the condition holds for different types of dictionaries as
well.

In Setting 2, we study the probability of exact support recovery for different sparsity levels K =
2,4,6 for the specific dictionary and K-sparse vector used in the proof of Theorem 2.3. For each
value of K, the corresponding dictionary of size (N, d) = (4096,8192) and coherence u = 0.03 was
constructed using the alternating projection method of Tropp et al. (2005). Figure 2.3 depicts the
empirical probability that OMP recovered the exact support of the unknown sparse vector in Setting 2,
averaged over 500 realizations. Note that condition (2.6) is conservative since in our proof we analyze
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Figure 2.2: The solid blue line in each panel is the empirical probability of exact support recovery of a
sparse vector by OMP as a function of its normalized signal-to-noise ratio in Setting 1. The dash-dotted
black line is the sufficient condition (2.1) by Ben-Haim et al. (2010). The dashed green line is the
sharper sufficient condition (2.3). The dotted red line is the approximate condition (2.6) below which
OMP fails with high probability by Theorem 2.3. In all panels, when fixing a high success probability
(for example 0.95), our sharper sufficient condition (2.3) is indeed closer to the empirical probability
than the sufficient condition (2.1) by Ben-Haim et al. (2010), and in the first panel it is in fact tight.

failure only in the first step of the algorithm. However, it cannot be increased much further, since
the probability of recovery increases sharply at higher values of the normalized signal-to-noise ratio.
Finally, we remark that similar results are obtained for other values of N, d, K and pu.

2.3 Proofs

The following auxiliary lemma will be useful in proving both Theorems 2.2 and 2.3. Its proof appears
in Section 2.3.3.

Lemma 2.1. Let (X1,...,X,,) ~N(0,X) where X;; =1 for alli € [n1]. For anyn > 0 and ng > ny

the following holds
ni
Pr | max | X;| < v/2nlogns| >1 — ——v—r—. 2.14
iE[n1}| | rosta na+/mnlogna (2.14)

2.3.1 Proof of Theorem 2.2

The proof is based on a tighter analysis of the proof of Ben-Haim et al. (2010, Thm 4). First, we define
"bad” random events By and Bj; which indicate that the largest magnitude of inner products of the
noise with support atoms and with non-support atoms is larger than their respective thresholds. We
then define the "good” random event G that indicates that neither Bx nor Bj occurs, and prove that
the event G occurs with probability (2.4). Next, we show that under the event GG, OMP with K iterations
successfully recovers the support of . Finally, we prove that OMP* with threshold 7 = 01/2(1 + «) logd
stops after exactly K iterations, and therefore also successfully recovers the support of 6.
In details, we define the following two random events

e = { ol o, 08)| = V7|

and
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Figure 2.3: The solid blue line in each figure is the empirical probability of exact support recovery of a
sparse vector by OMP as a function of its normalized signal-to-noise ratio in Setting 2. The dash-dotted
black line is the sufficient condition (2.1) by Ben-Haim et al. (2010). The dashed green line is the
sharper sufficient condition (2.3). The dotted red line is the approximate condition (2.6) below which
OMP fails with high probability by Theorem 2.3. In all panels, when fixing a high success probability
(for example 0.95), our sharper sufficient condition (2.3) is indeed closer to the empirical probability
than the sufficient condition (2.1) by Ben-Haim et al. (2010), and in the first and second panel it is in
fact tight.

and let the random event G = (B xUB J)C be the complement of their union. Note that while these
definitions depend on the unknown support set S, this is only for the sake of the analysis, and we do
not assume that OMP receives the support S as input.

Next, we prove that the event G occurs with probability at least (2.4). Since the dictionary atoms
are normalized, each random variable (x;,&) is a standard Gaussian random variable. Therefore,
applying Lemma 2.1 with ny = K, no =d and n = (1 4+ «) 8 gives

K

d(+a)8, /7 (1 + o) Blogd

Pr [BK] S

Since K < d?, then
Pr[Bg| <

1
~ deB\/m(1+a)pBlogd

Similarly, we can apply Lemma 2.1 again with ny =d=d — K, no = d and = 1 + « and get

Pr[B;] < d .
d+e) /7 (14 a)logd
Since d < d, then
1
Pr [Bcﬂ =~

< .
d*\/m (1 + «)logd

By the definition of G and a union bound,
Pr[G] = Pr[(Bx UB;)‘] >1—Pr[Bk]—Pr[By],

which proves that the event G' occurs with probability at least (2.4).
The following lemma shows that under condition (2.3), one step of the OMP algorithm chooses an
atom in the support S.
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Lemma 2.2. Let z be an unknown vector with sparsity K and support S = supp{z}, and let r =
Xz+0c€ where X € RN*? is a dictionary with normalized columns and coherence i, and & ~ N (0,Iy).
Suppose that the MIP condition (1.4) holds, that K < d? for some 0 < 8 < 1 and that for some a > 0

max |2 > oo (K, 1) (1+\[)«/ 1+ ) logd. (2.15)

€S

jhen Unde? the 6’U€Tlt G,
ax X X ax X X . 216

Proof of Lemma 2.2. Denote by zmax = max;es |z;|. Under the event G, the largest magnitude of an
inner product of the observed signal r with a non-support atom i ¢ S is

max [(X;, I = max |(X;,0§) + Z; (X, X;
lbeonll = (o€ + 3 (xo )
max | (xs, 7€)+ max > [25 (xi, %)

JjES
< T4 Kpzmax. (2.17)

IN

Similarly,

max |G, 1) = max \ag, + (x5, 08) + Do z(xiex;)
JES\{k}

Y

Zmax — MAX (x,08) + Z zj (Xp, X;)
JES\{k}

Zmax — fT - ,uzmax (2'18)

Combining the last two equations gives

V

r]?ea‘§<|<xk,r>|—%a‘ugx|<xi,r>| > Zmax — (2K — 1) ptZmax — \[T—T

Substituting for 7 implies that Eq. (2.16) holds under condition (2.15). O

Next, assume that G occurs. We prove the first part of Theorem 2.2 by induction. Consider the
first iteration of OMP, described in Algorithm 1. In line 3, OMP chooses an atom x; whose inner product
with y is maximal. In other words, condition (2.16) must hold for r = y and z = 6 for OMP to select
an atom i € S at the first iteration. When G occurs, then by condition (2.3) and by Lemma 2.2 OMP
selects a support atom, i.e., 81 C 8. Assume by induction that the set of atoms that were selected in

all previous 1 <t < K iterations is a subset of the support set, i.e., supp {ét} = St C S. Hence,
—y - X6, :X(H—ét) + o€, (2.19)

where 8 — 6, is a sparse vector whose support is contained in S. In addition, since OMP selects exactly
one atom at each iteration,

’supp {ét}‘ =t < K = |supp{6}|.
Hence, at least one entry in @ — 6, is equal to its corresponding entry in 6 and

max ‘ (0 — ét)z‘ > Il?[élél |0;] = Omin. (2.20)
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Since by Eq. (2.3) Omin is larger than the bound in Eq. (2.15), we can apply Lemma 2.2 with r = ry
and z = 0 — 0, to conclude that under the event G,

mae| i, 1) > mae (.m0

This implies that OMP chooses a support atom at iteration ¢t + 1. Therefore by induction the OMP
algorithm recovers the unknown support of 8 under the event G, which concludes the proof of the first
part of Theorem 2.2.

It remains to show that the OMP* algorithm with threshold 7 = 01/2(1 + a)logd does not stop
early before the K-th iteration, and that it does stop after the K-th iteration. At iteration 1 <t < K,

[X7re|| = max| (x;, 71)| 2 max] (xi, 70)
Under the event G, by Egs. (2.18) and (2.20),
max|(xg, 1y)| > Oumin (1= (K = 1) ) = /Br.
Finally, by condition (2.3),

(1+\/B)(1—(K—1)u)7_\/5 1-(1-VB)K-1)n

1- (2K -1 pu TT T i—eKk-nu 7

X7, >

which proves that OMP* does not stop early.
At the end of iteration t = K all support atoms have been selected. Let 8s € RX and X5 € RV*K
be the vector 8 and the dictionary X restricted to the support S (respectively), and let Ps = XSX‘TS =

Xs (XEXS)_l ng be the projection of the observed signal onto the linear subspace spanned by the
elements of S. Then

rg =y — XsXky = (I — Ps)y = (I — Ps)Xs0s + (I — Ps) o€.

Since I — Ps is a projection to the linear space that is orthogonal to the subspace spanned by the
elements of S, the first term of the last equation above is zero. Hence, under the event G,

T — . — . _ )
[X"rkl, = max|(x;, 1xc)| = max|(x;, (I — Ps) 0€)| < max(x;, 08)| < 7.
Therefore, OMP* stops after exactly K iterations. This concludes the proof of Theorem 2.2. O

2.3.2 Proof of Theorem 2.3

First, we present an outline of the proof. Given parameters d, N, K, with N < d, and where K,
satisfy conditions (2.10)-(2.12), we construct a dictionary X € RV*? with coherence p and a sparse
vector @ € R? with sparsity K. We show that when the smallest coefficient in @ is sufficiently small
as in condition (2.13), then with probability at least Py, OMP fails to detect a support atom already at
the first iteration, and therefore fails to recover the support of 6.

To prove the theorem we shall use the following auxiliary lemmas. The first lemma concerns the
maximum of several correlated normal random variables.

Lemma 2.3. Let (Xi,...,X,) ~N (0,X) where X;; =1 for alli € [n] and 0 < |X;;| <n <1 for all
i # j € [n]. For M,, = max;c[,) X;, the following hold:

1. (Lopes (2018)). There exists a universal constant co > 1 such that
E[M,] > +/2(1 —n)logn — (¢ — 1) v/loglog n. (2.21)
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2. (Tanguy (2015)). There exists C > 0 such that for any n > 2 and t > 0,
Pr[|M, — E[M,]| > t] < 6~ Ctvmin{s logn} (2.22)

In constructing our specific dictionary, we will use the following lemma whose proof appears in
Section 2.3.3.

1

7—7, there exist vectors ai,...,ax € RE such

Lemma 2.4. For any integer K > 1 and any 0 < p <
that for all i,j € [K]

1 L

(ai,a;) = Z j (2.23)
—p iF

Proof of Theorem 2.3. Recall the notations N = N — K and d = d — K. Given the sparsity K and

coherence u, we first construct vectors ay,...,ax € R¥ as in Lemma 2.4. Next, we construct our

dictionary X = [x1,...,xx] € RV*? as follows

0 0 \/l—ﬂWK_H \/l—ﬂWd ’ ’

where a = Hgiem % and the constant i is defined in Eq. (2.8). For future use, note that
ig[K] &
aill= /> Y fanar)=VEQ1-(K-1)p). (2.25)
1€[K] 1€[K] i €[K]
The key requirements of the vectors Wi 41, ..., wy € RV is that they have unit norm [[w:|| =1 and

that they satisfy the following condition

Wi < L. 2.2
e [(wiw)| < (226)
As the following lemma shows, condition (2.26) implies that the coherence of X is u. The proof
appears in Section 2.3.3.

Lemma 2.5. Assume that K, p satisfy conditions (2.11) and (2.12). Then, under condition (2.26),
the coherence of the dictionary X of Eq. (2.24) is exactly p.

Before proceeding we remark that such a dictionary X indeed exists. Specifically, Lemma 2.6 in
Section 2.3.3 shows that if wx1,...,wy are drawn independently and uniformly at random from the

unit sphere, and p satisfies condition (2.12) with a (possibly) slightly higher value L = 2 IOJ%J, then
condition (2.26) holds with high probability.
Let us now analyze the inability of OMP to successfully recover the support of an underlying K-sparse

vector 0, given y = X0 + o&. Consider a dictionary X of the form (2.24) and the vector

K
0=v) e, (2.27)
j=1

which implies that S = {1,..., K} and 60,,;, = v. Note that X0 = I/Zie[K] X, = 1/( Zie([)K] & )

From this point on we view X and @ as fixed and the randomness is only over realizations of the noise
vector &.
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Our goal is to show that if v is sufficiently small such that condition (2.13) holds, then with high
probability OMP fails to recover the support S. For future use, we introduce the following two random
variables that depend on the noise &,

Aout = %&?sx [(xi, )1 (2.28)
and
Ain = max |(xi, y) - (2.29)

A sufficient condition for the failure of OMP, as described in Algorithm 1, is that it would choose a
non-support atom in the first step of the algorithm with probability > Py, or equivalently if

Pr [Aout > Ain] > P.

As we shall see below, due to dependencies between various inner products (x;,y), the probability
that Ague > Ajn is difficult to analyze. Instead, we will introduce two other random variables B, and
B, which satisfy Aoyt > Bout, Bin > Ain and for which Pr[Boys > Biy] is simpler to analyze.

First, we decompose the noise into its support elements £ € RX and non-support elements

{v € RN , such that & = ( ?f . Next, we analyze the random variable A, and define the random
N

variable Boyt. Using the value for fi in Eq. (2.8) and value of the norm in Eq. (2.25), the inner product

of the observed signal y = X0 4 o£ with a non-support atom i ¢ S is

(xi,y) = <XiaVZXj>+<Xiva'§>

- <(ﬁwz)’”j§<%ﬂ>>”x“”@
K Vi K K
= z/;< [Lé,aj>+a<xi,£> TR 1_ _1 gzz aj,a;) + o (x;, §)

T 1y K0 (K = D p) o i) = vEp+ o (x0.€)

= vKp+oy/ii(a,éx) +oy/1—fi(wi,ég). (2:30)

We define By, by
Bow = vKp— o/ |(a, &x)| + 0/1 - e (wi, €. (2.31)

Using Eq. (2.28) and (2.30),

Aout = I}éa“SXKXZaYH Z I}};‘LSX <X17Y>
= vKu+a¢ﬁ<a,sK>+o\/1—ﬂn3¢a;<<wi,sﬁ>
> uKu—aﬁ|<aysK>|+o\/1—ag3¢a;<<wi,sﬁ>=Bout.

We now analyze the random variable A;, and define the random variable Bj,. The inner product
of the observed signal y with a support atom k € S is

Xk, y) = <Xk»VZXj> + (xk, 0E)

K
= I/Z (ag,a;) + 0 (x5, &) =v(1— (K —1)p) + o (ag, €x) - (2.32)
j=1
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To circumvent the dependence between the random variables (ay, €x) and (a, £x), we decompose

each aj into two components, a!l

(2.7) and (2.25), for each k € S

which is parallel to a and a,JC- which is orthogonal to a. Using Eq.

1 (a.a) = L= (K—l)u

1; \/K L— - 1):“')

(&) . (2.33)

B sz‘e[K] a;

Thus aﬁ = aj, — (ay,a) a = a;, — pa. Combining this relation with Eq. (2.32), we can rewrite A;, as
A = r]?géqy(l — (K —1)p) + o {ay; + pa, &k )| .
We define B, by
Bin =v (1= (K = 1)p) +op|(a,&x)| + omax|(aj;, &x)| (2.34)

By the triangle inequality A;, < Biy.
Now that we defined By and Bj,, we proceed to analyze the probability that Bgy > Bjn, or
equivalently,

\/1—ﬂr%%x<wi,€ﬁ>>ﬁ (p—i-\/) a€K|+max|<ak,£K>| (2.35)

Oeff
For constants b1, bs that will be determined later, denote the following three probabilities
Pl = Pr |:1'LI}¢8‘,SX <WZ,£N> > b1:| s

Py =Pr([(a, k)| < ba],
and

Py =Pr {max|<ak,£K>|<Fb1 (p+f)b2].

By the statistical independence of {x and €5 and the linear independence of a and akL for all k € S,

Ueﬂ”K/J'

Pr[Bout > Bin] > Pr {Izr_éagx (wi, &x) > bl} x Pr|{a, &€x)| < bo)

x Pr {max‘<ak,£;{>‘<\/l— by — K

= P-P P

= e Vi)

)

Hence, instead of proving that (2.35) holds with probability at least Py, it suffices to prove that
P -Py- Py > P,

We proceed by calculating each of these probabilities, beginning with P;. Since Wi 1,..., Wy are
fixed unit vectors, each inner product between w; and the vector of standard normals £ 5 is a standard

normal random variable. Let
by =1/2(1 — p)logd — coy/loglogd,

where cp is the constant from Lemma 2.3. Denote by M; = max;¢s (w;,&5). By the first part of

Lemma 2.3,
2(1 — p)logd — (co — 1)y/loglogd
= b+ \/loglogd.
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Therefore, by the triangle inequality,

Py = Pr[M;>b]>Pr [Mg > B [Mg] - \/loglogcz}
Pr [\MJ—E [My]] < \/loglogcﬂ :

By the second part of Lemma 2.3,

Y

P >1- 6670\/loglogd~1rnin{,u*17 logJ}

Next, we calculate P5. Let by = /2loglog d. The term (a, £k ) is simply a standard normal variable.
By Lemma 2.1 with parameters ny = 1, no = logd and n = 1, we obtain that

1

P, =Pr ||(a, <+/2loglogd| >1 - ——————.

2 8 [|<a €x)| 0glog } log d+/mloglog d
Lastly, we calculate Ps. Recall that by construction 6,,;, = v. By Eq. (2.13),

v

————— = /1 — by — () bo — /28 (1 — p?)logd.

e (K 10) fiby (P+\/ﬁ) 2 B(1—p?)log

Therefore,
P; = Pr max|<ak,£K>|<\/1— (b, — K ) (p—|—\[> ]

= Pr 1}112?|<ak,€K>| 23 (1 p)logd]

<a 7£K>
= Pr r]gleagi h v 2B logd]| .

Note that for all k € S,

L — 2 : <a¢€K> ‘e ol .

| = v/1—p?. Hence, each random variable S 18 Gaussian with
zero mean and variance 1. We can apply Lemma 2.1 with ny = K, ny = d and n = 3, and use the
inequality (2.10) to get

K 1
Pr>1l——n 0 >1 - —.
=" @B /mBlogd ~—  /7Blogd

By a union bound, for sufficiently large N and d the probability that OMP fails to recover the support
S is at least Py, which completes the proof of Theorem 2.3. O
2.3.3 Proofs of Lemmas

To conclude, we prove the auxiliary lemmas.

Proof of Lemma 2.1. The proof is similar to that of Ben-Haim et al. (2010, Lemma 2). By Sidak

(1967, Thm. 1), since Xi,...,X,, are jointly Gaussian random variables, then
Pr m[ax |Xi| < \/27710gn2] > H Pr {|Xl\ < \/inognQ] =Pr {|X1| < \/2n10gn2] . (2.36)
1€ n1
i€[n1]

Each X; is a standard normal random variable. Therefore,

Pr(X,| <a] = 1-2Q(x),
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where Q(z) is the Gaussian tail probability function. Applying the inequality

with x = v/2nlogny gives
e*?ﬂOg n2 1

Pr [1X] < \/2nlogns| > 1- —1- . 2.37
rliXal s vanlogne| = Vanlogns na/mnlogns (2:37)

Inserting Eq. (2.37) into (2.36) and using the inequality (1 —a)" > 1 — an completes the proof. [

Proof of Lemma 2.4. Let G € REXK be the following symmetric matrix with entries

L i
Gij = e
—p iF ]

Hence, G can be rewritten as a rank-one perturbation of the identity matrix
G=—pl1" + (14 p) 1

Ifp < ﬁ, then G is positive definite. Therefore, it is the Gram matrix of a set of linearly independent
vectors, i.e., there exist ay, ..., ax such that condition (2.23) holds, which completes the proof (Horn
and Johnson, 2012, p. 441).

For completeness, we describe an explicit construction. Let V = [vy...vg]| be an orthogonal

matrix where v; = —=1 and
JI=(K-Dp1T
e 1

VK
A — VIt vt

VIFpvk
Let us now prove that A indeed satisfies condition (2.23). Since V is orthogonal, its rows also form
an orthonormal basis of R®. First, consider the diagonal entries of the Gram matrix AT A. For all
i€ [K], w =—p+ (1+p)+=—p+ (14 ) Vi, and therefore

T 1—(K-1)p £ 2 K 9
(ATA) = —— =+ (L+w) Y Vii=—pu+(1+m)) Vi=1
k=2 k=1
Similarly, for all i # j € [K], *=U = —p+ (14 ) 4 = —p+ (1+ 1) V1V, and therefore
K K
1-(K -1
k=2 k=1

O

Proof of Lemma 2.5. To prove that the coherence of X is u we need to analyze three types of dot
products (x;,x;). The first type is 1 <4 < j < K, the second type is 1 < i < K < j < d, and the
thirdis K +1<i<j<d.

Beginning with the first type, by construction, for any 1 <i < j < K,

(%, %5)| = (a5, a5)| = p.
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For the second type, by Eq. (2.8), for any 1 <i < K < j <d,

i) = [ )| = e | 3 (e

sz re[k] &' || |i€[K]

Inserting Eq. (2.7) and (2.25),

K 1—(K-1)p
1—(K-Du K1 - (K - Du)

[(xi %) = p

Finally, we address the third type. By the triangle inequality and condition (2.26),
[oxiy x5 = Vi + (1= i) (wisw)| < ik (1= o) [owi, wi)| < o+ (1— ) L.
It remains to show that for values of i in the range of Eq. (2.12),
i+ (1—i@)L<p. (2.38)
Using the definition (2.8) of fi, condition (2.38) is

Ku? Ku?
- l1————— | L<yp.
1—<K—1m+< I—(Kk—1u) ="

In turn, this inequality can be rewritten as the following quadratic equation
p? (2K —1— LK) —pu(L(K —1)+1)+ L <0.

Notice that since L < 1, the term 2K —1— LK > K —1 > 0. The above inequality is thus satisfied by

if % < 1. It is easy to verify that this

condition holds for K values in (2.11). Note that the above condition also holds for K > % v8—8L

values of p in Eq. (2.12). This range is not empty i

however this range is often not possible due to the MIP condition (1.4). O
Lemma 2.6. Let wi41,...,wyn be d vectors drawn independently and uniformly at random from the
M

—0as N — oo. ThenasN—)oo

condition (2.26) with L = 2 1Ogd holds with probability e~ /V 87 logd,

N-dimensional unit sphere. Suppose d= CZN — oo satisfies

To prove Lemma 2.6, we need the following auxiliary lemma which bounds the largest magnitude
of an inner product between random unit vectors.

Lemma 2.7 (Cai and Jiang (2012)). Let ay,...an be i.i.d. vectors drawn uniformly at random from
the N-dimensional unit sphere and let

Ly = 1§Hiflg]?<§d|<ai»aj>|~

log d

Suppose d = dy — oo satisfies — 0 as N — . Then as N — oo, the random variable

Nlog(1 — L%) + 4logd — loglogd

converges weakly to an extreme value distribution with the distribution function F(y) = 1 — e~ Kev/?

_ 1
foryE[RandKfﬁ.
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Proof of Lemma 2.6. Note that in the regime stated in the lemma, Lg — 0 as N — oco. Hence

log(1 — Lf\?) ~ fL?Q. By Lemma 2.7 for y = —loglog(d) and L = 2 101‘;5]‘2, in the limit

Pr [Nlog(l —L%,) + 4logd — loglogd > —loglogcﬂ = Pr[Ly < I]

Ke™ loglogd/2

= €

671/\/ 8rlogd

Therefore as N — 00, maxgi<i<j<d |(Wi,W;)| = Lg < L and condition (2.26) is satisfied with

probability e~/ V™ tog(d), O
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Chapter 3

Distributed Sparse Normal Means
Estimation with Sublinear
Communication !

We consider the problem of sparse normal means estimation in a distributed setting with communi-
cation constraints. We assume there are M machines, each holding d-dimensional observations of a
K-sparse vector 8 corrupted by additive Gaussian noise. The M machines are connected in a star
topology to a fusion center, whose goal is to estimate the vector 8 with a low communication budget.
In Section 3.1 we formalize the distributed sparse normal means problem and characterize the relevant
SNR regime.

Previous works have shown that to achieve the centralized minimax rate for the ¢5 risk, the total
communication must be high — at least linear in the dimension d. This phenomenon occurs, however,
at very weak signals. We show that at signal-to-noise ratios (SNRs) that are sufficiently high — but
not enough for recovery by any individual machine — the support of 8 can be correctly recovered with
significantly less communication.

In Section 3.2, we present two algorithms for distributed estimation of a sparse mean vector cor-
rupted by either Gaussian or sub-Gaussian noise. We then prove that above certain SNR thresholds,
with high probability, these algorithms recover the correct support with total communication that is
sublinear in the dimension d. Furthermore, the communication decreases exponentially as a function of
signal strength. Section 3.3 discusses the relation between exactly recovering the support of a vector
and estimating it with small /5 risk, and shows a reduction from the latter to the former with one
additional round of sublinear communication.

Section 3.4 elaborates on how our results relate to the lower bounds of Braverman et al. (2016), Han
et al. (2018) and Shamir (2014). In Section 3.5, we present simulations that illustrate the performance
of our algorithms in different parameter regimes. All proofs appear in Section 3.6 and simulation
details in Section 3.7.

Notation. We use the standard O(-),€2(-), ©(-) notation to hide constants independent of the prob-
lem parameters and the notation O(-) to hide terms that are at most polylogarithmic in d. For functions
f, g the notations f = o(g) and f <« g imply that f/g — 0 as d — co. The term exact recovery of
the support & with high probability means that an estimator S correctly estimates the support, i.e.,
Pr [5’ = S} — 1 as d — oo and the number of machines M = M(d) tends to infinity at a suitable rate,

as detailed in each theorem. We use the notation [x] for the smallest integer larger than or equal to

IThe results presented in this chapter have been published in Amiraz et al. (2022). The notations have been changed
for consistency with the other chapters of the thesis.
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3.1 Problem Setup

Each machine has n independent samples corrupted by additive Gaussian noise of a known level o,
implying that their empirical mean is a sufficient statistic. Thus, we simplify by assuming that each
machine ¢ stores a single observation of @ under an effective noise level of oo = ﬁ Since o is known,
without loss of generality, we assume that the noise level across all machines is standardized to geg = 1.
This leads to an equivalent model where each machine has a single observation

S; :0+£i7 (31)

where &; ~ N (0,1;) and 0 is exactly K-sparse.

For simplicity we assume that the sparsity level K is known to the fusion center and that 6; > 0 for
all j € [d]. However, with slight variations our methods can work when K is unknown or for vectors
0 that have both positive and negative entries. We further assume a lower bound 6,,;, on its smallest
non-zero coordinate, namely 6; > 6O,y for all j € S = {i|6; > 0}. It will be convenient to use the
natural scaling

Omin = v/2rlog (d — K). (3.2)

We focus on the following question: Given a lower bound on the signal-to-noise ratio (SNR) r, how
much communication is sufficient for exact recovery of the support S of a K-sparse vector 8 with high
probability?

Let us first discuss what is the interesting regime for the SNR parameter r. Recall that for
d — K > 1, the maximum of d — K i.i.d. standard Gaussian random variables is tightly concentrated
around /2log(d — K). At a high SNR r > 1, each individual machine can thus exactly recover
the support set S with high probability. Hence, it suffices that only one machine sends O(K logd)
bits to the fusion center. At the other extreme, let r < 7 for a fixed 0 < ¢ < 1. Here, even in a
centralized setting, exact support recovery with high probability is not possible. To see this, note that
the empirical mean of all samples is a sufficient statistic, and its effective SNR is ¢ < 1. Therefore, with
probability tending to 1 as d — oo, its smallest support entry is smaller than its largest non-support
entry. If the index of 6, is chosen uniformly at random, then any algorithm would fail to recover the
support. Hence, the relevant SNR values are

1
7 << 1. (3.3)

In this range, a single machine cannot individually recover the support with high probability. Yet, as
we show next, for a large subrange of the SNR values given in Eq. (3.3), exact support recovery by
the fusion center is possible with total communication o(d) bits. Furthermore, as r increases towards
1, the total communication decays exponentially fast to O (K log'*e d) for an appropriate constant
c> 0.

3.2 Distributed Algorithms for Sparse Normal Means

We present two one-shot algorithms for the distributed sparse normal means problem and derive non-
asymptotic bounds on their performance, namely, their probability of exact recovery and their total
communication. For both algorithms, the lower bound 7 on the SNR is assumed to be known to the
center and is used to decide how many machines to communicate with and what messages to send them.
We use the notation M, for the number of contacted machines, which is different in each theorem. For
our analysis below, we assume the total number of machines is sufficiently large, in particular M > M.,
which is a stronger condition than the centralized lower bound M > 1/r.
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Figure 3.1: Tllustration of communication regimes as a function of (r, M), where M is on a logarithmic
scale. In the pink area, exact support recovery is information-theoretically impossible even in the
centralized setting. In the green areas, our distributed algorithms achieve exact support recovery with
communication that is sublinear in d.

In our first algorithm, denoted Top-L, the center sends a parameter L to M. machines. Each
contacted machine ¢ sends back a message .S; with the indices of the L highest coordinates of its sample
s;. Our second algorithm is threshold-based; the center sends a threshold t,, to M, machines, and each
contacted machine 7 sends back all indices j with s; ; > t,,. In both two algorithms, the center then
estimates the support of 8 by a voting procedure. We prove in Theorems 3.1 and 3.2 that under suitable
assumptions, and in particular for a sufficiently high SNR, both algorithms achieve exact support
recovery with high probability using sublinear communication. In particular, we show in Theorem 3.2.A
that if r = Q (log_1 (d — K)), then with high probability Thresholding with M. = O(log d) machines

and t,, = \/2rlog(d — K) recovers the support of the K-sparse vector 6 using 0 ((d — K)lfr + K)
communication bits in expectation. The total communication cost is sublinear in d provided that

K <dandr=) %). Moreover, increasing the threshold allows for a tradeoff between M, and
the expected message length per machine. As we show in Theorems 3.2.B and 3.2.C, perhaps counter-
intuitively, given more than O (logd) machines, the fusion center can recover the support using less

total communication, by setting a higher threshold. Specifically, if r = Q (log;_2 (d-—K )), then with
~ 2
high probability Thresholding with M, = O <(d - K)(lfﬁ) > machines and ¢, = /2log (d — K)

~ 2
recovers the support of the K-sparse vector 8 using O (K (d— K )(lfﬁ) ) communication bits. Note

that the resulting total communication cost is sublinear in d, provided that K is at most polylogarithmic

log? d Viogd
Top-L algorithm with L = K in Theorem 3.1. Finally, in Section 3.2.3 we extend some of these results

to the case of additive sub-Gaussian noise.

To put our results in context, we illustrate in Figure 3.1 the different communication regimes as
a function of the SNR r and the number of machines M for K = 1. As discussed above, if r < ﬁ,
then even with infinite communication, exact support recovery with high probability is information-

indandr =9 (M), or equivalently €., = Q (M> We also prove a similar result for the
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Algorithm 2: Top-L

1 At the fusion center

input : dimension d, number of machines M, SNR r, sparsity level K, parameter L
output: setup message q

2 if L =K =1, then M, is given by Eq. (3.4), otherwise it is given by Eq. (3.7)

send message q that contains the value L to each of the first M, machines

4 At each machine i =1,..., M,

input : setup message q, sample s;

output: message S; to center

5 compute permutation o; that sorts the vector s; in descending order,
Si,a; (1) > 2> Si,ai(d)
6 send to the center the L indices with the largest coordinates, S; = {e; (1),...,; (L)}
7 At the fusion center
input : messages S1,...,S,, sparsity level K

output: estimated support S

8 for each coordinate j € [d], let the set of votes it received be V; = {i € [M.] : j € S;} and
let their number be v; = [V}

9 compute permutation 7 that sorts the indices by descending number of votes,

Vr(l) 2 2 Va(d)

10 return S = {r(1),...,7(K)}

theoretically impossible. The corresponding (r, M) values are in the pink area below the red curve
which delineate the relation r - M = 1. By our Theorems 3.1 and 3.2, exact recovery with sublinear
communication is possible in the light green and dark green areas. In the white area, distributed exact
support recovery is possible using communication that is at least linear in d. An example of a recovery
scheme in this range is to send the entire sample (up to a quantization error). It remains an open
question whether exact support recovery with sublinear communication is possible for (r, M) values in
the white area.

3.2.1 Top-L Algorithm

In the Top-L algorithm, the center uses its knowledge of the parameters d, M, r, K to determine the
number of machines M, to contact, and sends them a parameter L. € N. The i-th contacted machine
then sends a message S; consisting of the L indices with the largest coordinates of its vector s;. Given
the messages S1, ..., S, , the fusion center counts how many votes each index received and estimates
the support to be the K indices with the highest number of votes. Voting ties can be broken arbitrarily.
This scheme is outlined in Algorithm 2. Its total communication cost is B = O(LM, logd) bits.

Remark 3.1. The above description assumes that the fusion center knows the sparsity level K. How-
ever the following simple variant can handle a case where only an upper bound K. > K is known.
In this case, the number of contacted machines M, is determined using Kynax instead of K, and each
contacted machine sends its top L > Knyax indices to the fusion center. The center then estimates the
support as the set of indices that received more votes than a suitable threshold t. (d).

We prove that for sufficiently high SNR, the Top-L algorithm recovers the exact support of 8 with
high probability. To ease the presentation and highlight the main ideas of the proof, we first analyze
the case L = K = 1 and then extend the analysis to general L > K > 1. The proofs of the theorems
stated below appear in Appendix 3.6.1.
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Motivated by the required number of machines for proving Theorem 3.1.A, we define the quantity

Ime (2 (1— /) logd + 1)
(1— /) V2logd

Mo (d,7) = |max {1, A=V 810l (3.4)

Notice that for any fixed SNR r < 1, My (d,r) is sublinear in d, and up to polylogarithmic terms it

2
is proportional to d(=V7")" < 4. The following theorem provides a support recovery guarantee in the
setting K = L = 1.

Theorem 3.1.A. Assume r < 1 and that Mo(d,r) < min{M,d}. Then, if the center contacts
M. = My machines, the Top-L algorithm with L = 1 recovers the support of a 1-sparse vector 8 with
probability at least 1 — d~1 — e3d=3. Its total communication is O(Mylogd) bits.

Several insights follow from Theorem 3.1.A. First, recall that for any r < 1 no machine can suc-
cessfully recover the support of 8 on its own. Yet, for d > 1 and for any fixed r < 1, as implied
by the theorem, the fusion center can recover the support of 8 by communicating with only M, (d, r)
machines, receiving from each machine its own mostly inaccurate estimate of the support. Second,
as the SNR lower bound r increases towards 1, the algorithm needs to contact fewer machines and
thus less communication to succeed with high probability. Moreover, by Eq. (3.4), My (d, r) decreases
exponentially fast with r. Lastly, for a fixed r the required number of machines M (d, r) and thus the
total communication cost both increase sublinearly with d.

Next, we consider the more general case where the unknown vector 0 is exactly sparse with sparsity
level at most K, and its support is estimated by the Top-L algorithm with parameter L > K. To this
end, we define the auxiliary quantities

/ d—K
a:a(K,L7d): QIOgm, (35)

b=0b(K,L,d,r)=a—+/2rlog(d — K), (3.6)

and the quantity
2
4/2m (b® + 1 1-losC_K+D)_ /o
Mk 1, (d,r) = {max{l,7r<b+)-(d—K)< st f> }~8logd-‘. (3.7)

The following theorem provides a support recovery guarantee in this setting.

Theorem 3.1.B. Assume r < 1 and that Mk 1.(d,r) < min {M7 %} Then, if the center contacts
M. = My 1, machines, the Top-L algorithm with K < L < (d—K)/2 recovers the support of a K -sparse
vector O with probability at least 1 — Kd= — e3d™3 using O (LM, logd) communication bits.

While the expressions in Theorem 3.1.B are more involved than those of Theorem 3.1.A, similar
insights to those mentioned above continue to hold. In addition, it is easy to check that the total com-
munication is monotonically increasing in L. Hence, if K is a-priori known, it is best to choose L = K.

2 5
In this case, the Top-L algorithm incurs a total communication cost of O (K (d— K)(l_‘ﬁ) log?”® d) ,

which is sublinear in d provided that K is at most polylogarithmic in d and r» = Q (lolgzil;’id).
og

Remark 3.2. One can consider a variant of the algorithm that sends L < K randomly selected indices
out of the top K. In such a variant, the message length per machine is shorter, and hence in general,
the center would need to contact more machines for exact support recovery with high probability. A
theoretical analysis of this scheme is beyond the scope of the current manuscript.
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Algorithm 3: Thresholding

1 At the fusion center

input : dimension d, number of machines M, SNR r, sparsity level K

output: setup message q

2 depending on M, calculate M, and t,, by their expressions in Theorem 3.2.A or 3.2.B or
3.2.C

send message q = Trunc(t,,, [log, tm |, [logy d]) to each of the first M, machines

At each machine i =1,..., M,

input : setup message q, sample s;

output: message S; to center

construct threshold #,, = Approx(q, [logy t,, | , [log, d])

let S; = {j € [d} 1855 > fm}

send S; to center

At the fusion center

input : messages S1,..., 5, sparsity level K

output: estimated support S

9 for each coordinate j € [d], let the set of votes it received be V; = {i € [M,] : j € S;} and

let their number be v; = [V}

10 compute permutation 7 that sorts the indices by descending number of votes,

Ve) 2 2 V(d)

11 return S = {7 (1),...,7(K)}

'y

® 3 o o

3.2.2 Thresholding Algorithm

In our second algorithm, the fusion center chooses a threshold t,, = t,, (d,r, M, K) and sends (a
truncated binary representation of) it to a subset of the machines M. = M. (d,r, M, K) < M. Each
contacted machine ¢ sends back all indices j such that s; ; > t,,. Similarly to the Top-L algorithm,
given the messages S1,..., Sy, and the sparsity level K, the fusion center estimates the support as
the K indices with the highest number of votes. Voting ties can be broken arbitrarily. The scheme is
outlined in Algorithm 3. If instead of the sparsity level K only an upper bound on it Kp.x > K is
known, and Ky,x < d, then the fusion center can set t,, and M, by approximating d — K ~ d. In
addition, the center estimates the support as outlined in Remark 3.1.

The Thresholding algorithm has several desirable properties. First, it is simple to implement in
a distributed setting. Second, in the centralized setting, thresholding algorithms were shown to be
optimal in various aspects (see Section 3.3 for further details). Third, adjusting the threshold allows
for a tradeoff between the number of contacted machines and the expected message length per machine.
Notice that if the SNR is sufficiently high, but still » < 1, i.e., not high enough for recovery by any
individual machine, there may not even be a need to contact all machines to recover the support. By
the same logic, when the SNR is lower, one can lower the threshold. Of course, this would incur a
higher communication cost. Hence, since the fusion center knows both r and M, it can set an optimal
threshold ¢,, and send it only to M, < M machines, which ensures exact support recovery with high
probability at minimal communication cost (among all possible thresholds).

To complete the description of the algorithm, we now describe our approximation of a real number

by a finite amount of bits. Recall that the scientific binary representation of a number x € R consists
of a bit representing its sign and bits {b;},.,, such that [z| = Z]Ll;)g_zolsﬂ b;27. One can approximate
x by truncating its binary representation at a predetermined precision level. Specifically, given two
parameters U, P € N, let the procedure q = Trunc(z, U, P) output a truncated binary representation
of = of length U + P + 2 such that q = (1{«x >0},b_p,...,by). Given q, let the procedure & =
Approx(q, U, P) construct an approximation for x, given by & = sign(x) -Z;J:_P b;27. IfU > |log, |z|],
then & and z consist of the same bits up to the P-th bit after the binary dot, and thus the resulting
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approximation error is bounded by |# — | < 27F. This scheme is a variant of Szabo and van Zanten
(2020, Algorithm 1).

In our analysis we assume that 0. = max;es ; is at most polynomial in d. Thus taking U, P =
O(logd) ensures that with high probability all quantities of interest are approximated up to d—om
error. In addition, since P,U only depend on d and on the bound 6,,.x, they can be set in advance
without communication.

We analyze the performance of the Thresholding algorithm in three regimes, in terms of the
number of contacted machines M,: small, intermediate, and large (clearly under the constraint that
M > M.). For each regime, we derive a different threshold t,, = t,, (d, r, M), where the SNR parameter
r and sparsity level K are assumed to be known. In the small M, regime, considered in Theorem 3.2.A,
the number of contacted machines is logarithmic in d. The corresponding threshold ¢,, given by (3.8)
is relatively small. In the intermediate regime, considered in Theorem 3.2.B, all M machines are
contacted and the threshold t,,, given by Eq. (3.11), increases as a function of M. Finally, when the
number of available machine is sufficiently large, as described in Theorem 3.2.C, the center contacts
only a subset M, of all machines, where the value of M, is chosen to minimize the total communication,
while still achieving exact support recovery with high probability. The proofs appear in Appendix 3.6.2.

Theorem 3.2.A. Assume that d > 16 and M > 16logd. Further assume bgﬁ%m < r <1. Then,

with probability at least 1 — (K 4+ 1) /d, Thresholding with M, = [16logd] and

tm = +/2rlog(d — K) (3.8)

recovers the support of the K-sparse vector 6 using
0 ((d — K)'T 08 10g10 4 + K log? d) (3.9)

communication bits in expectation.

The communication cost (3.9) is sublinear in d for all r > % and K < d/log*d. Note
that in the above theorem, the number of contacted machines is fixed at 16 logd and correspondingly,
the threshold does not depend on the total number of machines M. The next theorem shows that
contacting all machines with a higher threshold that depends on the total number of machines, can
lead to exact support recovery with even less communication than (3.9).

Theorem 3.2.B. Let d > 15 and assume that 32+ /emw logl'sd < M < d. Further assume r < 1 and

that )
5M M 1
. (\/2 log Vardlogd - \/2 log 32/x log!® d + E) (3 10)
2log (d — K) ' '
Then, with probability at least 1 — (K + 1) /d, Thresholding with M. = M and
tm =/ 2rlog(d—K)+ ;/2log —————— 3.11
g ( ) \/ g 32ﬁ10g1'5d ( )
recovers the support of the K-sparse vector 0 using
o /r - Y S -
0 (KMlogd+ (d— K) e 2ot lo8 st 1 25 d) (3.12)

communication bits in expectation.

It is interesting to study the behavior of the total communication cost in Eq. (3.12). The first
term increases with M, whereas the second term decreases with M. It is easy to show that the total
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~ 2
communication cost is minimized at M,,, = O ((d -K )(kﬁ) ) This leads to a perhaps counter-

intuitive result, that in the range O (logl'5 d) <M < M,,,, as the number of machines increases exact
recovery is possible with less total communication. Once the number of available machines is larger
than M,,., there is no benefit in contacting all machines. In terms of total communication, it is best
to simply contact M. = M, of them, as stated in the following theorem.

2
Theorem 3.2.C. Assume that d — K > 20 and (bglo(fl%%()) <r<1. Let

821 ((1 — /7 2log(d - K) + 1) (1)
M, = (d - K) logd| (3.13)
(1— ) y2log (- K)

and assume that M > M.. Then, with probability at least 1 — (K + 1) /d, Thresholding with

tr = \/210g (d — K) (3.14)

and M, machines recovers the support of the K-sparse vector @ using
2
0 (K (d — K)(17V7) 1og2s d) (3.15)

communication bits in expectation.

Let us now compare the Top-L and Thresholding algorithms, in terms of communication cost and
recovery guarantees. By Theorems 3.1.B and 3.2.C, with appropriately set parameters the algorithms
exhibit qualitatively similar performances for high SNR and large number of machines M. The main
differences between the two algorithms occur when M is small, for example logarithmic in d. If the
SNR is low, for example r = O (log_2 d), then the Top-L algorithm with . = K might fail to recover
the support, whereas, by Theorem 3.2.A, the Thresholding algorithm succeeds to recover it. However,
substituting r = O (log72 d) in Eq. (3.15) results in total communication cost superlinear in d. In

contrast, if the SNR is slightly higher, namely r = O (10g2 bgd) then by Theorems 3.1.B and 3.2.A,

log? d ’
with high probability both algorithms succeed, and the Top-L algorithm with L = K incurs less total
communication cost than the Thresholding algorithm. However, the Thresholding algorithm is more
robust in the following sense. If the sparsity level K is fixed and the center only knows an upper bound
on it Kpax = cK for ¢ > 1, then the Top-L algorithm with L = K,,x incurs a communication cost
that is linear in ¢, while the Thresholding algorithm incurs a communication cost that is roughly the
same as when ¢ = 1.

3.2.3 Extension to sub-Gaussian noise

Let us outline in this section how some of our results above can be extended to the case of additive
sub-Gaussian noise. Specifically, we assume that each machine 7 has n i.i.d. samples of the form
s =0+¢&! for j =1,...,n, where the mean vector 6 € R? is exactly K-sparse and all noise coordinates
§f . are Li.d. sub-Gaussian random variables with parameter o2 (also known as the variance proxy).

N2
We assume all noise coordinates have the same variance 62 = E [(53 k) ] and finite third absolute

moment n = E [|§fk|3] It is easy to show that o2 > 52 (Rigollet, 2015, Lemma 1.4). In our analysis,

we shall assume that for some fixed 0 < A < 1,

2>\ o2 (3.16)
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To account for having n samples per machine, we generalize the definition of the scaling parameter r
as follows

Ounin = %\/27“ log (d — K). (3.17)

Denote by Thresholding* the following scheme, where each contacted machine ¢ computes the
normalized empirical mean vector

I
S; = E J | 3.18
EEEEP (3.18)
Accordingly, each machine i computes its message as
Si={je€ld:5,;>tn}. (3.19)

Note that the effective signal strength in each machine, corresponding to its sample s;, is ‘/ﬁ% =
2rlog (d — K), which matches Eq. (3.2) above.

Given sufficiently many samples per machine, results similar to those we proved for Gaussian noise
hold for the case of sub-Gaussian noise. As an example, the following theorem is a variant of Theorem
3.2.C for the Thresholding algorithm. Its proof appears in Appendix 3.6.3. A similar result can be
derived for the Top-L algorithm.

Theorem 3.3. Consider exact support recovery with n samples per machine, corrupted by additive
sub-Gaussian noise as described above. Assume that the SNR r satisfies the following, for a suitable
universal constant C' > 0

1 2 9
9) (w) < (1=vr)" <CON, (3.20)

that the sample size in each machine satisfies

2

’[7 -

n=a0 (56(1 — /)% log?(d — K)) : (3.21)
2

and that d — K is sufficiently large. Let M. = O ((d - K)(lf‘/;) log!-® d) and assume that M > M..

Then, with probability at least 1 — O (%), the Thresholding® algorithm with

tm = +/2log(d — K) (3.22)

and M, machines recovers the support of the K-sparse vector @ using
2
0 (K (d— K)V7) 10g20 d> (3.23)

communication bits in expectation.

The proof of Theorem 3.3 uses both lower bounds and upper bounds on the tail probability of the
noise. For the tail lower bound, we use a result of Nagaev (2002), which requires a minimal number
of samples per machine, as stated in Eq. (3.21). Note that this requirement is rather mild. For r
bounded away from one, only a polylogarithmic in d number of samples per machine suffices. For the
lower bound to hold, we also require in (3.20) that the SNR parameter r cannot be arbitrarily close
to 1, as otherwise n could tend to zero in Eq. (3.21). In contrast, such an upper bound on r does not
appear in Theorem 3.2.C.

Another key difference from Theorem 3.2.C is a strict lower bound on the SNR r, as stated in Eq.

2
(3.20), which implies r > (1 — \@)\) . The reason for this is a rather crude upper tail probability
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approximation we apply in our proof, which uses the sub-Gaussian property of the noise. We remark
that by the central limit theorem, if we require a much larger number of samples per machine with
d and K fixed, then results similar to Theorem 3.2.C may be derived, even without assuming sub-
Gaussianity of the noise. In particular, with sufficient number of samples per machine, the lower bound
on the SNR r will be the same as in Theorem 3.2.C.

3.3 Sublinear Distributed Algorithms with Small ¢, Risk

In the previous section we considered distributed estimation of the support of 8. Another common
task is to estimate the vector @ itself, with both small /5 risk and low total communication. We show
that this can be achieved with only a single additional round of communication. Furthermore, under
certain parameter regimes, specifically K M < @, the resulting estimate achieves the centralized ¢
risk, with sublinear total communication. The proof of this result is based on the fact that both of
our algorithms achieve exact support recovery with high probability. We thus first discuss the relation
between support recovery and {5 risk, as well as lower bounds for the centralized minimax risk.

3.3.1 On Exact Support Recovery and /, Risk

Let us first briefly discuss estimation of @ in a centralized setting with M samples and noise level o.
Without any assumptions on the vector 8, the empirical mean s = ﬁ >, si is a rate-optimal estimator.
When 6 is assumed to be sparse, various works suggested and theoretically analyzed the set of diagonal
estimators O,,,,. An estimator @ € Oy, has the form 6; = a; (5;) 5, for all j € [d], where each a; (-)
is a scalar function. For further details see for example Mallat (1999, Chapter 11).

Projection oracle risk. In analyzing the lowest risk achievable in the set Og.., & key notion is
the projection oracle risk, defined as the smallest expected {5 error of a diagonal projection estimator
erce but with additional prior knowledge of 6, such that 03 = a; (¢;) 5; and a; € {0,1}. It is easy
to show that 09! = 5; - 1(|0;| > o/v M). Its corresponding risk is

2 d o? Ko?
Z . 2

Note that the projection oracle is not a realizable estimator, as it relies on knowledge of the underlying
0 for support recovery. However, the oracle risk provides a lower bound for the risk of any diagonal
estimator. Also note that given a lower bound on the SNR, of the form minjes |0, > o/ VM, the
oracle risk is R 0) = Ko?/M.

R

oracte (

0)=E {Hg — Qoracie

oracte (

Centralized lower bound. Donoho and Johnstone (1994, Theorem 3) proved the following lower
bound on the asymptotic minimax rate among all diagonal estimators,

o E[|6—0]% 1
lim inf sup 2[” H ]0)210gd:

i (3.25)
d—o0 0€0qiag OCRY % + R

oracte (

Moreover, they proved that thresholding at a suitable level achieves this minimax rate.

In the result above, no assumptions are made neither regarding the sparsity of €, nor on its SNR
or equivalently on 6;,. Indeed, the proof of (3.25) relies on a construction of vectors € with logd
coordinates having values slightly smaller than \/%\/2log d, namely with a low SNR. Thus, it cannot
be used as a lower bound for the centralized minimax rate in our setting. In fact, if 8 is K-sparse
and Oy, is sufficiently high, then asymptotically as d — co with %logd — 0, the risk of a suitable
thresholding estimator is equal to R, . (0) (1 + o(1)). The reason is that in this case one can achieve
exact support recovery with high probability. We now prove a similar result for the distributed setting.
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Algorithm 4: Protocol II

1 At the fusion center

input : estimated support set S

output: setup message q

2 send message q which contains the set S to each of the M machines
3 At each machine m=1,..., M

input : setup message q, sample s;, precision parameters U, P
output: message w; to center

4 for each k € S, calculate w; , = Trunc(s; x, U, P)

5 send to center w; = {wuC ke 5’}

6 At the fusion center

input : messages wi,..., Wy

output: estimated vector 0

7 for each i € [M] and each k € S, reconstruct z; ;, = Approx(w; x, U, P)

8 for each k € S', calculate the mean z; = ﬁ Zie[M] Zik

9 return 8 where é]H =z;-1 {j € 5’}

3.3.2 The /¢, Risk of Top-L and Thresholding

The Top-L and Thresholding algorithms described in Section 3.2, output an estimated support set
S. As we describe now, using an additional round of communication, the center can also estimate the
vector @ itself. In particular, we consider the following protocol, denoted II: First, the center sends the
indices of S to all M machines. Then, each machine ¢ replies with the binary representation w; j =
Trunc(s; x, U, P) for the estimated support coordinates k € S, for appropriately chosen U, P = O(logd).
The center computes z; , = Approx(w; x, U, P) and calculates the empirical mean z; = ﬁ Zie[M] Zik-
Finally, the center estimates 8 as follows

é?:zjm{jeé}.

The scheme is outlined in Algorithm 4. A
The following corollary shows that applying II to the set S computed by one of our algorithms

. .2
yields an estimator 8™ with £ risk Ry = E [HO - OHH } which is near-oracle. Its proof appears in
Appendix 3.6.4.

Corollary 3.1. Let d > 5. Assume that the conditions of Theorem 8.1.B hold and let S C [d] be the
estimate computed by the Top-L algorithm. In addition, assume that Oy, < d7 for v > 0. Then, the

Uy risk of O™ with precision parameters P = [log, d| and U = Llogg (d¥ + \/4(y+1)log d)J is bounded

as follows

< -1 -2 min '

The expected total communication cost of I1 is O (KM logd). Thus, in an asymptotic setting where
K, M,d — oo with %logd — 0, the protocol II has sublinear expected communication cost and its lo
risk is R, (6) (1+o(