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Sliding-Window Streaming Algorithms for
Graph Problems and `p-Sampling

Abstract

We study algorithms for the sliding-window model, an important variant of
the data-stream model, in which the goal is to compute some function of a fixed-
length suffix of the stream. We focus on two settings, of frequency-vectors and of
graph streams, and develop algorithms for several problems, including `p-sampling
and maximum-matching, all in the sliding-window model.

We first extend the smooth-histogram framework of Braverman and Ostrovsky
[BO07] to a more general family of almost-smooth functions. We show that both
the vertex-cover size and the maximum-matching size are 2-almost-smooth, and
thus can be approximated using our framework in the sliding-window model.
Another example application, we show a polylog (n) space algorithm estimating
the maximum-matching size in bounded-arboricity graphs with n vertices, whose
approximation ratio differs by a factor of 2 from the insertion-only algorithm of
McGregor and Vorotnikova [MV18].

Second, we design algorithms based on the adaptation by Crouch, McGregor,
and Stubbs [CMS13] of the smooth-histogram framework to the graph-streaming
model. This includes a 2.164-approximation algorithm for maximum-matching in
the vertex-arrival model withO(n log2 n) bits of storage, and also the first parame-
terized sliding-window algorithms for exact maximum-matching and vertex-cover
which have space bound O(k2 log3 n), and are parameterized by the maximum-
matching size k.

In the frequency-vector model, we show an algorithm for `p-sampling, i.e.,
sampling a coordinate from the frequency-vector x ∈ Rn with distribution close
to the so-called `p-distribution, defined as follows. For p = 0 it is a uniform
distribution over the non-zero coordinates of x, and for p > 0 it has the probability
density function fp (i) = |xi|p

‖x‖p
p
for i ∈ [n]. Our `0-sampling algorithm in the sliding-

window model has space bound poly
(
ε−1 · log n

δ

)
, and its output distribution is

within total variation distance δ + ε of the `0-distribution. We then generalize it
to `p-sampling for every p ≤ 2, with similar performance guarantees.
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1 Introduction
Nowadays, there is a growing need for algorithms to process huge data sets. The in-
ternet, including social networks and electronic commerce, together with astronomical
and biological data, provide new challenges for computer scientists and mathemati-
cians, since traditional algorithms are not able to handle such massive sets of data in a
reasonable time. First, the data set is too big to be stored on a single machine. Second,
even algorithms with time complexity O(n2) are too slow for various practical uses.
Third, and most important, over time the data could change, and algorithms should
cope with dynamic changes of the data. Therefore, several models of computation for
“Big Data” are researched, such as distributed algorithms and streaming algorithms.

We will concentrate on the streaming model (see e.g. [Mut05, BBD+02, Agg07]),
where the data is given as a sequence of items (or updates), in some predetermined
(usually adversarial) order, and the algorithm can read the data only in that order.
Often, the algorithm can only read the data once, although there are also algorithms
for multiple passes. More concretely, a data stream S is a sequence (possibly infinite)
S = 〈σ1, σ2, . . . , σi, . . .〉, where each item σi belongs to some universe U . The length
of the stream, as well as the size of U , is assumed to be huge, such that storing the
entire stream, or even a constant-size information for each item in S, is impractical. A
streaming algorithm A takes S as input and computes some function f of the stream
S. A query at a time t to A is a request to output (an approximation to) f (St). If the
stream is infinite then we assume that at every time t the algorithm could calculate f
on the prefix St = 〈σ1, σ2, . . . , σt〉, if it is queried at time t. Note that algorithm A has
access to the input in a streaming fashion, i.e., A can read the input once and only in
the order it is given.

Typically, storing the whole stream and computing the exact value of f is com-
putationally expensive or even impossible. Hence, we can only expect approximation
algorithms. Formally, the goal is to design a streaming algorithm A with the following
constraints. The space complexity should be polylog (n), where n is the size of the
universe U , or some other measure of the stream, e.g. its length. The time complexity
of processing a single update from the stream, referred to as the update time, should
be small, polylog (n) or even constant. The algorithm’s output should approximate f ,
where what constitutes a good approximation depends on the concrete function f .

There are two variants of the streaming model, namely, the insertion-only model and
the insertion-deletion model, also known as the turnstile model. In the insertion-only
model, all updates are positive, only adding items to the underlying structure. In the
turnstile model, deletion of previously added items is also allowed, which means that
data updates σi are of the form σi = (bi, σ′i) where bi ∈ {±1} indicates if the item is
inserted (+1) or deleted (−1).

The sliding-window model has become a popular model for processing (infinite) data
streams, where older data items should be ignored, as they are considered obsolete.
Introduced by Datar, Gionis, Indyk and Motwani [DGIM02], this model captures the
idea that one wishes to calculate some desired function only on the most recent items.
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In this model, the goal is to compute a function f on a suffix of the stream W , referred
to as the active window. Items in W are called active, and older items from the stream
are called expired. Throughout, the size of the active window W , denoted by w, is
assumed to be known (to the algorithm) in advance. At a point of time t, we denote
the active window of the last w elements of the stream by Wt = 〈σt−w+1, . . . , σt〉, or W
for short when t is clear from the context. At time t, the goal is to approximate f (Wt),
and possibly provide a corresponding object, e.g. a feasible matching in a graph when
the stream is a sequence of edges and f is the maximum-matching size.

Datar et al. [DGIM02] noted that in the sliding-window model there is a lower bound
of Ω (w) if deletions are allowed, even for relatively simple tasks like approximating
(within a factor of 2) the number of distinct items in a stream. Since our goal is
to develop algorithms for the sliding-window model, we will only study insertion-only
streams. Therefore, we assume throughout that the stream S has only insertions, and
no deletions. We focus on two different (insertion-only) streaming models, the graph
streaming model and the frequency-vector model.

Another closely related model is the timestamp-based sliding-windowmodel, in which
each data item from the stream has an additional parameter, a timestamp of its ar-
rival time, i.e., the stream consists of pairs σi = (ai, ti) which means that item ai
arrives at time ti. For short we call it the timestamp model. In this model, the active
window is defined using a time bound T , and denoted by W T , indicating that every
edge arriving in the last T time units is active, and older edges should be ignored,
as they are considered obsolete. Namely, at time t the active window is defined as
W T
t = {σi = (ai, ti) |ti ≥ t− T}. We will use the timestamp model only in Section 3.4,

and, unless stated otherwise, when referring to the sliding-window model we mean the
fixed-length (non-timestamp-based) sliding-window. The timestamp model was studied
by Datar et al. [DGIM02] as well as by many more, e.g. [BOZ09, GL08, BDM02].

1.1 Graph-Streaming Model
A widely studied streaming model is the graph-streaming model (see e.g. [FKM+05,
McG14]), where the stream S consists of a sequence of edges (possibly with some
auxiliary information, like weights) of an underlying graph G = (V,E). We assume
that V = [n] for a known value n ∈ N and G is a simple graph without parallel edges.
The graph-streaming model is typically studied in the semi-streaming model, where
algorithms are allowed to use O(n · polylog (n)) space. Observe that for dense graphs
in the semi-streaming model the algorithm can not store the whole graph, but is able
to store polylog (n) information for each vertex.

Algorithms in the graph-streaming model compute or approximate some quantity
of the graph. We concentrate on the following two related optimization problems,
maximum-matching and minimum vertex-cover.
Definition 1.1. A matching in a graph G = (V,E) is a set of disjoint edges M ⊆ E,
i.e., no two edges have a common vertex. Denote by m (G) the size of a matching with
maximal number of edges.
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Amatching with a maximal number of edges is called amaximum-cardinality matching,
and is usually referred to as a maximum-matching. In an edge-weighted graph G a
maximum-weight matching is a matching with maximal sum of weights.

Definition 1.2. A subset C ⊆ V of the vertices of the graph G = (V,E) is called a
vertex-cover of G if each edge e ∈ E is incident to at least one vertex in C. Denote by
V C (G) the smallest size of a vertex-cover of G.

We will use the terminology of Feige and Jozeph [FJ15] to distinguish between es-
timation algorithms and approximation algorithms for optimization problems (where
the goal is to find a feasible solution of optimal value). An approximation algorithm is
required to output a feasible solution whose value is close to the value of an optimal
solution, e.g., output a feasible matching of near-optimal size. An estimation algorithm
is required to only output a value close to that of an optimal solution, without neces-
sarily outputting a corresponding feasible solution, e.g., output an approximate size of
a maximum-matching in a graph, without a corresponding matching.

For ease of exposition, we sometime use the following notation of asymptotic com-
plexity to hide less important factors.

Definition 1.3. The notation Õ(s (n)) hides poly-logarithmic dependence on s (n), i.e.,
Õ(s (n)) = O(s (n) ·poly log s (n)). To suppress dependence on ε we denote Oε(s (n)) =
O(s (n) · f (ε)), for some positive function f : R+ → R+.1 We also combine both
notations and define Õε(s (n)) = Oε(s (n) · poly log s (n)).

For maximum-matching, the best approximation semi-streaming algorithm known
for insertion-only streams of general graphs is a 2-approximation by a greedy algorithm,
which maintains a maximal matching of the stream using Õ(n) space [FKM+05]. There
is a known lower bound e

e−1 ≈ 1.58 on the approximation factor by any insertion-only
algorithm that uses space Õ (n) [Kap13].

Assadi et al. [AKL17] showed a space lower bound RS (n) · n1−O(ε) for (1 + ε)-
estimation of maximum-matching for general graphs in insertion-only streams, where
RS (n) denotes the maximum number of edge-disjoint induced matchings of size Θ (n)
in an n-vertex graph [RS78]. There is also active research on estimating the maximum-
matching size in a restricted family of graphs, the bounded-arboricity graphs. A graph
G = (V,E) has arboricity α if its set of edges E can be partitioned into at most α forests.
A long line of research [ETHL+18, MV16, BS15, CCE+16], culminating in the result of
Cormode et al. [CJMM17], and then slightly improved by McGregor and Vorotnikova
[MV18], has shown a polylog (n) space algorithm for estimating the maximum-matching
size in bounded-arboricity graphs within factor O(α).

There is a special well-studied model for bipartite graphs, the vertex-arrival model,
in which we have an additional assumption on the order of the stream. In this model,
the underlying graph is bipartite and all edges incident on a vertex from the left side
of the graph arrive consecutively in the stream, i.e., for a bipartite graph G = (V, U,E)

1Throughout, every dependence on ε is polynomial, i.e., in our case Oε(s (n)) = O(s (n)·poly
(
ε−1)).
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a vertex-arrival stream consists of some permutation of the vertices on the left side
V = {v1, v2, · · · , vn} and the stream is S = 〈E (v1) , E (v2) , · · · , E (vn)〉, where for a
vertex v ∈ V its set of edges denoted by E (v) = {(v, u) |u is a neighbor of v}. For
every vertex v ∈ V the set of edges E (v) arrives in an arbitrary order. For any stream
segment Xi,j = (E (vi) , · · · , E (vj)), for 1 ≤ i ≤ j ≤ n, define E (Xi,j) =

j⋃
k=i

E (vk).
Note that the stream consists of edges, in the aforementioned order, and the length of
the segment Xi,j is the total number of edges in it, i.e.,

j∑
k=i
|E (vk)|. Kapralov [Kap13]

showed an optimal deterministic approximation algorithm for the vertex-arrival model
with approximation factor e

e−1 ≈ 1.58 and space bound Õ(n).
Crouch, McGregor and Stubbs [CMS13] initiated the study of graph problems in

the sliding-window model. They showed algorithms for several basic graph problems,
such as k-connectivity, bipartiteness, sparsification, minimum spanning tree and span-
ners. They also showed an approximation algorithm for maximum-matching and for
maximum-weight matching.

1.2 Frequency-Vector Model
Another extensively researched streaming model is the frequency-vector model, where
the stream S is composed of additive updates to an underlying n-dimensional vector
x ∈ Rn, i.e., each item σi = (ji, ai) represents increments to coordinate ji ∈ [n] of
x by ai ∈ R. Hence, the frequency-vector x ∈ Rn of the stream S is defined, for
every j ∈ [n], as xj = ∑

ji=j
ai. Usually, the goal in this model is to compute some

function of the frequency-vector x, e.g., the `p-norm ‖x‖p =
(

n∑
i=1
|xi|p

) 1
p

or the Fp-
moment Fp (x) = ‖x‖pp for p > 0. The support of a vector x ∈ Rn is defined to be
supp (x) = {i ∈ [n] |xi 6= 0}, and the `0-norm2 (and equivalently the F0-moment) of x
is defined as its support size ‖x‖0 = |supp (x)|. Note that it is also referred to as the
distinct number of items (in the stream), since the two quantities are identical.

The insertion-only model in the setting of frequency-vector means that only positive
updates are allowed, i.e., ai > 0 for all i ≥ 1, while the turnstile model means that
both positive and negative updates are allowed. Often, in the insertion-only model, all
updates are implicitly assumed to be 1, and in that case the stream consists only of the
indices being updated, i.e., σi = ji ∈ [n] for every i.

We use the following notion for randomized approximation algorithms.

Definition 1.4. For ε, δ ∈ [0, 1) and C ≥ 1, a randomized algorithm Λ is said to
((1 + ε)C, δ)-approximate a function f if on every input stream S, its output Λ (S)
satisfies

Pr [(1− ε) f (S) ≤ Λ (S) ≤ (1 + ε)C · f (S)] ≥ 1− δ.
2Although `0 is not a norm, since it does not satisfy absolute scalability, we shall refer to it as such,

for simplicity.
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If Λ is a deterministic algorithm, then δ = 0, and we say for short that it (1 + ε)C-
approximates f if (1− ε) f (S) ≤ Λ (S) ≤ (1 + ε)C · f (S).
Remark 1.5. Even for randomized approximation algorithms we sometime use the above
notation omitting δ, when the algorithm outputs (1 + ε)C-approximation with some
constant high probability.

The frequency-vector model began with the influential paper of Alon, Matias, and
Szegedy [AMS96], who studied the problem of approximating the Fp-moments in the
turnstile model. For p = 0, 2 they showed a (1 + ε)-approximation algorithm with
Oε(polylog (n)) space, and for p ≥ 3 they showed a (1 + ε)-approximation algorithm
with space bound Oε(n1− 1

p ). They also provided a space lower bound Ω
(
n1− 5

p

)
for all

p ≥ 3, even for the more restrictive insertion-only model. A tremendous amount of re-
search was dedicated for improving the lower and upper bounds for (1 + ε)-approximating
the Fp-moments in the turnstile streaming model, e.g., [CKS03, BJKS04, CK04, IW05,
Ind06, Li08, AKO11, Gan15]. For p > 2, Indyk and Woodruff [IW05] presented algo-
rithms that use Õε(n1− 2

p ) space in the turnstile model, which matches the lower bound
previously shown by Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS04], which holds
even for the insertion-only model. For p ∈ [0, 2], Indyk [Ind06] presented an algorithm
that approximates the `p-norm using Oε(polylog (n)) space in the turnstile model.

Another well-studied problem in the frequency-vector model is `p-sampling, where
the goal is to sample a coordinate of the frequency-vector x according to its contribution
to the `p-norm, i.e., the `p-distribution, defined as follows. For p = 0, the `0-distribution
of a vector x ∈ Rn is a uniform distribution over the non-zero coordinates of x. See, e.g.
[CF14] for a detailed study of `0-sampling. For p > 0, the `p-distribution of x ∈ Rn, is
defined using the probability density function fxp (i) = |xi|p

‖x‖p
p
for every i ∈ [n].

Sometimes, it is not known how to sample exactly according to the `p-norm distribu-
tion, thus a commonly used relaxation is to sample according to a “close” distribution,
where close is measured either by using a multiplicative 1 + ε factor or by the total
variation distance (or both).
Definition 1.6. For a vector x ∈ Rn and an accuracy parameter ε > 0 we say that
a distribution D over [n] is a (1 + ε)-approximate `p-distribution of the vector x, for
p > 0, or (1 + ε) -`p-distribution for short, if its probability density function f satisfies

∀i ∈ [n] , f (i) ∈ (1± ε) |xi|
p

‖x‖pp
.

Definition 1.7. The total variation distance of two distributions D1 and D2, denoted
by dTV (D1,D2), is defined as the largest possible difference between the probabilities
assigned by the two distributions to the same event.

Usually, for two random variables X and Y distributed according to distribu-
tions D1 and D2, respectively, we write dTV (X, Y ) when we mean dTV (D1,D2), i.e.,
dTV (X, Y ) = sup

A
|Pr [X ∈ A]− Pr [Y ∈ A]| where the supremum is taken over all pos-

sible events A.
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Definition 1.8. We say that an algorithm S is a (1 + ε, δ) -`p-sampling algorithm if its
output distribution is within total variation distance δ from a (1 + ε) -`p-distribution.

Remark 1.9. When δ = n−C for some constant C > 0 we omit it and say that algorithm
S is (1 + ε) -`p-sampling, even though its output is only within total variation distance
n−C from a (1 + ε) -`p-distribution.

The `p-sampling problem was introduced by Monemizadeh and Woodruff [MW10],
who gave a (1 + ε) -`p-sampling algorithm with space poly (ε−1 log n), for p ∈ [1, 2]. It
was improved by Andoni, Krauthgamer and Onak [AKO11], to space O(ε−p log3 n), for
p ∈ [1, 2]. Jowhari, Sağlam and Tardos [JST11] further improved the space bound and
presented an algorithm with near-optimal bound for p ∈ [0, 2], and showed a tight space
lower bound Ω

(
log2 n

)
(for constant ε).

Recently, Jayaram and Woodruff [JW18] showed an `p-sampling algorithm for every
0 < p ≤ 2 with accuracy parameter ε = 0, which means their algorithm’s output is
within total variation distance δ of an `p-distribution of the frequency-vector. Their
algorithm has space bound O(log2 n log 1

δ
) for p∈(0, 2) and O(log3 n log2 1

δ
) for p = 2.

1.3 Smooth Histogram Framework
The smooth histogram technique presented by Braverman and Ostrovsky [BO07] is one
of only two general techniques for adapting insertion-only algorithms to the sliding-
window model. The other one is an earlier technique called exponential histogram, due
to Datar et al. [DGIM02]. The approach of [BO07] was to maintain several instances
of an insertion-only algorithm on different suffixes of the stream, such that at any point
in time, the algorithm can output an approximation of f on W . They showed that for
a large family of functions, referred by them as smooth functions, this approach yields
a good approximation algorithm for the sliding-window model.

More precisely, assume there is an algorithm Λ that (1 + ε)-approximates a mono-
tone non-decreasing function f in the insertion-only model. In the smooth histogram
framework, the algorithm for the sliding-window model maintains k = O(ε−1 logw)
instances of Λ. Each instance Λi processes the stream from some initial point in time
until the end of the stream (or until instance Λi is discarded), i.e., it corresponds to
some suffix of the stream, referred to as a bucket. The bucket corresponding to Λi is
denoted by Bi, and we denote by Λi (Bi) the value of instance Λi on the stream Bi.
These buckets will satisfy the invariant B1 ⊇ W ) B2 ) B3 ) · · · ) Bk, where W
is the active window. In order to use only a small amount of space, whenever two
nonadjacent instances have “close” values, all instances between them will be deleted.
Instances Λi and Λj, for j > i, are considered close if the difference between Λi (Bi)
and Λj (Bj) is smaller than α (ε) · Λi (Bi), where α (ε) is some function of ε depending
only on the function f . At each step of receiving a new item from the stream, the
sliding-window algorithm updates all the instances, creates a new instance Λk+1, which
initially contains only the new item, and deletes all unnecessary instances, as explained
above, and lastly renumber the buckets.
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Braverman and Ostrovsky [BO07] showed that this approach applies to many “nice”
functions. Their idea of niceness is captured by the definition of smoothness. For
disjoint segments A,B of a stream, we denote by AB their concatenation. Intuitively,
a monotone non-decreasing function f defined on streams is smooth if its value on
two segments of the stream remains close whenever another segment of a stream is
appended to it, i.e., if f (B)≈ f (AB) then for every stream C also f (BC) ≈ f (ABC).
See Remark 3.4 for a more formal description of their definition. They proved that all
`p-norms, for p > 0, are smooth, and consequently presented algorithms that (1 + ε)-
approximate these norms in the sliding-window model, with an overhead (relative to
insertion-only algorithm) in the space complexity of O(ε−1 logw).

1.4 Contributions
We use extensively the smooth histogram technique of Braverman and Ostrovsky [BO07]
explained above. We extend their definition of smoothness to almost-smooth functions,
and present approximation algorithms in the sliding-window model for several problems
that have a constant-approximation algorithm.
Remark 1.10. Throughout, space complexity refers to the storage requirement of an
algorithm during the entire input stream, measured in bits. Update time refers to the
time complexity of processing a single update from the stream (in the RAM model).

1.4.1 Almost-Smooth Functions and Application to Graph Problems

We adapt the smooth histogram technique of Braverman and Ostrovsky [BO07] to
functions that are almost smooth. Informally, we say that a monotone non-decreasing
function f is d-almost-smooth if suppose f (AB) ≈ f (B) then appending any segment
C will maintain this approximation, up to a multiplicative factor d. For a more formal
and general definition see Definition 3.1 and Remark 3.2 after it. For example, the
maximum-matching size is 2-almost-smooth, as proven in Lemma 3.5, which means
that if m (B) is a (1 + ε)-approximation of m (AB), then for every sequence of edges C
it also holds that m (BC) would (1 + ε) 2-approximate m (ABC).

For an almost-smooth function with an approximation algorithm in the insertion-
only model we show in Theorem 3.7 a general way of transforming it to the sliding-
window model; below is a less general and formal description of it.

Theorem 1.11 (Informal version of Theorem 3.7). Suppose the function f is d-almost-
smooth and can be C-approximated by an insertion-only randomized algorithm Λ. Then
there exists a sliding-window algorithm Λsw that (1 + ε) dC2-approximates f , with only
a factor O(ε−1 logw) larger space and update time.

Using our generalization of the smooth histogram technique we provide several al-
gorithms for estimating maximum-matching and vertex-cover, in bounded-arboricity
graphs (see Tables 1 and 2 for highlights of results). In particular, we show the follow-
ing theorem for maximum-matching in Section 3.2.
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Theorem 1.12. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window ((2 + ε) (α + 2) , δ)-

estimation algorithm for the maximum-matching size in a graph with arboricity α, with
space bound O(ε−3 log3 n log 1

εδ
) and update time O(ε−3 log3 n log 1

εδ
).

For maximum-matching in bounded arboricity graphs we compare in Table 1 our
sliding-window algorithm (Theorem 1.12) with the insertion-only algorithms of [CJMM17]
and [MV18].

Stream Approx. Space Reference
insertion-only 22.5α + 6 O(α log2 n) [CJMM17]
insertion-only (α + 2) + ε Oε(log2 n) [MV18]
sliding-window 2 (α + 2) + ε Oε(log4 n) Theorem 1.12

Table 1: Estimation algorithms for maximum-matching in graphs with arboricity ≤ α
(considering constant probability of success).

We design also several algorithms for (estimation and approximation of) vertex-
cover. We summarize in Table 2 our results and compare them to previous algorithms
by [vH16]. For general graphs, we compare our sliding-window approximation algo-
rithm (Theorem 3.20) with the previously known one, showing an improvement in the
approximation ratio, essentially from 8 to 4, while the space complexity is the same.
For VDP (vertex-disjoint paths3) and forest graphs (arboricity equals 1) we compare
our sliding-window estimation algorithms to one another as well as to the turnstile es-
timation algorithm of [vH16]. In Theorem 3.18 the space complexity is much better,
Oε(log3 n) compared to Õε(

√
n) in the other two, Theorem 3.17 and the result of [vH16],

although the approximation ratio is slightly worse.

Problem Graphs Stream Approx. Space Reference
insertion-only 2 O(n log n) Folklore

vertex-cover general sliding-window 8 + ε Oε(n log2 n) [vH16]
sliding-window 4 + ε Oε(n log2 n) Theorem 3.20

vertex-cover
size

(estimation)

VDP turnstile 5
4 + ε Oε(

√
n log2 n) [vH16]

VDP sliding-window 3.125 + ε Oε(
√
n log4 n) Theorem 3.17

forests sliding-window 4 + ε Oε(log3 n) Theorem 3.18

Table 2: Estimation and approximating algorithms for vertex-cover in different settings
(considering constant probability of success).

1.4.2 Maximum-Matching in the Vertex-Arrival Model

Following the approach of Crouch et al. [CMS13] for maximum-matching in the sliding-
window model, we design a sliding-window algorithm for the more restrictive vertex-

3A graph G = (V,E) is said to be VDP if G is a union of vertex-disjoint paths.
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arrival model. Our algorithm achieves better approximation ratio (roughly 2.164 com-
pared with 3), while the space complexity is the same, but it is only applicable for
bipartite graphs in the vertex-arrival streaming model. A slightly informal version of
Theorem 2.5 is stated here.
Theorem 1.13 (Informal version of Theorem 2.5). There exists a sliding-window al-
gorithm for maximum-matching in vertex-arrival streams that achieves approximation
ratio roughly 2.164 using space complexity O(n log2 n).

The greedy maximal-matching algorithm is a 2-approximation algorithm for maximum-
matching. Crouch et al. [CMS13] used that algorithm for the smooth histogram tech-
nique, achieving an approximation ratio 2 · 2− 1 = 3, with an involved analysis based
on the the fact that the greedy matching is well structured. The algorithm of Kapralov
[Kap13], for the vertex-arrival (non-sliding-window) model, has an approximation ratio
ρ = e

e−1 ≈ 1.582. We use that algorithm of Kapralov [Kap13] as a black-box for the
smooth histogram technique and using a direct analysis we obtain approximation ratio
2ρ− 1 ≈ 2.164.

In Table 3 we compare our approximation algorithm for the sliding-window vertex-
arrival model (Theorem 2.5), applicable only for bipartite graphs, with previously
known algorithms. The first one is a sliding-window algorithm for general graphs, with
slightly worst approximation ratio. The second one is an approximation algorithm for
the (non-sliding-window) insertion-only vertex-arrival model with a better approxima-
tion ration. All algorithms have the same space complexity, up to polylog (n) factors.

Problem Graphs Stream Approx. Space Reference
general insertion-only 2 O(n log n) [FKM+05]
general sliding-window 3 + ε Oε(n log2 n) [CMS13]

maximum-
matching bipartite insertion-only

vertex-arrival 1.582 O(n log n) [Kap13]

bipartite sliding-window
vertex-arrival 2.164 + ε Oε(n log2 n) Theorem 2.5

Table 3: Approximation algorithms for maximum-matching in different settings.

Using a reduction due to Crouch and Stubbs [CS14] we immediately obtain an
approximation algorithm for the weighted problem (see Theorem 2.6) in the sliding-
window model, while increasing the approximation ratio by at most 2, and increasing
the space and update time by a factor of O(ε−1 log n).

1.4.3 Results for the Frequency-Vector Model

Lastly, we present algorithms for `p-sampling in the sliding-window model. We start by
showing our technique in full details for p = 0, and then generalize it to every p > 0.
Specifically, for p = 0 we prove the following theorem in Section 4.1, with a slightly
better space bound.

13



Theorem 1.14 (Simpler version of Theorem 4.8). For every ε, δ ∈ (0, 1) there is an
algorithm for `0-sampling in the sliding-window model with space bound

O( 1
ε3 log n log2 w log 1

δε
).

The algorithm’s output X ∈ [n] is within total variation distance δ + 3ε of a (1 + ε)-
uniform distribution over supp (W ).

For both cases, p = 0 and p > 0, our approach is to show a general reduction from
the sliding-window model to the insertion-only model. For p > 0 we then plug-in a
known insertion-only algorithms, while for p = 0 we present an `0-sampling algorithm
in the insertion-only model, based on a minwise-independent family of hash functions
due to Indyk [Ind99], from which we deduce an `0-sampling algorithm in the sliding-
window model.

1.5 Preliminaries
Throughout, we make use of a general observation regarding algorithms for the sliding-
window model, due to Braverman, which says that without loss of generality, the entire
stream can be assumed to have length at most twice the size of the window. We repeat
it here for completeness.
Claim 1.15. Every sliding-window algorithm Λ can be modified such that it will not
depend on the length of the entire stream, but only depend on at most 2w last items
from the stream, while using at most a factor 2 more space.

Proof. To avoid dependence on the length of the stream N , and instead be dependent
only on the length of the window w, we can argue as follows: partition the entire stream
D to segments D1, D2, . . . , Dt, of length w each, where t =

⌈
N
w

⌉
(except maybe the last

segment Dt, which is of length 0 < N − (t− 1)w ≤ w). At each segment Di start
a new instance of algorithm Λ, and keep running it during the next segment as well,
for at most 2w updates in total (for each instance of Λ). At any point in time, to
answer a query the algorithm queries the instance of Λ on the penultimate segment,
which corresponds to a suffix of the stream of length at least w, and thus contains the
entire active window. Thus, at each point in time it is enough to store only the two
instances of algorithm Λ corresponding to the last two segments, increasing the storage
requirement only by a factor of 2.
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2 Maximum-Matching in the Vertex-Arrival Model
We show a deterministic semi-streaming sliding-window algorithm for approximating
maximum-matching in vertex-arrival streams, where all edges incident on a vertex arrive
consecutively in the stream. The approach of Crouch et al. [CMS13] for approximat-
ing maximum-matching in the sliding-window model, which in turns is based on the
smooth histogram framework of Braverman and Ostrovsky [BO07], employs the greedy
algorithm who maintains maximal-matching in insertion-only streams. We adapt their
approach to the vertex-arrival model, but instead of the greedy algorithm we employ
the algorithm of Kapralov [Kap13]. By maintaining a near-optimal matching in each
suffix of the stream, using the optimal algorithm of Kapralov [Kap13], we achieve better
approximation then previously was known.

Previous work by Crouch et al. [CMS13] achieves (3 + ε)-approximation for maximum-
matching in the sliding-window model for ordinary insertion-only streams for general
graphs, not only for bipartite graphs. Our result (Theorem 2.5) achieves roughly
(2.164 + ε)-approximation for maximum-matching in the sliding-window model, but
only for the more restrictive vertex-arrival model, and hence only for bipartite graphs.

Crouch et al. [CMS13] also presented an algorithm for the maximum-weight match-
ing (in the usual model of sliding-window) that achieves roughly 9.027-approximation.
Later, Crouch and Stubbs [CS14] presented a general reduction from maximum-weighted
matching to maximum-matching by using O(ε−1 log n) instances of an algorithm for
maximum-matching and increasing the approximation factor by 2 + ε. Their reduc-
tion results in a (6 + ε)-approximation sliding-window algorithm for the maximum-
weight matching for general graphs in the insertion-only model. Our algorithm for
maximum-matching implies, by their general reduction, a (4.328 + ε)-approximation
sliding-window algorithm for the maximum-weight matching in the vertex-arrival model
(for bipartite graphs).

Recall that in the vertex-arrival model, a bipartite graph arrives in a streaming
fashion, where all edges incident on a vertex from the left side arrive consecutively in
the stream, i.e., for a bipartite graph G = (V, U,E) a stream in the vertex-arrival model
consists of some permutation of the vertices on the left side V = {v1, v2, · · · , vn} and
the stream is S = 〈E (v1) , E (v2) , · · · , E (vn)〉, where for a vertex v ∈ V its set of edges
denoted by E (v) = {(v, u) |u is a neighbor of v}. We assume that for every vertex
v ∈ V the set of edges E (v) arrives in some arbitrary order. For any segment Xi,j =

(E (vi) , · · · , E (vj)), for 1 ≤ i ≤ j ≤ n, of the stream S define E (Xi,j) =
j⋃
k=i

E (vk).
We assume that the actual stream consists of edges, in the aforementioned order, and
the length of the segment Xi,j is the total number of edges in it, i.e., the length of Xi,j

is
j∑
k=i
|E (vk)|.

Kapralov [Kap13] introduced a deterministic algorithm in the vertex-arrival model
that achieves an approximation ratio of ρ = e

e−1 ≈ 1.582, i.e., for every stream S of
edges in the vertex-arrival model it holds that 1

ρ
·m (S) ≤ m′ (S) ≤ m (S), where m (S)
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is the maximum-matching size of the underlying graph defined by the stream S, and
m′ (S) is the size of the matching produced by the algorithm of Kapralov on the same
graph. Theorem 2 from [Kap13] adapted to 1-pass states the following.

Theorem 2.1. [Kap13, Theorem 2 for k=1 passes] There exists an algorithm for ap-
proximating maximum-matching in a bipartite graph G = (V, U,E) given by a stream
in the vertex-arrival model within factor ρ = e

e−1 with space bound O(n log n), where
n = max {|V | , |U |}.

For disjoint segments A,B,C of a stream we denote by AB the concatenation of
A and B, and we define µ (A,B,C) = m (AB) + m (BC) − m (B). For the purpose
of analyzing our algorithm in Theorem 2.5 we will need the following lemma bounding
the size of µ (A,B,C).

Lemma 2.2. For every disjoint segments of a stream in the vertex-arrival model A,B
and C, it holds that m (ABC) ≤ µ (A,B,C) ≤ 2m (ABC). Moreover, both inequalities
are tight.

Proof. First, for the tightness, observe that for every stream ABC that define a perfect
matching there is an equality in the first inequality. Second, for A = ((ai, {xi}))ni=1,
B = ∅ and C = ((ci, {xi}))ni=1 it holds that m (ABC) = m (AB) = m (BC) = n and
obviously m (B) = 0. Hence µ (A,B,C) = m (AB)+m (BC)−m (B) = n+n−0 = 2n.
Thus, there is an equality in the second inequality as well.

Moving to proving the inequalities, we can easily deduce the second inequality as
follows,

µ (A,B,C) = m (AB) +m (BC)−m (B) ≤ m (AB) +m (BC) ≤ 2m (ABC) .

It remains to prove the first inequality. Let M (X) denote the set of edges of some
maximum-matching on a segment of a stream X in the vertex-arrival model, and let
V (M (X)) ⊆ V be the vertices from V participating in the matching M (X). We will
need the following claim.
Claim 2.3. Fix a maximum-matching M (B). There exist some maximum-matching
M (ABC) such that V (M (B)) ⊆ V (M (ABC)).

Proof. Let M∗ be a maximum-matching in ABC such that the size of the difference
M (B) \M∗ is minimized over all maximum-matchings in ABC. Let EM∗ = M (B) \M∗

and VM∗ = V (M (B)) \V (M∗). Assume towards contradiction that VM∗ 6= ∅, and let
v ∈ VM∗ . Denote by e = (v, u) ∈ M (B) the matched edge corresponding to v from
the matching M (B). Since v /∈ V (M∗), there is some other edge e′ = (v′, u) ∈ M∗,
for some vertex v′ 6= v, and so we can exchange them to obtain the matching M ′ =
{e} ∪ M∗\ {e′}, which is also a maximum-matching on ABC, because |M∗| = |M ′|.
Observe that |M (B) \M ′| = |EM∗| − 1 because e′ /∈ M (B) and we removed from
EM∗ the edge e ∈ M (B). But this contradicts the way we chose the matching M∗,
as the matching that minimized over all maximum-matchings on ABC the difference
M (B) \M∗. Therefore, VM∗ = ∅ as required.
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Let V1 = V (M (ABC)) ∩ V (AB) and V2 = V (M (ABC)) ∩ V (BC). By Claim
2.3 we can assume without loss of generality that V (M (B)) is contained in each of
V (M (ABC)) , V (M (AB)) and V (M (BC)). Therefore, each vertex v ∈ V (M (B)) is
both in V1 and in V2. Moreover, each vertex v ∈ V (M (ABC)) \V (M (B)) is in only
one of V1 or V2, because v is a matched vertex not in V (M (B)) and so it is not a vertex
from B (because otherwise M (B) can be augmented). Hence, we deduce that

|V (M (ABC))| = |V1|+ |V2| − |V (M (B))| .

Therefore, as m (X) = |V (M (X))| for every segment X of a stream, we can deduce
the required inequality:

|V (M (ABC))| ≤ m (AB) +m (BC)−m (B) = µ (A,B,C) .

Corollary 2.4. Let ε ∈ (0, 1) and let A,B,C be as in Lemma 2.2. If m′ (B) ≥
(1− ε)m′ (AB) then m (ABC) ≤

(
ρ

1−ε − 1 + ρ
)
m′ (BC), where ρ = e

e−1 .

Proof. The matching produced by the algorithm of Kapralov [Kap13] satisfiesm (AB) ≤
ρm′ (AB), m (BC) ≤ ρm′ (BC) and m′ (BC) ≤ m (BC), hence using Lemma 2.2,

m (ABC) ≤ m (AB) +m (BC)−m (B) ≤ ρm′ (AB) + ρm′ (BC)−m′ (B) .

Note that the algorithm of Kapralov [Kap13] produces monotone matchings, i.e., when
appending edges to the end of the stream the algorithm will not produce a smaller
matching.

If m′ (B) ≥ (1− ε)m′ (AB) then we can deduce the required inequality:

m (ABC) ≤ ρ

1− εm
′ (B) + ρm′ (BC)−m′ (B)

=
(

ρ

1− ε − 1
)
m′ (B) + ρm′ (BC)

≤
(

ρ

1− ε − 1
)
m′ (BC) + ρm′ (BC)

=
(

ρ

1− ε − 1 + ρ
)
m′ (BC) .

Theorem 2.5. There exists a sliding-window algorithm for maximum-matching in
vertex-arrival streams that achieves approximation ratio 2ρ − 1 + ε ≈ 2.164 + ε, for
any desired ε ∈

(
0, 1

2

)
, using space complexity O(ε−1n log2 n).

The theorem is proved by adapting the approach of Crouch et al. [CMS13], which in
turns is based on the smooth histogram method of Braverman and Ostrovsky [BO07].
Crouch et al. [CMS13] employ the greedy algorithm, which is applicable for the
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insertion-only model (and has approximation ratio 2), while our algorithm employs
the algorithm of Kapralov [Kap13], which is only suitable for the vertex-arrival model,
but achieves better approximation ratio (ρ = e

e−1 ≈ 1.582 compared to 2). We use the
algorithm of Kapralov to maintain a near-optimal matching in each “bucket”, where a
bucket is a suffix of the stream, i.e., a sequence of edges corresponding to some vertices
together with all their neighbors.

Proof. Let A be the algorithm of Kapralov [Kap13], and denote by A (X) the matching
produced by it when run on the stream X. Our algorithm maintains (not explicitly)
k = O (ε−1 log n) “buckets” B1, . . . , Bk, and for each bucket it maintains a matching
according to the algorithm of Kapralov. At all points in time, these buckets will satisfy
the invariant B1 ⊇ W ) B2 ) B3 ) · · · ) Bk, where W is the active window. Hence,

m (B1) ≥ m (W ) ≥ m (B2) ≥ · · · ≥ m (Bk) .

For each bucket Bi the algorithm maintains a matching, denoted byM ′ (Bi), and whose
size we denote by m′ (Bi). In order to use only a small amount of space, whenever two
nonadjacent buckets have matchings of similar size, we will delete all buckets between
them. For ease of exposition, the algorithm will be defined using these buckets, and later
we explain how to not actually store the buckets themselves. In each step of receiving
a new edge from the stream, the algorithm updates the buckets and the corresponding
matchings in the following way.

Algorithm 1 Update and query procedure
Update Procedure: Given the next item e = (v, u), update the current buckets

B1, . . . , Bk and the corresponding matchings M ′ (B1) , . . . ,M ′ (Bk), as follows:

1. Initialize new bucket Bk+1 = {e}, new matching M ′ (Bk+1) = A (Bk+1)
according to algorithm A on the bucket Bk+1.

2. For each 1 ≤ i ≤ k, add the edge e to the bucket Bi and update the matching
M ′ (Bi) = A (Bi) according to algorithm A.

3. For i = 1, . . . , k − 2 do:
(a) Find the largest j > i such that m′ (Bj) >

(
1− ε

3

)
m′ (Bi).

(b) For every i < t < j delete the bucket Bt, and renumber the buckets
accordingly.

4. If B2 contains the active window W , delete B1, and renumber the buckets.

Query Procedure: If the first bucket B1 is exactly the active windowW then output
M ′ (B1), otherwise output M ′ (B2).
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First, let us explain how to avoid storing the buckets B1, . . . , Bk and consequently
achieve O

(
ε−1n log2 n

)
space complexity: Instead of adding edges to the buckets and

then calculating approximate matching on that bucket, we only need to maintain the
storage that algorithm A requires. Additionally, we need to store a counter c (Bi) for
every bucket, indicating its initialization time (initialized to c (Bi) = 1 and incremented
each time a new edge arrives), such that we can perform the last step of the algorithm, by
comparing the counter for the bucketB2 to the size of the active window w. This way, we
store for each bucket Bi only O(n log n) bits of space, according to Theorem 2.1. Since
the maximum-matching has size at most n, and because m′ (Bi+2) <

(
1− ε

3

)
m′ (Bi)

for every 1 ≤ i ≤ k − 2 (as the “unnecessary” buckets were deleted in the process of
updating), it follows that the number of buckets bounded by O (ε−1 log n). Therefore,
the total number of bits used by the algorithm is O

(
ε−1n log2 n

)
, as claimed.

For the approximation ratio observe that for every i < k we have either |Bi| =
|Bi+1| + 1 or m′ (Bi+1) > m(Bi)

2ρ−1+ε (or both). Assume |Bi| 6= |Bi+1| + 1, which means
that the algorithm has deleted some bucket D between Bi and Bi+1. Thus, at the time
of the deletion we had m′ (Bi+1) >

(
1− ε

3

)
m′ (Bi). Let C be the suffix of the stream

starting at the time D was deleted, let B equal Bi+1 at the time of the deletion, and let
A be the segment of the stream from Bi that arrived before Bi+1 was initialized, i.e.,
Bi = ABi+1. Note that at the end of the stream Bi+1 = BC and Bi = ABC, hence
using Corollary 2.4 with ε

3 we obtain

m (Bi) ≤
(

ρ

1− ε
3
− 1 + ρ

)
m′ (Bi+1) ≤ (2ρ− 1 + ε)m′ (Bi+1) .

Therefore, either B1 = W and then m′ (B1) is a ρ-approximation for m (W ), or

m (W ) ≥ m (B2) ≥ m′ (B2) ≥ m (B1)
2ρ− 1 + ε

≥ m (W )
2ρ− 1 + ε

which means that m′ (B2) is (2ρ− 1 + ε)-approximation for m (W ), proving that the
above sliding-window algorithm is indeed (2ρ− 1 + ε)-approximates the maximum-
matching problem in the bipartite vertex-arrival model.

Crouch and Stubbs [CS14] presented a general reduction from maximum-weighted
matching to maximum-matching. Their reduction increases the space complexity by
O(ε−1 log n) and the approximation ratio by 2 + ε. Their idea is to partition the
weights to O(ε−1 log n) classes, run an algorithm for maximum-matching on each class
independently, and at the end of the stream combine the matchings in a clever way.
Thus, their reduction applicable in the sliding-window model, and hence, using it with
Theorem 2.5 we deduce the following theorem.

Theorem 2.6. There exist a sliding-window algorithm for maximum-weighted matching
in the vertex-arrival model that achieves approximation ratio 2 (2ρ− 1 + ε) ≈ 4.328+ε,
for any desired ε ∈

(
0, 1

2

)
, using space complexity O(ε−2n log3 n).
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3 Almost-Smooth Functions and Application to Graphs
We generalize the smooth-histogram approach of Braverman and Ostrovsky [BO07] to
functions that are almost smooth, as per our new definition. We show that the size
of a maximum-matching is almost smooth. For graphs of bounded arboricity α, we
then use the algorithm of McGregor and Vorotnikova [MV18] for estimating the size
of a maximum-matching, and deduce a sliding-window algorithm with approximation
factor O(α2) and space poly log n. We then improve the approximation ratio to O(α)
by observing that the number of α-good edges (the quantity used to approximate the
maximum-matching) is itself an almost smooth function, and thus we can argue directly
about it. See Table 1.

Next, we show a few results for minimum vertex-cover (again in the sliding-window
model), based on its relationship to maximum and maximal matching, and the fact that
it is too almost smooth. We show an algorithm with approximation factor 3.125 + ε for
the size of a minimum vertex-cover in VDP graphs using Õ(

√
n) space. We continue and

present another algorithm for a larger family of graphs, namely, forest graphs, where
the approximation factor grows to 4 + ε but the space complexity reduces to poly log n.
We then proceed to show how to report a feasible vertex cover. We reproduce a known
algorithm for general graphs with approximation factor 8 + ε that computes a vertex
cover using Õ(n) space. Then we show how to improve the approximation factor to 4+ε
by a tighter analysis of that same algorithm, using that the size of a greedy maximal
matching is also almost smooth.

Recall that in the usual graph streaming model, the input is a stream of edge
insertions to an underlying graph on the set of vertices V = [n], where n is known in
advance. The goal is usually to compute some function of the underlying graph, e.g.
its maximum-matching size. We assume that the underlying graph does not contain
parallel edges, i.e., the stream of edges does not contain the same edge twice. Hence,
the length of the entire stream is bounded by n2.

In the sliding-window model the graph is defined using only the last w edge insertions
from the stream, referred to as the active window W . Note that w is known (to the
algorithm) in advance, and that w ≤ n2, as the length of the entire stream is bounded
by n2.

Throughout, update time refers to the time complexity of processing a single update
from the stream. The space bound refers to the space complexity, measured in bits,
needed for the algorithm during the entire stream.

3.1 Almost-Smooth Functions
Recall that for disjoint segments A,B of a stream, we denote by AB their concatenation.
We use the parameter n to denote some measure of a stream which will be clear from the
context. For example, for graph streams n is the number of vertices in the underlying
graph. We extend the definition of smoothness due to [BO07] as follows.
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Definition 3.1. (Almost Smooth Function) A real-valued function f defined on
streams is (c, d)-almost-smooth, for c, d ≥ 1, if it has the following properties:

1. Non-negative: for every stream A it holds that f (A) ≥ 0.

2. c-monotone: for every disjoint segments A,B of a stream it holds that f (B) ≤
c · f (AB).

3. Bounded: for every stream A it holds that f (A) ≤ poly (n).

4. Almost smooth: for every disjoint segments A,B,C of the stream,

f (B)
f (AB) ≤ d · f (BC)

f (ABC)

whenever f (AB) 6= 0 and f (ABC) 6= 0.

Remark 3.2. Almost-smoothness means that appending any segment C at the end of
the stream preserves the approximation of f (B) by f (AB), up to a multiplicative
factor d. Observe that this is equivalent to the following condition. For every ε > 0
and every disjoint segments of the stream A,B,C,

ε · f (AB) ≤ f (B) =⇒ ε · f (ABC) ≤ d · f (BC) .

Remark 3.3. Throughout, it is more convenient to use this equivalent condition.
For generality we defined (c, d)-almost-smooth for any c ≥ 1, but in our applications

c = 1, in which case we simply omit c and refer to such functions as d-almost-smooth.
Remark 3.4. In the original definition of smoothness from [BO07], not only c = d = 1,
but also property 4 is stated as follows. A function f is (ε, β (ε))-smooth if for every
ε ∈

(
0, 1

2

)
there exist β (ε) ≤ ε and

(1− β (ε)) · f (AB) ≤ f (B) =⇒ (1− ε) · f (ABC) ≤ f (BC) .

Let m (S) be the size of the maximum-matching in the graph defined by the stream
S. Although m (·) is not a smooth function (as shown in Remark 3.6), it is almost
smooth, as proved by Crouch et al. [CMS13] and reproduced here for completeness.

Lemma 3.5. [CMS13] The maximum-matching size m (·) is 2-almost-smooth.

Proof. The first three requirements are clear, as m (·) is non-negative, bounded and
monotone, since on a sub-segment of the stream the maximum-matching can not be
larger. Hence, we are only left to show the almost-smoothness property. Let ε ∈ (0, 1)
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and let A,B and C be disjoint segments of the stream satisfying εm (AB) ≤ m (B).
Observe thatm (AB)+m (BC) ≥ m (A)+m (BC) ≥ m (ABC), becausem is monotone,
and therefore,

2m (BC) ≥m (B) +m (BC) ≥ εm (AB) +m (BC)
≥ε (m (AB) +m (BC)) ≥ εm (ABC) .

Remark 3.6. The almost-smoothness d = 2 in Lemma 3.5 is tight. Let G = (V,E)
be a graph composed of n vertex-disjoint paths of length 3, i.e., n paths of the form
ea = {x, y} , eb = {y, z} , ec = {z, w}. The segment A of the stream contains all the
ea edges, B contains all the eb edges, and C contains all the ec edges. Obviously
m (AB) = m (B) = m (BC) = n while m (ABC) = 2n. In particular, the maximum-
matching size is not smooth as per the original definition of [BO07].

Recall that for ε, δ ∈ (0, 1) and C ≥ 1, an algorithm Λ is said to ((1 + ε)C, δ)-
approximate a function f if on every input stream D, its output X satisfies

Pr [(1− ε) f (D) ≤ X ≤ (1 + ε)C · f (D)] ≥ 1− δ.

If δ = 0 we say for short that the algorithm (1 + ε)C-approximates f .
We use the Smooth Histogram algorithm of [BO07] with a modified analysis, but

we use a more convenient description, similarly to Crouch et al. [CMS13] and to our
algorithm for the `0-sampling problem.

Theorem 3.7. [Restatement of Theorem 1.11] Let f be a (c, d)-almost-smooth func-
tion. Assume that for every ε, δ ∈

(
0, 1

2

)
, there exists a streaming algorithm Λ that

((1 + ε)C, δ)-approximates f using space s (ε, δ) and update time t (ε, δ). Then there
exists a sliding-window algorithm Λsw that (dc2C2 (1 +O(ε)) , δ)-approximates f using
space O(ε−1 logw · s

(
ε, εδ

2w logw

)
) and update time O(ε−1 logw · t

(
ε, εδ

2w logw

)
).

Recall that without loss of generality we can assume that the length of the entire
stream is at most 2w, as explained in Claim 1.15.

Proof. We use the same technique and notation as in algorithm 1, namely, maintain
k = O(ε−1 logw) instances of algorithm Λ, all with the same parameters ε for accuracy
and εδ

2w logw for failure probability. Each instance Λi is defined on a suffix Bi of the
stream, called a “bucket”, where those buckets satisfy the invariant B1 ⊇ W ) B2 )
B3 ) · · · ) Bk, and W is the active window. Upon receiving a new update from
the stream, the algorithm updates the instances similarly to algorithm 1. Specifically,
for each i ∈ [k − 2], find the largest j > i such that Λj (Bj) > (1− ε) Λi (Bi), delete
all buckets between them and renumber the buckets accordingly. The output of the
algorithm is either Λ̃ = Λ1 (B1) in the case B1 = W , or Λ̃ = dcC (1+ε)

(1−ε)2 · Λ2 (B2)
otherwise.
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Let Λ1 (B1) and Λ2 (B2) be the output of algorithm Λ on the first and second buckets
at the end of the stream, respectively. Note that for a fixed instance at a fixed point in
time, with probability at most εδ

2w logw it makes an error. Hence, by union bound, with
probability at least 1 − δ every instance in the entire run of the algorithm correctly
approximates f on the corresponding bucket, every time it is queried. Thus, from
now on we assume that every instance of Λ succeeds every time, i.e., it (1 + ε)C-
approximates f on the corresponding bucket whenever it is invoked.

If B1 = W then the output Λ̃ = Λ (B1) is obviously a (1 + ε)C-approximation of f
on B1 = W . Otherwise B1 ) W ) B2, which means that at some earlier point in time,
denoted by t∗, the algorithm had deleted some buckets between them to make them
adjacent (for the first time). Note that at time t∗ the buckets B1 and B2 first became
adjacent. For i ∈ {1, 2} denote by B′i the bucket Bi at the time t∗. Let D be the suffix
of the stream starting at time t∗, and observe that B1 = B′1D and B2 = B′2D. At time
t∗ we had (1− ε) Λ (B′1) < Λ (B′2), which implies

(1− ε) f (B′1) ≤ (1− ε) Λ (B′1) < Λ (B′2) ≤ (1 + ε)C · f (B′2) ,

namely (1−ε)
(1+ε)C f (B′1) ≤ f (B′2). Since f is (c, d)-almost-smooth, at the end of the stream

we have 1
d
· (1−ε)

(1+ε)C f (B1) ≤ f (B2). Now, by monotonicity 1
c
·f (B2) ≤ f (W ) ≤ c ·f (B1),

and altogether
1

cC (1 + ε)Λ (B2) ≤ 1
c
·f (B2) ≤ f (W ) ≤ c·f (B1) ≤ cdC·(1 + ε)

(1− ε)f (B2) ≤ cdC· (1 + ε)
(1− ε)2 Λ (B2) .

Since (1+ε)2

(1−ε)2 ≤ 1 + 20ε for ε ≤ 1
2 , we conclude that at the end of the stream the output

of the algorithm Λ̃ = dcC (1+ε)
(1−ε)2 · Λ (B2) approximate f (W ) as claimed.

For certain approximation algorithms we can reduce the dependence on the approx-
imation factor C from quadratic (C2) to linear (C). Suppose that the approximation
algorithm Λ of the function f has the following form: It (1 + ε, δ)-approximates a func-
tion g, and this g is a C-approximation of f . Now, if g itself is (c, d)-almost-smooth
then we can save a factor of C by arguing directly about approximating g.
Theorem 3.8. Let f be some function, let g be a (c, d)-almost-smooth function, and as-
sume that g is a C-approximation of f . Assume that for every ε, δ ∈

(
0, 1

2

)
, there exists

a streaming algorithm Λ that (1 + ε, δ)-approximates g using space s (ε, δ) and update
time t (ε, δ). Then there exists a sliding-window algorithm Λsw that (dc2C (1 +O(ε)) , δ)-
approximates f using space O(ε−1 logw · s

(
ε, εδ

2w logw

)
) and update time O(ε−1 logw ·

t
(
ε, εδ

2w logw

)
).

Proof. By applying Theorem 3.7 to the function g and the algorithm Λ, that approxi-
mates it, we obtain a sliding-window algorithm Λsw that computes a (dc2 (1 +O(ε)) , δ)-
approximation of g, uses space O(ε−1 logw ·s

(
ε, εδ

2w logw

)
) and update time O(ε−1 logw ·

t
(
ε, εδ

2w logw

)
). Since g is a C-approximation of f , this algorithm Λsw is in fact a

(dc2C (1 +O(ε)) , δ)-approximation of f , using the same space and update time.
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Application to Negative Frequency Moments Recently, Braverman and Chest-
nut [BC15] showed an insertion-only streaming algorithm that (1 + ε)-approximates
negative frequency moments, Fp for p < 0, with space complexity O(ε−

2−p
1−pm

−p
1−p logM),

where m =
n∑
i=1

xi andM = max {n, xi|i ∈ [n]}, where x = (x1, . . . , xn) is the underlying
frequency-vector of the stream. It is easy to show that the Fp moment is (ε, ε)-smooth
for every p < 0 and that the smooth histogram technique (with the right modifications)
is applicable also to monotonically decreasing functions. Therefore, for every p < 0
there is a sliding-window algorithm for (1 + ε)-approximation of a negative frequency
moment Fp, with space complexity O(ε−

3−2p
1−p m

−p
1−p logM logw).

3.2 Maximum-Matching
A graph has arboricity α if its set of edges can be partitioned into at most α forests. For
example, it is well known that every planar graph has arboricity α = 3, see e.g. [GL98].
McGregor and Vorotnikova [MV18], based on the result of Cormode et al. [CJMM17],
presented an algorithm that approximates the size of the maximum-matching in a graph
with arboricity α within factor (1 + ε) (α + 2), with constant probability, using space
O(ε−2 log n) and update time O(ε−2 log n). To achieve low failure probability δ it is
standard to compute a median of log δ−1 parallel repetitions. Therefore, using the
Almost-Smooth-Histogram method explained above we obtain the following theorem.

Theorem 3.9. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window

(
(2 + ε) (α + 2)2 , δ

)
-

estimation algorithm for maximum-matching size in a graph with arboricity α, with
space bound O(ε−3 log3 n log 1

εδ
) and update time O(ε−3 log3 n log 1

εδ
).

Proof. For ε, δ ∈ (0, 1) let ΛMV be the algorithm of McGregor and Vorotnikova [MV18],
amplified to have success probability 1−δ, providing ((1 + ε) (α + 2) , δ)-approximation
for maximum-matching size in graphs with arboricity α. As shown in Lemma 3.5, m (·)
is 2-almost-smooth. Therefore, using Theorem 3.7 with c = 1, d = 2, C = α + 2 and
algorithm ΛMV , we obtain a sliding window algorithm Λ which

(
(2 + ε) (α + 2)2 , δ

)
-

approximate the maximum-matching size in graphs with arboricity α.
The space complexity of ΛMV is sMV (ε, δ) = O(ε−2 log n log δ−1) and it the update

time is tMV (ε, δ) = O(ε−2 log n log δ−1). Hence the space complexity of Λ is

O(ε−1 logw · sMV

(
ε,

εδ

2w logw

)
) = O(ε−3 log3 n log 1

εδ
),

and similarly for the update time, where we used the fact that w ≤ n2.

For the purpose of approximating the maximum-matching size in graphs with ar-
boricity bounded by α Cormode et al. [CJMM17] introduced the notion of α-good
edges. The algorithm of [MV18] used in the above proof is actually approximates the
maximum number of α-good edges in prefixes of the stream. Thus, using the same
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algorithm of [MV18], we can directly approximate the maximum size of the set of α-
good edges in the active window W . For completeness we present here the definition
of Cormode et al. [CJMM17] for α-good edges in a stream, and the notion of E∗α due
to McGregor and Vorotnikova [MV18].

Definition 3.10. Let S = (e1, e2, . . . , ek) be a sequence of k edges on the set of vertices
V = [n]. We say that an edge ei = {u, v} is α-good (with respect to the stream S) if
di (u) ≤ α and di (v) ≤ α, where di (x) is the number of edges incident on the vertex x
that appear after edge ei in the stream, i.e., di (x) = |{ej|j > i ∧ x ∈ ej}|. Denote by
Eα (S) the set of α-good edges in the stream S, and let E∗α (S) = max

t∈[k]
|Eα (St)|, where

St = (e1, e2, . . . , et) is the prefix of S of length t.

Although the size of the set of α-good edges in a stream is not smooth or even
almost-smooth, the function E∗α (·) is almost-smooth.

Lemma 3.11. The function E∗α (·) is 2-almost-smooth.

Proof. The first two requirements are clear, as E∗α is non-negative and bounded. Let
A,B and C be disjoint segments of the stream S = (e1, e2, . . . , ek). Note that E∗α (B) ≤
E∗α (AB), since earlier edges do not interfere with later edges being α-good, hence E∗α is
also monotone. Furthermore, E∗α (B) ≤ E∗α (BC) as taking a maximum on a larger set
can not be smaller. Hence, we are only left to show the almost-smoothness property.

If E∗α (ABC) = E∗α (AB) then obviously E∗α (AB) +E∗α (BC) ≥ E∗α (ABC), as E∗α is
positive. Otherwise, let 1 ≤ t ≤ k be such that et ∈ C and E∗α (ABC) = |Eα ((ABC)t)|,
then

Eα ((ABC)t) = (Eα ((ABC)t) ∩ A) ∪ Eα ((BC)t) ,

where it is a disjoint union. Note that Eα ((ABC)t) ∩ A ⊆ Eα (AB), as every α-good
edge from A with respect to the stream (ABC)t is also α-good edge in the stream AB.
Hence,

E∗α (ABC) ≤ |Eα (AB)|+ |Eα ((BC)t)| ≤ E∗α (AB) + E∗α (BC) .

Therefore, if we assume that εE∗α (AB) ≤ E∗α (B) then we obtain the required inequality

2E∗α (BC) ≥E∗α (B) + E∗α (BC) ≥ εE∗α (AB) + E∗α (BC)
≥ε (E∗α (AB) + E∗α (BC)) ≥ εE∗α (ABC) .

McGregor and Vorotnikova [MV18] proved that m (S) ≤ |Eα (S)| ≤ (α + 2) ·m (S)
for every stream S, and thus also m (S) ≤ E∗α (S) ≤ (α + 2) ·m (S). They also designed
a (1 + ε, δ)-approximation algorithm for E∗α (·). Since E∗α (·) is 2-almost-smooth by
Lemma 3.11 we can apply Theorem 3.8, with g=E∗α (·) and f =m (·), to obtain the
following improvement over Theorem 3.9.
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Theorem 3.12 (Restatement of Theorem 1.12). For every ε, δ ∈
(
0, 1

2

)
, there is

a sliding-window ((2 + ε) (α + 2) , δ)-estimation algorithm for the maximum-matching
size in a graph with arboricity α, with space bound O(ε−3 log3 n log 1

εδ
) and update time

O(ε−3 log3 n log 1
εδ

).
Remark 3.13. For arboricity α = 1 we can achieve a better approximation. Cormode et
al. [CJMM17] showed that in this case m (S) ≤ |E1 (S)| ≤ 2 ·m (S) and thus m (S) ≤
E∗1 (S) ≤ 2 · m (S). Therefore, by Theorem 3.8 there is a (4 + ε, δ)-approximation
algorithm for the maximum-matching size in forest graphs in the sliding-window model
with the same space and update time bounds.

3.3 Minimum Vertex-Cover
For a graph G = (V,E) a subset C ⊆ V of the vertices is called a vertex cover of G if
each edge e ∈ E is incident to at least one vertex in C. Denote by V C (G) the smallest
size of a vertex cover of G. There are two different but related problems to consider.
The first one is estimating the size of the minimum vertex cover (without providing
a corresponding vertex cover of that size), and the second one is computing a feasible
vertex cover of approximately minimum size.

We show here that, like the maximum-matching size, the minimum vertex-cover size
is almost-smooth.
Lemma 3.14. The minimum vertex-cover size V C (·) is 2-almost-smooth.

The proof is similar to the proof of Lemma 3.5, but differs in the justification for the
last inequality. Although m (·) is a maximization problem and V C (·) is a minimization
problem, they satisfy the same sequence of inequalities, albeit for different reasons.

Proof. The first three requirements are clear, as V C (·) is non-negative, bounded and
monotone, since on a sub-segment of the stream the minimum vertex cover can not be
larger. Hence, we are only left to show the almost-smoothness property. Let ε ∈ (0, 1)
and let A,B and C be disjoint segments of the stream satisfying εV C (AB) ≤ V C (B).
Observe that a union of a minimum vertex cover on AB and a minimum vertex cover
on BC is clearly a feasible (not necessarily minimum) vertex cover on ABC, and since
it is a minimization problem we obtain V C (AB)+V C (BC) ≥ V C (ABC). Therefore,

2V C (BC) ≥V C (B) + V C (BC) ≥ εV C (AB) + V C (BC)
≥ε (V C (AB) + V C (BC)) ≥ εV C (ABC) .

Remark 3.15. The almost-smoothness parameter d = 2 in Lemma 3.14 is tight, namely,
there are segments A,B,C of a stream that define a graph, for which (1− ε)V C (AB) ≤
V C (B) and 1

2 (1− ε)V C (ABC) = V C (BC). For example, the graph and the seg-
ments from Remark 3.6 satisfies V C (AB) = V C (B) = V C (BC) = n while V C (ABC) =
2n. Thus, V C (·) is not smooth as per the original definition of smoothness due to
Braverman and Ostrovsky [BO07].
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Hence, we can use the Almost-Smooth-Histogram approach to estimate the size of
the minimum vertex-cover in the sliding-window model, as explain in the next section.

3.3.1 Vertex-Cover Estimation

First we consider estimating the size of the minimum vertex cover in the sliding-window
model. We provide the first sub-linear space algorithm in the sliding-window model for
estimating V C (·), for some families of graphs, as explained below.

A graph G = (V,E) is said to be VDP (stands for vertex-disjoint paths) if G is a
union of vertex disjoint paths. We show two sliding-window algorithms for different
families of graphs. One with Õ(

√
n) space obtaining almost 3.125-approximation for

the family of VDP graphs and the other one with poly log n space obtaining almost
4-approximation for graphs of arboricity α = 1. Observe that the results are incompa-
rable, since the first algorithm has better approximation ratio but its space complexity
is much bigger. Also, the second algorithm is applicable for a larger family of graphs.

For the family of VDP graphs there is a randomized algorithm in the turnstile
streaming model to approximate V C (·), presented in [vH16]. Using the standard ar-
gument of computing a median of log δ−1 parallel repetitions, to achieve low failure
probability δ, we can state this result as follows.

Theorem 3.16. [vH16, Theorem 1.1] For every ε, δ ∈ (0, 1), there exists a
(

5
4 + ε, δ

)
-

approximation streaming algorithm for the size of the minimum vertex cover of an input
VDP graph that uses O(ε−1√n log2 n log δ−1) space.

Therefore, using Theorem 3.7 we obtain as a corollary the following result for the
sliding-window model.

Theorem 3.17. For every ε, δ ∈
(
0, 1

2

)
, there exists a sliding-window (3.125 + ε, δ)-

approximation algorithm for V C (·) in VDP graphs that uses O(ε−2√n log4 n log 1
εδ

)
space.

Observe that a VDP graph has arboricity α = 1, because it is a forest, and in
particular it is a bipartite graph. Recall that according to Kőnig’s theorem, in a bipar-
tite graph the size of a minimum vertex cover equals the size of a maximum-matching.
Therefore, we conclude from Remark 3.13 that there is a (4 + ε, δ)-approximation algo-
rithm for the minimum vertex cover in VDP graphs using poly log space. Obviously it
extends to all forests, i.e., graphs with arboricity α = 1. Comparing to Theorem 3.17,
the following Theorem has slightly worse approximation factor but its space complexity
is much better, moreover, its applicable for a wider family of graphs.

Theorem 3.18. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window (4 + ε, δ)-approximation

algorithm for the size of the minimum vertex cover size in a forest graph, with space
bound O(ε−3 log3 n log 1

εδ
) and update time O(ε−3 log3 n log 1

εδ
).
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3.3.2 Vertex-Cover Approximation

Here we consider computing a feasible vertex cover of approximately minimum size. We
improve the approximation ratio of the algorithm of [vH16] from 8 + ε to 4 + ε, using
a tighter analysis of his algorithm.

A maximal matching is a matching that cannot be extended by adding an edge to
it, i.e., a matching M in a graph G = (V,E) is maximal if every edge e ∈ E\M is
adjacent to at least one edge from the matching M . For a stream A of edge insertions,
denote by M̂ (A) the greedy matching on A, and denote by m̂ (A) its size. Note that
for every stream A the greedy matching M̂ (A) is maximal. Recall that for a matching
M we denoted by V (M) the set of all endpoints of edges from M , i.e., V (M) =
{v ∈ V |∃u ∈ V : {v, u} ∈M}.

We show that the greedy-matching size of a stream of edge insertions is almost-
smooth.

Lemma 3.19. The greedy-matching size is (2, 2)-almost-smooth.

The proof is similar in nature to the proof of Lemma 3.5, but different because m̂ (·)
is not monotone, but rather 2-monotone. Furthermore, we can use the actual matching,
since it is well structured.

Proof. The first two requirements are clear, as m̂ (·) is non-negative and bounded. For
the 2-monotonicity, let A,B be disjoint segments of the stream. Note that for every e ∈
M̂ (B) at least one of its endpoint is in V

(
M̂ (AB)

)
, hence m̂ (B) ≤

∣∣∣V (M̂ (AB)
)∣∣∣ =

2 · m̂ (AB).
For the almost-smoothness property, let ε > 0 and let A,B and C be disjoint

segments of the stream satisfying εm̂ (AB) ≤ m̂ (B). For every edge e ∈ M̂ (ABC),
if e is from the stream AB then obviously e ∈ M̂ (AB), and if e is from the stream
C then e ∈ M̂ (BC), since the greedy matching on the stream BC could add it as
did the greedy matching on ABC. Thus, M̂ (ABC) ⊆ M̂ (AB) ∪ M̂ (BC), from which
we deduce that m̂ (AB) + m̂ (BC) ≥ m̂ (ABC). As obviously m̂ (B) ≤ m̂ (BC) by
construction, we obtain

2m̂ (BC) ≥m̂ (B) + m̂ (BC) ≥ εm̂ (AB) + m̂ (BC)
≥ε (m̂ (AB) + m̂ (BC)) ≥ εm̂ (ABC) .

If M∗ ⊆ E is a maximal matching in the graph G = (V,E) then the set of vertices
V (M∗) is a vertex cover of the graph G, because every edge from E has at least one
of its end points in V (M∗) (otherwise the matching M∗ would not be maximal). For
every stream A the greedy matching M̂ (A) is a maximal matching and thus V

(
M̂ (A)

)
is a vertex cover of the edges from A. Hence, we refer to the greedy matching algorithm
also as the greedy vertex cover algorithm, with the only difference that it outputs the
vertices V

(
M̂ (A)

)
of the matching, instead of the edges M̂ (A) of the matching.

28



The greedy vertex cover algorithm achieves 2-approximation in the standard insertion-
only streaming model for the minimum vertex cover using O(n log n) space, because at
least one vertex from each matched edge should be in the minimum vertex cover. By
using that greedy algorithm and exploiting the 2-almost-smoothness of the minimum
vertex cover size we deduce from Theorem 3.7, an (8 + ε)-approximation algorithm for
reporting a minimum vertex cover in the sliding-window model with O(ε−1n log2 n)
space, matching the result of [vH16].

We can do slightly better by using the algorithm of Crouch et al. [CMS13], which
is a (3 + ε)-approximation to the maximum-matching, with the same space complexity.
Their algorithm maintains a greedy matching in various buckets, such that the difference
between adjacent buckets is not too large. Specifically, for any adjacent buckets Bi and
Bi+1 it holds that 2m̂ (Bi+1) ≥ (1− ε) m̂ (Bi). With an easy modification to their
algorithm, outputting the greedy matching on the bucket B1 instead of the bucket B2,
it holds that V

(
M̂ (B1)

)
is a vertex cover (of B1 ⊇ W ) at most (6 + ε)-factor larger

than the minimum vertex cover on the active window W . Note that the algorithm of
[CMS13], and the algorithm of [vH16] is essentially the same. The only difference is
that [vH16] storing the vertices instead of the edges, which is what [CMS13] do.

We can do even better, using a tighter analysis of this algorithm of [CMS13]. By
leveraging the fact that the greedy-matching size is (2, 2)-almost-smooth, we obtain a
(4 + ε)-approximation sliding-window algorithm.

Theorem 3.20. For every ε ∈
(
0, 1

2

)
, there is a sliding-window (4 + ε)-approximation

algorithm for the minimum vertex cover with space bound O(ε−1n log2 n).

Proof. We use the algorithm of Crouch et al. [CMS13], but output V
(
M̂ (B1)

)
. At

the end of the stream we have 2m̂ (B2) ≥ (1− ε) m̂ (B1), since the greedy matching
size is (2, 2)-almost-smooth. Since the minimum vertex cover is monotone and W ⊆ B1

V C (W ) ≤ V C (B1) ≤
∣∣∣V (M̂ (B1)

)∣∣∣ = 2 · m̂ (B1). Note that V
(
M̂ (B1)

)
is indeed a

vertex cover on the active window W , since it is a vertex cover on B1. Additionally,
V C (W ) ≥ V C (B2) ≥ m̂ (B2), since V C (·) is monotone, B2 ⊆ W and the minimum
vertex cover size is at least the size of any matching. For ε < 1

2 it holds that 1
1−ε ≤ 1+2ε,

and we obtain∣∣∣V (M̂ (B1)
)∣∣∣ = 2 · m̂ (B1) ≤ 4 (1 + 2ε) · m̂ (B2) ≤ 4 (1 + 2ε) · V C (W ) ,

which means that V
(
M̂ (B1)

)
is a vertex cover on the active window W and it is at

most a factor 4 (1 + 2ε) larger then V C (W ), as required.
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3.4 Parameterized Sliding-Window
Chitnis et al. [CCHM15] showed a deterministic parameterized algorithm in the insertion-
only model for the two aforementioned graph problems, minimum vertex-cover and
maximum-matching, both parameterized by the maximum-matching size k. Specifi-
cally, they showed in [CCHM15, Theorem 1.1] a deterministic exact algorithm out-
putting a minimum vertex-cover with space O(k2), where k is an upper bound on the
size of the minimum vertex-cover in the stream. It can be verified, using Lemma 3.21,
that the same algorithm can be used for outputting a maximum-matching with the
same space complexity.

Lemma 3.21. For a graph G = (V,E) with m (G) ≤ k, let M be an arbitrary
maximal-matching and denote by VM the set of matched vertices in M . For each
vertex v ∈ VM let E (v) be a set of min {deg (v) , 2k} arbitrary edges from E in-
cident on v. Define the subgraph H = (VH , EH), with EH = M ∪ ⋃

v∈VM

E (v) and

VH = {v ∈ V | ∃u ∈ V, {u, v} ∈ EH}. Then, the subgraph H has the same maximum-
matching size as G, i.e., m (G) = m (H).

Proof. We start by claiming that every edge in G but not in H is incident on a high
degree vertex. To see this, let e ∈ E\EH . At least one of its endpoints is in VM , since
M is a maximal-matching in G. Denote this endpoint by v ∈ VM , then the degree of v
in H is degH (v) ≥ 2k+ 1, because e not in H implies that E (v) is of size 2k and there
is a matched edge in M incident on v.

Let M∗ be a maximum-matching in G. Let M∗
H = M∗ ∩ EH be a matching in H,

and let M∗\M∗
H = {e1, · · · , ed} for some d ∈ N. Note that M∗

H = M∗\ {e1, · · · , ed} and
thus |M∗

H | = |M∗| − d. By our claim above, each edge ei for i ∈ [d] has an endpoint
vi ∈ ei with degree at least 2k+1. We can iteratively add d edges to the matching M∗

H ,
such that each vertex vi is matched to yet unmatched vertex in H, as follows.

Since v1 ∈ e1 has at least 2k + 1 neighbors in H, while only at most 2 · |M∗
H | =

2 (k − d) vertices are matched in M∗
H , there are at least 2d + 1 neighbors of v1 (in H)

that are not matched in M∗
H . Picking arbitrary unmatched neighbor u1 of v1, we add

the edge {v1, u1} to M∗
H , obtaining the matching M1 = M∗

H ∪ {v1, u1}. We continue
similarly, for every i = 2, . . . , d, selecting a yet unmatched neighbor ui of vi to obtain the
matching Mi = Mi−1 ∪ {vi, ui}. Observe that vi indeed has a yet unmatched neighbor
(in H), since vi has at least 2k + 1 neighbors in H while there are only

2 · |Mi−1| = 2 · (|M∗
H |+ i− 1) = 2 · (|M∗| − d+ i− 1) < 2k

matched vertices in Mi−1. After d iterations Md is a matching in H of size |Md| =
|M∗| − d+ d = |M∗|, and hence m (G) = m (H), as required.

Both m (·) and V C (·) are 2-almost-smooth by Lemmas 3.5 and 3.14, and thus
we can use the streaming algorithm of [CCHM15] in our Theorem 3.7 to obtain the
following sliding-window algorithm for both problems.
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Theorem 3.22. For every ε ∈
(
0, 1

2

)
, there is a deterministic (2 + ε)-approximation

algorithm for maximum-matching and vertex-cover in the sliding-window model with
space bound O(ε−1k2 log n), where k is an upper bound on the maximum-matching size
in the stream.

Remark 3.23. The update time of our sliding-window algorithm is O(ε−1t (n,m) log n),
where t (n,m) is the time complexity of an algorithm to extract a maximum-matching
or a minimum vertex-cover in the (non-streaming) RAM model, in graphs with n ver-
tices and m edges. For maximum-matching there are few algorithms with time bound
O(
√
nm) , due to Micali and Vazirani [MV80, Vaz94] and Blum [Blu90]. Note that in

our case |V | = O(k2) and |E| = O(k2), as every graph composed of a maximal-matching
of size at most k and O(k) more edges on each vertex from the matching. Hence, for
maximum-matching t = O(k3). For parameterized minimum vertex-cover, the best
known algorithm, due to Chen, Kanj and Xia [CKX10], finds a minimum vertex-cover
in time O(1.2738k + k · n) in graphs G = (V,E) with |V | = n and |E| = m, where k
is an upper bound on the size of the minimum vertex-cover. Hence, for vertex-cover
t = O(1.2738k + k3), as |V | = O(k2).

In the turnstile streaming model, Chitnis et al. [CCE+16] showed a randomized
parameterized streaming algorithm for both maximum-matching and minimum vertex-
cover with the same space complexity. Their method samples Õ(k2) edges using an
`0-sampling algorithm, in some non-obvious manner (as explain below), such that the
sampled subgraph has, with high probability, the same maximum-matching size (and
minimum vertex-cover size) as the entire graph (see Theorem 3.26).

Specifically, given a graph G = (V,E), they defined in [CCE+16] a distribution
SampleG (b, r) over subgraphs of G such that sampling according to it, with appropri-
ately chosen parameters b and r, results with high probability in a subgraph G′ with
m (G) = m (G′). For completeness we repeat here their definitions and notation, al-
though less generally. Given a graph G = (V,E), consider a vertex coloring c : V → [b]
for some b ∈ N. For each color i ∈ [b] denote Vi = {v ∈ V : c (v) = i}. For an edge
e = (v, u) ∈ E, define c (e) = {c (v) , c (u)}. Denote B = {C ⊆ [b] : |C| ≤ 2} and we
say for each C ∈ B that an edge e of G is C-colored if c (e) = C. For each C ∈ B, the
set EC contains a single edge chosen uniformly at random from the set of all C-colored
edges. If there are no C-colored edges, then EC = ∅. The union of these sets defines
the random graph G′ = (V,E ′), i.e.,

E ′ =
⋃
C∈B

EC .

Definition 3.24. SampleG (b, 1) is the distribution over subgraphs of G generated as
explained above, where c is chosen uniformly at random from a family of pairwise
independent hash functions. SampleG (b, r) is the distribution over subgraphs formed
by taking the union of r independent subgraphs sampled from SampleG (b, 1).

Remark 3.25. Note that a graph G′ = (V,E ′) sampled according to SampleG (b, r) has
at most rb2 edges.
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Chitnis et al. [CCE+16] then showed that given a graph G = (V,E), sampling ac-
cording to the distribution SampleG (b, r), for suitable b and r, maintain the maximum-
matching size and the size of the minimum vertex-cover, with high probability.

Theorem 3.26. [CCE+16, Theorem 3.1] For a graph G= (V,E), suppose m (G) ≤
k. Let G′ = (V,E ′) be sampled according to SampleG (1000k,O(log k)). Then, with
probability at least 1− 1

poly(k) ,

m (G) = m (G′) and V C (G) = V C (G′) .

During the stream, the update procedure of their algorithm only needs to maintain
Õ(k2) instances of an `0-sampling algorithm, one for each C ∈ B. Following their
approach, we implement the algorithm in the sliding-window model, relying on `0-
sampling in the sliding-window model (see Section 4.1). Since the sliding-window model
allows only insertion of edges and no edge is inserted more than once, we can use a
simpler and more efficient method for `0-sampling. Braverman et al. [BOZ09] showed a
reservoir sampling algorithm for the sliding-window model, which, adapted for graph-
streaming, maintains a uniformly distributed edge from the active window W using
O(log2 n) bits.

Since we need to sample uniformly at random from sub-streams, defined by each
color set C ∈ B, the reservoir-sampling technique that would be more appropriate
is to sample in the timestamp window. Recall that in the timestamp model, each
edge from the stream has an additional parameter, a timestamp of its arrival time,
i.e., the stream consists of pairs σi = (ei, ti) which means that edge ei arrives at time
ti. In this model the active window is defined using a time bound T , and denoted
by W T , indicating that edges arriving in the last T time units are active, and older
edges should be ignored, as they are considered obsolete. Namely, at time t the active
window is defined as W T

t = {σi = (ei, ti) |ti ≥ t− T}. We will use the timestamp
reservoir-sampling algorithm of [BOZ09]. Specifically, their algorithm adapted to the
graph-streaming model can be stated as follows.

Theorem 3.27. [BOZ09, Theorem 3.9] There exist an algorithm, denoted by ARS, that
maintains a random sampled edge over the active window in the timestamp-based model,
with space O(log n logN), where N is a bound on the number of active edges and n is
the number of vertices in the streamed graph.

We now show how to implement a sampling according to the distribution SampleG (b, 1)
in the (non-timestamp) sliding-window model.

Lemma 3.28. Algorithm 2 samples a subgraph, in the sliding-window model, according
to SampleG (b, 1) using O(b2 log2 n) space.

Proof. Let ARS be the timestamp reservoir-sampling algorithm due to [BOZ09], with
time bound T = w. For every C ∈ B instance AC of algorithm ARS sees only the sub-
stream SC defined on edges ei colored by C. Since AC maintains a random sampled
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Algorithm 2 Sliding-Window Algorithm for Sampling according to Sample (b, 1)

Input: A graph G = (V,E) in a streaming fashion, w for the size of a window and b
for the number of colors.

Initialization: Choose uniformly at random a coloring c : V → [b] from a family of
pairwise independent hash functions.

Update Procedure: For each C ∈ B maintain an instance AC (with time bound
T = w) of algorithm ARS only on the sub-stream consisting of edges of color C,
keeping the current sampled edge in EC (if there are no active edges colored C in
the last w items from stream define EC = ∅).

Query Procedure: Report the graph G′ = (V,E ′) where E ′ = ⋃
C∈B

EC .

edge over the active window in the timestamp model, we deduce that EC is a random
sampled edge over the timestamp window of the stream SC . The edge from EC (in
case it is not empty) is in W T , for T = w, and because the timestamp of each edge is
its index in the original stream S, it is also in the active window W . Therefore, EC
contains a single edge chosen uniformly at random from the set of all C-colored edges
from W , and hence, the subgraph G′ = (V,E ′), with E ′ = ⋃

C∈B EC is indeed sampled
according to SampleG (b, 1) from the graph G defined by the active edges. Observe
that Algorithm 2 maintains |B| instances of ARS, and |B| ≤ b2. The space complexity
of ARS is O(log n logN), where N ≤ w. Recall that w ≤ n2, and thus, the space
complexity of Algorithm 2 is O(b2 log2 n), as required.

Remark 3.29. By running r independent instances of Algorithm 2, we obtain a sampled
graph G′ = (V,E ′) according to SampleG (b, r) in the sliding-window model.

We run O(log k) independent instances of Algorithm 2, with b = 1000k, and,
according to Remark 3.29, we obtain a sampled graph G′ = (V,E ′) according to
SampleG (1000k,O(log k)) in the sliding-window model. Then, when queried (or at
the end of the stream), we calculate a maximum-matching (or a vertex-cover) on G′ us-
ing one of the algorithms mentioned in Remark 3.23. We deduce the following theorem
as a corollary.

Theorem 3.30. There is a randomized sliding-window algorithm that outputs, with
probability at least 1− 1

poly(k) , a maximum-matching with space O(k2 log3 n) and update
time O(k2 log2 n), where k is an upper bound on the maximum-matching size in the
stream.

Remark 3.31. As mentioned above, the same algorithm can be used for computing a
minimum vertex-cover, using the same space and update time.
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4 Sampling in the Frequency-Vector Model
In the streaming model, the input data is given by a stream of items in arbitrary order,
which can be read sequentially in only one direction. The objective is to compute, or
estimate, some statistic of the data without storing the entire stream. In the sliding-
window variant, the goal is to compute some statistic of the last w items from the
stream. Thus, the last w items from the stream are referred to as the active items, and
they form the active window, which is denoted by W throughout.

In this section we concentrate on the frequency-vector setting, where the input is
a stream of non-negative updates (increments) to the entries of a vector x ∈ Rn, and
the goal is usually to compute some function of the resulting x, e.g. it’s norm. In
the `p-sampling variant the goal is to sample a coordinate i ∈ [n] proportionally to its
contribution to the `p-norm, i.e., ‖x‖pp =

n∑
i=1
|xi|p. See [CF14] for more information.

We design a sliding-window algorithm for `p-sampling, based on the smooth his-
togram method of Braverman and Ostrovsky [BO07]. It uses two known techniques.
The first one is a sliding-window algorithm for approximating the Fp moment (of the
active window). The second one is an `p-sampling algorithm in the standard (not
sliding-window) streaming model, that will be applied to a suffix of the stream, that
approximates the active window. We start by proving the result for p = 0, and at the
end generalize it to `p-sampling for every 0 ≤ p <∞.

Recall that the support of a vector x ∈ Rn is defined to be supp (x) = {i ∈ [n] |xi 6= 0},
and the `0-norm of x is defined as its support size ‖x‖0 = |supp (x)|. For p > 0, the

`p-norm is defined by ‖x‖p =
(

n∑
i=1
|xi|p

) 1
p

, and the Fp-moment is defined as the p-th

power of the `p-norm, i.e., Fp (x) = ‖x‖pp =
n∑
i=1
|xi|p. For p = 0, the `0-norm distribution,

`0-distribution for short, of a vector x ∈ Rn is the uniform distribution over the non-zero
coordinates of x, i.e., the support of x. For p > 0, the `p-distribution of a vector x ∈ Rn,
is defined by the probability density function f satisfying

∀i ∈ [n] , f (i) = |xi|
p

‖x‖pp
.

Let S = ((i1, a1) , (i2, a2) , · · · , (im, am)) be a stream, where ij ∈ [n] and aj ∈ R
for every j ∈ [m]. The frequency-vector x ∈ Rn of the stream S is defined for every
i ∈ [n] to be xi = ∑

ij=i
aj. In the sliding-window model, with window size w, we are

only interested in the last w updates from the stream, i.e., the frequency-vector x is
defined for every i ∈ [n] to be xi = ∑

j>m−w:ij=i
aj. Throughout, we assume that the size

w of the active window is fixed and known in advance, and denote by W the active
window, i.e., the last w updates from the stream seen thus far. For a stream S with
frequency-vector x, we define the Fp moment of S to be Fp (S) = Fp (x). For ease of
exposition, we sometimes also denote by ‖S‖p the `p-norm of x and by supp (S) the
support of x.
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Datar et al. [DGIM02] proved a space lower bound of Ω (w) bits for estimating the
`0-norm when negative increments aj are allowed. Therefore, we restrict the increments
aj to be positive. Moreover, we assume that for some constant R ∈ N, known a priori
(to the algorithm), it holds that 0 < aj ≤ R for every j ∈ [m].

We use the definition of smoothness due to Braverman and Ostrovsky [BO07], see
Remark 3.4. They proved that for 0 < p ≤ 1 the Fp moment is (ε, ε)-smooth, and for
p > 1 the Fp moment is

(
ε, ε

p

pp

)
-smooth. Hence, the space complexity of our sliding-

window algorithm for `p-sampling for p ≤ 1 will not depend on p, while for p > 1 there
will be another factor of εp

pp in the space and update complexity.

4.1 `0-sampling
Braverman and Ostrovsky [BO07] did not mention the `0-norm, although it is also
smooth as per their definition of smoothness. Hence we start by proving that easy fact,
using their notations.

Lemma 4.1. The `0-norm is (ε, ε)-smooth, as per the definition of [BO07].

Proof. Obviously the first three out of four requirements are true for the `0-norm, and
we are only left to prove the fourth requirement. Let ε ∈ (0, 1), let A be a segment
of a stream, B a suffix of A, and let C a disjoint segment of a stream adjacent to
A. We need to show that if (1− ε)L0 (A) ≤ L0 (B) then (1− ε)L0 (AC) ≤ L0 (BC).
Let SA, SB, SC ⊆ [n] be the sets of distinct elements corresponding to the streams
A,B and C, respectively. Hence, L0 (X) = |SX | for each X ∈ {A,B,C}, and note
that L0 (AC) = |SA ∪ SC | , L0 (BC) = |SB ∪ SC | and SB ⊆ SA since B is a suffix
of A. Observe that since SB ⊆ SA it holds that |SB ∩ SC | ≤ |SA ∩ SC |, and so if
(1− ε) |SA| ≤ |SB|, then we obtain the required inequality:

|SB ∪ SC | = |SB|+ |SC | − |SB ∩ SC |
≥ (1− ε) |SA|+ |SC | − |SA ∩ SC |
≥ (1− ε) (|SA|+ |SC | − |SA ∩ SC |)
= (1− ε) |SA ∪ SC | .

For a distribution D over a set S we denote by D (s), for s ∈ S, the probability
of outcome s, i.e., D (s) = Pr

R∼D
[R = s]. Note that the probability of outcome s /∈ S

is Pr
R∼D

[R = s] = 0. For a vector x ∈ Rn and an accuracy parameter ε > 0 we say
that a distribution D is (1 + ε)-uniform over the support of x if its probability density
function f satisfies

∀i ∈ supp (x) , f (i) ∈ 1± ε
‖x‖0

,

and the probability of outcomes not in supp (x) is zero.
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Definition 4.2. We say that S is an `0-sampling algorithm with parameters ε, δ ∈ [0, 1],
if on an input stream S with frequency-vector x ∈ Rn, its output X is within total
variation distance δ of a (1 + ε)-uniform distribution over the support of x.

Recall that a random variable Z is said to be an (ε, δ)-approximation of z ∈ R if

Pr [(1− ε) z ≤ Z ≤ (1 + ε) z] ≥ 1− δ.

Definition 4.3. We say that L is an `0-norm estimation algorithm with parameters
ε, δ ∈ [0, 1], if on an input stream S with frequency-vector x ∈ Rn, its output X is an
(ε, δ)-approximation of ‖x‖0.

Remark. Usually, in the context of probabilistic algorithms we think of ε as a small
constant and δ as an inverse polynomial in n.

Theorem 4.4. Suppose there are an `0-sampling algorithm S with parameters ε1, δ1,
having space bound s1 (ε1, δ1, n), and an `0-norm estimation algorithm L with parame-
ters ε2, δ2, having space bound s2 (ε2, δ2, n). Then there is an algorithm for `0-sampling
in the sliding-window model with space bound

O( 1
ε2

logw
(
s1 (ε1, δ1, n) + s2

(
ε2
2 ,

δ2ε2
2w logw , n

)
+ logw

)
).

The algorithm’s output X ∈ [n] is within total variation distance δ1+δ2+3ε2 (1 + δ1 ‖W‖0)
of a (1 + (ε1 + ε2))-uniform distribution over supp (W ).

Remark. The algorithm’s output actual distribution is over the set [n]∪{⊥}, since with
probability δ1 it could return the symbol ⊥, meaning “failure”. Nevertheless, we state
the algorithm’s output as X ∈ [n], because the algorithm can change the outcome ⊥
to some predetermined (or uniform) index in [n].

To prove Theorem 4.4 we use Claim 1.15 to assume without loss of generality that
the length of the entire stream is bounded by 2w.

Proof. Let S be an `0-sampling algorithm with parameters ε1 and δ1, and let L be
an `0-norm algorithm with parameters ε2

2 and δ2ε2
2w logw . For k = O

(
1
ε2

logw
)
, our algo-

rithm maintains k instances of algorithm S and k instances of algorithm L, denoted by
S1, . . . , Sk and L1, . . . , Lk, respectively. Each pair of instances Si, Li will correspond
to a suffix Bi of the stream, called a “bucket”. These buckets will satisfy the invariant
B1 ⊇ W ) B2 ) B3 ) · · · ) Bk, where W is the active window, i.e., the w last items
from the stream. Denote by ‖Bi‖0 the `0-norm of the frequency-vector of the bucket Bi

and by Li (Bi) the approximation to the `0-norm of the frequency-vector of the bucket
Bi given by the instance Li, then Pr

[
Li (Bi) /∈

(
1± ε2

2

)
‖Bi‖0

]
< δ2ε2

2w logw . In order to
use only a small amount of space, whenever two nonadjacent instances will correspond
to a suffix of the stream that define a vector of almost the same `0-norm we will delete
all instances between them. In each step of receiving a new item from the stream, the
algorithm updates the instances of S and L in the following way.
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Algorithm 3 Update and query procedure
Update Procedure: Given the next item (l, a) from the stream, update the current

instances S1, · · · , Sk and L1, · · · , Lk, as follows:

1. Initialize new instances Sk+1 and Lk+1 and start running them on the given
item (l, a), i.e., the instances Sk+1 and Lk+1 correspond to the bucket Bk+1,
which is a suffix of the stream starting at the item (l, a).

2. For each 1 ≤ i ≤ k, update Si and Li using the new item (l, a).
3. For i = 1, · · · , k − 2 do:

(a) Find the largest j > i such that Lj (Bj) >
(
1− ε2

2

)
Li (Bi).

(b) For every i < t < j delete instances St and Lt, and renumber the
remaining instances accordingly.

4. If B2 contains the active window W , delete both instances S1 and L1, and
renumber the instances.

Query Procedure: Output a sample according to S1, denoted by X.

Since the maximum `0-norm of any vector defined by the last w updates is bounded
by w, and Li+2 (Bi+2) ≤

(
1− ε2

2

)
Li (Bi) for every 1 ≤ i ≤ k − 2 (as the “unnecessary”

instances were deleted in the process of updating), it follows that the number of in-
stances are bounded by O( 1

ε2
logw). Hence, the number of times any instance of L is

invoked is at most O( 1
ε2

logw) ·m, where m is the length of the entire stream, which we
assumed to be bounded by 2w. Since we set the failure probability to be δ2ε2

2w logw then
by union bound the probability that any invocation of any instance of L fails is δ2, i.e.,
with probability 1 − δ2 every instance of L succeeds every time it is invoked. If some
instance of L fails we say it is a failure of our algorithm, and so from now on we assume
that every instance of L succeeds every time it is invoked. Note that we acquire here
an additional probability of δ2 for the event that the algorithm could return anything,
including an index i /∈ supp (W ) or “fail”, or output a coordinate i ∈ supp (W ) not
according to the right distribution.

Now, let us explain how to achieve O( 1
ε2

logw (s1 + s2 + logw)) space complexity,
where s1 = s1 (ε1, δ1, n) and s2 = s2

(
ε2
2 ,

δ2ε2
2w logw , n

)
. Additional to the space required by

both instances Si and Li, we need to store a counter ci for every bucket Bi, indicating its
initialization time (initialized to ci = 1 and incremented each time a new item arrives),
such that we can preform the last step of the algorithm, by comparing the counter for
the bucket B2 to the number w (which is the size of the active window W ). This way,
for each bucket Bi we store s1 +s2 +logw bits. As we have seen previously, the number
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of instances of Si and Li are bounded by O( 1
ε2

logw). Therefore, the total number of
bits used by the algorithm is O( 1

ε2
logw (s1 + s2 + logw)), as claimed.

Denote by |Bi| the length of the bucket Bi, and note that if buckets Bi and Bi+1
start at consecutive points in time, i.e., there were no (deleted) buckets between them,
then |Bi| = |Bi+1| + 1. The approximation ratio follows from the next claim, which
states that if Bi and Bi+1 are not consecutive suffixes of the stream, then at the end of
the stream ‖Bi+1‖0 and ‖Bi‖0 are close.
Claim. For every i < k we have either |Bi| = |Bi+1|+ 1 or ‖Bi+1‖0 > (1− ε2) ‖Bi‖0 (or
both).

Proof. Assume |Bi| 6= |Bi+1| + 1, which means that at some time t the algorithm has
deleted the instances of some bucket B between Bi and Bj, for j = i+ 1. Denote by Bt

i

the stream Bi at time t, i.e., Bt
i is the part of the stream that started at the initialization

of instance Li and ended when item t has arrived. Because bucket B was deleted at
time t we know that Bt

i ( Bt ( Bt
j at time t and of course Lj

(
Bt
j

)
>
(
1− ε2

2

)
Li (Bt

i),
as bucket B was deleted , thus

(1− ε2)
∥∥∥Bt

i

∥∥∥
0
≤
(

1− ε2

2

) 1− ε2
4

1 + ε2
4

∥∥∥Bt
i

∥∥∥
0
≤

1− ε2
2

1 + ε2
4
Li
(
Bt
i

)
<

1
1 + ε2

4
Lj
(
Bt
j

)
≤
∥∥∥Bt

j

∥∥∥
0
.

Because the `0-norm is (ε, ε)-smooth we deduce that
∥∥∥BT

j

∥∥∥
0
> (1− ε2)

∥∥∥BT
i

∥∥∥
0
at any

time T after time t, and in particular for T = m we obtain ‖Bi+1‖0 > (1− ε2) ‖Bi‖0,
as required.

Lastly, either B1 = W or B2 ( W ( B1. Recall that X is the sampled coordinate
outputted by the instance S1. If B1 = W thenX is just a sample according to algorithm
S From the stream W , which means that with probability 1 − δ1 the instance S1 will
not fail, and output a coordinate X ∈ supp (W ) according to the required distribution,
i.e., for every i ∈ supp (W ) it holds that

Pr [X = i] = (1± ε1) 1
‖W‖0

± δ1.

Otherwise, if |B1| 6= |B2|+1, then using the above claim ‖B2‖0 > (1− ε2) ‖B1‖0, hence

‖B1‖0 ≥ ‖W‖0 ≥ ‖B2‖0 ≥ (1− ε2) ‖B1‖0 ≥ (1− ε2) ‖W‖0 .

Now, X is a sample, according to algorithm S, from the stream B1, thus with probability
1− δ1 the instance S1 will not fail, and in that case, for every i ∈ supp (B1) we have

Pr [X = i] ≤ (1 + ε1) 1
‖B1‖0

+ δ1 ≤ (1 + ε1) 1
‖W‖0

+ δ1

and also

Pr [X = i] ≥ (1− ε1) 1
‖B1‖0

− δ1 ≥ (1− ε1) (1− ε2)
‖W‖0

− δ1 ≥ (1− (ε1 + ε2)) 1
‖W‖0

− δ1
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which means that for every i ∈ supp (B1) we have Pr [X = i] = (1± (ε1 + ε2)) 1
‖W‖0
±δ1.

Let bad = supp (B1) \ supp (W ) denote the set of indices that correspond to coor-
dinates that are 0 in the window W but not 0 in the suffix B1. We consider as a bad
event the case where the instance S1 outputs items i ∈ bad, as we are only interested
in coordinates which are not zero in the frequency-vector of the active window, hence
we want to bound the probability of that event. Note that W ⊆ B1, thus

|bad| = ‖B1‖0 − ‖W‖0 ≤ ‖B1‖0 − (1− ε2) ‖B1‖0 = ε2 ‖B1‖0 .

Therefore, the probability that instance S1 will output a “bad” index is

Pr [X ∈ bad] =
∑
i∈bad

Pr [X = i] ≤ |bad|
(

(1 + ε1) 1
‖B1‖0

+ δ1

)

≤ (1 + ε1) ε2 ‖B1‖0
‖B1‖0

+ ε2δ1 ‖B1‖0 .

≤2ε2 + ε2δ1 ‖W‖0 (1 + 2ε2) ≤ 3ε2 (1 + δ1 ‖W‖0)

Overall, we proved that the algorithm outputs a coordinate i ∈ supp (W ) with
probability 1±(ε1+ε2)

‖W‖0
± δ1, with probability at most δ1 it fails and returns “fail”, with

probability at most 3ε2 (1 + δ1 ‖W‖0) it could return an index i /∈ supp (W ) and with
probability at most δ2 it could return anything, including an index i /∈ supp (W ) or
“fail”, or output a coordinate i ∈ supp (W ) not according to the right distribution.

Although there are good constructions for `0-sampler algorithms in the turnstile
streaming model, e.g. Cormode and Firmani [CF14], for the sliding-window model it is
enough to use an `0-sampler algorithm for insertion-only streams, as we restricted the
update values to be positive. Hence, using a theorem of Indyk [Ind99] we can achieve
better storage complexity, and also obtain an algorithm having (1 + ε)-uniform output
distribution.

Corollary 4.5. For every ε ∈ (0, 1) and every n ∈ N there is an `0-sampling algorithm
S for the insertion-only streaming model with parameters ε and δ = 0, i.e., on an input
stream D with frequency-vector x, its output X has a (1 + ε)-uniform distribution over
the support of x. Algorithm S has space bound O(log 1

ε
· log n

ε
).

To prove Corollary 4.5 we need the following definition of a minwise-independent
family of hash functions and a theorem of Indyk that reduces such a family to con-
structing an l-wise independent family of hash functions, for a carefully chosen l.

Definition 4.6. A family of functionsH = {h : [n]→ [n]} is called (ε, s)-minwise independent
if for every X ⊆ [n] of size at most s and every x ∈ [n] \X,

Pr
h∈H

[h (x) < min h (X)] = 1± ε
|X|+ 1 ,

where Pr
h∈H

denotes the probability space obtained by choosing h uniformly at random
from H.
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Theorem 4.7. [Ind99, Theorem 1.1] There exist constants c, c′ > 1 such that for every
ε > 0 and s ≤ εn

c
every l-wise independent family of functions, for l = c′ log 1

ε
, is

(ε, s)-minwise independent.

Proof of Corollary 4.5. Let c, c′ > 1 be the constants from Theorem 4.7. Given an
accuracy parameters ε > 0 and a dimension n ∈ N for the underlying vector, define
n′ = cn

ε
and l = c′ log 1

ε
. Before seeing the stream, initialize j = 0, y = 0, and pick a

hash function h : [n′]→ [n′] uniformly at random from a family H of l-wise independent
hash functions. In the update procedure, upon seeing an increment a to coordinate i
of the frequency-vector x ∈ Rn, do:

1. if h (i) < h (j) then

(a) j ← i and y = a

2. else if h (i) = h (j) then

(a) y ← y + a

3. else do nothing

Basically, the algorithm maintains, on the items seen thus far from the stream, the
coordinate j that is minimal according to the hash function h, as well as the value of
the frequency-vector x in that coordinate. At the end of the stream, the algorithm
report j, and the value y for xj. Since ‖x‖0 ≤ n = εn′

c
, as the items in the stream are

from [n] but the domain of h is [n′], Theorem 4.7 implies that for every j ∈ supp (x),

Pr
h∈H

[h (j) < min h (supp (x) \ {j})] = 1± ε
‖x‖0

.

Therefore, the minimum, over the items in the stream, of the hash function h is (1 + ε)-
approximate uniform coordinate from the support of x, as required. For the storage
requirement, recall that there is a familyH of l-wise independent hash functions, namely
the polynomials of degree l over a finite field of O(n′) elements, such that every function
h : [n′]→ [n′] from H could be stored in memory using O(l · log (n′)) = O(log 1

ε
· log n

ε
)

bits.

After a long line of research Kane et al. [KNW10] presented an optimal algorithm
for `0-norm estimation (in the standard streaming model), which computes a 1 ± ε
approximation with constant probability and space bound O(ε−2+log n). To obtain low
failure probability δ it is standard to compute a median of log δ−1 parallel repetitions.
However, recently, Błasiok [Bł18] showed how to avoid such a multiplicative space
blow-up of log 1

δ
, and presented an (ε, δ)-approximation algorithm with space bound

O(ε−2 log δ−1 + log n).
Finally, using Corollary 4.5 and the algorithm of Błasiok [Bł18] we obtain as a

corollary the next theorem for the sliding-window model.
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Corollary 4.8 (Restatement of Theorem 1.14). For every ε, δ ∈ (0, 1) there is an
algorithm for `0-sampling in the sliding-window model with space bound

O(1
ε

logw
(
log 1

ε
· log n

ε
+ 1

ε2 log w logw
δε

+ log n
)
) = O( 1

ε3 log n log2 w log 1
δε

).

The algorithm’s output X ∈ [n] is within total variation distance δ + 3ε of a (1 + ε)-
uniform distribution over supp (W ).

Proof. For 0 < ε, δ < 1 set ε1 = ε2 = 1
2ε and δ2 = δ. Let S be the `0-sampling

algorithm for the insertion-only streaming model from Corollary 4.5, instantiated with
parameters ε1 and δ1 = 0 (failure probability), and with space complexity s1 (ε1, δ1, n) =
O(log ε−1

1 · log
(
nε−1

1

)
). Let L be the `0-norm estimation algorithm of Błasiok [Bł18],

instantiated with the parameters ε2 and δ2, which has space complexity s2 (ε2, δ2, n) =
O(ε−2

2 log δ−1
2 +log n). Using Theorem 4.4, pluging-in s1 and s2, we obtain an algorithm

for `0-sampling in the sliding-window model with space bound

O(1
ε

logw
(
log 1

ε
· log n

ε
+ 1

ε2 log w logw
δε

+ log n
)
).

Observe that the space complexity is upper bounded by O( 1
ε3 log n log2 w log 1

δε
). The al-

gorithm outputs a coordinate i ∈ supp (W ) with probability 1±(ε1+ε2)
‖W‖0

±δ1 = 1±ε
‖W‖0

. There
is δ1 = 0 probability to return “fail”, and with probability at most 3ε2 (1 + δ1 ‖W‖0) +
δ2 = 3ε+ δ2 it could return any index from [n], including an index i /∈ supp (W ).

4.2 `p-sampling, for p > 0
Moving to the general case, for 0 < p <∞, we will need the following general definition
for an Fp-moment estimation algorithm. From now on, let p ∈ R be a positive constant.

Definition 4.9. We say that F is an Fp-moment estimation algorithm with parameters
ε, δ ∈ [0, 1], if on an input stream S with frequency-vector x ∈ Rn, its output X is an
(ε, δ)-approximation of Fp (x) = ‖x‖pp.

Similarly to a (1 + ε)-uniform distribution, we define a (1 + ε)-approximate `p-norm
distribution, or (1 + ε)-`p-distribution for short, as follows. For a vector x ∈ Rn and an
accuracy parameter ε > 0 we say that a distribution D over [n] is a (1 + ε)-approximate
`p-norm distribution of the vector x if its probability density function f satisfies

∀i ∈ [n] , f (i) ∈ (1± ε) |xi|
p

‖x‖pp
.

Definition 4.10. We say that S is an `p-sampling algorithm with parameters ε, δ ∈
[0, 1], if on an input stream S with frequency-vector x ∈ Rn, its output X is within
total variation distance δ of a (1 + ε)-`p-distribution of the vector x.
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For two random variables X and Y we write dTV (X, Y ) to denote their total varia-
tion distance. Moreover, we denote throughout [X > Y ] = {i ∈ [n] : Pr [X = i] > Pr [Y = i]},
where X and Y take values only in the set [n]. We use extensively the following equiva-
lent more convenient definition for the total variation distance given in [LP17, Remark
4.3].
Claim 4.11. [LP17, Remark 4.3] Let X and Y be two random variables over the set [n].
Then,

dTV (X, Y ) =
∑

i∈[X>Y ]
Pr [X = i]− Pr [Y = i] .

For two vectors x, y ∈ Rn we write y ≤ x if yi ≤ xi for every i ∈ [n]. Before stating
and proving the main theorem of this section we will need two simple lemmas bounding
the total variation distance of similar distributions.

Lemma 4.12. Let x ∈ Rn be a vector such that 0 ≤ x. Let X be a random variable with
an `p-distribution of x, and let X̃ be a random variable with a (1 + ε)-`p-distribution of
x. Then dTV

(
X, X̃

)
≤ ε.

Proof. Observe that

dTV
(
X, X̃

)
=

∑
i∈[X̃>X]

Pr
[
X̃ = i

]
−Pr [X = i] ≤

∑
i∈[X̃>X]

(1 + ε)xpi
‖x‖pp

− xpi
‖x‖pp

= ε

‖x‖pp

∑
i∈[X̃>X]

xpi ≤ ε.

Lemma 4.13. Let x, y ∈ Rn be vectors such that 0 ≤ y ≤ x and ‖x‖pp ≤ (1 + ε) ‖y‖pp.
Let X be a random variable with an `p-distribution of x, and let Y be a random variable
with an `p-distribution of y. Then dTV (X, Y ) ≤ ε.

Proof. We know that 1
‖y‖p

p
≤ 1+ε
‖x‖p

p
, and yi ≤ xi for every i ∈ [n], hence

dTV (X, Y ) =
∑

i∈[Y >X]
Pr [Y = i]−Pr [X = i] ≤

∑
i∈[Y >X]

(1 + ε)xpi
‖x‖pp

− xpi
‖x‖pp

= ε

‖x‖pp

∑
i∈[Y >X]

xpi ≤ ε.

Now we can present the algorithm for `p-sampling in the sliding-window model for
0 < p <∞, which is similar to the `0-sampling algorithm presented above.

Theorem 4.14. If there is an `p-sampling algorithm S with space bound s1 (ε1, δ1, n),
and there is an Fp-moment estimation algorithm F with space bound s2 (ε2, δ2, n), then
there is an algorithm for `p-sampling in the sliding-window model, with space bound

O(ε−1
2 logRw

(
s1 (ε1, δ1, n) + s2

(
ε2

2 ,
δ2ε2

Cw logRw, n
)

+ logw
)

), for 0 < p ≤ 1
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and

O(p
p

εp2
logRw

(
s1 (ε1, δ1, n) + s2

(
εp2
2pp ,

δ2ε
p
2

Cppw logRw, n
)

+ logw
)

), for p ≥ 1,

for sufficiently large constant C. The algorithm’s output Xalg ∈ [n] is within total
variation distance δ1 + δ2 + ε1 + ε2 of an `p-distribution of the frequency-vector of the
active window W .

Remark. Furthermore, the algorithm’s output Xalg ∈ [n] is within total variation dis-
tance δ1 + δ2 of a distribution D satisfying

∀i ∈ [n] , D (i) ≥ (1− (ε1 + ε2)) |xi|
p

‖x‖pp
.

Proof. Our algorithm for p > 0 is similar to the algorithm for p = 0, hence we only
explain the needed modifications. For p ≤ 1 let β = ε2 and for p > 1 let β =
εp

2
pp . Let S be an `p-sampling algorithm with parameters ε1 and δ1, and let F be an
Fp-moment estimation algorithm with parameters β

2 and δ2β
Cw logRw , for an appropriate

constant C which will be chosen later. Similarly to the `0-sampling algorithm, our
algorithm maintains k = O (β−1 logRw) instances of algorithm S and k instances of
algorithm F on different buckets.

The update procedure is almost the same as for p = 0, except that we replace the
`0-norm estimation algorithm by the Fp-moment estimation algorithm, and replace ε2

by β in the inequality F j (Bj) >
(
1− β

2

)
F i (Bi) on step 3.a of the sliding window

algorithm for `0-sampling. The query procedure remains unchanged.
In an almost identical way, it can be shown that the number of instances is bounded

by O(β−1 logRw), i.e., for some sufficiently large constant C the number of instances
is bounded by C

2 β
−1 logRw. Thus the different instances of F are invoked at most

Cβ−1w logRw times. Therefore, by a union bound, with probability at most Cw logRw
β

·
δ2β

Cw logRw = δ2, one of those O(β−1w logRw) invocation of algorithm F could return a
wrong answer, in which case our algorithm could return anything.

The space complexity is clearlyO(β−1 logRw (s1 + s2 + logw)), where s1 = s1 (ε1, δ1, n)
and s2 = s2

(
β
2 ,

δ2β
Cw logRw , n

)
, as we use exactly the same arguments as before, only re-

placing ε2 by β.
Using the same proof, we deduce that for every i < k we have either |Bi| = |Bi+1|+1

or ‖Bi+1‖pp > (1− ε2) ‖Bi‖pp (or both). Therefore, if B1 is not exactly the active window
W , then

‖B1‖pp ≥ ‖W‖
p
p ≥ ‖B2‖pp ≥ (1− ε2) ‖B1‖pp ≥ (1− ε2) ‖W‖pp .

Let x ∈ Rn be the frequency-vector of the active window W , and xB1 ∈ Rn be the
frequency-vector of the bucket B1. Recall that the probability that at least one of the
O(β−1w logRw) invocations of F returns a wrong answer is at most δ2. In addition,
the output Xalg of the algorithm is just the output of running S on bucket B1, which
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we know is within total variation distance δ1 of a (1 + ε1)-`p-distribution. Together we
get that dTV

(
Xalg, X̃B1

)
≤ δ1 + δ2, for some random variable X̃B1 that has a (1 + ε1)-

`p-distribution of xB1 . Let XB1 be a random variable with an `p-distribution of xB1 ,
then by Lemma 4.12 dTV

(
X̃B1 , XB1

)
≤ ε1. Lastly, let X be a random variable with an

`p-distribution of x, then according to Lemma 4.13 dTV
(
XB1 , X

)
≤ ε2. Overall, using

the triangle inequality, we deduce the required bound dTV
(
Xalg, X

)
≤ δ1 + δ2 +ε1 +ε2.

Furthermore, up to total variation distance δ1 + δ2 we can obtain a lower bound on
the probability to sample coordinate i ∈ [n]. Recall that X̃B1 is a random variable with
a (1 + ε1)-`p-distribution of the vector xB1 , and that dTV

(
Xalg, X̃B1

)
≤ δ1 + δ2. Notice

that x ≤ xB1 , since B1 contains the active window W , and that 1
‖xB1‖p

p

≥ 1−ε2
‖x‖p

p
, thus

Pr
[
X̃B1 = i

]
≥ (1− ε1)

∣∣∣xB1
i

∣∣∣p
‖xB1‖pp

≥ (1− ε1) (1− ε2) |xi|p

‖x‖pp
≥ (1− (ε1 + ε2)) |xi|

p

‖x‖pp
.

Kane et al [KNPW11] presented an Fp-moment estimation algorithm with space
bound O(ε−2 log n log δ−1) for p ∈ (0, 2). Recently, Braverman et al [BCI+17] showed
that for streams with only positive increments the F2-moment can be (ε, δ)-approximated
using only O(ε−2 log δ−1) bits of space. Their result, for the insertion-only variant, im-
proved the celebrated result of Alon, Matias and Szegedy [AMS96], for the general
turnstile variant.

Recently, Jayaram and Woodruff [JW18] showed an `p-sampling algorithm for every
0 < p ≤ 2 with accuracy parameter ε = 0, which means their algorithm’s outputX ∈ [n]
is within total variation distance δ of an `p-distribution of the frequency-vector. Their
algorithm’s space bound is O(log2 n log δ−1) for 0 < p < 2 and O(log3 n log2 δ−1) for
p = 2.

Plugging these bounds into Theorem 4.14 we deduce the following corollary for
0 < p ≤ 2.
Corollary 4.15. There is an algorithm for `p-sampling in the sliding-window model
with space bound

O(ε−1 logRw
(
log2 n log δ−1 + ε−2 log n log Rw

δε

)
) = O(ε−3 log2 Rw log2 n log 1

δε
), for 0 < p ≤ 1;

and

O(ppε−p logRw
(
log2 n log δ−1 + p2p

ε2p log n log ppRw
δεp

)
) = O(ε−6 log2 Rw log2 n log 1

δε
), for 1 < p < 2;

and

O(ε−2 logRw
(
log3 n log2 δ−1 + 1

ε4 log Rw
δε2

)
) = O(ε−6 log2 Rw log3 n log2 1

δε
), for p = 2.

The algorithm’s output X ∈ [n] is within total variation distance 2δ + 2ε of an `p-
distribution of the frequency-vector of the active window W .
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