

Thesis for the degree

Doctor of Philosophy

By

Havana Rika

Advisor:
Prof. Robert Krauthgamer

May 2020

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

ידי פאות בגרפים מישוריים: -כיסוי טרמינלים על
 דילול, שיכון ועוד

Terminal Face Cover in Planar Graphs:

Sparsifiers, Embeddings and More

 עבודת גמר)תזה(לתואר

 דוקטור לפילוסופיה

 מאת

 הוואנה ריקה

יוון התש"פס

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

:המנח

 פרופ' רוברט קראוטגמר

Thesis for the degree Doctor of Philosophy

Terminal Face Cover in Planar
Graphs: Sparsifiers, Embeddings

and More

Havana Rika

under the supervision of

Prof. Robert Krauthgamer

May 31, 2020

Those who know, do.
Those that understand, teach.

Aristotle

II

Acknowledgements

I would like to express my deepest gratitude to Robi, for his uncompro-
mised and caring guidance, his endless patience, and his positive attitude
and support. I would also like to thank the wonderful faculty members
and administrative staff, who made Weizmann feel like my second home.
And finally, to my friends and family, I couldn’t go without you all, thank
you!

III

Declaration

I declare that the thesis summarizes my own research. Parts of the research
were performed in collaboration with other researchers, and have already been
published in refereed journals and conferences, as described below. The results
presented in Section 2 are joint work with Robert Krauthgamer, and were
published in SIAM Journal on Discrete Mathematics [KR20]. The results
presented in Section 3 are joint work with Robert Krauthgamer and James R.
Lee, and were published in proceeding of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) [KLR19]. The results presented
in Section 4 are joint work with Lee-Ad Gottlieb and Robert Krauthgamer,
and can be found on the arXiv [GKR20].

IV

Abstract

The important family of planar graphs has been studied extensively, and
the planarity properties are often leveraged algorithmically to achieve better
bounds such as running time or accuracy. Usually these bounds are expressed
as a function of the number of vertices or the edges of the graph, but they can
be refined by the number of ”relevant” faces. More formally, given a planar
graph G with k vertices designated as terminals, let γ be the minimum number
of faces that are incident to all the terminals. The parameter γ represents the
topology of the terminals in G, and it has a long history in the study of cuts
and (multicommodity) flows, shortest paths, and the Steiner tree problem.
Our work presents new results for graph sparsification, graph embeddings and
the flow-cut gap with respect to the parameter γ.

In the (vertex) cut-sparsification problem, we are given a graph G with k
terminals, and we wish to compress it into a graph H (of small size but with
the same terminals) which maintains the value of the minimum cut between
every bipartition of the k terminals. We improve a known upper bound on the
size of H as a function of k, and furthermore refine the bound to depend on
γ. Both bounds are near optimal due to a lower bound by Karpov, Pilipczuk
and Zych-Pawlewicz (2019), and they are achieved using new insights about
the structure of terminal min-cuts (which hold also for general graphs). In
addition, we present a duality between cut sparsifiers and distance sparsifiers
for planar graphs with certain γ.

The flow-cut gap problem is defined as the worst-case ratio between the
multicommodity-flow and the sparsest-cut values in a given G with k terminals
(under arbitrary edge capacities and demands between terminals). We obtain
an exponential improvement to the flow-cut gap as a function of γ; this actually
follows from a stochastic embedding ofG into dominating trees with an optimal
expected distortion. Three powerful tools that are used to prove these bounds
are, the peeling lemma of Lee and Sidiropoulos (2009), the tree-cut operation of
Klein (2006), and a special tree embedding of Sidiropoulos (2010). For vertex-
capacitated graphs, we provide the first bound on the flow-cut gap with respect
to γ, which holds in the more general setting of submodular vertex capacities.

In a separate line of work, we study an important version of the Traveling
Salesman Problem (TSP) called the (rooted) orienteering problem in Euclidean
space: Given n points P in Rd, a root point s ∈ P and a budget B > 0, the
goal is to find a path that starts from s, has total length at most B, and visits
as many points of P as possible. This problem is known to be NP-hard, and we
provide a (1−ε) approximation algorithm, that improves the previous running

time, due to Chen and Har-Peled (2008), by a factor of nO(d
√
d). Our algorithm

reduces the rooted orienteering problem to a multi-path version of k-TSP (a
tour of minimum length that visits at least k points), and approximates each
of these k-TSP paths by a special parameter called excess.

V

Contents

1 Introduction 8

1.1 Cut-Sparsifiers of Planar Graphs . 10

1.2 Refined Flow-Cut Gap in Planar Graphs 11

1.3 Faster Algorithms for Euclidean Orienteering and k-TSP 12

2 Refined Vertex Sparsifiers of Planar Graphs 14

2.1 Opening . 14

2.1.1 Main Results and Techniques 16

2.1.2 Cuts vs. Distances . 17

2.1.3 Related Work . 19

2.1.4 Preliminaries . 20

2.2 Elementary Cutsets in General Graphs 20

2.3 Mimicking Networks for Planar Graphs 23

2.3.1 Proof of Theorem 2.11 . 24

2.4 Mimicking Networks for Planar Graphs with Bounded γ(G) 26

2.4.1 Proof of Theorem 2.15 and Lemma 2.16 28

2.4.2 Proof of Theorem 2.18 . 31

2.4.3 Proof of Theorem 2.20 . 33

2.4.4 Flow Sparsifiers . 37

2.5 Terminal-Cuts Scheme . 38

2.6 Cut-Sparsifier vs. DAM in planar networks 40

2.6.1 Proof of Theorem 2.38 . 40

2.6.2 Proof of Theorem 2.39 . 44

2.6.3 Duality Applications . 47

2.7 Planar Duality . 47

6

3 Flow-Cut Gaps and Face Covers in Planar Graphs 49

3.1 Opening . 49

3.1.1 The Flow-Cut Gap . 50

3.1.2 The Vertex-Capacitated Flow-Cut Gap 51

3.1.3 Stochastic Embeddings . 52

3.2 Approximation by random trees . 53

3.2.1 Random partitions, embeddings, and peeling 54

3.2.2 Approximation by OS-instances 56

3.2.3 From OS-instances to random trees 60

3.3 Polymatroid flow-cut gaps . 61

3.3.1 Embeddings into thin trees . 62

4 Faster Algorithms for Orienteering and k-TSP 64

4.1 Opening . 64

4.1.1 Our Results . 65

4.1.2 Related Work . 66

4.1.3 Preliminaries . 66

4.2 A δ-excess-approximation algorithm for rooted (m, k)-TSP 67

4.2.1 Algorithm for rooted k-TSP 68

4.2.2 Algorithm for rooted (m, k)-TSP 72

4.3 A PTAS for Orienteering . 77

4.4 Appendix . 78

7

1 Introduction

The important family of planar graphs has been studied extensively, and the pla-
narity properties are often leveraged algorithmically to achieve better bounds such
as running time or accuracy. Usually these bounds are expressed as a function of the
number of vertices or the edges of the graph, but they can be refined by the number
of ”relevant” faces. More formally, given a planar graph G with a fixed drawing and
k vertices designated as terminals, let the terminal face cover, denoted by γ, be the
minimum number of faces that are incident to all the terminals. The parameter γ
represents the topology of the terminals in G, and it has a long history in the study
of cuts and (multicommodity) flows [OS81, MNS85, CW04, CSW13, Fil20], shortest
paths [Fre95, CX00], and the Steiner tree problem [EMV87, Ber90, KNvL19]. Our
work presents new results in the fields of graph compression, graph embeddings and
the flow-cut gap with respect to the parameter γ.

Graph compression is motivated by massively big graphs, such as social networks,
communication networks and roadmaps, that one wishes to store and communicate
more efficiently. There are 3 main paradigms of compression. The first one is to com-
press the input graph into a small number of bits, i.e., to find a succinct representation
of the input graph. Itai and Rodeh [IR82] introduced and study this problem; their
results were extended and improved by Turan [Tur84] and by Naor [Nao90], who
found the optimal number of bits for representing a planar labeled and unlabeled
graphs (another notion of compression can be found in [FM95]). Later on, Benczúr
and Karger [Kar93, BK96] defined and studied the edge-sparsification paradigm,
where the input graph G is being compressed into a smaller graph H with the same
vertex set but sparse, i.e. with fewer edges, that maintains certain features (quanti-
ties) of G, like distances, cuts, or connectivity. This paradigm has led to important
notions, from spanners [PU89] to cut and spectral sparsifiers [BK96, ST11]. The
third paradigm is vertex-sparsification, which assumes that we are interested only in
a small portion of the vertex set of G. Given G and k terminals, we aim to com-
press it by producing a graph H that contains the same terminals but with fewer
non-terminal vertices, and maintains (exactly or approximately) some features of the
terminals in G. The main advantage of edge and vertex sparsification, is that once
the compressed graph H is computed in a preprocessing step, further processing (via
classic graph algorithms) can be performed on H instead of on G, using less resources
like running time and memory, or achieving better accuracy when the solution is ap-
proximate. Our work studies the (vertex) cut-sparsification problem for general and
planar graphs, which asks to minimize the size of H while maintaining the minimum
cut value between every two subsets of the terminals in G. See Section 1.1 for further
discussion and results.

The flow-cut gap expresses the relationship between flows and cuts in a given graph.

8

A spacial case is the well-known max-flow min-cut (single commodity) theorem by
Ford and Fulkerson [FF56], which states that in every weighted graph with fixed
source s and sink t, the maximum amount of flow from s to t equals the total weight
of edges in a minimum (s, t)-cut, i.e. the smallest total weight of the edges whose
removal disconnects s from t. This theorem can be proved by the duality of linear
programs, where the max-flow and the min-cut problems are formulated as a primal-
dual pair of linear programs. A more general case is the multicommodity-flow and
the sparsest-cut problems, where the input consists of a weighted graph G with
k source-sink pairs (si, ti) and their corresponding demands di. The objective in
the multicommodity-flow problem is to maximize the fraction α such that all the k
demands α · di can be routed simultaneously in the graph (without exceeding edge
capacities). In the sparsest-cut problem, the objective is to find a cut with minimum
sparsity, defined as the ratio between the total capacity of edges in the cut, and
the total demand separated by this cut. It is known that the sparsest-cut upper
bounds the multicommodity-flow in every input, but (unlike the single commodity
case) equality is not always achieved. Thus, the flow-cut gap is defined to be the
ratio between these two quantities, i.e. the sparsest-cut and the multicommodity-flow
on a given input. The main motivation for bounding the gap is to approximate the
sparsest-cut problem, which is known to be NP-hard, by solving the multicommodity-
flow problem (and the approximation factor is the flow-cut gap). The gap can also
be motivated by its equivalence to the stretch in an `1 embeddings [AR98, LLR95,
GNRS04], since bounding the gap immediately implies new embedding results. Our
work studies the (multicommodity) flow-cut gap in planar graphs, which involves
new optimal results about tree embedding. See Section 1.2 for further discussion
and results.

A separate line of our work deals with the Traveling Salesman Problem (TSP), which
is a fundamental problem in combinatorial optimization, computer science and op-
erations research. In this problem, the input is a list of cities (aka sites) and their
pairwise distances, and the goal is to find a (closed) tour of minimum length that
visits all the sites. This problem is a prototype for planning routes in almost any
context, from logistics to manufacturing, and is therefore studied extensively. In its
full generality, TSP is known to be NP-hard to solve and even to approximate, but
if we restrict ourselves to inputs where the distances satisfy triangle inequality, i.e.,
consider metric or Euclidean TSP, then the problem remains NP-hard, but it is no
longer hard to approximate (up to a certain constant factor) [GGJ76, Pap77, Tre00].
The Euclidean TSP is a special case of a metric TSP, in which the points (cities) lie
in a d-dimensional Euclidean space Rd, and the distance between every two points x
and y is defined to be the Euclidean distance between them, i.e. (

∑d
i=1(xi− yi)2)1/2.

For d = 2 Arora [Aro98] and Mitchell [Mit99] presented a polynomial time approxi-
mation scheme (PTAS) based on dynamic programming that finds a tour of length
(1 + ε)OPT, where OPT stands for the length of the shortest tour. Arora’s al-

9

gorithm can also be extended to the more general case of d > 2. One important
variant of TSP, out of many others, is the orienteering problem, which asks to max-
imize the number of sites visited when the tour length is constrained by a given
budget. This problem models scenarios where the “salesman” has limited resources,
such as gasoline, time or battery-life. Clearly, this problem is NP-hard, but it can be
approximated up to some constant factor [BCK+07, CH08]. Our work presents an
approximation algorithm for the orienteering problem in the Euclidean space. See
Section 1.3 for further discussion and results.

1.1 Cut-Sparsifiers of Planar Graphs

Let us define the notion of (vertex) cut-sparsification, and discuss state of the art
results for it. Given a (large) undirected graph G with k terminal vertices T and edge
costs c : E → R+, let mincutG(S) be the value of the minimum cut between S ⊂ T
and S̄ = T \ S in G, i.e. the minimum total weight of edges whose removal from G
disconnects every terminal in S from every terminal in S̄. A (q, s)-cut sparsifier of
G is a graph H with the same k terminals, where the size (number of vertices) of H
is at most s and its quality is at most q, i.e.

∀S ⊂ T, mincutG(S) ≤ mincutH(S) ≤ q ·mincutG(S).

Clearly, there is a tradeoff between the quality q ≥ 1 and the size s ≥ k of cut-
sparsifiers, but most of the work that has been done so far addresses two extreme
cases as follows. The first case is when we restrict attention to s = k, i.e. the
vertices of the sparsifier H are only the terminals. In that case, we wish to min-
imize the quality q, and it is known that Ω(

√
log k

log log k
) ≤ q ≤ O(log k

log log k
) for general

graphs [CLLM10, EGK+14, MM16], and q = O(1) for planar graphs [EGK+14].
The second case is when we restrict attention to quality q = 1, i.e. the sparsifier
preserves all the terminal min-cuts (minimum cuts that separate terminals) exactly,
which is known in the literature as a mimicking network (introduced by [HKNR98]).
In this case we wish to minimize the size s, and it is known that 2Ω(k) ≤ s ≤ 22k for
general graphs [HKNR98, KR13, KR14], and that 2Ω(k) ≤ s ≤ O(k222k) for planar
graphs [KR13, KPZ19].

We improve and refine the upper bound for planar graphs by developing two meth-
ods that decompose the terminal min-cuts into “more basic” subsets of edges. Our
first decomposition method identifies (in every graph G, even non-planar) a sub-
set of terminal min-cuts, which we call elementary, that generates all the others.
Consequently, H is a cut-sparsifier of G if all the elementary terminal min-cuts in
G are well-approximated by those in H (see Theorem 2.9 and Corollary 2.10). By
restricting our analysis to elementary terminal min-cuts, we manage to improve our
pervious bound from [KR13] by a factor of k, and prove that every planar G with

10

k terminals admits a mimicking network of size O(k22k) which is also a minor of G,
and is near optimal by [KPZ19] (see Theorem 2.11 and Corollary 2.12).

We then refine the known bounds in terms of γ, and prove that every planar G with
k terminals has at most O((2k/γ)2γ) elementary terminal min-cuts (compared to
O(2k) terminal cuts, see Theorem 2.18), and it admits a mimicking network of size
O(γ22γk4) which is also a minor of G (see Corollary 2.21); which is near optimal with
respect to γ by [KPZ19]. Our proof uses the special γ faces to further decompose
the elementary terminal min-cuts of G into disjoint sets of edges, and then bounds
the number of these sets by O(2γk2) (see Theorem 2.20).

For the special case of γ = 1, which was famously studied by Okamura and Sey-
mour [OS81], we prove a duality between cut sparsification and distance sparsifi-
cation when the sparsifier H is required to be a minor of G (see Theorems 2.38
and 2.39). This duality connects problems that were previously studied separately,
implying new results, new proofs of known results, and equivalences between open
gaps. In addition, we prove that such G admits a mimicking network of size O(k4)
which is also minor of G; independently it was shown that such G also admits a
mimicking network of size O(k2) which is planar but is not a minor of G [GHP17].

For further details and proofs, see Section 2, which essentially replicates our published
paper [KR20].

1.2 Refined Flow-Cut Gap in Planar Graphs

We also study how the terminal face cover γ affects the flow-cut gap defined as follows.
Given an undirected graph G with k terminals and edge costs c : E(G) → R+, the
flow-cut gap, denoted by gap(G), equals to the ratio between the sparsest-cut and the
maximum concurrent multicommodity-flow quantities on G. For general graphs G it
is known that gap(G) = Θ(log k) [AR98, LLR95], but when topological restrictions
are placed on G, the gap is not settled yet. In particular, it has been conjectured
that gap(G) = O(1) [GNRS04] for planar G, while the known bounds place the
(worst-case) gap somewhere between 2 [LR10] and O(

√
log k) [Rao99].

For the special case where G can be drawn in the plane with all its terminals on the
same face, i.e. γ = 1, Okamura and Seymour proved that gap(G) = 1 [OS81]. This
setting can be generalized by considering planar graphs with terminal face cover
γ > 1. The methods of Lee and Sidiropoulos [LS09] show that gap(G) ≤ 2O(γ),
and the state of the art bound is gap(G) ≤ 3γ [CSW13]. We significantly improve
this by establishing that gap(G) ≤ O(log γ) (see Theorem 3.3). This is achieved by
showing that the edge-weighted shortest-path metric induced on the terminals admits
a stochastic embedding into dominating trees with terminal distortion O(log γ) (see
Theorem 3.5), which is tight by [GNRS04].

11

The preceding results refer to the setting of edge-capacitated graphs. For vertex-
capacitated G it can be significantly more challenging to control flow-cut gaps. While
there is no exact vertex-capacitated version of the Okamura-Seymour Theorem, an
approximate version holds, and the vertex-capacitated flow-cut gap is O(1) on planar
G with γ = 1 [LMM15]. We study the more general case of γ > 1, and bound the
vertex-capacitated flow-cut gap by O(γ) (it in fact holds also for submodular vertex
capacities).

For further details and proofs, see Section 3, which essentially replicates our published
paper [KLR19].

1.3 Faster Algorithms for Euclidean Orienteering and k-TSP

In a separate line of work (not related to the terminal face cover), we study an
important version of the Traveling Salesman Problem (TSP) called the (rooted) ori-
enteering problem in Euclidean space, which asks to maximize the number of sites
visited when the tour length is constrained by a given budget. More formally, given
n points P in Rd, a root point s ∈ P and a budget B > 0, find a path that starts
from s, has total length at most B, and visits as many points of P as possible. This
problem is known to be NP-hard, hence we study (1 − δ)-approximation algorithm
for this problem. A (1−δ)-approximate solution is a path satisfying these constraints
(starts at s and has length at most B) that visits at least (1− δ)kopt points, where
kopt denotes the maximum possible, i.e. the number of points visited by an optimal
path. The known Polynomial-Time Approximation Scheme (PTAS) for this prob-

lem, due to Chen and Har-Peled, runs in time nO(d
√
d/δ)(log n)(d/δ)O(d)

[CH08], and we

improve this time bound to nO(1/δ)(log n)(d/δ)O(d)
(see Theorem 4.1). For fixed δ and

small dimension d, the leading term in their running time is about nO(d
√
d/δ), which

we improve to nO(1/δ). Thanks to this improvement, our algorithm is polynomial
even for a moderately large dimension, roughly up to d = O(log log n) instead of
d = O(1).

The algorithm of Chen and Har-Peled [CH08] reduces the orienteering problem into a
multi-path version of rooted k-TSP (finding a tour of minimum length that visits at
least k points), and thus the heart of their algorithm is a PTAS for the latter, where
the approximation is actually with respect to a parameter called excess, which can
be much smaller than the optimal tour length. This follows an earlier approach of
Blum et al. [BCK+07], who introduced the concept of excess-based approximation,
and designed a reduction to a simpler (single-path version of) k-TSP. However, that
earlier reduction increases the approximation ratio by a constant factor and cannot
yield a PTAS. We improve over the algorithm of Chen and Har-Peled by reducing
the rooted orienteering problem to a more complicated multi-path version that we
call rooted (m, k)-TSP. This problem asks to find m paths that visit k points in total,

12

when the input prescribes the endpoints of all these m paths, and the main challenge
is to solve it fast and with good excess-based approximation (see Theorem 4.3).

For further details and proofs, see Section 4, which essentially replicates our pa-
per [GKR20].

13

2 Refined Vertex Sparsifiers of Planar Graphs

2.1 Opening

A very powerful paradigm when manipulating a huge graph G is to compress it, in
the sense of transforming it into a small graph H (or alternatively, into a succinct
data structure) that maintains certain features (quantities) of G, like distances, cuts,
or flows. The basic idea is that once the compressed graph H is computed in a
preprocessing step, further processing can be performed on H instead of on G, using
less resources like running time and memory, or achieving better accuracy when the
solution is approximate. This paradigm has lead to remarkable successes, such as
faster running time for fundamental problems, and the introduction of important
concepts, from spanners [PU89] to cut and spectral sparsifiers [BK96, ST11]. In
these examples, H is a subgraph of G with the same vertex set but sparse, and is
sometimes called an edge sparsifier. In contrast, we aim to reduce the number of
vertices in G, using so-called vertex sparsifiers.

In the vertex-sparsification scenario, G has k designated vertices called terminals,
and the goal is to construct a small graph H that contains these terminals, and
maintains some of their features inside G, like distances or cuts. Throughout, a
k-terminal network, denoted G = (V,E, T, c), is an undirected graph (V,E) with
edge weights c : E → R+ and terminals set T ⊂ V of size |T | = k. As usual,
a cut is a partition of the vertices, and its cutset is the set of edges that connect
between different parts. Interpreting the edge weights as capacities, the cost of a cut
(W,V \W) is the total weight of the edges in the respective cutset.

We say that a cut (W,V \W) separates a terminals subset S ⊂ T from S̄
def
= T \ S

(or in short that it is S-separating), if all of S is on one side of the cut and S̄ on the
other side, i.e., W ∩T equals either S or S̄. We denote by mincutG(S) the minimum
cost of an S-separating cut in G, where by a consistent tie-breaking mechanism, such
as edge-weights perturbation, we assume throughout that the minimum is attained
by only one cut, which we call the minimum terminal cut (of S).

Definition 2.1. A network H = (VH , EH , T, cH) is a cut sparsifier ofG = (V,E, T, c)
with quality q ≥ 1 and size s ≥ k (or in short, a (q, s)-cut-sparsifier), if its size is
|VH | ≤ s and

∀S ⊂ T, mincutG(S) ≤ mincutH(S) ≤ q ·mincutG(S). (1)

In words, (1) requires that every minimum terminal cut in H approximates the
corresponding one in G. Throughout, we consider only S 6= ∅, T although for brevity
we will not write it explicitly.

14

Two special cases are particularly important for us. One is quality q = 1, or a (1, s)-
cut-sparsifier, which is known in the literature as a mimicking network and was
introduced by [HKNR98]. The second case is a cut sparsifier H that is furthermore
a minor of G, and then we call it a minor cut sparsifier, and similarly for a minor
mimicking network. In all our results, the sparsifier H is actually a minor of G, which
can be important in some applications; for instance, if G is planar then H admits
planar-graph algorithms.

In known constructions of mimicking networks (q = 1), the sparsifier’s size s highly
depends on the number of constraints in (1) that are really needed. Naively, there
are at most 2k constraints, one for every minimum terminal cut (this can be slightly
optimized, e.g., by symmetry of S and S̄). This naive bound was used to design,
for an arbitrary network G, a mimicking network whose size s is exponential in the
number of constraints, namely s ≤ 22k [HKNR98]. A slight improvement, that is still
doubly exponential in k, was obtained by using the submodularity of cuts to reduce
the number of constraints [KR14]. For a planar network G, the mimicking network
size was improved to a polynomial in the number of constraints, namely s ≤ k222k

[KR13], and this bound is actually near-optimal, due to a very recent work showing
that some planar graphs require s = 2Ω(k) [KPZ19]. In this work we explore the
structure of minimum terminal cuts more deeply, by introducing technical ideas that
are new and different from previous work like [KR13].

Our Approach. We take a closer look at the mimicking network size s of planar
graphs, aiming at bounds that are more sensitive to the given network G. For exam-
ple, we would like to “interpolate” between the very special case of an outerplanar
G, which admits a mimicking network of size s = O(k) [CSWZ00], and an arbitrary
planar G for which s ≤ 2O(k) is known and optimal [KR13, KPZ19]. Our results
employ a graph parameter γ(G), defined next.

Definition 2.2 (Terminal Face Cover). The terminal face cover γ = γ(G) of a
planar k-terminal network G with a given drawing1 is the minimum number of faces
that are incident to all the k terminals, and thus 1 ≤ γ ≤ k.

This graph parameter γ(G) is well-known to be important algorithmically. For ex-
ample, it can be used to control the running time of algorithms for shortest-path
problems [Fre91, CX00], for cut problems [CW04, Ben09], and for multicommodity
flow problems [MNS85]. For the complexity of computing an optimal/approximate
face cover γ(G), see [BM88, Fre91].

When γ = 1, all the terminals lie on the boundary of the same face, which we may
assume to be the outerface. This special case was famously shown by Okamura and

1We can let γ refer to the best drawing of G, and then our results might be non-algorithmic.

15

Seymour [OS81] to have a flow-cut gap of 1 (for multicommodity flows). Later work
showed that for general gamma, the flow-cut gap is at most 3γ [LS09, CSW13],
and after the current results were announced this bound was further improved to
O(
√

log γ) [KLR19, Fil20].

2.1.1 Main Results and Techniques

We provide new bounds for mimicking networks of planar graphs. In particular,
our main result refines the previous bound so that it depends exponentially on γ(G)
rather than on k, This yields much smaller mimicking networks in important cases,
for instance, when γ = O(1) we achieve size s = poly(k). See Table 1 for a summary
of known and new bounds. Technically, we develop two methods to decompose the
minimum terminal cuts into “more basic” subsets of edges, and then represent the
constraints in (1) using these subsets. This is equivalent to reducing the number
of constraints, and leads (as we hinted above) to a smaller sparsifier size s. A key
difference between the methods is that the first one in effect restricts attention to a
subset of the constraints in (1), while the second method uses alternative constraints.

Decomposition into Elementary Cutsets. Our first decomposition method
identifies (in every graph G, even non-planar) a subset of minimum terminal cuts
that “generates” all the other ones, as follows. First, we call a cutset elementary
if removing its edges disconnects the graph into exactly two connected components
(Definition 2.5). We then show that every minimum terminal cut in G can be de-
composed into a disjoint union of elementary ones (Theorem 2.9), and use this to
conclude that if all the elementary cutsets in G are well-approximated by those in
H, then H is a cut sparsifier of G (Corollary 2.10).

Combining this framework with prior work on planar sparsifier [KR13], we devise
the following bound that depends on Te(G), the set of elementary cutsets in G.

• Generic bound: Every planar graph G has a mimicking network of size
s = O(k) · |Te(G)|2; see Theorem 2.11.

Trivially |Te(G)| ≤ 2k, and we immediately achieve s = O(k22k) for all planar graphs
(Corollary 2.12). This improves over the known bound [KR13] slightly (by factor
k), and stems directly from the restriction to elementary cutsets (which are simple
cycles in the planar-dual graph).

Using the same generic bound, we further obtain mimicking networks whose size is
polynomial in k (but inevitably exponential in γ), starting with the base case γ = 1
and then building on it, as follows.

16

• Base case: If γ(G) = 1, then |Te(G)| ≤ O(k2) and thus G has a mimicking
network of size s = O(k4);2 see Theorem 2.15 and Corollary 2.17.

• General case, first bound: If γ(G) ≥ 1, then |Te(G)| ≤ (2k/γ)2γ and thus
G has a mimicking network of size s = O(k(2k/γ)4γ); see Theorem 2.18 and
Corollary 2.19.

The last bound on |Te(G)| is clearly wasteful (for γ = k, it is roughly quadrati-
cally worse than the trivial bound). To avoid over-counting of edges that belong to
multiple elementary cutsets, we devise a better decomposition.

Further Decomposition of Elementary Cutsets. Our second method decom-
poses each elementary cutset even further, in a special way such that we can count
the underlying fragments (special subsets of edges) without repetitions, and this
yields our main result.

• General case, second bound. When γ(G) ≥ 1, there are O(2γk2) subsets
of edges, such that every elementary cutset in G can be decomposed into a
disjoint union of some of these subsets. Thus, G admits a mimicking network
of size O(γ22γk4); see Theorem 2.20 and Corollary 2.21.

Additional Results. First, all our cut sparsifiers are also approximate flow spar-
sifers, by straightforward application of the known bounds on the flow-cut gap, see
Section 2.4.4. Second, our decompositions easily yield a succinct data structure that
stores all the minimum terminal cuts of a planar graph G. Its storage requirement
depends on |Te(G)|, which is bounded as above, see Section 2.5 for details.

Finally, we show a duality between cut and distance sparsifiers (for certain graphs),
and derive new relations between their bounds, as explained next.

2.1.2 Cuts vs. Distances

Although in several known scenarios cuts and distances are closely related, the fol-
lowing notion of distance sparsification was studied separately, with no formal con-
nections to cut sparsifiers [Gup01, CXKR06, BG08, KNZ14, KKN15, GR16, CGH16,
Che18, Fil18, FKT19].

Definition 2.3. A network H = (VH , EH , T, cH) is called a (q, s)-distance-
approximating minor (abbreviated DAM) of G = (V,E, T, c), if it is a minor of

2The generic bound implies s = O(k5), but we can slightly improve it in this case.

17

Graphs Size Minor Reference

General 22k ≈ 2((k−1)
(k−1)/2) no [HKNR98, KR14]

Planar O(k222k) yes [KR13]
Planar O(k22k) yes Corollary 2.12
Planar γ = γ(G) O(γ22γk4) yes Corollary 2.21
Planar γ(G) = 1 O(k4) yes Corollary 2.17
Planar γ(G) = 1 O(k2) no [GHP17]

General 2Ω(k) no [KR13, KR14] lower bound
Planar 2Ω(k) no [KPZ19] lower bound

Table 1: Known and new bounds for mimicking networks.

G, its size is |VH | ≤ s and

∀t, t′ ∈ T, dG(t, t′) ≤ dH(t, t′) ≤ q · dG(t, t′), (2)

where dG(·, ·) is the shortest-path metric in G with respect to c(·) as edge lengths.

We emphasize that the well-known planar duality between cuts and cycles does not
directly imply a duality between cut and distance sparsifiers. We nevertheless do use
this planar-duality approach, but we need to break “shortest cycles” into “shortest
paths”, which we achieve by adding new terminals (ideally not too many).

• Fix k, q, s ≥ 1. Then all planar k-terminal networks with γ = 1 admit a minor
(q, s)-cut sparsifier if and only if all these networks admit an (q, O(s))-DAM;
see Theorems 2.38 and 2.39.

This result yields new cut-sparsifier bounds in the special case γ = 1 (see Sec-
tion 2.6.3). Notice that in this case of γ = 1 the flow-cut gap is 1 [OS81], hence the
three problems of minor sparsification (of distances, of cuts, and of flows), all have
the same asymptotic bounds and gaps.

This duality can be extended to general γ ≥ 1 (including γ = k), essentially at the
cost of increasing the number of terminals, as follows. If for some functions q(·) and
s(·), all planar k-terminal networks with given γ admit a (q(k), s(k))-DAM, then all
networks in this class admits also a minor (q(γ2γk2), s(γ2γk2))-cut sparsifier. For
γ = k, we can add only k2k new terminals instead of k32k. We omit the proof of this
extension, as applying it to the known bounds for DAM yields alternative proofs
for known/our cut-sparsifier bounds, but no new results. For example, using the
reduction together with the known upper bound of (1, k4)-DAM, we get that every
planar k-terminal network with γ(G) = k admits a minor mimicking network of size
O((k2k)4).

18

Comparison with previous techniques. Probably the closest notion to duality
between cut sparsification and distance sparsification is Räcke’s powerful method
[Räc08], adapted to vertex sparsification as in [CLLM10, EGK+14, MM16]. How-
ever, in his method the cut sparsifier H is inherently randomized; this is accept-
able if H contains only the terminals, because we can take its “expectation” H̄ (a
complete graph with expected edge weights), but it is calamitous when H contains
non-terminals, and then each randomized outcome has different vertices. Another
related work, by Chen and Wu [CW04], reduces multiway-cut in a planar network
with γ(G) = 1 to a minimum Steiner tree problem in a related graph G′. Their
graph transformation is similar to one of our two reductions, although they show a
reduction that goes in one direction rather than an equivalence between two prob-
lems.

2.1.3 Related Work

Cut and distance sparsifiers were studied extensively in recent years, in an effort
to optimize their two parameters, quality q and size s. The foregoing discussion is
arranged by the quality parameter, starting with q = 1, then q = O(1), and finally
quality that grows with k.

Cut Sparsification. Let us start with q = 1. Apart from the already mentioned
work on a general graph G [HKNR98, KR14, KR13], there are also bounds for specific
graph families, like bounded-treewidth or planar graphs [CSWZ00, KR13, KPZ19].
For planar G with γ(G) = 1, there is a recent tight upper bound s = O(k2) [GHP17]
(independent of our work), where the sparsifier is planar but is not a minor of the
original graph.

We proceed to a constant quality q. Chuzhoy [Chu12] designed an (O(1), s)-cut
sparsifier, where s is polynomial in the total capacity incident to the terminals in
the original graph, and certain graph families (e.g., bipartite) admit sparsifiers with
q = 1 + ε and s = poly(k/ε) [AGK14].

Finally, we discuss the best quality known when s = k, i.e., the sparsifier has only
the terminals as vertices. In this case, it is known that q = O(log k/ log log k)
[Moi09, LM10, CLLM10, EGK+14, MM16], and there is a lower bound q = Ω(

√
log k)

[MM16]. For networks that exclude a fixed minor (e.g., planar) it is known that
q = O(1) [EGK+14], and for trees q = 2 [GR16] (where the sparsifier is not a minor
of the original tree).

Distance Sparsification. A separate line of work studied the tradeoff between
the quality q and the size s of a distance approximation minor (DAM). For q = 1,

19

every graph admits DAM of size s = O(k4) [KNZ14], and there is a lower bound
of s = Ω(k2) even for planar graphs [KNZ14]. Independently of our work, Goranci,
Henzinger and Peng [GHP17] recently constructed, for planar graphs with γ(G) = 1,
a (1, O(k2))-distance sparsifier that is planar but not a minor of the original graph.
Proceeding to quality q = O(1), planar graphs admit a DAM with q = 1 + ε and
s = O(k log k/ε)2 [CGH16], and certain graph families, such as trees and outerplanar
graphs, admit a DAM with q = O(1) and s = O(k) [Gup01, BG08, CXKR06,
KNZ14]. When s = k (the sparsifier has only the terminals as vertices), then known
quality is q = O(log k) for every graph [KKN15, Che18, Fil18]. Additional tradeoffs
and lower bounds can be found in [CXKR06, KNZ14, CGH16].

2.1.4 Preliminaries

Let G = (V,E, T, c) be a k-terminal network, and denote its k terminals by T =
{t1, . . . , tk}. We assume without loss of generality that G is connected, as otherwise
we can construct a sparsifier for each connected component separately. For every
S ⊂ T , let argmincutG(S) denote the argument of the minimizer in mincutG(S), i.e.,
the minimum-cost cutset that separates S from S̄ = T \S in G. We assume that the
minimum is unique by a perturbation of the edge weights. Throughout, when G is
clear from the context, we use the shorthand

ES
def
= argmincutG(S). (3)

Similarly, CC(ES) is a shorthand for the set of connected components of the graph
G\ES. Define the boundary ofW ⊆ V , denoted δ(W), as the set of edges with exactly
one end point in W , and observe that for every connected component C ∈ CC(ES)
we have δ(C) ⊆ ES. By symmetry, ES = ES̄. And since G is connected and S 6= ∅, T ,
we have ES 6= ∅ and |CC(ES)| ≥ 2. In addition, by the minimality of ES, every
connected component C ∈ CC(ES) contains at least one terminal.

Lemma 2.4 (Lemma 2.2 in [KR13]). For every two subsets of terminals S, S ′ ⊂ T
and their corresponding minimum cutsets ES, ES′, every connected component C ∈
CC(ES ∪ ES′) contains at least one terminal.

2.2 Elementary Cutsets in General Graphs

In this section we define a special set of cutsets called elementary cutsets (Defini-
tion 2.5), and prove that these elementary cutsets generate all other relevant cutsets,
namely, the minimum terminal cutsets in the graph (Theorem 2.9). Therefore, to
produce a cut sparsifier, it is enough to preserve only these elementary cutsets (Corol-
lary 2.10). In the following discussion, we fix a network G = (V,E, T, c) and employ
the notations ES, CC(ES) and δ(W) set up in Section 4.1.3.

20

Definition 2.5 (Elementary Cutset). Fix S ⊂ T . Its minimum cutset ES is called
an elementary cutset if |CC(ES)| = 2.

Definition 2.6 (Elementary Component). A subset C ⊆ V is called an elementary
component if δ(C) is an elementary cutset for some S ⊂ T , i.e., δ(C) = EC∩T and
|CC(δ(C))| = 2.

Although the following two lemmas are quite straightforward, they play a central
role in the proof of Theorem 2.9.

Lemma 2.7. Fix a subset S ⊂ T and its minimum cutset ES. The boundary of
every C ∈ CC(ES) is itself the minimum cutset separating the terminals T ∩C from
T \ C in G, i.e., δ(C) = ET∩C.

Proof. Assume toward contradiction that δ(C) 6= ET∩C . Since both sets of edges
separate between the terminals T ∩ C and T \ C, then c(ET∩C) < c(δ(C)). Let us
replace the edges δ(C) by the edges ET∩C in the cutset of ES and call this new set
of edges E ′S, i.e. E ′S = (ES \ δ(C)) ∪ ET∩C . It is clear that c(E ′S) < c(ES). We
will prove that E ′S is also a cutset that separates between S and S̄ in the graph G,
contradicting the minimality of ES.

Assume without loss of generality that T ∩ C ⊆ S, and consider ES \ δ(C). By the
minimality of ES all the neighbors of C contain terminals of S̄, therefore the cutset
ES \ δ(C) separates the terminals S \ (T ∩C) from S̄ ∪ (T ∩C) in G. Now consider
E ′S = (ES \ δ(C))∪ET∩C and note that the connected component CC+NS(C) contains
all the terminals T ∩ C and some terminals of S̄. This cutset E ′S clearly separates
T ∩ C from all other terminals, and also separates S \ (T ∩ C) from S̄ ∪ (T ∩ C).
Altogether this cutset separates between S and S̄ in G, and the lemma follows.

Lemma 2.8. For every S ⊂ T , at least one component in CC(ES) is elementary.

Proof. Fix S ⊂ T . Lemma 2.7 yields that δ(C) = EC∩T for every C ∈ CC(ES),
thus it left to prove that there exists C ′ ∈ CC(ES) such that |CC(δ(C ′))| = 2.
For simplicity, we shall represent our graph G as a bipartite graph GS whose its
vertices and edges are CC(ES) and ES respectively, i.e. we get GS by contracting
every C ∈ CC(ES) in G into a vertex vC . Let V1(GS) = {vC : C ∩ T ⊆ S} and
V2(GS) = {vC : C ∩ T ⊆ S̄} be the partition of V (GS) into two sets. By the
minimality of ES the graph GS is connected, and each of V1(GS) and V2(GS) is an
independent set.

For every connected component C ∈ CC(ES), it is easy to see that |CC(δ(C))| = 2
if and only if GS \ {vC} is connected. Since GS is connected, it has a spanning tree
and thus GS \ {vC′} is connected for every leaf vC′ of that spanning tree, and the
lemma follows.

21

Theorem 2.9 (Decomposition into Elementary Cutsets). For every S ⊂ T , the
minimum cutset ES can be decomposed into a disjoint union of elementary cutsets.

The idea of the proof is to iteratively decrease the number of connected components
in CC(ES) by uniting an elementary connected component with all its neighbors
(while recording the cutset between them), until we are left with only one connected
component — all of V .

Proof of Theorem 2.9. We will need the following definition. Given S ⊂ T and
its minimum cutset ES, we say that two connected components C,C ′ ∈ CC(ES)
are neighbors with respect to ES, if ES has an edge from C to C ′. We denote by
NS(C) ⊆ CC(ES) the set of neighbors of C with respect to ES. Observe that
removing δ(C) from the cutset ES is equivalent to uniting the connected component
C with all its neighborsNS(C). Denoting this new connected component by CC+NS(C)

we get that CC(ES \ δ(C)) =
(
CC(ES) \

(
{C} ∪NS(C)

))
∪ {CC+NS(C)}.

Let ES be a minimum cutset that separates S from S̄. By Lemma 2.8, there exists
a component C ∈ CC(ES) that is elementary, and by Lemma 2.7, δ(C) = ET∩C .
Assume without loss of generality that T ∩C ⊆ S (rather than S̄), and unite C with
all its neighbors NS(C). Now, we would like to show that this step is equivalent to
“moving” the terminals in C from S to S̄. Clearly, the new cutset ES\δ(C) separates
the terminals S ′ = S \ (T ∩ C) from T \ S ′ = S̄ ∪ (T ∩ C), but to prove that

ES′ = ES \ δ(C), (4)

we need to argue that this new cutset has minimum cost among those separating S ′

from S̄ ′. To this end, assume to the contrary; then ES′ must have a strictly smaller
cost than ES \ δ(C), because both cutsets separate S ′ from T \ S ′. Now similarly to
the proof of Lemma 2.7, it follows that ES′ ∪ δ(C) separates S from S̄, and has a
strictly smaller cost than ES, which contradicts the minimality of ES.

Using (4), we can write ES = δ(C) ·∪ES′ and continue iteratively with ES′ while it
is non-empty (i.e., |CC(ES′)| > 1). Formally, the theorem follows by induction on
|CC(ES)|.

To easily examine all the elementary cutsets in a graph G, we define

Te(G)
def
= {S ⊂ T : |CC(ES)| = 2}.

Using Theorem 2.9, the cost of every minimum terminal cut can be recovered, in a
certain manner, from the costs of the elementary cutsets of G, and this yields the
following corollary.

22

Corollary 2.10. Let H be a k-terminal network with same terminals as G. If
Te(G) = Te(H) and

∀S ∈ Te(G), mincutG(S) ≤ mincutH(S) ≤ q ·mincutG(S), (5)

then H is a cut-sparsifier of G of quality q.

Proof. Given G and H as above, we only need to prove (1). To this end, fix S ⊂ T .
Observe that for every ϕ ⊆ Te(G) = Te(H), the set ∪S′∈ϕ argmincutG(S ′) is S-
separating in G if and only if for every t ∈ S and t′ ∈ S̄ there exists S ′ ∈ ϕ such
that without loss of generality t ∈ S ′ and t′ /∈ S ′. Thus, if ϕ is a partition of S,
i.e. S = ·∪

S′∈ϕ
S ′, then ∪S′∈ϕ argmincutG(S ′) is S-separating in G. Since the same

arguments hold also for H, we get the following:

∪
S′∈ϕ

argmincutG(S ′) is S-separating in G⇔ ∪
S′∈ϕ

argmincutH(S ′) is S-separating in H.

By Theorem 2.9, there exists ϕG ⊆ Te(G) such that S = ·∪
S′∈ϕG

S ′ and

argmincutG(S) = ·∪
S′∈ϕG

argmincutG(S ′), thus

mincutH(S) ≤
∑
S′∈ϕG

mincutH(S ′) ≤ q ·
∑
S′∈ϕG

mincutG(S ′) = q ·mincutG(S).

Applying Theorem 2.9 to H together with an analogous argument yields that
mincutG(S) ≤ mincutH(S), which proves (1) and the corollary follows.

2.3 Mimicking Networks for Planar Graphs

We now present an application of our results in Section 2.2. We begin with a bound
on the mimicking network size for a planar graph G as a function of the number
of elementary cutsets (Theorem 2.11). We then obtain an upper bound of O(k22k)
for every planar network (Corollary 2.12), which improves the previous work [KR13,
Theorem 1.1] by a factor of k, thanks to the use of elementary cuts. The underlying
reason is that the previous analysis in [KR13] considers all the 2k possible terminal
cutsets, and each of them is a collection of at most k simple cycles in the dual graph
G∗. We can consider only the elementary cutsets by Corollary 2.10, and each of
them is a simple cycle in G∗ by Definition 2.5. Thus, we consider a total of 2k simple
cycles, saving a factor of k over the earlier naive bound of k2k simple cycles.

Theorem 2.11. Every planar network G, in which |CC(ES ∪ ES′)| ≤ α for all
S, S ′ ∈ Te(G), admits a minor mimicking network H of size O(α · |Te(G)|2).

23

The proof of this theorem appears in Section 2.3.1. It is based on applying the
machinery of [KR13], but restricting the analysis to elementary cutsets.

Corollary 2.12. Every planar network G admits a minor mimicking network of size
O(k22k).

Proof. Apply Theorem 2.11, using an easy bound α = O(k) from Lemma 2.4, and a
trivial bound on the number of elementary cutsets |Te(G)| ≤ 2k.

2.3.1 Proof of Theorem 2.11

Given a k-terminal network G and α > 0 such that |CC(ES ∪ ES′)| ≤ α for ev-
ery S, S ′ ∈ Te(G), we prove that it admits a minor mimicking network H of size
O(α|Te(G)|2). Let Ê = ∪S∈Te(G)ES, and construct H by contracting every connected

component of G \ Ê into a single vertex. Notice that edge contractions can only
increase the cost of any minimum terminal cut, and that in our construction edges
of an elementary cutset of G are never contracted. Thus, the resulting H is a minor
of G, that maintains all the elementary cutsets of G, and by Corollary 2.10 H main-
tains all the terminal mincuts of G. We proceed to bound the number of connected
components in G \ Ê, as this will clearly be the size of our mimicking network H.
The crucial step here is to use the planarity of G by employing the dual graph of G
denoted by G∗ (for basic notions of planar duality see Section 2.7).

Loosely speaking, the elementary cutsets in G correspond to cycles in the dual graph
G∗, and thus we consider the dual edges of Ê, which may be viewed as a subgraph
of G∗ comprising of (many) cycles. We then use Euler’s formula and the special
structure of this subgraph of cycles; more specifically, we count its meeting vertices,
which turns out to require the aforementioned bound of α for two sets of terminals
S, S ′. This gives us a bound on the number of faces in this subgraph, which in turn
is exactly the number of connected components in the primal graph (Lemma 2.14).
Observe that removing edges from a graph G can disconnect it into (one or more)
connected components. The next lemma characterizes this behavior in terms of the
dual graph G∗. Let Vm(G) be all the vertices in the graph G with degree ≥ 3, and
call them meeting vertices of G. The following lemma bounds the number of meeting
vertices in two elementary cuts by O(α).

Lemma 2.13. For every two subsets of terminals S, S ′ ∈ Te(G), the dual graph
G∗[E∗S ∪ E∗S′] has at most 2α meeting vertices.

Proof Sketch. For simplicity denote by G∗SS′ the graph G∗[E∗S∪E∗S′]. By our assump-
tion, the graph G \ (ES ∪ ES′) has at most α connected components. By Lemma
2.48 every connected component in G \ (ES ∪ ES′) corresponds to a face in G∗SS′ .

24

Therefore, G∗SS′ has at most α faces. Let VSS′ , ESS′ and FSS′ be the vertices, edges
and faces of the graph G∗SS′ . Note that the degree of every vertex in that graph
is at least 2. Thus, by the degree-sum formula (the total degree of all vertices
equals to twice the number of edges), 2|ESS′ | ≥ 2|VSS′ \ Vm(G∗SS′)| + 3|Vm(G∗SS′)|
and so |ESS′| ≥ |VSS′ | + 1

2
Vm(G∗SS′). Together with Euler formula we get that

α ≥ |FSS′ | ≥ |ESS′| − |VSS′| ≥ 1
2
|Vm(G∗SS′)|, and the lemma follows.

Lemma 2.14. The dual graph G∗[Ê∗] has at most O(α|Te(G)|2) faces. Thus, G \ Ê
has at most
O(α|Te(G)|2) connected components.

Proof Sketch. For simplicity denote by Ĝ∗ the graph G∗[Ê∗], and let Em(Ĝ∗) be all
the edges in Ĝ∗ that are incident to meeting vertices. Fix an elementary subset
of terminals S ∈ Te(G). By Lemma 2.13 there are at most 2α meeting vertices in
G∗[E∗S ∪ E∗S′], for every S ′ ∈ Te(G). Summing over all the different S ′ in Te(G) we
get that there are at most 2α|Te(G)| meeting vertices on the cycle E∗S in the graph
Ĝ∗. Since the degree of every vertex in G∗(E∗S) is 2, we get that

|E∗S ∩ Em(Ĝ∗)| ≤ 2|V (G∗(E∗S)) ∩ Vm(Ĝ∗)| ≤ 4α|Te(G)|.

Again summing over at most |Te(G)| different elementary subsets S we get that
|Em(Ĝ∗)| ≤ 4α|Te(G)|2. Plugging it into Euler formula for the graph G∗[Ê∗], together
with the inequality |E(Ĝ∗) \ Em(Ĝ∗)| ≤ |V (Ĝ∗) \ Vm(Ĝ∗)| by the fact that the two
sides represent the edges and vertices of a graph consisting of vertex-disjoint paths
(because its maximum degree is at most 2), we get the following

|F (Ĝ∗)| = |E(Ĝ∗)| − |V (Ĝ∗)|+ 1 + |CC(Ĝ∗)|
≤ |Em(Ĝ∗)| − |Vm(Ĝ∗)|+ 1 + |CC(Ĝ∗)|
≤ 4α|Te(G)|2 + 1 + |CC(Ĝ∗)|.

Since |Te(G)| ≥ k it left to bound |CC(Ĝ∗)| by k. Assume towards contradiction
that |CC(Ĝ∗)| ≥ k + 1, thus there exists a connected component W in Ĝ∗ that
does not contains a terminal face of G∗. By the construction of Ê∗, W contains
at least one elementary shortest cycle that separates between terminal faces of G∗

in contradiction. Finally, Lemma 2.48 with M = Ê yields that |CC(G \ Ê)| =
|F (G∗[Ê∗])| = O(α|Te(G)|2) and the lemma follows.

Recall that we construct our mimicking network H by contracting every connected
component of G \ Ê into a single vertex. By Lemma 2.14 we get that H is a minor
of G of size O(α|Te(G)|2) and Theorem 2.11 follows.

25

2.4 Mimicking Networks for Planar Graphs with Bounded
γ(G)

In this section, the setup is that G = (V,E, T, c) is a planar k-terminal network with
terminal face cover γ = γ(G). Let f1, . . . , fγ be faces that are incident to all the
terminals, and let ki denote the number of terminals incident to face fi. We can in
effect assume that

∑γ
i=1 ki = k, because we can count each terminal as incident to

only one face, and “ignore” its incidence to the other γ − 1 faces (if any).

Our goal is to construct for G a mimicking network H, and bound its size as a
function of k and γ(G). Our construction of H is the same as in Theorem 2.11, and
the challenge is to bound its size. The implications to flow sparsifiers are discussed
in Section 2.4.4.

All terminals are on one face. We start with the basic case γ = 1, i.e., all the
terminals are on the same face, which we can assume to be the outerface. The idea
is to apply Theorem 2.11. The first step is to characterize all the elementary cutsets,
which yields immediately an upper bound on their number. The second step is to
analyze the interaction between any two elementary cutsets.

Theorem 2.15. In every planar k-terminal network G with γ(G) = 1, the number
of elementary cutsets is |Te(G)| ≤

(
k
2

)
.

The proof, appearing in Section 2.4.1, is based on two observations that view the
outerface as a cycle of vertices: (1) every elementary cutset disconnects the out-
erface’s cycle into two paths, which we call intervals (see Definition 2.22); and (2)
every such interval can be identified by the terminals it contains. It then follows that
every elementary cutset ES is uniquely determined by two terminals, leading to the
required bound.

The next lemma bounds the interaction between any two elementary cutsets. Its
proof appears at the end of Section 2.4.1.

Lemma 2.16. For every planar k-terminal network G with γ(G) = 1, and for every
S, S ′ ∈ Te(G), there are at most 4 connected components in G \ (ES ∪ ES′).

Corollary 2.17. Every planar k-terminal network G with γ(G) = 1 admits a minor
mimicking network of size s = O(k4).

Proof. Apply Theorem 2.11, with α = 4 from Lemma 2.16 and |Te(G)| ≤ k2 from
Theorem 2.15.

26

All terminals are on γ faces - First bound. Our first (and weaker) bound
for the general case γ ≥ 1 follows by applying Theorem 2.11. To this end, we
bound the number of elementary cutsets by (2k/γ)2γ in Theorem 2.18, whose proof
is in Section 2.4.2, and then conclude a mimicking network size of O(k(2k/γ)4γ) in
Corollary 2.19.

Theorem 2.18. In every planar k-terminal network G with γ = γ(G), the number
of different elementary cutsets is |Te(G)| ≤ 22γ (Πγ

i=1k
2
i) ≤ (2k/γ)2γ.

Corollary 2.19. Every planar k-terminal network G with γ = γ(G) admits a mim-
icking network of size s = O (k(2k/γ)4γ).

Proof. Apply Theorem 2.11, using α = O(k) from Lemma 2.4 and |Te(G)| ≤ (2k/γ)2γ

from Theorem 2.18.

All terminals are on γ faces - Second bound. Our second (and improved)
result for the general case γ ≥ 1 follows by a refined analysis of the elementary
cutsets. While our bound of (2k)2γ on the number of elementary cutsets is tight,
it leads to a wasteful mimicking network size (for example, plugging the worst-case
γ = k into Corollary 2.19 is inferior to the bound in Corollary 2.12). The reason
is that this approach over-counts edges of the mimicking network, and we therefore
devise a new proof strategy that decomposes each elementary cutset even further,
in a special way that lets us to count the underlying fragments (special subsets of
edges) without repetitions. We remark that the actual proof works in the dual graph
G∗, and decomposes a simple cycle into (special) paths.

Theorem 2.20 (Further Decomposition of Elementary Cutsets). Every planar k-
terminal network G with k1, . . . , kγ as above, has p = 2γ

(
1 +

∑γ
i,j=1 kikj

)
≤ O(2γk2)

subsets of edges E1, . . . , Ep ⊂ E, such that every elementary cutset in G can be
decomposed into a disjoint union of some of these Ei’s, and each of Ei contains
exactly 2 edges from the boundaries of the faces f1, . . . , fγ.

We prove this theorem in Section 2.4.3. The main difficulty is to define subsets of
edges that are contained in elementary cutsets and are also easy to identify. We
implement this identification by attaching to every such subset a three-part label.
We prove that each label is unique, and count the number of different possible labels,
which obviously bounds the number of such “special” subsets of edges.

Corollary 2.21. Every planar k-terminal network G with γ = γ(G) admits a minor
mimicking network of size s = O(γ22γk4).

A slightly weaker bound ofO(22γk5) on the mimicking network size follows easily from
Theorem 2.11 by replacing elementary cutsets with our “special” subsets of edges.

27

To this end, it is easy to verify that all arguments about elementary cutsets hold
also for the “special” subsets of edges. This includes the bound α = O(k), because if
every two elementary cutsets intersect at most O(k) times, then certainly every two
“special” subsets (which are subsets of elementary cutsets) intersect at most O(k)
times. We can thus apply Theorem 2.11 with α = O(k) and “replacing” |Te(G)|
with O(2γk2) that we have by Theorem 2.20. The stronger bound in Corollary 2.21
follows by showing that α = O(γ) for “special” subsets of edges.

Proof of Corollary 2.21. Given a planar k-terminal network G with γ(G) = γ, use
Theorem 2.20 to decompose the elementary terminal cutsets of G into p = O(2γk2)
subsets of edges E1, . . . , Ep as stated above. Since each of Ei has exactly two edges
from the boundaries of the faces f1, . . . , fγ, then for every Ei and Ej there are at most
O(γ) connected components in G\ (Ei∪Ej) that contain terminals. Let ES and ES′
be elementary cutsets of G such that Ei ⊆ ES and Ej ⊆ ES′ . By Lemma 2.4, each
connected component in G \ (ES ∪ ES′) must contain at least one terminal. Thus,
each connected component in G\ (Ei∪Ej) must contain at least one terminal, which
bound the number of its connected components by O(γ). Apply Theorem 2.11 with
|Te(G)| = O(2γk2) and α = O(γ) and the corollary follows.

2.4.1 Proof of Theorem 2.15 and Lemma 2.16

In this section we prove Theorem 2.15, which bounds the number of elementary
cutsets when γ = 1. We start with a few definitions and lemmas. Let G = (V,E, T, c)
be a connected planar k-terminal network, such that the terminals t1, . . . , tk are all
on the same face in that order. Assume without loss of generality that this special
face is the outerface f∞. We refer to this outerface as a clockwise-ordered cycle
〈v∞1 , v∞2 , . . . , v∞l 〉, such that for every two terminals ti, tj if v∞x = ti and v∞y = tj then
i < j if and only if x < y.

Definition 2.22. An interval of f∞ is a subpath Î = 〈v∞i , v∞i+1, . . . , v
∞
j 〉 if i ≤ j and

in the case where i > j Î = 〈v∞i , . . . , v∞l , v∞1 , . . . , v∞j 〉. Denote its vertices by V (Î)

or, slightly abusing notation, simply by Î.

Two trivial cases are a single vertex 〈v∞i 〉 if i = j, and the entire outerface cycle f∞
if i = j − 1.

Definition 2.23. Given W ⊆ V , an interval Î = 〈v∞i , v∞i+1, . . . , v
∞
j 〉 is called maxi-

mal with respect to W , if V (Î) ⊆ W and no interval in W strictly contains Î, i.e.
v∞i−1, v

∞
j+1 /∈ W . Let I(W) be the set of all maximal intervals with respect to W , and

let the order of W ⊆ V be |I(W)|.

28

𝑞5

𝐶1 𝐶2

𝐶4

𝐶5 𝐶6 𝐶3 𝐼1

𝐼2
𝐼3 𝐼4

𝐼5

𝐼6

𝐼7

𝐼8
𝐼9

𝐼10

𝑞6

𝑞9

𝑞10

𝑞13

𝑞3

𝑞4

𝑞12 𝑞11

𝑞8

𝑞7

𝑞2

𝑞1

𝑞14

𝐺 ∖ 𝐸𝑆

𝑆 = {𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞9, 𝑞10, 𝑞13}

𝑆 = {𝑞1, 𝑞2, 𝑞7, 𝑞8, 𝑞11, 𝑞12, 𝑞14 }

Figure 1: A minimum cutset ES that partitions the graph G into 6 connected compo-
nents CC(ES) = {C1, . . . , C6}, and partitions the outerface vertices into 10 intervals
I(CC(ES)) = {I1, . . . , I10}. Large nodes represent terminals, colored according to
whether they lie in S or S̄.

Observe that I(W) is a unique partition of W ∩V (f∞), hence the order of W is well
defined. Later on, we apply Definition 2.23 to connected components C ∈ CC(ES),
instead of arbitrary subsets W ⊆ V . For example, in Figure 1, I(C3) = {I3, I5, I9},
and the order of C3 is |I(C3)| = 3.

Lemma 2.24. For every subset S ⊂ T , ·∪C∈CC(ES) I(C) is a partition of V (f∞).

Proof. Fix S ⊂ T and its minimum cutset ES. Then CC(ES) is a partition of the
vertices V into connected components. It induces a partition also of V (f∞), i.e
V (f∞) = ·∪C∈CC(ES)

(
C∩V (f∞)

)
. By Definition 2.23, each C∩V (f∞) can be further

partitioned into maximal intervals, given by I(C). Combining all these partitions,
and the lemma follows. See Figure 1 for illustration.

Lemma 2.25. For every S ⊂ T and its minimum cutset ES, if C ∈ CC(ES) is an
elementary connected component in G, then |I(C)| = 1.

Proof. Since C is elementary, there are exactly two connected components C and C ′

in CC(δ(C)). By Lemma 2.4 each of C and C ′ contains at least one terminal. Since
all the terminals are on the outerface, each of C and C ′ contains at least one interval.
Assume toward contradiction that C contains at least two maximal intervals I1 and
I3, then there must be at least two intervals I2 and I4 in C ′ that appear on the
outerface in an alternating order, i.e. I1, I2, I3, I4. Let vi be a vertex in the interval
Ii, and denote by P13 and P24 a path that connects between v1, v3 and between

29

𝐼𝑆

 𝐼𝑆
𝐼𝑆′

𝐼𝑆′ 𝐼𝑆 ∩𝑆′

𝐼𝑆∩𝑆′ 𝐼𝑆 ∩𝑆′

𝐼𝑆∩𝑆′

𝐺 ∖ 𝐸𝑆 𝐺 ∖ 𝐸𝑆′ 𝐺 ∖ (𝐸𝑆 ∪ 𝐸𝑆′)

𝐶𝑆

𝐶𝑆 𝐶𝑆′

𝐶𝑆′

𝐶𝑆 ∩𝑆′ 𝐶𝑆∩𝑆′

𝐶𝑆 ∩𝑆′ 𝐶𝑆∩𝑆′

Figure 2: The union of two elementary cutsets, ES ∪ ES′ , disconnects G into (at
most) 4 connected components, and the outerface into 4 intervals.

v2, v4 correspondingly. Note that P13 is contained in C and P24 is contained in C ′.
Moreover note that these two paths must intersect each other, giving a contradiction,
and the lemma follows.

We are ready to prove Theorem 2.15. Recall that for every S ⊂ T , if ES is an
elementary cutset then by Lemma 2.25 each of S and S̄ must be a single interval.
Hence they must be of the form {ti, ti+1, . . . , tj} and {tj+1, . . . , ti−1} allowing wrap-
around. Thus, we can characterize S and S̄ by the pairs (i, j) and (j + 1, i − 1)
respectively. There are at most k(k − 1) such different pairs, since S 6= T and thus
j 6= i − 1. By the symmetry between S and S̄, we should divide that number by 2
and Theorem 2.15 follows.

Proof of Lemma 2.16. Let ES and ES′ be two elementary minimum cutsets, and let
CS and CS̄ be the two elementary connected components in CC(ES). By Lemma
2.25, each of CS and CS̄ contains exactly one maximal interval denoted by IS and
IS̄ respectively, and similarly denote CS′ , CS̄′ , IS′ and IS̄′ for ES′ . Since each of the
cutsets ES and ES′ intersect the cycle of the outerface in exactly two edges, the
cutset ES ∪ ES′ intersects the cycle of the outerface in at most 4 edges. Therefore
the graph G \ (ES ∪ ES′) has at most 4 maximal intervals. By Lemma 2.4, every
connected component in CC(ES∪ES′) must contains at least one terminal. Since all
the terminals lie on the outerface, any connected component that contains terminal
must contains also an interval. Every interval is contained in exactly one connected
component. Thus, there are at most 4 connected components in CC(ES ∪ES′), and
the lemma follows. See Figure 2 for illustration.

30

2.4.2 Proof of Theorem 2.18

In this section we prove Theorem 2.18, which bounds the number of elementary
cutsets when γ > 1. Since we assume (by perturbation) that there is a one-to-one
correspondence between S ⊆ T and ES, it suffices to bound the number of different
ways that an elementary cutset can partition the terminals into S and S̄. We achieve
the latter by two observations, which are extensions of the ideas in Theorem 2.15.
First, an elementary cutset can break each of the γ faces into at most two paths,
which overall splits the terminals into at most 2γ subsets. As each subset (path)
can lie either in S or in S̄, there are at most 22γ different ways to partition T into S
and S̄ (this bound includes cases where two paths from the same face lie both in S
or both in S̄, which is equivalent to not breaking the face into two paths). Second,
there are

(
ki
2

)
ways that the face fi can be broken into 2 paths by elementary cutsets,

which gives overall Πγ
i=1

(
ki
2

)
ways to break all the γ faces simultaneously. Combining

these two observations leads to the required bound.

We start with a few definitions. Let G = (V,E, F, T, c) be a k-terminal network
with γ faces f1, . . . , fγ, where each fi contains the ki terminals Ti (breaking ties
arbitrarily), where T = ·∪γi=1 Ti and thus k =

∑γ
i=1 ki. Denote the terminals in Ti by

ti1, . . . , t
i
ki

, where the order is by a clockwise order around the boundary of fi, starting
with an arbitrary terminal; for simplicity, we shall write tj instead of tij when the
face fi is clear from the context. Let G∗ be the dual graph of G. The graph G∗ has
k terminal faces {ftij} that are dual to the terminals {tij} of G, and has γ special

vertices W = {w1, . . . , wγ} that are dual to the faces f1, . . . , fγ of G (see Section 2.7
for basic notions of planar duality).

We label each S ∈ Te(G) (and its elementary cycle E∗S) by two vectors x̄, ȳ, as follows.
Since E∗S is a simple cycle, it visits every vertex wi ∈ W at most once. If it does visit
wi, then exactly two cycle edges are incident to wi. and these two edges naturally
partition the faces around wi into two subsets. Moreover, each subset appears as
a contiguous subsequence if the faces around wi are scanned in a clockwise order.
In particular, the terminal faces ft1 , . . . , ftki are partitioned into two subsets, whose
indices can be written as {txi , . . . , tyi−1} and {tyi , . . . , txi−1}, for some xi, yi ∈ [ki],
under the two conventions: (i) we allow wraparound, i.e., tki+1 = t1 and so forth; (ii)
if xi = yi, then we have a trivial partition of Ti, where one subset is Ti and the other
is ∅. Observe that one of these subsets is contained in S and the other in S̄, thus we
can assume that {txi , . . . , tyi−1} ⊆ S and {tyi , . . . , txi−1} ⊂ S̄. If the cycle E∗S does
not visit wi, then we simply define xi = yi = 1, which represents a trivial partitioning
of Ti. The labels are now defined as x̄ = (x1, . . . , xγ) and ȳ = (y1, . . . , yγ).

We now claim that G∗ has at most 22γ elementary cycles with the same label (x̄, ȳ).
To see this, fix x̄, ȳ ∈ [k1] × · · · × [kγ] and modify G∗ into a plane graph G∗x̄,ȳ with
at most 2γ terminal faces, as follows. For every wi, create a single terminal face

31

𝑓𝑡𝑥𝑖−1

𝑓𝑡𝑦𝑖

𝑓𝑡𝑥𝑖

𝑓𝑡𝑦𝑖−1𝒘𝒊

𝑡𝑥𝑖

𝑡𝑦𝑖−1

𝑡𝑦𝑖

𝑡𝑥𝑖−1

Figure 3: A simple cycle E∗S separates the faces around wi into two subsets. The
primal graph G is shown in black, and its dual G∗ in red. Thicker lines are used for
edges of the elementary cutset ES and of the cycle E∗S. Dashed lines represent dual
edges that are removed by merging faces, and primal edges that are contracted.

f ixi by “merging” faces around wi, starting from ftxi and going in a clockwise order
until ftyi−1 (inclusive). Then merge similarly the faces from ftyi and until ftxi−1

into a single terminal face f iyi . If xi = yi, then the two merging operations above
are identical, and thus (as an exception) create only one terminal face denoted f ixi .
Formally, a merge of two faces is implemented by removing the edge incident to wi
that goes between the relevant faces. Observe that removing these edges in G∗ can be
described in G as contracting the path around the boundary of the face fi from the
terminal txi to tyi−1, and similarly from the terminal tyi to txi−1, see Figure 3. It is
easy to verify that the modified graph G∗x̄,ȳ is planar, and that every elementary cycle
E∗S in G∗ with this label (x̄, ȳ) is also an elementary cycle in G∗x̄,ȳ that separates the
new terminal faces in a certain way. Usually, the new terminal faces are separated
into {f ixi}

γ
i=1 and {f iyi}

γ
i=1, except that when xi = yi, we have only one new terminal

face f ixi , which should possibly be included with the yi’s instead of with the x′i. Since
G∗x̄,ȳ has at most 2γ terminal faces, it can have at most 22γ elementary cycles (one for
each subset). This shows that for every label (x̄, ȳ), there are at most 22γ different
elementary cycles in G∗, as claimed.

Finally, the number of distinct labels (x̄, ȳ) is clearly bounded by Πγ
i=1k

2
i and the

above claim applies to each of them. By the inequality of arithmetic and geometric
means Πγ

i=1k
2
i ≤ (k/γ)2γ. Therefore, the total number of different elementary cycles

in G∗ is at most (2k/γ)2γ, and Theorem 2.18 follows.

32

2.4.3 Proof of Theorem 2.20

In this section we prove Theorem 2.20, which actually decompose the elementary
cutsets in a “bounded manner” when γ > 1. The idea is to consider the dual graph,
which has γ special vertices, and elementary cycles. Since every elementary cycle is a
simple cycle, it visits each of the γ vertices at most once, and thus we can decompose
the elementary cycles into paths, such that the two endpoints of every path belong to
the γ vertices. The challenging part is to count how many distinct paths are there.

We shall use the notation introduced in the beginning of Section 2.4.2. In particular,
the graph G has terminals T = ·∪γi=1 Ti, where Ti = {ti1, . . . , tiki} are the terminals on
the boundary of special face fi, and for simplicity we omit i when it is clear from the
context. The dual graph, denoted G∗ has terminal faces {ftij} and special vertices

W = {w1, . . . , wγ}. Let v∞ ∈ V be the vertex whose dual face fv∞ is the outerface
of G∗.

Informally, the next definition determines whether fv, the face dual to a vertex v ∈ V ,
lies “inside” or “outside” a circuit M∗ in G∗. It works by counting how many times
a path from v to v∞ “crosses” M∗ and evaluating it modulo 2 (i.e., its parity). The
formal definition is more technical because it involves fixing a path, but the ensuing
claim shows the value is actually independent of the path. Moreover, we need to
properly define a “crossing” between a path Φ in G and a circuit in G∗; to this end,
we view the path Φ as a sequence of faces in G∗, that goes from fv to fv∞ and at
each step “crosses” an edge of G∗.

Definition 2.26 (Parity of a dual face). Let fv be the dual face to a vertex v ∈ V ,
and fix a simple path in G between v and v∞, denoted Φ. Let M∗ be a circuit in
G∗, and observe that its edges E(M∗) form a multiset. Define the parity of fv with
respect to M∗ to be

Par(fv,M
∗) :=

(∑
e∈E(Φ)

Count(e∗, E(M∗))
)

mod 2,

where Count(a,A) is the number of times an element a appears in a multiset A.

The next claim justifies the omission of the path Φ in the notation Par(fv,M
∗).

Claim 2.27. Fix v ∈ V , and let Φ and Φ′ be two paths in G between v and v∞.
Then for every circuit M∗ in G∗,∑

e∈E(Φ)

Count(e∗, E(M∗)) =
∑

e∈E(Φ′)

Count(e∗, E(M∗)) (mod 2).

Proof. Fix a vertex v ∈ V and its dual face fv. Fix also a circuit M∗, and a
decomposition of it into simple cycles. We say that a simple cycle in G∗ (like one

33

from the decomposition of M∗) contains the face fv if that cycle separates fv from the
outerface fv∞ . Let Φ be a path between v and v∞. By the Jordan Curve Theorem,
the path’s dual edges {e∗ : e ∈ E(Φ)} intersect a simple cycle in G∗ an odd number
of times if and only if that simple cycle contains the dual face fv. By summing this
quantity over the simple cycles in the decomposition of M∗, we get that∑

e∈E(Φ)

Count(e∗, E(M∗)) = 1 (mod 2)

if and only if fv is contained in an odd number of these simple cycles. The latter is
clearly independent of the path Φ, which proves the claim.

Given a circuit M∗ in G∗, we use the above definition to partition the terminals T
into two sets according to their parity, namely,

Todd(M
∗)

def
= {t ∈ T : Par(ft,M

∗) = 1},

Teven(M∗)
def
= {t ∈ T : Par(ft,M

∗) = 0}.

Given S ∈ Te(G), recall that E∗S is the shortest cycle which is S-separating in G∗

(i.e. it separates between the terminal faces S∗ and S̄∗). Since E∗S is an elementary
cycle, it separates the plane into exactly two regions, which implies, without loss
of generality , Todd(E

∗
S) = S and Teven(E∗S) = S̄. Moreover, E∗S is a simple cycle

and thus goes through every vertex of W at most once. We decompose E∗S into
|W ∩ V (E∗S)| paths in the obvious way, where the two endpoints of each path, and
only them, are in W , and we let ΠS denote this collection of paths in G∗. There
are two exceptional cases here; first, if |W ∩ V (E∗S)| = 1 then we let ΠS contain one
path whose two endpoints are the same vertex (so actually a simple cycle). second,
if |W ∩ V (E∗S)| = 0 then we let ΠS = ∅ (we will deal with this case separately later).
Now define the set

Π
def
=

⋃
S∈Te(G)

ΠS

be the collection of all the paths that are obtained in this way over all possible
S ∈ Te(G). Notice that if the same path is contained in multiple sets ΠS, then it
is included in the set Π only once (in fact, this “overlap” is what we are trying to
leverage).

Now give to each path P ∈ Π a label that consists of three parts: (1) the two
endpoints of P , say wi, wj ∈ W ; (2) the two successive terminals on each of the faces
fi and fj, which describe where the path P enters vertices wi and wj, say between
tix−1, t

i
x and between tjy, t

j
y+1; and (3) the set Todd(P ∪Πij), where Πij is the shortest

path (or any other fixed path) that agrees with parts (1) and (2) of the label and
does not go through W , i.e., the shortest path between wi and wj that enters them

34

between tix−1, t
i
x and tjy, t

j
y+1 and does not go through any other vertex in W . This

includes the exceptional case i = j, in which P is actually a simple cycle.

We proceed to show that each label is given to at most one path in Π (which will be
used to bound |Π|). Assume toward contradiction that two different paths P, P ′ ∈ Π
get the same label, and suppose c(P ′) < c(P). Suppose P is the path between wi to
wj in E∗S for S ∈ Te(G), and P ′ is the path between the same endpoints (because
of the same label) in E∗S′ for another S ′ ∈ Te(G). By construction, the paths P and
P ′ are simple, because E∗S and E∗S′ are elementary cycles, and only their endpoint
vertices are from W .

The key to arriving at a contradiction is the next lemma. In these proofs, a path P
is viewed as a multiset of edges E(P), and the union and subtraction operations are
applied to multisets. In particular, the union of two paths with the same endpoints
gives a circuit.

Lemma 2.28. The circuit (E∗S \ P) ∪ P ′ is S-separating.

To prove this lemma, we will need the following two claims.

Claim 2.29. Let A,B and C be (the edge sets of) simple paths in G∗ between the
same wi, wj ∈ W . Then

∀t ∈ T, Par(ft, A ∪ C) = Par(ft, A ∪B) + Par(ft, B ∪ C) (mod 2).

Proof. Fix t ∈ T and a path Φ between t and v∞. Since A,B and C are simple
paths, ∑

e∈E(Φ)

Count(e∗, A ∪ C) = |E∗(Φ) ∩ A|+ |E∗(Φ) ∩ C|,

∑
e∈E(Φ)

Count(e∗, A ∪B) = |E∗(Φ) ∩ A|+ |E∗(Φ) ∩B|,

∑
e∈E(Φ)

Count(e∗, B ∪ C) = |E∗(Φ) ∩B|+ |E∗(Φ) ∩ C|.

Summing the three equations above modulo 2 yields

Par(ft, A ∪ C) + Par(ft, A ∪B) + Par(ft, B ∪ C) = 0 (mod 2),

which proves the claim.

Claim 2.30. Let
a

be the symmetric difference between two sets. For every 3 simple
paths A,B and C between wi, wj ∈ W ,

Todd(A ∪ C) = Todd(A ∪B)
i

Todd(B ∪ C).

35

Proof. Observe that Todd(A ∪B)
a
Todd(B ∪ C) contains all t ∈ T for which exactly

one of Par(ft, A∪B) and Par(ft, B∪C) is equal to 1, which by Claim 2.29 is equivalent
to having Par(ft, A ∪ C) = 1.

Proof of Lemma 2.28. To set up some notation, let Q
def
= E∗S \ P be a simple path

between wi and wj. Since E∗S is a simple cycle that contains P , we can write E∗S =
Q ∪ P .

The idea is to swap the path P in E∗S with the other path P ′, which for sake of
analysis is implemented in two steps. The first step replace P (in E∗S) with Πij,
which gives the circuit (E∗S \ P) ∪Πij = Q ∪Πij. The second step replaces Πij with
P ′, which results with the circuit Q ∪ P ′ = (E∗S \ P) ∪ P ′. Now apply Claim 2.30
twice, once to the simple paths A = Q, B = P and C = Πij, and once to the simple
paths A = Q, B = Πij and C = P ′, we get that

Todd(Q ∪ Πij) = Todd(E
∗
S)

i
Todd(P ∪ Πij),

Todd(Q ∪ P ′) = Todd(Q ∪ Πij)
i

Todd(Πij ∪ P ′).

By plugging the first equality above into the second one, and observing that Todd(Πij∪
P) = Todd(Πij ∪ P ′) because P and P ′ have the same label, we obtain that

Todd(Q ∪ P ′) = Todd(E
∗
S). (6)

Finally, it is easy to verify that the circuit Q∪P ′ must separate between Todd(Q∪P ′)
and Teven(Q ∪ P ′). Using (6) and the fact that E∗S is an elementary cycle, we know
that Todd(Q ∪ P ′) = Todd(E

∗
S) = S, and thus Teven(Q ∪ P ′) = T \ S. It follows that

Q ∪ P ′ is S-separating, as required.

Lemma 2.28 shows that the circuit (E∗S \ P) ∪ P ′ is S-separating, while also having
lower cost than E∗S. This contradicts the minimality of E∗S, and shows that the paths
in Π have distinct labels. Thus, |Π| is at most the number of distinct labels, and we
will bound the latter using the following claim.

Claim 2.31. Let P ∈ Π be a path between wi and wj, and let r ∈ [γ]. Then

∀t, t′ ∈ Tr, Par(ft, P ∪ Πij) = Par(ft′ , P ∪ Πij),

where Πij is the shortest path with the same parts (1) and (2) of the label as P , and
does not go through any other vertices of W .

Proof. Since t, t′ ∈ Tr, their dual faces ft and ft′ share wr on their boundary. P and
Πij are simple paths in G∗ with the same endpoints, and thus P ∪Πij is a circuit in

36

G∗, which by construction does not go through any vertex wr with r 6= i, j. Fix a
path Φ in G between t and v∞. We can extend it into a path Φ′ between t′ and v∞,
by taking a path At′t in G that goes around the face fr between t′ and t (both are

on the face fr, because t, t′ ∈ Tr), and letting Φ′
def
= At′t ∪ Φ.

Since P and Πij agree on the same parts (1) and (2) of the label, then P ∪Πij have
exactly two edges between some two successive terminals on each of the faces fi and
fj. Thus, if r 6= i, j then |At′t ∩ (P ∪ Πij)| = 0. If r = i or r = j but i 6= j then
|At′t ∩ (P ∪ Πij)| is either 0 or 2. And if r = i = j then |At′t ∩ (P ∪ Πij)| is either
0, 2 or 4. Therefore, if we examine the parities of ft and ft′ with respect to P ∪ Πij

using the paths Φ and Φ′ = At′t∪Φ, respectively, we conclude that these parities are
equal, as required.

We can now bound the number of possible labels of a path P ∈ Π. There are γ2

possibilities for part 1 of the label, i.e., the endpoints wi, wj ∈ W of P (note that we
may have i = j). Given this data, there are kikj possibilities for part 2, i.e., between
which two terminals the path P exits wi and enters wj. Furthermore, the number of
possibilities for part 3 is the number of different subsets Todd(P ∪Πij). By Claim 2.31
for every r ∈ [γ] either Tr ⊆ Todd(P ∪Πij) or Tr∩Todd(P ∪Πij) = ∅. Thus, the number
of different subsets Todd(P ∪ Πij) is the number of different subsets of {T1, . . . , Tγ},
which is at most 2γ. Altogether we get that there are at most 2γ

∑γ
i,j=1 ki ·kj different

labels.

Finally, there are also cycles E∗S for S ∈ Te(G) that do not go through any vertices
of W , i.e. W ∩ V (E∗S) = ∅. Thus, they are not include in Π, so we count them now
separately. Recall that without loss of generality Todd(E

∗
S) = S, i.e every such cycle

E∗S is identified uniquely by a different subset Todd(·). Since by Claim 2.31 there are
at most 2γ such subsets, we get that there are at most 2γ such cycles. Adding them
to our calculation, and Theorem 2.20 follows.

2.4.4 Flow Sparsifiers

Okamura and Seymour [OS81] proved that in every planar network with γ(G) = 1,
the flow-cut gap is 1 (as usual, flow refers here to multicommodity flow between
terminals). It follows immediately, see e.g. [AGK14], that for such a graph G, every
(q, s)-cut-sparsifier is itself also a (q, s)-flow-sparsifier of G. Thus, Corollary 2.17
implies the following.

Corollary 2.32. Every planar k-terminal network G with γ = 1 admits a minor
(1, O(k4))-flow-sparsifier.

Chekuri, Shepherd, and Weibel [CSW13, Theorem 4.13] proved that in every planar

37

𝐺, 𝐺∗

𝑡9

𝑡10

𝑡11

𝑡12

𝑤3

𝑡13

𝑡17

𝑡16
𝑡15

𝑡14𝑤4

𝑡18

𝑡19

𝑡20 𝑤5

𝑷

𝑷’

𝑷′′

𝑷′′′

𝑡5 𝑡6

𝑡7

𝑡8

𝑤2

𝑡2

𝑡3

𝑡1

𝑡4

𝑤1

𝐸𝑆
∗ = 𝑃 ∪ 𝑃′ ∪ 𝑃′′ ∪ 𝑃′′′

𝚷𝟏𝟐

Figure 4: A planar 20-terminal network with γ = 5. Let S ⊂ T be all the black
terminals, then E∗S (red dashed line) is split into 4 paths P, P ′, P ′′, P ′′′. The la-
bel of P , for example, is (1) w1 and w2; (2) t1, t2 and t5, t8; (3) Todd(P ∪ Π12) =
{t1, t2, t3, t4, t18, t19, t20}, and is computed using Π12 (blue dashed line).

network G, the flow-cut gap is at most 3γ(G), and thus Corollary 2.21 implies the
following.

Corollary 2.33. Every planar k-terminal network G with γ = γ(G) admits a minor
(3γ,O(γ22γk4))-flow-sparsifier.

2.5 Terminal-Cuts Scheme

In this section we present applications of our results in Section 2.2 to data structures
that store all the minimum terminal cuts in a graph G. As our focus is on the
data structure’s memory requirement, we do not discuss its query time. We start
with a formal definition of such a data structure, and then provide our bounds of
Õ(|Te|) bits for general graphs (Theorem 2.35), and Õ(2γk2) bits for planar graphs
(Corollaries 2.36 and 2.37). In comparison, a trivial data structure for general graphs
uses Õ(2k) bits, by storing the cost of all the terminal mincuts explicitly.

Definition 2.34. A terminal-cuts scheme (TC-scheme) is a data structure that uses
a storage (memory) M to support the following two operations on a k-terminal net-
work G = (V,E, T, c), where n = |V | and c : E → {1, . . . , nO(1)}.

1. Preprocessing, denoted P , which gets as input the network G and builds M .

38

2. Query, denoted R, which gets as input a subset of terminals S, and uses M
(without access to G) to output the cost of the minimum cutset ES.

We usually assume a machine word size of O(log n) bits, because even if G has only
unit-weight edges, the cost of a cut might be O(n2), which is not bounded in terms
of k.

Theorem 2.35. Every k-terminal network G = (V,E, T, c) admits a TC-scheme
with storage size of O(|Te(G)|(k + log n)) bits, where Te(G) is the set of elementary
cutsets in G.

Proof. We construct a TC-scheme as follows. In the preprocessing stage, given G,
the TC-scheme stores 〈S, c(ES)〉 for every S ∈ Te(G), where S is written using k
bits. The cost of every cutset is at most |E| · nO(1) = poly(n), and thus the storage
size of the TC-scheme is O(|Te(G)|(k + log n)) bits, as required. Now given a subset
S ⊂ T , the query operation R(S;P (G)) outputs

min
{∑
S′∈ϕ

mincutG(S ′) : ϕ ⊆ Te(G) s.t. ∪
S′∈ϕ

argmincutG(S ′) is S-separating in G
}
.

(7)
Since for every ϕ ⊆ 2T , the cutset ∪S′∈ϕ argmincutG(S ′) is S-separating in G if and
only if |1S(ti) − 1S(tj)| ≤

∑
S′∈ϕ |1S′(ti) − 1S′(tj)| for all i, j ∈ [k], the calculation

in (7) can be done with no access to G. Clearly, mincutG(S) ≤ R(S;P (G)). By
Theorem 2.9, there is ϕ ⊆ Te(G) such that argmincutG(S) = ·∪S′∈ϕ argmincutG(S ′)
and mincutG(S) =

∑
S′∈ϕ mincutG(S ′). Thus, R(S ′;P (G)) = mincutG(S ′).

Corollary 2.36. Every planar k-terminal network G with γ = 1 admits a TC-scheme
with storage size of O(k2 log n) bits, i.e., O(k2) words.

Proof. If G is a planar k-terminal network with γ = 1, then by Theorem 2.15 every
S ∈ Te(G) is equal to {ti, ti+1, . . . , tj} for some i, j ∈ [k] and |Te(G)| =

(
k
2

)
(recall

that all the terminals t1, . . . , tk are on the outerfaces of G in order). Thus, we can
specify S via these two indices i and j, using only O(log k) ≤ O(log n) bits (instead
of k). The storage bound follows.

Theorem 2.37. Every planar k-terminal network G with γ = γ(G) admits a TC-

scheme with storage size of O
(

2γ
(
1+
∑γ

i,j=1 ki ·kj
)(
γ+log n

))
≤ O(2γk2(γ+log n))

bits.

Proof sketch. If G is a planar k-terminal network with bounded γ, then Theorem
2.20 characterize 2γk2 special subsets of edges together with some small addition
information for each such subset that denote by label. It further prove that all the
elementary cuts can be restored using only the special subsets and their labels. As
each label can be stored by at most O(γ) bits, the storage bound follows.

39

2.6 Cut-Sparsifier vs. DAM in planar networks

In this section we prove the duality between cuts and distances in planar graphs
with all terminals on the outerface. Although the duality between shortest cycles
and minimum cuts in planar graphs is known, the main difficulty is to transform all
the shortest cycles into shortest paths without blowing up the number of terminals in
the graph. We prove this duality using the following two theorems, and applications
of them can be found in Section 2.6.3.

Theorem 2.38. Let G = (V,E, T, c) be a planar k-terminal network with all its
terminals T on the outerface. One can construct a planar k-terminal network G′ =
(V ′, E ′, T ′, c′) with all its terminals T ′ on the outerface, such that if G′ admits a
(q, s)-DAM then G admits a minor (q, O(s))-cut-sparsifier.

Theorem 2.39. Let G = (V,E, T, c) be a planar k-terminal network with all its
terminals T on the outerface. One can construct a planar k-terminal network G′ =
(V ′, E ′, T ′, c′) with all its terminals T ′ on the outerface, such that if G′ admits minor
(q, s)-cut-sparsifier then G admits a (q, O(s))-DAM.

2.6.1 Proof of Theorem 2.38

Construction of the Reduction. The idea is to first use the duality of planar
graphs in order to convert every minimum terminal cut into a shortest cycle, and
then “open” every shortest cycle into a shortest path between two terminals, which
in turn are preserved by a (q, s)-DAM. More formally, given a plane k-terminal
network G = (V,E, F, T, c) with all its terminals T = {t1, . . . , tk} on the outerface in
a clockwise order, we firstly construct its dual graph G1 where the boundaries of all
its k terminal faces T (G1) = {ft1 , . . . , ftk} share the same vertex vf∞ , and secondly
we construct G2 by the graph G1 where the vertex vf∞ is split into k different vertices
vi,i+1
f∞

, and every edge (vf∞ , v
∗) that embedded between (or on) the two terminal faces

fti and fti+1
in G1 correspond to a new edge (vi,i+1

f∞
, v∗) in G2 with the same length.

See Figure 5 from left to right for illustration, and see Section 2.7 for basic notions
of planar duality. In the following, f + f ′ denotes a new face that is the union of two
faces f and f ′.

V (G2) :=
(
V (G1) \ {vf∞}

)
∪ {v1,2

f∞
, . . . , vk−1,k

f∞
, vk,1f∞}

E(G2) :=
(
E(G1) \ {(vf∞ , v∗) : v∗ ∈ V (G1)}

)
∪ {(vi,i+1

f∞ , v∗) : i ∈ [k], (vf∞ , v
∗) ∈ E(G1), v∗ between fti , fti+1

}3

F (G2) :=
(
F (G1) \ {f∞, ft1 , . . . , ftk}

)
∪ {f∞ + ft1 + . . .+ ftk}

T (G2) :={v1,2
f∞
, . . . , vk−1,k

f∞
, vk,1f∞}

40

𝑡1

𝑡2 𝑡4

𝑡3

𝐺

𝐻

𝑡1

𝑡2 𝑡4

𝑡3

𝒗𝒇∞

𝐺, 𝐺1

𝐻,𝐻1

𝑡1

𝑡2 𝑡4

𝑡3

𝒗𝒇∞
𝟒𝟏 𝒗𝒇∞

𝟏𝟐 𝒗𝒇∞
𝟐𝟑 𝒗𝒇∞

𝟑𝟒

𝐺, 𝐺2

𝐻,𝐻2

Figure 5: The first graph (in black) is the original graph G. The second is its dual
graph G1 colored in red. The third graph H and its new terminals colored in red.
We get that graph by “splitting” the outerface vertex vf∞ to k new vertices, which
are the new terminals.

Let H2 be an (q, s)-DAM of G2. Since it is a minor of G2, both are planar k-
terminals network such that all their terminals are on their outerface in the same
clockwise order. Hence, we can use H2 and the same reduction above, but in reverse
operations, in order to construct a (q, O(s))-cut-sparsifier H for G. First, we “close”
all the shortest paths in H2 into cycles by merging its k terminals vi−1,i

f∞
into one

vertex called vf∞ , and denote this new graph by H1. Note that H1 has k new faces
ft1 , . . . , ftk , where each face fti was created by uniting the two terminals vi−1,i

f∞
, vi,i+1
f∞

of H2. These k new faces of H1 will be its k terminal faces. Secondly, we argue that
the dual graph of H1 is our requested cut-sparsifier of G, which we denote by H. See
Figure 5 from right to left for illustration.

Analysis of the Reduction. The key element of the reduction’s proof is the
duality between every shortest cycle in G1 to a shortest path in G2, which we formally
stated in the following lemma. Given G and its dual graph G1 = G∗ as stated above,
for every subsets of terminals S ⊂ T (G) we denote by S∗ ⊂ T (G∗) the corresponding
set of terminal faces, i.e. S∗ = {fti : ∀i ∈ [k] s.t. ti ∈ S}.

Lemma 2.40. Every shortest circuit that separates between the terminal faces S∗i,j
and S̄∗i,j in G1, corresponds to a shortest path between the two terminals vi−1,i

f∞
and

vj,j+1
f∞

in G2, and vise versa.

3We allow wraparound, i.e., vk,k+1 = vk,1.

41

V (H1) :=
(
V (H2) \ {v1,2

f∞
, . . . , vk−1,k

f∞
, vk,1f∞}

)
∪ {vf∞}

E(H1) :=
(
E(H2) \ {(vi,i+1

f∞ , v∗) : i ∈ [k]}
)
∪ {(vf∞ , v) : (vi,i+1

f∞ , v∗) ∈ E(H2)}
F (H1) :=

(
F (H2) \ {f∞ + ft1 + . . .+ ftk}

)
∪ {f∞, ft1 , . . . , ftk}

T (H1) := {ft1 , . . . , ftk}

Proof. First direction - Circuits to distances.

Let C be a minimum circuit that separates between the terminal faces S∗ij and S̄∗ij in
G1 (assume without loss of generality i ≤ j). By Theorem 2.9 that circuit is a union
of a disjoint shortest l cycles for some l ≥ 1. We prove that this circuit corresponds
to a simple path in G2 between the terminals vi−1,i

f∞
and vj,j+1

f∞
with the same weight

using an induction on l.

Induction base: l = 1. The circuit C contains exactly one simple cycle C that
separates between the terminal faces S∗ij and S̄∗ij = S∗(j+1)(i−1) in G1. So the ver-

tex vf∞ appear in C exactly once, i.e. C = 〈vf∞ , v1, v2, . . . , vx, vf∞〉. According to
our construction, the graph G2 contains the same vertices and edges as G1, except
of the vertex vf∞ and all the edges incident to it. Therefore, 〈v1, v2, . . . , vx〉 is a
simple path in G2. Moreover, since without loss of generality the vertex v1 em-
bedded between the terminal faces fti−1

, fti and the vertex vx embedded between

the terminal faces ftj , ftj+1
, we get that (vi−1,i

f∞
, v1), (vx, v

j,j+1
f∞

) ∈ E(G2). Thus,

〈vi−1,i
f∞

, v1, v2, . . . , vx, v
j,j+1
f∞
〉 is a simple path in G2 with the same weight as C.

Induction step: assume that if C has l′ < l cycles, then it corresponds to a simple
path in G2 between the terminals vi−1,i

f∞
and vj,j+1

f∞
with the same weight, and prove

it for l. There are two cases:

• If neither of the cycles in the circuit is nested. Then without loss of generality
all the cycles C ∈ C bound terminal faces of S∗ij. Let C ∈ C be the cycle that
bound the terminal faces fti , . . . , ftx were i < x < j. Thus {C} is a simple
circuit that separates between the terminal faces S∗ix to S̄∗ix = S∗(x+1)(i−1), and

C \ {C} is a simple circuit that separates between the terminal faces S∗(x+1)j

to S̄∗(x+1)j = S∗(j+1)x in G1. By the inductive assumption these two circuits
correspond to two simple paths in G2 with the same weights. The first path
is between the two terminals vi−1,i

f∞
and vx,x+1

f∞
, and the second is between the

two terminals vx,x+1
f∞

and vj,j+1
f∞

, which form a simple path from vi−1,i
f∞

to vj,j+1
f∞

in G2 with the same weight as C.

42

• There are nested cycles in the circuit. Let C ∈ C be a simple cycle that
separates between S∗xy and S̄∗xy in G2, and contains at least one cycle of C \{C}.
If i < x ≤ y < j or x < i ≤ j < y then C \ {C} separates between S∗ij to S̄∗ij
in contradiction to the minimality of C. Therefore either i = x ≤ j < y or
i < x ≤ j = y. Assume without loss of generality that the first case holds, i.e.
C is a minimum circuit that separates between S∗iy and S̄∗iy, and C \ {C} is a
minimum circuit that separates between the terminal faces S∗(y+1)j to S̄∗(y+1)j in
G1. By the inductive assumption these two circuits correspond to two simple
paths in G2 with the same weights. The first simple path is between the
two terminals vi−1,i

f∞
and vy,y+1

f∞
, and the second simple path is between the

two terminals vy,y+1
f∞

and vj,j+1
f∞

. Uniting these two paths forms a simple path

between vi−1,i
f∞

to vj,j+1
f∞

in G2 with the same weight as C as we required.

Second direction - Distances to cuts. Let P be a shortest path between the
terminals vi−1,i

f∞
and vj,j+1

f∞
in G1 (assume i ≤ j), and let l be the number of terminals

in that path (including the two terminals in its endpoints). It is easy to verify that
replacing each terminal vx,x+1

f∞
in P with the vertex vf∞ transform it to a circuit in

G1 with l − 1 disjoint simple cycles and with the same weight of P . We prove that
this circuit separates between the terminal faces S∗ij = {fti , . . . , ftj} and S̄∗ij in G1 by
an induction on l.

Induction base: l = 2, i.e. the only terminals on the path P are those on the
endpoints. Thus, all the inner vertices on that path are non terminal vertices, i.e.
P = 〈vi−1,i

f∞
, v1, v2, . . . , vx, v

j,j+1
f∞
〉. Substitute the terminals vi−1,i

f∞
and vj,j+1

f∞
of G2

with the vertex vf∞ of G1 and get C = 〈vf∞ , v1, v2, . . . , vx, vf∞〉. According to our
construction, 〈v1, v2, . . . , vx〉 is a simple path in G1, and (vi−1,i

f∞
, v1), (vl, v

j,j+1
f∞

) ∈
E(G2) if and only if (vf∞ , v1), (vx, vf∞) ∈ E(G1). Therefore, C is a simple cycle in
G1 and the two edges that incident to the vertex vf∞ are embedded between the
terminal faces fti−1

to fti and ftj to ftj+1
in G1. Thus, C separates between S∗ij to

S̄∗ij, and has the same weight as P .

Induction step: assume that if P has l′ < l inner terminals then it corresponds to
a simple circuit with l′ cycles that separates between the terminal faces S∗ij and S̄∗ij
in G1, and prove it for l′ = l. Let vx,x+1

f∞
be some inner terminal in the path P that

brake it into two simple sub-paths P1 and P2, i.e. P1 is a simple path between vi−1,i
f∞

to vx,x+1
f∞

and P2 is a simple path between vx,x+1
f∞

to vj,j+1
f∞

in G2. Since both of these
paths have less than l terminals we can use the inductive assumption and get that
P1 corresponds to a circuit C1 in G1 with the same weight that separates between
the terminals S∗ixand S̄∗ix and S̄∗ix, and P2 corresponds to a circuit C2 in G1 with the
same weight that separates between the terminals S∗(x+1)j and S̄∗(x+1)j. If i ≤ x ≤ j,

then S∗ij = S∗ix ∪ S∗(x+1)j. And if i ≤ j < x (symmetric to the case were x < i ≤ j),

then S∗(x+1)j = S∗(j+1)x and so S∗ij = S∗ix \S∗(j+1)x. In both cases we get that C1∪C2 is a

43

simple circuit in G1 with the same weight as P that separates between the terminal
faces S∗ij and S̄∗ij in G1, and the Lemma follows.

Lemma 2.41. The elementary cuts Te(G) and Te(H) are equal, and mincutG(S) ≤
mincutH(S) ≤ q ·mincutG(S) for every S ∈ Te(G).

Proof. Let us call a shortest path between two terminals elementary if all the internal
vertices on the path are Steiner, and denote by De all the terminal pairs that the
shortest path between them is elementary. Moreover, recall that every elementary
subset S ∈ Te(G) is of the form {ti, ti+1, . . . , tj}, and denote it Sij and S̄ij = S(j+1)(i−1)

for simplicity.

By Lemma 2.40 a shortest circuit that separates between S∗ij to S̄∗ij in G1 contains l

elementary cycles if and only if a shortest path between the terminals vi−1,i
f∞

and vj,j+1
f∞

in G2 contains l + 1 terminals (including the endpoints). Notice that Lemma 2.40
holds also in the graphsH2 andH1, therefore Te(G1) = De(G2) andDe(H2) = Te(H1).
In addition, the equalities Te(G) = Te(G1) and Te(H1) = Te(H) holds by the duality
between cuts and circuits, and De(G2) = De(H2) because of the triangle inequality
in the distance metric. Altogether we get that Te(G) = Te(H).

Again by the duality between cuts and circuits and by Lemma 2.40 on the two
pairs of graphs G,G2 and H2, H1 we get that mincutG(Sij) = dG2(v

i−1,i
f∞

, vj,j+1
f∞

) and

mincutH(Sij) = dH2(v
i−1,i
f∞

, vj,j+1
f∞

). Since H2 is an (q, s)-DAM of G2 we get that
mincutG(Sij) ≤ mincutH(Sij) ≤ q ·mincutG(Sij) and the lemma follows.

Lemma 2.42. The size of H is O(s).

Proof. Given that H2 is an (q, s)-DAM, i.e. |V (H2)| = s, we need to prove that
|V (H)| = O(|V (H2)|). Note that by the reduction construction |V (H)| = |F (H1)| =
|F (H2)| + k − 1. Moreover, we can assume that H2 is a simple planar graph (if it
has parallel edges, we can keep the shortest one). Thus, |E(H2)| ≤ 3|V (H2)| + 6.
Plug it in Euler’s Formula to get |F (H2)| ≤ 2|V (H2)| + 8. Since s ≥ k we derive
that |V (H)| ≤ 2s+ 8 + k − 1 = O(s) and the lemma follows.

Proof of Theorem 2.38. Given H2 a (q, s)-DAM of G2 and let H be the graph that
was constructed from H2. By Lemma 2.42 and Lemma 2.41 the graph H is a
(q, O(s))-cut-sparsifier of G. Since H2 is a minor of G2, and minor is closed un-
der planar duality, then H is furthermore a minor of G and the theorem follows.

2.6.2 Proof of Theorem 2.39

Construction of the Reduction. The idea is to first “close” the shortest paths
between every two terminals into shortest cycles that separates between terminal

44

faces, and then use the planar duality between cuts and cycles to get that every short-
est cycle corresponds to a minimum terminal cut that in turn preserved by an (q, s)-
cut-sparsifier. More formally, given a plane k-terminal network G = (V,E, F, T, c)
with all its terminals T = {t1, . . . , tk} on the outerface in a clockwise order. Firstly,
construct a graph G1 by adding to G a new vertex vf∞ and connects it to all
its k terminals ti using edges with 0 capacity. Note that G1 has k new faces
f1,2, . . . , fk−1,k, fk,1, where each fi,i+1 was created by adding the two new edges
(vf∞ , ti) and (vf∞ , ti+1). These k new faces will be the terminals of G1.

V (G1) := V ∪ {vf∞}
E(G1) := E ∪ {(vf∞ , ti) : ti ∈ T}
F (G1) := F ∪ {f1,2, . . . , fk−1,k, fk,1}
T (G1) := {f1,2 , . . . , fk−1,k , fk,1}

Secondly, we denote by G2 the dual graph of G1, where its k terminals are T (G2) =
{vi,i+1 : fi,i+1 ∈ T (G1)}. Moreover, the new vertex vf∞ in G1 corresponds to the
outerface f∞ of G2, the k new edges (vf∞ , ti) we added to G1 are the edges that lie
on the outerface of G2, and the vertices on the outerface of G2 are the k terminals
vi,i+1 in a clockwise order. See Figure 5 from left to right for illustration, and see
Section 2.7 for basic notions of planar duality.

Let H2 be a (q, s)-cut-sparsifier and a minor of G2. Since H2 is a minor of G2,
then both are plane graphs with all their terminals on the outerface in the same
clockwise order, and there is an edge with capacity 0 on the outerface that connects
between every two adjacent terminals. Hence, we can use H2 and the same reduction
above (but in opposite order of operations) in order to construct an (q, O(s))-DAM
H of G as follows. Firstly, let H1 be the dual graph of H2, where every minimum
terminal cut in H2 is equivalent to a shortest cycle that separates terminal faces.
Notice that again each terminal face fi,i+1 in H1 contains the two edges (vf∞ , ti) and
(vf∞ , ti+1) with capacity 0 on their boundary. Secondly, we “open” each shortest
cycle in H ′∗ into a shortest path between terminals by removing the vertex vf∞ and
all its incidence edges, and denote this new graph by H. The terminals of H are all
the vertices v ∈ V (H1) such that (vf∞ , v) is an edge in H1, which are equal to the
original terminals of G. See Figure 6 from right to left for illustration.

V (H) := V (H1) \ {vf∞}
E(H) := E(H1) \ {(vf∞ , ti) : ti ∈ T}
F (H) := F (H1) \ {f1,2, . . . , fk−1,k, fk,1}
T (H) := T (G)

45

𝑡1

𝑡2 𝑡4

𝑡3

𝐺

𝐻

𝐺1 𝐺1, 𝐺2

𝑡1

𝑡2 𝑡4

𝑡3

𝒗𝒇∞

𝒇𝟏,𝟐 𝒇𝟒,𝟏

𝒇𝟑,𝟒 𝒇𝟐,𝟑

𝑡1

𝑡2 𝑡4

𝑡3

𝒗𝒇∞

𝒗𝟏,𝟐 𝒗𝟒,𝟏

𝒗𝟑,𝟒 𝒗𝟐,𝟑

𝐻1, 𝐻2 𝐻1

Figure 6: The first graph (in black) is the original graph G. The second is the graph
G1, where the additional vertex and edges and terminal faces colored in blue. And
the third graph G2 and its terminals are colored in red. The bold red edges are the
dual of the blue edges, and both of them have capacity 0.

Analysis of the Reduction.

Lemma 2.43. The size of H is O(s).

Proof. Given that H2 is an (q, s)-cut-sparsifier, i.e. |V (H2)| = s, we will prove that
|V (H)| = O(|V (H2)|). We can assume that H2 is a simple planar graph (if not, we
can replace all the parallel edges between every two vertices by one edge where its
capacity is the sum over all the capacities of these parallel edges), thus |E(H2)| ≥
3
2
|F (H2)|. Plug it in Euler’s Formula to get |F (H2)| ≤ 2|V (H2)| − 4 = 2s − 4. By

the reduction construction |V (H)|+ 1 = |V (H1)| = |F (H2)| = O(s), and the lemma
follows.

Lemma 2.44. The graph H is a minor of G.

Proof. Given that H2 is a minor of G2, and that minor is close under deletion and
contraction of edges we get that H1 is a minor of G1. Now by deleting the same
vertex vf∞ together with all its incidence edges from both G1 and H1, we get the
graphs G and H correspondingly. Therefore H is a minor of G, and the lemma
follows.

Lemma 2.45. The graph H preserve all the distances between every two terminals
by factor q, i.e. dG(ti, tj) ≤ dH(ti, tj) ≤ q · dG(ti, tj) for every ti, tj ∈ T .

46

Proof. Notice that connecting all the terminals to a new vertex using edges with
capacity 0 is equivalent to uniting all the terminals into one vertex, and also splitting
the vertex vf∞ to k new terminals is equivalent to disconnecting all the terminals by
deleting that vertex. Thus our reduction is equivalent to the reduction of Theorem
2.38. In particular, Lemma 2.40 holds on the graphs G,G1 and on the graphs H,H1

correspondingly, i.e. every shortest path between two terminals ti and tj in G (or H)
corresponds to a minimum circuit in G1 (or H1) that separates between the terminal
faces {fi,i+1, . . . , fj−1,j} to {fj,j+1, . . . , fi−1,i} and vise versa.

Let S(i,i+1),(j−1,j) = {vi,i+1, . . . , vj−1,j} be a set of terminals in G2, where ev-
ery terminal vl,l+1 corresponds to the terminal face fl,l+1 in G1. By the dual-
ity between cuts and circuits we get that dG(ti, tj) = mincutG2(S(i,i+1),(j−1,j)) and
dH(ti, tj) = mincutH2(S(i,i+1),(j−1,j)). Since H2 is an (q, s)-cut-sparsifier of G2 we de-
rive the inequalities dG(ti, tj) ≤ dH(ti, tj) ≤ q · dG(ti, tj) and the lemma follows.

Proof of Theorem 2.39. By Lemma 2.43, Lemma 2.44 and Lemma 2.45 the k-
terminal network H is an (q, O(s))-DAM of G and the theorem follows.

2.6.3 Duality Applications

By Theorem 2.38 and Theorem 2.39, every k-terminal network G with γ = 1 admits
a (q, s)-DAM if and only if it admits a minor (q, O(s))-cut-sparsifier. Hence, every
new upper or lower bound results, especially for q > 1, on DAM also holds for
the minor cut-sparsifier problem and vise versa. For example, the upper bound of
(1 + ε, (k/ε)2)-DAM for planar networks [CGH16] yields the following new theorem.

Theorem 2.46. Every planar network G with γ = 1 admits a minor (1+ε, Õ((k/ε)2)-
cut-sparsifier for every ε > 0.

As already mentioned, by recent independent work [GHP17] these networks also
admit a (1, O(k2))-sparsifier that is planar but not a minor of G.

In addition, we can apply known upper and lower bounds for (1, s)-DAM to the
minor mimicking network problem (i.e., a cut-sparsifier of quality 1). In particular,
the known (1, k4)-DAM [KNZ14] yields an alternative proof for Corollary 2.17, and
the known lower bound of (1,Ω(k2))-DAM (which is shown on grid graphs) [KNZ14]
yields an alternative proof for a lower bound shown in [KR13].

2.7 Planar Duality

Using planar duality we bound the size of mimicking networks for planar graphs
(Theorem 2.11), and we further use it to prove the duality between cuts in distances

47

(Theorem 2.38 and Theorem 2.39) Recall that every planar graph G has a dual
graph G∗, whose vertices correspond to the faces of G, and whose faces correspond
to the vertices of G, i.e., V (G∗) = {v∗f : f ∈ F (G)} and F (G∗) = {f ∗v : v ∈ V (G)}.
Thus the terminals T = {t1, . . . , tk} of G corresponds to the terminal faces T (G1) =
{ft1 , . . . , ftk} in G∗, which for the sake of simplicity we may refer them as terminals
as well. Every edge e = (v, u) ∈ E(G) with capacity c(e) that lies on the boundary
of two faces f1, f2 ∈ F (G) has a dual edge e∗ = (v∗f1 , v

∗
f2

) ∈ E(G∗) with the same
capacity c(e∗) = c(e) that lies on the boundary of the faces f ∗v and f ∗u . For every
subset of edges M ⊂ E(G), let M∗ := {e∗ : e ∈ M} denote the subset of the
corresponding dual edges in G∗.

The following theorem describes the duality between two different kinds of edge sets –
minimum cuts and minimum circuits – in a plane multi-graph. It is a straightforward
generalization of the case of st-cuts (whose dual are cycles) to three or more terminals.

A circuit is a collection of cycles (not necessarily disjoint) C = {C1, . . . , Cl}. Let
E(C) = ∪li=1Ci be the set of edges that participate in one or more cycles in the
collection (note it is not a multiset, so we discard multiplicities). The capacity of a
circuit C is defined as

∑
e∈E(C) c(e).

Theorem 2.47 (Duality between cutsets and circuits). Let G be a connected plane
multi-graph, let G∗ be its dual graph, and fix a subset of the vertices W ⊆ V (G).
Then, M ⊂ E(G) is a cutset in G that has minimum capacity among those separating
W from V (G) \ W if and only if the dual set of edges M∗ ⊆ E(G∗) is actually
E(C) for a circuit C in G∗ that has minimum capacity among those separating the
corresponding faces {f ∗v : v ∈ W} from {f ∗v : v ∈ V (G) \W}.

Lemma 2.48 (The dual of a connected component). Let G be a connected plane
multi-graph, let G∗ be its dual, and fix a subset of edges M ⊂ E(G). Then W ⊆ V
is a connected component in G \M if and only if its dual set of faces {f ∗v : v ∈ W}
is a face of G∗[M∗].

Fix S ⊂ T . We call E∗S elementary circuit if ES is an elementary cutset in G. Note
that by Lemma 2.48 E∗S is an elementary circuit if and only if the graph G∗ \ E∗S
has exactly two faces. Thus Te(G) = Te(G∗), and the circuit E∗S has exactly one
minimum cycle in G∗. For the sake of simplicity we later on use the term cycle
instead of circuit when we refer to elementary minimum circuit.

48

3 Flow-Cut Gaps and Face Covers in Planar

Graphs

3.1 Opening

We present some new upper bounds on the gap between the concurrent flow and
sparsest cut in planar graphs in terms of the topology of the terminal set. Our proof
employs low-distortion metric embeddings into `1, which are known to have a tight
connection to the flow-cut gap (see, e.g., [LLR95, GNRS04]). We now review the
relevant terminology.

Consider an undirected graph G equipped with nonnegative edge lengths ` : E(G)→
R+ and a subset T = T(G) ⊆ V (G) of terminal vertices. We use dG,` to denote the
shortest-path distance in G, where the length of paths is computed using the edge
lengths `. We use c+

1 (G, `;T) to denote the minimal number D ≥ 1 for which there
exists 1-Lipschitz mapping F : V (G)→ `1 such that F |T(G) has bilipschitz distortion
D. In other words,

∀u, v ∈ V (G) : ‖f(u)− f(v)‖ ≤ dG,`(u, v) , (8)

∀s, t ∈ T(G) : ‖f(s)− f(t)‖ ≥ 1
D
· dG,`(s, t) . (9)

For an undirected graph G, we define c+
1 (G;T)

def
= sup` c

+
1 (G, `;T), where ` ranges

over all nonnegative lengths ` : E(G)→ R+. When T = V (G), we may omit it and

write c+
1 (G, `)

def
= c+

1 (G, `;V (G)) and c+
1 (G)

def
= c+

1 (G;V (G)). Finally, for a family F
of finite graphs, we denote c+

1 (F)
def
= sup{c+

1 (G) : G ∈ F}, and for k ∈ N, we denote

c+
1 (F ; k)

def
= sup

{
c+

1 (G;T) : G ∈ F ,T ⊆ V (G), |T| = k
}
.

Let Ffin denote the family of all finite graphs, and Fplan the family of all planar
graphs. It is known that c+

1 (Ffin; k) = Θ(log k) [AR98, LLR95] for all k ≥ 1. For
planar graphs, one has c+

1 (Fplan; k) ≤ O(
√

log k) [Rao99] and c+
1 (Fplan) ≥ 2 [LR10].

Fix a plane graph G (this is a planar graph G together with a drawing in the plane).
For T ⊆ V (G), we define the quantity γ(G;T) to be the smallest number of faces in

G that together cover all the vertices of T, and γ(G)
def
= γ(G;V (G)).

We say that the pair (G,T) is an Okamura-Seymour instance, or in short an OS-
instance, if it can be drawn in the plane with all its terminal on the same face, i.e., if
there is a planar representation for which γ(G;T) = 1. A seminal result of Okamura
and Seymour [OS81] implies that c+

1 (G;T) = 1 whenever (G,T) is an OS-instance.

49

The methods of [LS09] show that c+
1 (G;T) ≤ 2O(γ(G;T)), and a more direct proof

of [CSW13, Theorem 4.13] later showed that c+
1 (G;T) ≤ 3γ(G;T). Our main result

is the following improvement.

Theorem 3.1. For every plane graph G and terminal set T ⊆ V (G),

c+
1 (G;T) ≤ O(log γ(G;T)).

A long-standing conjecture [GNRS04] asserts that c+
1 (F) < ∞ for every family F

of finite graphs that is closed under taking minors and does not contain all finite
graphs. If true, this conjecture would of course imply that one can replace the
bound of Theorem 3.1 with a universal constant.

It is known that a plane graph G has treewidth O(
√
γ(G)) [KLL02]. If we use

Ftw(w) and Fpw(w) to denote the families of graphs of treewidth w and pathwidth
w, respectively, then it is known that c+

1 (Ftw(2)) is finite [GNRS04], but this remains
open for c+

1 (Ftw(3)). (On the other hand, c+
1 (Fpw(w)) is finite for every w ≥ 1 [LS13],

and currently the best quantitative bound is c+
1 (Fpw(w)) ≤ O(

√
w) [AFGN18].)

The parameter γ(G;T) was previously studied in the context of other computational
problems, including the Steiner tree problem [EMV87, Ber90, KNvL19], all-pairs
shortest paths [Fre95], and cut sparsifiers [KR20, KPZ19]. For a planar graph G
(without a drawing) and T ⊆ V (G), the terminal face cover, denoted γ∗(G;T), is
the minimum number of faces that cover T in all possible drawings of G in the
plane. All our results, including Theorems 3.1, 3.3, and 3.5, hold also for the param-
eter γ∗(G;T), simply because the relevant quantities do not depend on the graph’s
drawing. When G and T are given as input, γ(G;T) can be computed in polynomial
time [BM88], but computing γ∗(G;T) is NP-hard [BM88]. In other words, while find-
ing faces that cover T optimally in a given drawing is tractable, finding an optimal
drawing is hard.

3.1.1 The Flow-Cut Gap

We now define the flow-cut gap, and briefly explain its connection to c+
1 . Consider

an undirected graph G with terminals T = T(G). Let c : E(G) → R+ denote an
assignment of capacities to edges, and d :

(
T
2

)
→ R+ an assignment of demands.

The triple (G, c, d) is called an (undirected) network. The concurrent flow value of
the network is the maximum value λ > 0, such that λ · d({s, t}) units of flow can
be routed between every demand pair {s, t} ∈

(
T
2

)
, simultaneously but as separate

commodities, without exceeding edge capacities.

Given the network (G, c, d) and a subset S ⊂ V , let cap(S) denote the total capacity
of edges crossing the cut (S, V \ S), and let dem(S) denote the sum of demands

50

d({s, t}) over all pairs {s, t} ∈
(
T
2

)
that cross the same cut. The sparsity of a cut

(S, V \ S) is defined as cap(S)/ dem(S), and the sparsest-cut value of (G, c, d) is the
minimum sparsity over all cuts in G. Finally, the flow-cut gap in the network (G, c, d)
is defined as the ratio

gap(G, c, d)
def
=

sparsest-cut(G, c, d)

concurrent-flow(G, c, d)
≥ 1 ,

where the inequality is a basic exercise.

For a graph G (without capacities and demands), denote gap(G;T)
def
=

supc,d gap(G, c, d), where c and d :
(
T
2

)
→ R+ range over assignments of capaci-

ties and demands as above. The following theorem presents the fundamental duality
between flow-cut gaps and `1 distortion.

Theorem 3.2 ([AR98, LLR95, GNRS04]). For every finite graph G with terminals
T ⊆ V (G),

gap(G;T) = c+
1 (G;T) .

Thus our main result (Theorem 3.1) can be stated in terms of flow-cut gaps as follows.

Theorem 3.3. For every plane graph G and terminal set T ⊆ V (G),

gap(G;T) ≤ O(log γ(G;T)) .

Remark 3.4. It is straightforward to check that our argument yields a polynomial-
time algorithm that, given a plane graph G and capacities c and demands d :

(
T
2

)
→

R+, produces a cut (S, V (G) \ S) whose sparsity is within an O(log γ(G;T)) factor
of the sparsest cut in the flow network (G, c, d).

3.1.2 The Vertex-Capacitated Flow-Cut Gap

One can consider the analogous problems in more general networks; for instance,
those which are vertex-capacitated (instead of edge-capacitated). In that setting,
bounding the flow-cut gap appears to be significantly more challenging than for edge
capacities. The authors of [FHL05] establish that the vertex-capacitated flow-cut
gap is O(log k) for general networks with k terminals, and this bound is known to
be tight [LR99].

For planar networks, Lee, Mendel, and Moharrami [LMM15] sought a vertex-
capacitated version of the Okamura-Seymour Theorem [OS81], and proved that the
vertex-capacitated flow-cut gap is O(1) for instances (G,T) satisfying γ(G;T) = 1.

However, it was not previously known whether the gap is bounded even for γ(G;T) =
2. We prove that in planar vertex-capacitated networks (G,T) with γ = γ(G;T),

51

the flow-cut gap is O(γ); see Theorem 3.20. In fact, we prove this result in the
more general setting of submodular vertex capacities, also known as polymatroid
networks. This model was introduced in [CKRV15] as a generalization of vertex
capacities, and the papers [CKRV15, LMM15] showed that more refined methods
in metric embedding theory are able to establish upper bounds on the flow-cut gap
even in this general setting.

3.1.3 Stochastic Embeddings

Instead of embedding plane graphs with a given γ(G;T) directly into `1, we will
establish the stronger result that such instances can be randomly approximated by
trees in a suitable sense.

If (X, dX) is a finite metric space and F is a family of finite metric spaces, then
a stochastic embedding of (X, dX) into F is a probability distribution µ on pairs
(ϕ, (Y, dY)) such that ϕ : X → Y , (Y, dY) ∈ F , and dY (ϕ(x), ϕ(x′)) ≥ dX(x, x′) for
all x, x′ ∈ X. The expected stretch of µ is defined by

str(µ)
def
= max

{
E(ϕ,(Y,dY))∼µ [dY (ϕ(x), ϕ(x′))]

dX(x, x′)
: x 6= x′ ∈ X

}
.

We will refer to an undirected graph G equipped with edge lengths `G : E(G)→ R+

as a metric graph, and use dG to denote the corresponding shortest-path distance.
If G is equipped implicitly with a set T(G) ⊆ V (G) of terminals, we refer to it
as a terminated graph. A graph equipped with both lengths and terminals will be
called a terminated metric graph. We will consider any graph or metric graph G as
terminated with T(G) = V (G) if terminals are not otherwise specified.

Given a terminated metric graph G, a stochastic terminal embedding of G into a
family F of terminated metric graphs is a distribution µ over pairs (ϕ, F) such that
ϕ : V (G)→ V (F); the graph F ∈ F ; the terminals map to terminals:

∀t ∈ T(G), Pr
[
ϕ(t) ∈ T(F)

]
= 1 ;

and the embedding is non-contracting on terminals:

∀s, t ∈ T(G), Pr
(ϕ,F)∼µ

[
dF (ϕ(s), ϕ(t)) ≥ dG(s, t)

]
= 1 . (10)

The expected stretch of this embedding, again denoted str(µ), is defined just as for
general metric spaces:

str(µ)
def
= max

{
E(ϕ,F)∼µ [dF (ϕ(u), ϕ(v))]

dG(u, v)
: u 6= v ∈ V (G)

}
. (11)

52

Theorem 3.5. Consider a terminated metric plane graph G with γ = γ(G;T(G)).
Then G admits a stochastic terminal embedding into the family of metric trees with
expected stretch O(log γ).

Theorem 3.5 immediately yields Theorem 3.1 using the fact that every finite tree
metric embeds isometrically into `1 (see, e.g., [GNRS04] for further details). The
bound O(log γ) is optimal up to the hidden constant, as it is known that for an
m×m planar grid equipped with uniform edge lengths, the expected stretch of any
stochastic embedding into metric trees is at least Ω(logm) [KRS01]. (A similar lower
bound holds for the diamond graphs [GNRS04].)

Theorem 3.5 may also be of independent interest (including when T(G) = V (G))
as embedding into dominating trees has many applications, including to competitive
algorithms for online problems such as buy-at-bulk network design [AA97], and to
approximation algorithms for combinatorial optimization, e.g., for the group Steiner
tree problem [GKR00]. We remark that stochastic terminal embeddings into metric
trees were employed by [GNR10] in the context of approximation algorithms, and
were later used in [EGK+14] to design flow sparsifiers.

3.2 Approximation by random trees

Before introducing our primary technical tools, we will motivate their introduction
with a high-level overview of the proof of Theorem 3.5. Fix a terminated metric
plane graph G with γ = γ(G;T(G)) > 1. Our plan is to approximate G by an OS-
instance (where all terminals lie on a single face) by uniting the γ faces covering T(G),
while approximately preserving the shortest-path metric on G. The use of stochas-
tic embeddings will come from our need to perform this approximation randomly,
preserving distances only in expectation. Using the known result that OS-instances
admit stochastic terminal embeddings into metric trees, this will complete the proof.

A powerful tool for randomly “simplifying” a graph is the Peeling Lemma [LS09],
which informally “peels off” any subset A ⊂ V (G) from G, by providing a stochastic
embedding of G into graphs obtained by “gluing” copies of G \ A to the induced
graph G[A]. The expected stretch of the embedding depends on how “nice” A is;
for example, it is O(1) when A is a shortest path in a planar G. The Peeling
Lemma can be used to stochastically embed G into dominating OS-instances with
expected stretch 2O(γ) [CSW13, Section 4.5], by iteratively peeling off a shortest path
A between two special faces (which has the effect of uniting them into a single face).

In contrast, our argument applies the Peeling Lemma only once. We pick A to form
a connected subgraph in G that spans the γ distinguished faces. By cutting along
A, one effectively merges all γ faces into a single face in a suitably chosen drawing

53

of G \ A . The Peeling Lemma then provides a stochastic terminal embedding of G
into a family of OS-instances that are constructed from copies of A and G \ A.

The expected stretch we obtain via the Peeling Lemma is controlled by how well
the (induced) terminated metric graph on A can be stochastically embedded into
a distribution over metric trees. For this purpose, we choose the set A to be a
shortest-path tree in G that spans the γ distinguished faces, and then use a result of
Sidiropoulos [Sid10] to stochastically embed A into metric trees with expected stretch
that is logarithmic in the number of leaves (rather than logarithmic in the number of
vertices, as in stochastic embeddings for general finite metric spaces [FRT04]). We
remark that this is non-trivial because, while A is (topologically) a tree spanning γ
faces, the relevant metric on A is dG (which is not a path metric on G[A]).

3.2.1 Random partitions, embeddings, and peeling

For a finite set S, we use Trees(S) to denote the set of all metric spaces (S, d) that
are isometric to (V (T), dT) for some metric tree T .

Theorem 3.6 (Theorem 4.4 in [Sid10]). Let G be a metric graph, and let P1, . . . , Pm
be shortest paths in G sharing a common endpoint. Then the metric space

(
∪mi=1

V (Pi), dG
)

admits a stochastic embedding into Trees(∪mi=1V (Pi)) with expected stretch
O(logm).

Let (X, d) be a finite metric space. A distribution ν over partitions of X is called
(β,∆)-Lipschitz if every partition P in the support of ν satisfies S ∈ P =⇒
diamX(S) ≤ ∆, and moreover,

∀x, y ∈ X, Pr
P∼ν

[P (x) 6= P (y)] ≤ β · d(x, y)

∆
,

where for x ∈ X, we use P (x) to denote the unique set in P containing x.

We denote by β(X,d) the infimal β ≥ 0 such that for every ∆ > 0, the metric (X, d)
admits a (β,∆)-Lipschitz random partition. The following theorem is due to Klein,
Plotkin, and Rao [KPR93] and Rao [Rao99].

Theorem 3.7. For every planar graph G, we have β(V (G),dG) ≤ O(1).

Let G be a metric graph, and consider A ⊆ V (G). The dilation of A inside G is
defined to be

dilG(A)
def
= max

u,v∈A

dG[A](u, v)

dG(u, v)
,

where dG[A] denotes the induced shortest-path distance on the metric graph G[A].

54

For two metric graphs G,G′, a 1-sum of G with G′ is a graph obtained by taking
two disjoint copies of G and G′, and identifying a vertex v ∈ V (G) with a vertex
v′ ∈ V (G′). This definition naturally extends to a 1-sum of any number of graphs.
Note that the 1-sum naturally inherits its length function from G and G′.

Peeling. Consider a subset A ⊆ V (G). For a ∈ A, let GA
a

denote the graph

G[(V (G)\A)∪{a}]. We define the graph ĜA as the 1-sum of G[A] with {GA
a

: a ∈ A},
where G[A] is glued to each GA

a
at their common copy of a ∈ A. Let us write the

vertex set of ĜA as the disjoint union:

V (ĜA) = Â t
⊔
a∈A

{(a, v) : v ∈ V (G) \ A} ,

where Â
def
= {â : a ∈ A} represents the canonical image of G[A] in ĜA, and (a, v)

corresponds to the image of v ∈ V (G) \ A in GA
a
. Say that a mapping ψ : V (G) →

V (ĜA) is a selector map if it satisfies:

1. For each a ∈ A, ψ(a) = â.

2. For each v ∈ V (G) \ A, ψ(v) ∈ {(a, v) : a ∈ A}.

In other words, a selector maps each a ∈ A to its unique copy in ĜA, and maps each
v ∈ V (G) \ A to one of its |A| copies in ĜA.

Lemma 3.8 (The Peeling Lemma [LS09]). Let G = (V,E) be a metric graph and
fix a subset A ⊆ V . Let G′ be obtained by removing all the edges inside A:

G′
def
= (V,E ′) with E ′ = E \ E(G[A]) ,

and denote β = β(V,dG′)
. Then there is a stochastic embedding µ of G into the metric

graph ĜA such that µ is supported on selector maps has expected stretch str(µ) ≤
O(β · dilG(A)).

Remark 3.9. The statement of the Peeling Lemma in [LS09] (see also [BLS10])
does not specify explicitly all the above details about the selector maps, but they can
be easily verified by inspecting the proof.

Composition. Consider now some metric tree T ∈ Trees(A). Via the identification

between A and Â ⊆ V (ĜA), we may consider the associated metric tree T̂ ∈ Trees(Â).

Define the metric graph ĜAJT K with vertex set V (ĜA) and edge set

E(ĜAJT K) def
=
(
E(ĜA) \ E(ĜA[Â])

)
∪ E(T̂) ,

55

where the edge lengths are inherited from ĜA and T̂ , respectively. In other words,
we replace the edges of ĜA[Â] with those coming from T̂ . Finally, denote by

FG,A
def
=
{
ĜAJT K : T ∈ Trees(A)

}
the family of all metric graphs arising in this manner. The following lemma is now
immediate.

Lemma 3.10. Every metric graph in FG,A is a 1-sum of some T ∈ Trees(A) with
the graphs {GA

a
: a ∈ A}.

Suppose that µ is a stochastic embedding of G into ĜA that is supported on pairs
(ψ, ĜA), where ψ is a selector map. Let ν denote a stochastic embedding of (A, dG)
into Trees(A). By relabeling vertices, we may assume that ν is supported on pairs
(id, T) where id : A → A is the identity map. Altogether, we obtain a stochastic
embedding of G into FG,A, which we denote ν ◦ µ and define by

∀T ∈ Trees(A), (ν ◦ µ)(ψ, ĜAJT K) def
= µ(ψ, ĜA) · ν(id, T) ,

where the product between the probability measures µ and ν represents drawing from
the two distributions independently. While notationally cumbersome, the following
claim is now straightforward.

Lemma 3.11 (Composition Lemma). It holds that

str(ν ◦ µ) ≤ str(ν) · str(µ) .

3.2.2 Approximation by OS-instances

Let us now show that every terminated metric plane graph G with γ = γ(G;T(G))
admits a stochastic terminal embedding into OS-instances. In Section 3.2.3, we
recall how OS-instances can be stochastically embedded into metric trees, thereby
completing the proof of Theorem 3.5.

Let F1, . . . , Fγ be faces of G that cover T(G), and denote Ti
def
= V (Fi) ∩ T(G). For

each i ≥ 1, fix an arbitrary vertex vi ∈ V (Fi). Denote r
def
= v1, and for each i ≥ 2,

let Pi be the shortest path from vi to r. Finally, let P be the tree obtained as the
union of these paths, namely, the induced graph G[∪i≥2Pi].

We present now Klein’s Tree-Cut operation [Kle06]. It takes as input a plane graph
G and a tree T in G, and “cuts open” the tree to create a new face Fnew. More
specifically, consider walking “around” the tree and creating a new copy of each
vertex and edge of T encountered along the way. This operation maintains planarity

56

while replacing the tree T with a simple cycle CT that bounds the new face. It is
easy to verify that CT has two copies of every edge of T , and degT (v) copies of every
vertex of T , where degT (v) stands for the degree of v in T . This Tree-Cut operation
can also be found in [Bor04, BKK07, BKM09].

We apply Klein’s Tree-Cut operation to G and the tree P , and let G1 be the resulting
metric plane graph with the new face Fnew, after we replace P with a simple cycle
CP ; see Figure 7 for illustration. Since P shares at least one vertex with each face
Fi in G (namely, vi), the cycle CP shares at least one vertex with each face Fi in G1.

We now construct G2 by applying two operations on G1. First, for every face Fi
that shares exactly one vertex with CP , namely only vi (or actually a copy of it),
we split this vertex into two as follows. Let N1

G1
(vi) be all the neighbors of vi in G1

embedded between the face Fi and Fnew on one side, and N2
G1

(vi) be all its neighbors
on the other side. We split vi into two vertices v′i, v

′′
i that are connected by an edge of

length 0, and connect all the vertices in N1
G1

(vi) to v′i and all the vertices in N2
G1

(vi)
to v′′i . See Figure 8 for illustration. Notice that this new edge {v′i, v′′i } is incident to
both Fi and Fnew, and that this operation maintains the planarity, along with the
distance metric of G1 (in the straightforward sense, where one takes a quotient by
vertices at distance 0 from each other).

The second operation adds between all the copies of the same v ∈ V (P) a star with
edge length 0 drawn inside Fnew. Note that adding the stars inside Fnew does not
violate the planarity since all the copies of the vertices in CP are ordered by the walk
around P ; see Figure 7 for illustration. It is easy to verify that if we identify each
v ∈ V (P) with one of its copies in G2 arbitrarily then

∀x, y ∈ V (G), dG(x, y) = dG2(x, y). (12)

Lemma 3.12. (V (P), dG) admits a stochastic embedding into Trees(V (P)) with ex-
pected stretch at most O(log γ).

Proof. Apply Theorem 3.6 on the shortest-paths P2, . . . , Pγ in G, with shared vertex
v1 = r.

Let A ⊆ V (G2) denote all the vertices on the boundary of Fnew in G2. To every
T ∈ Trees(V (P)), we can associate a tree T ′ ∈ Trees(A) by identifying x ∈ V (P)
with one of its copies in A, and attaching the rest of its copies to x with an edge of
length 0. Using (12) in conjunction with Lemma 3.12 yields the following.

Corollary 3.13. (A, dG2) admits a stochastic embedding into Trees(A) with expected
stretch at most O(log γ).

57

𝐺 𝐺2𝐺1 (i.e. after the tree-cut operation)

𝑣1 𝑣2

𝑣3𝑣4

𝐹𝑛𝑒𝑤

Figure 7: In G, the tree P (in blue) is incident to all γ = 4 distinguished special faces
(drawn in green). G1 is obtained by applying the Tree-Cut operation on G and P ,
which creates a new face Fnew. Finally, G2 is obtained by duplicating some vertices
on Fnew and connecting copies of the same vertex by length-zero edges (the dashed
red edges).

𝐹𝑛𝑒𝑤

𝐹𝑖

𝑣𝑖

𝐹𝑛𝑒𝑤

𝐹𝑖

𝑣′𝑖 𝑣′′𝑖

Figure 8: The neighbors of vi are partitioned into two sets (colored red and blue) by
going around vi in the plane and watching for the location of faces Fi and Fnew, to
eventually split vi into two.

58

Let H be the graph obtained from G2 by adding an edge {u, v} of length dG(u, v)
between every pair of vertices u, v ∈ A. By construction, we have dilH(A) = 1. Let

E ′
def
= E(H) \ E(H[A]), and H ′ = (V (H), E ′). While H is in general non-planar,

the graph H ′ and HA
a

for a ∈ A are subgraphs of the planar graph G2, and are thus
planar as well, and by Theorem 3.7 we have β(V (H),dH′)

≤ O(1).

By applying the Peeling Lemma (Lemma 3.8) to H and A ⊆ V (H), we obtain a

stochastic embedding µ of H into ĤA such that µ is supported on selector maps and
str(µ) ≤ O(1). Using Corollary 3.13 and the fact that (A, dH) is the same as (A, dG2),
we obtain a stochastic embedding ν of (A, dH) into Trees(A) with str(ν) ≤ O(log γ).

Define T(H) to be the set of vertices in T(G) together with all their copies created
in the construction of H, and

T(ĤA)
def
= {â : a ∈ T(H)} ∪ {(v, a) : v ∈ T(H), a ∈ A} .

By convention, for any subgraph H ′ of H we have T(H ′)
def
= V (H ′) ∩ T(H).

Applying the Composition Lemma (Lemma 3.11) to the pair µ, ν (in conjunction

with Lemma 3.10) yields a stochastic embedding π
def
= ν ◦ µ satisfying the next

lemma.

Lemma 3.14. (V (G), dG) admits a stochastic embedding π into the family of metric
graphs that are 1-sums of a metric tree with the graphs {HA

a
: a ∈ A}, where HA

a

is glued to T along a vertex of T(HA
a
), and such that str(π) ≤ O(log γ). Moreover,

every (ϕ,W) ∈ supp(π) satisfies ϕ(T(G)) ⊆ T(W).

It remains to prove that π in this lemma is an embedding into OS-instances, i.e.,
every 1-sum in the support of π is an OS-instance. We first show this for every pair
{(HA

a
,T(HA

a
)) : a ∈ A}.

Lemma 3.15. For every a ∈ A, there is a face Fa in HA
a

such that T(HA
a
) ⊆ V (Fa).

Proof. Fix a ∈ A. The graph G2 is planar, and while H need not be planar, the
subgraphs G2[(V (G2) \ A) ∪ {a}] and HA

a
are identical for each a ∈ A. Thus, it

suffices to prove the lemma for the subgraphs G2[(V (G2) \ A) ∪ {a}].

Observe that if we remove from G2 a vertex v ∈ V (G2), then all the faces incident to
v in G2 become one new face in the graph G2 \ {v}. Moreover, if we remove from G2

both endpoints of an edge {u, v}, then all the faces incident to either u or v become
one new face in G2 \ {u, v}. Recall that G2[A] is a simple cycle (bounding Fnew),
thus G2[A\{a}] = G2[A]\{a} is connected, and all the faces incident to at least one
vertex in A \ {a} become one new face in G2[(V (G2) \ A) ∪ {a}], which we denote
F a
new.

59

By construction of G2 (which splits a vertex of G1 if it is the only vertex incident to
both Fi and Fnew), every face Fi is incident to at least two vertices in A, and thus
to at least one in A \ {a}. It follows that all the terminals in G2[(V (G2) \A) ∪ {a}]
are on the same face F a

new. In addition, since a has at least one neighboring vertex
b ∈ A, at least one face is incident to both a and b in G2, and it becomes part of the
face F a

new in G2[(V (G2) \ A) ∪ {a}]. Therefore, a ∈ V (F a
new) as well, and the lemma

follows.

Lemma 3.16. Suppose W is a planar graph formed from the 1-sum of a tree T and
a collection of (pairwise disjoint) plane graphs {Ha : a ∈ A}, where each Ha has
a distinguished face Fa, and Ha is glued to T along a vertex of V (Fa). Then there
exists a drawing of W in which all the vertices V (T) ∪

⋃
a∈A V (Fa) lie on the outer

face.

Proof. It is well-known that every plane graph can be redrawn so that any desired
face is the outer face (see, e.g., [Whi32]). So we may first construct a planar drawing
of T , and then extend this to a planar drawing of W where each Ha is drawn so
that Fa bounds the image of Ha, and the interior of Fa contains only the images of
vertices in V (Ha).

Combining Lemmas 3.14, 3.15 and 3.16 yields the following corollary.

Corollary 3.17. G admits a stochastic embedding with expected stretch O(log γ)
into a family F of terminated metric plane graphs, where each W ∈ F satisfies
γ(W ;T(W)) = 1.

Note that in the stochastic embedding of this corollary, the stretch guarantee applies
to all vertices (and not only to terminals), and the choice of terminals restricts the
host graphs W ∈ F , as they are OS-instances.

3.2.3 From OS-instances to random trees

We need a couple of known embedding theorems.

Theorem 3.18 ([GNRS04, Thm. 5.4]). Every metric outerplanar graph admits a
stochastic embedding into metric trees with expected stretch O(1).

The next result is proved in [LMM15, Thm. 4.4] (which is essentially a restatement
of [EGK+14, Thm. 12]).

Theorem 3.19. If G is a terminated metric plane graph and γ(G;T(G)) = 1, then G
admits a stochastic terminal embedding into metric outerplanar graphs with expected
stretch O(1).

60

In conjunction with Theorem 3.18, this shows that every OS-instance admits a
stochastic terminal embedding into metric trees with expected stretch O(1). Com-
bined with Corollary 3.17, this finishes the proof of Theorem 3.5.

3.3 Polymatroid flow-cut gaps

We now discuss a network model introduced in [CKRV15] that generalizes edge and
vertex capacities. Recall that if S is a finite set, then a function f : 2S → R is called
submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets A,B ⊆ S. For an
undirected graph G = (V,E), we let E(v) denote the set of edges incident to v. A
collection ~ρ = {ρv : 2E(v) → R+}v∈V of monotone, submodular functions are called
polymatroid capacities on G.

Say that a function ϕ : E → R+ is feasible with respect to ~ρ if it holds that for every
v ∈ V and subset S ⊆ E(v), it holds that

∑
e∈S ϕ(e) ≤ ρv(S). Given demands dem :

V × V → R+, one defines the maximum concurrent flow value of the polymatroid
network (G, ~ρ, dem), denoted mcfG(~ρ, dem), as the maximum value ε > 0 such that
one can route an ε-fraction of all demands simultaneously using a flow that is feasible
with respect to ~ρ.

For every subset S ⊆ E, define the cut semimetric σS : V ×V → {0, 1} by σS(u, v)
def
=

0 if and only if there is a path from u to v in the graph G(V,E \S). Say that a map
g : S → V is valid if it maps every edge in S to one of its two endpoints in V . One
then defines the capacity of a set S ⊆ E by

ν~ρ(S)
def
= min

g:S→V
valid

∑
v∈V

ρv(g
−1(v)) .

The sparsity of S is given by

ΦG(S; ~ρ, dem)
def
=

ν~ρ(S)∑
u,v∈V dem(u, v)σS(u, v)

.

We also define ΦG(~ρ, dem)
def
= min∅6=S⊆V Φ(S; ~ρ, dem). Our goal in this section is to

prove the following theorem.

Theorem 3.20. There is a constant C ≥ 1 such that the following holds. Suppose
that G = (V,E) is a planar graph and D ⊆ F1 ∪ F2 ∪ · · · ∪ Fγ, where each Fi is a
face of G. Then for every collection ~ρ of polymatroid capacities on G and every set
of demands dem : D ×D → R+ supported on D, it holds that

mcfG(~ρ, dem) ≤ ΦG(~ρ, dem) ≤ Cγ ·mcfG(~ρ, dem) .

61

3.3.1 Embeddings into thin trees

In order to prove this, we need two results from [LMM15]. SupposeG is an undirected
graph, T is a connected tree, and f : V (G) → V (T). For every distinct pair u, v ∈
V (G), let P T

uv denote the unique simple path from f(u) to f(v) in T . Say that the
map f is ∆-thin if, for every u ∈ V (G), the induced subgraph on

⋃
v:{u,v}∈E(G) P

T
uv

can be covered by ∆ simple paths in T emanating from f(u).

Suppose further that G is equipped with edge lengths ` : E(G)→ R+. If (X, dX) is
a metric space and f : V (G)→ X, we make the following definition. For τ > 0 and
any u ∈ V (G):

|∇τf(u)|∞
def
= max

{
dX(f(u), f(v))

`(u, v)
: {u, v} ∈ E and `(u, v) ∈ [τ, 2τ]

}
.

Fact 3.21. Suppose that f : V (G)→ R is 1-Lipschitz, where V (G) is equipped with
the path metric dG,`. Then f is 2-thin and

max {|∇τf(u)|∞ : u ∈ V (G), τ > 0} ≤ 1 .

Theorem 3.22 (Rounding theorem [LMM15]). Consider a graph G = (V,E) and a
subset D ⊆ V . Suppose that for every length ` : E → R+, there is a random ∆-thin
mapping Ψ : V → V (T) into some random tree T that satisfies:

1. For every v ∈ V and τ > 0: E|∇τΨ(v)|∞ ≤ L.

2. For every u, v ∈ D:

E [dT (Ψ(u),Ψ(v))] ≥ dG,`(u, v)

K
.

Then for every collection ~ρ of polymatroid capacities on G and every set of demands
dem : D ×D → R+ supported on D, it holds that

mcfG(~ρ, dem) ≤ ΦG(~ρ, dem) ≤ O(∆KL) ·mcfG(~ρ, dem) .

Theorem 3.23 (Face embedding theorem [LMM15]). Suppose that G = (V,E) is
a planar graph and D ⊆ V is a subset of vertices contained in a single face of G.
Then for every ` : E → R+, there is a random 4-thin mapping Ψ : V → V (T) into a
random tree metric that satisfies the assumptions of Theorem 3.22 with K,L ≤ O(1).

We now use this to prove the following multi-face embedding theorem; combined
with Theorem 3.22, it yields Theorem 3.20.

62

Theorem 3.24 (Multi-face embedding theorem). Suppose that G = (V,E) is a
planar graph and D ⊆ F1 ∪ F2 ∪ · · · ∪ Fγ, where each Fi is a face of G. Then
for every ` : E → R+, there is a random 4-thin mapping Ψ : V → V (T) into a
random tree metric that satisfies the assumptions of Theorem 3.22 with L ≤ O(1)
and K ≤ O(γ).

Proof. For each i = 1, 2, . . . , γ, let Ψi : V → V (Ti) be the random 4-thin map-
ping guaranteed by Theorem 3.23 with constants 1 ≤ K0, L0 ≤ O(1), and let
Ψ′i : V → R be the 2-thin mapping given by Ψ′i(v) = dG,`(v, Fi) (recall Fact 3.21).
Now let Ψ : V → V (T) be the random map that arises from choosing one of
{Ψ1, . . . ,Ψγ,Ψ

′
1, . . . ,Ψ

′
γ} uniformly at random. Then Ψ is a random 4-thin map-

ping satisfying (1) in Theorem 3.22 for some L ≤ O(1).

Consider now some u ∈ Fi and v ∈ V . Let u′ ∈ Fi be such that dG,`(v, u
′) =

dG,`(v, Fi). If dG,`(u
′, v) ≥ dG,`(u,v)

4K0L0
, then

E [dT (Ψ(u),Ψ(v))] ≥ 1

2γ
|Ψ′i(u)−Ψ′i(v)| = dG,`(u

′, v)

2γ
≥ dG,`(u, v)

8γK0L0

.

If, on the other hand, dG,`(u
′, v) <

dG,`(u,v)

4K0L0
, then

E [dT (Ψ(u),Ψ(v))] ≥ 1

2γ
E [dTi(Ψi(u),Ψi(v))]

≥ 1

2γ
E [dTi(Ψi(u),Ψi(u

′))− dTi(Ψi(u
′),Ψi(v))]

≥ 1

2γ

(
dG,`(u, u

′)

K0

− L0 dG,`(u
′, v)

)
≥ 1

2γ

(
dG,`(u, v)− dG,`(u′, v)

K0

− dG,`(u, v)

4K0

)
≥ 1

2γ

(
3

4

dG,`(u, v)

K0

− dG,`(u
′, v)

K0

)
≥ dG,`(u, v)

4γK0

.

Thus Ψ also satisfies (2) in Theorem 3.22 with K ≤ O(γ), completing the proof.

63

4 Faster Algorithms for Orienteering and k-TSP

4.1 Opening

The Traveling Salesman Problem (TSP) is of fundamental importance to combina-
torial optimization, computer science and operations research. It is a prototypical
problem for planning routes in almost any context, from logistics to manufacturing,
and is therefore studied extensively. In this problem, the input is a list of cities (aka
sites) and their pairwise distances, and the goal is to find a (closed) tour of minimum
length that visits all the sites. This problem is known to be NP-hard even in the
Euclidean case [GGJ76, Pap77, Tre00], which is the focus of our work.

One important variant of TSP are orienteering problems, which ask to maximize
the number of sites visited when the tour length is constrained by a given budget.
These problems model scenarios where the “salesman” has limited resources, such
as gasoline, time or battery-life. This genre is related to prize-collecting traveling
salesman problems, introduced by Balas [Bal95], where the sites are also associated
with non-negative “prize” values, and the goal is to visit a subset of the sites while
minimizing the total distance traveled and maximizing the total amount of prize
collected. Note that there is a trade-off between the cost of a tour and how much prize
it spans. Another related family is the vehicle routing problem (VRP) [TV02], where
the goal is to find optimal routes for multiple vehicles visiting a set of sites. These
problems arise from real-world applications such as delivering goods to locations or
assigning technicians to maintenance jobs.

We consider the rooted orienteering problem in Euclidean space, in which the input
is a set of n points P in Rd, a starting point s and a budget B > 0, and the goal is to
find a path that starts at s and visits as many points of P as possible, such that the
path length is at most B. A (1− δ)-approximate solution is a path satisfying these
constraints (start at s and have length at most B) that visits at least (1 − δ)kopt

points, where kopt denotes the maximum possible, i.e., the number of points visited
by an optimal path.

Arkin, Mitchell, and Narasimhan [AMN98] designed the first approximation algo-
rithms for the rooted orienteering problem. They considered this problem for points
in the Euclidean plane when the desired “tour” (network in their context) is a path,
a cycle, or a tree, and achieved a O(1)–approximation for these problems. Blum et
al. [BCK+07] and Bansal et al. [BBCM04] designed an O(1)-approximation algorithm
for rooted path orienteering when the points lie in a general metric space.

Chen and Har-Peled [CH08] were the first to design a Polynomial-Time Approxima-
tion Scheme (PTAS), i.e., a (1 − δ)-approximation algorithm for every fixed δ > 0,
when the points lie in a Euclidean space of fixed dimension. Their algorithm reduces

64

the orienteering problem into (a multi-path version of) rooted k-TSP, and thus the
heart of their algorithm is a PTAS for the latter, where the approximation is actu-
ally with respect to a parameter called excess, which can be much smaller than the
optimal tour length. This follows an earlier approach of Blum et al. [BCK+07], who
introduced the concept of excess-based approximation, and designed a reduction to a
simpler (single-path version of) k-TSP. However, that earlier reduction increases the
approximation ratio by a constant factor and cannot yield a PTAS. Chen and Har-
Peled [CH08] presented a different reduction, to a more complicated (multi-path)
version of rooted k-TSP, and for the latter problem they designed an algorithm that
cleverly combines two very different divide-and-conquer methods, of Arora [Aro98]
and of Mitchell [Mit99]. As they point out, a key difficulty in this problem is the
relative lack of algorithmic tools to handle rigid budget constraints.

We design a PTAS for the rooted orienteering problem that has a better running time
than the known running time nO(d

√
d/δ)(log n)(d/δ)O(d)

of Chen and Har-Peled [CH08].
For fixed δ and small dimension d, the leading term in their running time is about
nO(d

√
d/δ), which we improve to nO(1/δ). Thanks to this improvement, our algorithm

is polynomial even for a moderately large dimension, roughly up to d = O(log log n)
instead of d = O(1).

4.1.1 Our Results

Our main result is a PTAS for the rooted orienteering problem, with improved run-
ning time compared to that of Chen and Har-Peled [CH08].

Theorem 4.1. Given as input a set P of n points in Rd, a starting point s, a
budget B > 0, and an accuracy parameter δ ∈ (0, 1), one can compute in time

nO(1/δ)(log n)(d/δ)O(d)
, a path that starts at s, has length at most B, and visits at least

(1 − δ)kopt points of P , where kopt is the maximum possible number of points that
can be visited under these constraints.

Similarly to Chen and Har-Peled [CH08], our algorithm reduces the rooted orien-
teering problem to (a multi-path version of) rooted k-TSP, and the main challenge
is to solve the latter problem with good approximation with respect to the excess
parameter. Their algorithm for k-TSP uses Mitchell’s divide-and-conquer method
[Mit99] based on splitting the space into windows. These windows contain subpaths
of the k-TSP path, and the algorithm finds such subpaths in every window and then
combines them into the requested path. The leading term npoly(d) in the running time
of Chen and Har-Peled [CH08] arises from defining each window via 2d independent
hyperplanes, which gives rise to nO(d) possible windows. We define and order the
windows in a way that is similar to, but different from, Blum et al. [BCK+07], which
yields at most n2 different windows (see Section 4.2 for more details). This improve-

65

ment is readily seen in our first technical result (Theorem 4.2), which provides a
PTAS for (a simple version of) rooted k-TSP. For fixed δ and small dimension d,
the leading term in our running time is nO(1). For our main result, we need to solve
a multi-path version that we call rooted (m, k)-TSP. This problem asks to find m
paths that visit k points in total, when the input prescribes the endpoints of all
these m paths (see Theorem 4.3). We note that although our result for k-TSP can
be obtained also by applying the techniques of Blum et al. [BCK+07], our version
of the windows is essential for solving the rooted (m, k)-TSP, and is thus needed to
obtain a PTAS for orienteering.

4.1.2 Related Work

The orienteering problem was first introduced by Golden et al. [GLV87], and intensely
studied since then. The problem has numerous variants. For example, Chekuri
et al. [CKP12] designed (2 + ε)-approximation algorithm for orienteering in undi-
rected graphs, and an O(log2 OPT)-approximation algorithm in directed graphs.
Gupta et al. [GKNR15] designed an O(1)-approximation algorithm for the best non-
adaptive policy for stochastic orienteering. Friggstad et al. [FS17] introduced the
first polynomial-size LP-relaxations for the orienteering problem and its rooted ver-
sion, and obtained O(1)-approximation algorithms via LP-rounding. For algorithms
for orienteering with deadlines and time-windows see [BBCM04, CK04, CP05]. A
survey on orienteering can be found in [GLV16], and a survey on the vehicle routing
problem with profits can be found in [ASV14].

4.1.3 Preliminaries

Notation. Let π = 〈p1, . . . , pk〉 be a path that visits k points of P in Rd, starting
at p1 and ending at pk. The length of π is denoted by ‖π‖ :=

∑k−1
j=1 ‖pj+1 − pj‖, and

let P (π) be all the points in P that are visited by π. Define the excess of π to be

E(π) := ‖π‖ − ‖pk − p1‖.

Note that the excess of π may be considerably smaller than the length of π. Similarly,
given a set Π of m paths, such that each path πi, i ∈ [m], connects endpoints
si, ti, we denote the total length of its m paths by ‖Π‖ :=

∑m
i=1 ‖πi‖. Let P (Π)

be all points visited by Π, i.e. P (Π) = ∪mi=1P (πi), and let the excess of Π be
E(Π) :=

∑m
i=1(‖πi‖ − ‖ti − si‖).

Given a set P of n points and m pairs si, ti ∈ P , the rooted (m, k)-TSP problem is
to find a set of m paths Π = {πi| i ∈ [m]} with minimum total length, such that
each path πi connects endpoints si, ti, and |P (Π)| = k. A δ-excess-approximation to
the rooted (m, k)-TSP problem is a set of m paths Π = {πi| i ∈ [m]}, such that each

66

path πi connects endpoints si, ti, |P (Π)| = k, and ‖Π‖ ≤ ‖Π∗‖+ δ · E(Π∗), where Π∗

a solution of minimum length. We define the rooted k-TSP problem to be the rooted
(1, k)-TSP problem.

Given a set P of n points, a budget B, and a starting point s, the rooted orienteering
problem is the problem of finding a path π∗ rooted at s which visits the maximum
number of points of P under the constraint that ‖π∗‖ ≤ B. Let kopt denote the
number of points visited by π∗. A (1− δ)-approximation to the rooted orienteering
problem is a path π rooted at s which visits at least (1 − δ)kopt vertices under the
constraint that ‖π‖ ≤ B.

Algorithms. Arora [Aro98] gave a PTAS for Euclidean TSP which runs in time

n(log n)(d/δ)O(d)
. He also showed how to modify the algorithm to solve k-TSP in time

k2n(log k)(d/δ)O(d)
. This is done by modifying the dynamic program, so that for every

candidate cell the program computes an optimal tour visiting at least k′ points, for
each k′ ∈ [k]. (We also note the dependence on log k instead of log n.) Another
simple modification to Arora’s algorithm is to compute m tours which together visit
all points, and this increases the runtime to n(2m log n)(d/δ)O(d)

.4 Combining these

two separate extensions gives a solution to (m, k)-TSP in time k2n(2m log n)(d/δ)O(d)
.

4.2 A δ-excess-approximation algorithm for rooted (m, k)-
TSP

In this section, we present the δ-excess-approximation algorithm for rooted (m, k)-
TSP. Later in Section 4.3, we use this algorithm as a subroutine to approximate the
orienteering problem. For purposes of exposition, we will first show how to solve
the case m = 1, i.e., rooted k-TSP, using a plane sweep algorithm (PSA), and then
extend this plane sweep algorithm to general m, i.e., solve (m, k)-TSP.

Our algorithm combines ideas from Blum et al. [BCK+07] and Chen and Har-
Peled [CH08]. In Section 4.2.1 we solve k-TSP using the techniques of Blum et
al. [BCK+07], but with a critical modification that uses the Euclidean (rather than
metric) setting and allows extension of our algorithm to the more general (m, k)-TSP
in Section 4.2.2.

4For those familiar with Arora’s construction, we must add to each active portal a list of tours
incident upon it. The factor 2m represents the ensuing increase in the number of possible configu-
rations.

67

4.2.1 Algorithm for rooted k-TSP

We present δ-excess-approximation algorithm for rooted k-TSP, as follows.

Theorem 4.2. Given as input the endpoints s, t ∈ Rd, a set of n points P ⊂ Rd, an
integer 2 ≤ k ≤ n, and an accuracy parameter δ ∈ (0, 1), there is an algorithm that

runs in time nO(1)(log k)(d/δ)O(d)
and finds a k-TSP path from s to t of length at most

OPT + δ · E, where OPT is the minimum length of a k-TSP path from s to t, and
its excess is denoted by E = OPT − ‖t− s‖.

The rest of this section is devoted to the proof of Theorem 4.2. Before introducing the
construction and proof, let us present the intuition behind it. First let us rotate the
space so that s, t both lie on the x-axis, with the x-coordinate of s smaller than the
x-coordinate of t. Now suppose that the optimal path π∗ is monotonically increasing
in x. In this case, the optimal tour could be computed in quadratic time by a simple
PSA, a dynamic programming algorithm defined by a plane orthogonal to the x-axis
and sweeping across it from x = −∞ to x =∞. For every encountered point p ∈ P ,
the algorithm must determine the optimal tour from s to p visiting k′ points for
all k′ ∈ [k], and since all edges are x-monotone, all these k′ points must have been
encountered previously by the sweep. It follows that in this case the optimal k′-TSP
tour ending at p can be computed by taking an optimal (k′− 1)-TSP tour ending at
each previously encountered point p′, extending it to p by one edge of length ‖p− p′‖,
and then choosing among these tours (all choices of p′) the one of minimum cost.
This PSA ultimately computes the best k-TSP ending at each possible point, and
the minimum among these is the optimal tour.

The difficulty with the above approach is that the optimal tour might be non-
monotone in the x-coordinate. It may contain backward edges, while the PSA algo-
rithm described above can only handle forward edges. However, for an edge facing
backwards, its entire length accounts for excess in the tour. Hence, in the space (or
more precisely, window) containing the backward edge, we can afford to run Arora’s
k-TSP algorithm, and pay (1 + δ) times the entire tour cost in the window. This
motivates an algorithm which combines a sweep with Arora’s k-TSP algorithm. We
proceed with the actual proof, denoting the x-coordinate of a point p by p[0].

This algorithm is similar to that of Blum et al. [BCK+07], which defines every window
using only 2 points, and distinguishes between windows with only forward edges and
windows that contain backward edges (called type-1 and type-2 in [BCK+07]). They
use the MCP routine of [CGRT03] to approximate the minimum length of a path
inside windows with backward edges, and stitch all the subpaths together by dynamic
programming. There are two main differences in our algorithm. First, we run Arora’s
algorithm on the windows with backward edges. Second, our dynamic programming
goes over the points in a different order. They order the points in increasing order of
distance from s (the starting point), while we order the points by their x-coordinate.

68

c

a d

b

x-axis

Figure 9: The window w̄a,b is the space between the two thick gray lines, The solid
black lines represent the subpath Arora(a, b, c, d, 8), and the two dashed lines repre-
sent extending it outside that window.

Proof of Theorem 4.2. We rotate the space so that s, t lie on the x-axis, and then
order all points based on increasing x-coordinate. For two distinct points p, q ∈ P ,
we say that p is before q, denoted p < q, if p’s x-coordinate p[0] is smaller than q’s
x-coordinate q[0]; otherwise, we say that q is after p, denoted q > p. We can make
an infinitesimally small perturbation on the points to ensure that p[0] 6= q[0] for all
distinct points p, q ∈ P .

We define a window in Rd to be the space between (and including) two (d − 1)-
dimensional hyperplanes orthogonal to the x-axis. For every point pair a, b ∈ P
with a ≤ b (which means we allow a = b), let w̄a,b be a window of width b[0] − a[0]
containing a, b on its respective ends. Note that a window is bounded in the x
direction and unbounded in all other directions, and also that a window may have
width 0 (if a = b) and then it can contain at most one point of P . We denote the
points of P contained in a window w̄a,b by P (w̄a,b) := {p ∈ P | a ≤ p ≤ b}. Let
W := {w̄a,b | a, b ∈ P, a ≤ b}, and so |W| ≤ O(n2).

Algorithm. For some δ′ = Θ(δ) to be specified below, let Arora(a, b, c, d, k) be the
output of Arora’s (1− δ′)-approximate k-TSP algorithm on the set P (w̄a,b) and tour
endpoints c, d with a ≤ c, d ≤ b; recall this algorithm returns the length of a near-
optimal tour. For every a, b, c, d ∈ P and k′ ∈ [k], we precompute Arora(a, b, c, d, k′),
see Figure 9. We then order the points in P by their x-coordinate as p1, . . . , pn,
and let Pi := {p ∈ P | p ≤ pi}. The algorithm sweeps over p1, . . . , pn (i.e., by
their x-coordinate), and upon encountering point pi, it calculates for every k′ ∈ [k] a
path from s to pi visiting k′ points of Pi. However, the algorithm first precomputes
approximate subpaths on many windows using Arora’s algorithm, and thus the sweep
is actually stitching these subpaths together into a global solution.

69

Let V be a 3-dimensional dynamic programming table with each entry V (pi, d, k
′)

for pi ∈ P , d ∈ Pi and k′ ∈ [k], containing the length of an already computed path
from s to d that visits k′ points in Pi. To initialize the table, for all d, pi satisfying
d ≤ pi = s and k′ ∈ [k], we fix entries V (pi, d, k

′) = Arora(p1, pi, s, d, k
′). All other

entries are set to ∞. (Note that this forces all paths to begin at s, even if portions
of those paths travel to the left of s.) The algorithm then considers each pi > s in
increasing order, and calculates the entries for all d satisfying s < d ≤ pi and all
k′ ∈ [k], by choosing the shortest path among several possibilities, as follows.

V (pi, d, k
′) = min

{
V (pj, d

′, k′′) + ‖d′ − c‖+ Arora(pj+1, pi, c, d, k
′ − k′′) |

pj ∈ Pi, d′ ∈ Pj, c ∈ Pi \ Pj, k′′ < k′
}

The path associated with this entry combines a previously computed path from s
to d′ visiting k′′ < k′ points in Pj with an Arora subpath connecting endpoints c, d
inside window w̄pj+1,pi and visiting k′ − k′′ points in that window. Connecting these
two paths using an edge (d′, c) produces a path from s to d that visits k′ points in
Pi. After populating the table, the algorithm reports the entry V (pn, t, k).

The above algorithm computes the length of a path, but as usual it is extends easily
to return also the path itself. It remains to prove that the returned path has length
at most OPT + δ · E .

Correctness. We will show that there exists a solution of length at most OPT +δ·E
that is considered by the dynamic program. Let π∗ be an optimal path from s to t
visiting k points of P , i.e., |π∗| = OPT . Given a path π and two points p, q ∈ P (π),
denote by π(p, q) the subpath of π from p to q.

The solution produced by our PSA represents a set of windows connected by edges
between them. However, some of these windows may be trivial and contain only
a single point (and no edges), so in fact the PSA produces a solution which is a
set of non-trivial windows connected by x-monotone subpaths (i.e., subpaths with
only forward edges). As such, our analysis will similarly split π∗ into windows and
subpaths, where the windows contain all the backward edges of π∗, and the remaining
edges constitute x-monotone subpaths. Assume that there are ` maximal backward
subpaths in π∗ (meaning that all edges of these subpaths face backwards), denoted
π∗(bi, ai) for i ∈ [`], where ai < bi. Clearly, π∗(bi, ai) is fully contained in window
w̄ai,bi . Since these windows may overlap (have non-empty intersection), we repeatedly
merge overlapping windows, i.e., replace any two overlapping windows w̄ai,bi , w̄aj ,bj
by the united window w̄min{ai,aj},max{bi,bj}, until no overlapping windows remain. We

70

𝒔 𝒕

𝒑𝟏

ഥ𝒘𝒑𝟏,𝒔

𝒑𝟕

𝒑𝟏𝟒

ഥ𝒘𝒑𝟕,𝒑𝟏𝟒

𝒑𝟖

𝒑𝟏𝟎

ഥ𝒘𝒑𝟏𝟑,𝒑𝟏𝟓

𝒑𝟏𝟓

𝒑𝟏𝟑

Figure 10: The solid black lines represent an optimal k-TSP path π∗ between s and t
for k = 16. It has 3 backward-facing subpaths π∗(s, p1), π∗(p14, p7) and π∗(p13, p15).
After merging overlapping windows w̄p7,p14 and w̄p13,p15 , we haveW ∗ = {w̄p1,s, w̄p7,p15}.
The window w̄p7,p15 contains the subpath π∗(p8, p13), and thus Ewin(w̄p7,p15 , p8, p13) =
‖π∗(p8, p13)‖ − |p13[0]− p8[0]|.

thus assume henceforth that the l windows w̄ai,bi are pairwise disjoint and denote
W∗ := {w̄ai,bi | i ∈ [`]}. See Figure 10 for illustration.

Having merged overlapping windows, we have an ordered set of windows where every
two successive windows are connected by an x-monotone subpath of π∗. Now for a
window w̄a,b ∈ W∗, let c∗(w̄a,b) and d∗(w̄a,b) be the entry and exit points of the
optimal path π∗ inside w̄a,b; notice these points are necessarily unique.

Recall that the excess of π∗ is defined as E(π∗) = ‖π∗‖ − ‖t− s‖. Let Ef be all the
edges in π∗ that face forwards, and denote by ‖Ef‖ their total length. Similarly, let
Eb be all edges in π∗ that face backwards, and denote by ‖Eb‖ their total length.
Clearly ‖Ef‖ ≥ ‖t− s‖, hence every edge that faces backwards contributes its entire
length to the excess E(π∗), i.e.,

E(π∗) = ‖π∗‖ − ‖t− s‖ = ‖Ef‖+ ‖Eb‖ − ‖t− s‖ ≥ ‖Eb‖ . (13)

We now define the excess of a window w̄a,b ∈ W∗ with endpoints c∗ = c∗(w̄a,b) and
d∗ = d∗(w̄a,b) to be

Ewin(w̄a,b) := ‖π∗(c∗, d∗)‖ − |d∗[0]− c∗[0]|,

which is non-negative because ‖π∗(c∗, d∗)‖ ≥ |b[0] − a[0]| ≥ |d∗[0] − c∗[0]|. Because

71

the windows in W∗ are pairwise disjoint, it is immediate that∑
w̄a,b∈W∗

Ewin(w̄a,b) ≤ E(π∗). (14)

see Figure 10 for illustration.

Applying Arora’s k-TSP algorithm on window w̄a,b ∈ W∗ with endpoints c∗ =
c∗(w̄a,b) and d∗ = d∗(w̄a,b) returns a path of length at most (1 + δ′) ‖π∗(c∗, d∗)‖,
and we would like to bound δ′ ‖π∗(c∗, d∗)‖ relative to the excess E(π∗). To this end,
we first bound it relative to backward edges and excess in that subpath/window, by
claiming that

‖π∗(c∗, d∗)‖ ≤ 2 max
{
‖Eb ∩ π∗(c∗, d∗)‖ , Ewin(w̄a,b)

}
, (15)

where Eb ∩ π∗(c, d) denotes the backward-facing edges in π∗(c, d). Indeed, the
claim holds trivially if ‖π∗(c∗, d∗)‖ ≤ 2 ‖Eb ∩ π∗(c∗, d∗)‖, and otherwise we have
‖π∗(c∗, d∗)‖ > 2 ‖Eb ∩ π∗(c∗, d∗)‖ ≥ 2|d∗[0] − c∗[0]|, and thus Ewin(w̄a,b) =
‖π∗(c∗, d∗)‖ − |d∗[0]− c∗[0]| ≥ 1

2
‖π∗(c∗, d∗)‖, as claimed.

It follows that applying Arora’s algorithm with δ′ = 1
4
δ on each of the non-overlapping

windows in W∗ will approximate the optimum ‖π∗‖ within total additive error∑
w̄a,b∈W∗

δ′ · ‖π∗(c∗(w̄a,b), d∗(w̄a,b))‖

≤ 2δ′
∑

w̄a,b∈W∗

[
Ewin(w̄a,b) + ‖Eb ∩ π∗(c∗(w̄a,b), d∗(w̄a,b))‖

]
by (15)

≤ 2δ′
[
E(π∗) + ‖Eb‖

]
≤ 4δ′ · E(π∗) = δ · E by (14) and (13).

Our PSA is a dynamic program that optimizes over many combinations of windows,
including the above collection W∗, and thus the path that it returns, which can be
only shorter, must be a δ-excess-approximation to the optimal k-TSP solution π∗.

Running Time. The table V has O(n3) entries, and computing each entry requires
consulting O(n3) other entries. In addition, one has to invoke Arora’s k-TSP algo-

rithm O(n3) times, each executed in time k2n(log k)(d/δ)O(d)
. Thus, the total running

time is indeed nO(1)(log k)(d/δ)O(d)
. This completes the proof of Theorem 4.2.

4.2.2 Algorithm for rooted (m, k)-TSP

Having shown how to construct a PSA for k-TSP, we extend this result to the more
general (m, k)-TSP. We can prove the following theorem, which is the extension of
Theorem 4.2 to multiple tours:

72

𝒑𝟏

𝒑𝟒𝒑𝟐

𝒑𝟓

𝒑𝟔

𝒑𝟑

(a)

𝒑𝟏

𝒑𝟒

𝒑𝟑

𝒑𝟐

𝒑𝟓

𝒑𝟔

(b)

Figure 11: Both figures consist of the same points p1, . . . , p6 ∈ Rd, and the two
hyperplanes h1 and h2 are determined by the points p1, p6 and p2, p5 correspondingly.
Figures 11a and 11b differ by the path that connects the points p2, p3, p4, p5. In
Figure 11a the edge (p3, p4) is a backward-facing edge with respect to h2, while in
Figure 11b the edge (p4, p3) is a backward-facing edge with respect to h1.

Theorem 4.3. There is an algorithm that, given as input m source-sink pairs si, ti ∈
Rd for i ∈ [m], a set of n points P ⊂ Rd, an integer 1 ≤ k ≤ n, and an accuracy

parameter δ ∈ (0, 1), runs in time nO(m)(log n)(md/δ)O(d)
and reports m paths, one

from each si to its corresponding ti, that together visit k points of P and have total
length at most ‖Π∗‖ + δ · E(Π∗), where Π∗ is the minimum total length of m such
paths.

As before, we first provide the construction, and then demonstrate correctness. The
construction closely parallels that of the PSA for k-TSP, being a collection of x-
monotone multi-paths connecting windows.

For points s, t ∈ Rd, let st be the directed line segment connecting them. Let the
angle of st be the angle of its direction vector to the x-axis. Given a path π with
endpoints s, t, we define the angle of π to be the angle of the vector st.

Given a set Π of m paths with respective endpoints si, ti for i ∈ [m] the space may be
rotated and (if necessary) some values si, ti swapped to ensure that in the resulting
space each directed path has angle in the range [0, πππ

2
− 1

m′
],5 where m′ = 8m3/2 (see

Lemma 4.6 in Section 4.4). We execute this rotation step before the run of the multi-
path PSA. The crux is that this direction is “good enough” for each of the m paths,
meaning that it is effective as a sweep direction for all the m paths simultaneously.
In contrast, the ordering of Blum et al. [BCK+07] (according to distances from a
starting point s) must use a single starting point and does not extend to multiple
paths.

5We use πππ to denote the mathematical constant, and π to denote a path.

73

Construction. The construction handles m paths simultaneously. Let S, T be
arrays of length m, with entries S[j], T [j] corresponding to the source-sink pair of
the j-th path. Let a window be defined as in Section 4.2.1. For some δ′ = Ωm(δ) to be
specified below, let Arora(a, b, S, T, k) be the output of Arora’s (1− δ′)-approximate
(m, k)-TSP algorithm on the set P (w̄a,b) and tour endpoint arrays S, T . (We may
assume for simplicity that a ≤ S[j], T [j] ≤ b for all j. If both S[j], T [j] are null, the
algorithm will ignore the j-th path. If exactly one is null, the algorithm with return
∞.) For every a, b ∈ P , S, T ⊂ Pm and k′ ∈ [k], we precompute Arora(a, b, S, T, k′).
The algorithm then sweeps the x-axis from left to right as before to calculate the
solution to subproblems up to a point pi ∈ P .

Similarly to what was done above, let V be a 4-dimensional lookup table with an
entry V (pi, S, T, k

′) for every pi ∈ P , S, T ∈ Pm
i and k′ ∈ [k], that contains the

length of computed paths from sources S to sinks T that together visit k′ points in
Pi. For the initialization, we add a dummy point p0 to P and initialize the single
entry V (p0, S, T, 0), where arrays S, T contain all null points, to be 0. We initialize
all other table entries to ∞. Define the distance from a point to a null point (or
between two null points) to be 0. The algorithm considers each pi ∈ P (i ≥ 0) in
increasing order, and computes the entries for all S, T ∈ Pm

i by choosing the shortest
path among several possibilities, as follows:

V (pi, S, T, k
′) = min

{
V (pj, S1, T1, k

′′) +
m∑
l=1

‖T1[l]− S2[l]‖+ Arora(pj+1, pi, S2, T2, k
′ − k′′) |

pj ∈ Pi, S1, T1 ∈ Pm
j , S2, T2 ∈ (Pi \ Pj)m, k′′ < k′

}
As before, this computation combines the length of a previously computed approx-
imated shortest path to a new Arora multi-path. However, we add to the above
description feasiblity requirements, which are sufficient to ensure the validity of the
final tour. First note that the invocation to Arora’s algorithm on arrays S, T ensures
that a non-infinite solution is possible only if S[j], T [j] are both null or both non-null
for all j. We further require for S, S1, S2 and all j that S1[j] = S[j], unless S1[j] is
null, in which case we require that S2[j] = S[j]. This ensures that the computed
subtour has source S[j]. Likewise, we require for T, T1, T2 and all j that T2[j] = T [j],
unless T2[j] is null, in which case we require that T1[j] = T [j]. This ensures that
the computed subtour has sink T [j]. Also, if S[j] (T [j]) is null, then S1[j], S2[j]
(T1[j], T2[j]) must be null as well. This ensures that the subproblems do not feature
additional tours. If these requirements are not met for some set {S, S1, S2, T, T1, T2},
then the table value is not changed. After populating the table, the algorithm re-
ports the entry V (pn, S, T, k) for S, T containing the sources and sinks of the master
problem.

74

Correctness. We must show that there is a set of paths Π with ‖Π‖ ≤ ‖Π∗‖+E(Π∗)
which can be found by the above algorithm. As before, it suffices to show that the
optimal solution can be divided into windows connected by x-monotone paths.

In the analysis of the k-TSP algorithm, we used the fact that any backward-facing
edge contributes its entire length to the excess. This does not hold in the (m, k)-TSP
case, as the definition of “backwards” remains with respect to the x-axis, but excess
is measured with respect to the angle of the relevant path, see Figure 11. To address
this, we will require the following lemma:

Lemma 4.4. Given parameter 0 ≤ γ ≤ 1 (where γ is a measure in radians) and
directed path π with angle φ to the x-axis and edge-set E, let E ′ ⊂ E consist of
directed edges with angles in the range [φ− γ, φ+ γ]. Then we have∑

e∈E\E′
‖e‖ ≤ 24

11γ2
E(π).

Proof. For edge e ∈ E, let p(e) be the length of the projection of e onto segment
st, where s, t are the endpoints of π. We can charge each edge e a share of the
excess as follows. Define E(e) = ‖e‖−p(e); then by the triangle inequality ‖s− t‖ ≤∑

e∈E p(e), and thus
∑

e∈E E(e) = ‖π‖ −
∑

e∈E p(e) ≤ E(π). Now consider an edge

e ∈ E \E ′. Recalling the Taylor expansion cos(x) = 1− x2

2!
+ x4

4!
− . . ., we have that

p(e) ≤ ‖e‖ cos(γ) ≤ ‖e‖
(

1− γ2

2
+
γ4

24

)
≤ ‖e‖

(
1− 11

24
γ2

)
,

and so E(e) = ‖e‖ − p(e) ≥ 11
24
γ2‖e‖. It follows that

11γ2

24

∑
e∈E\E′

‖e‖ ≤
∑

e∈E\E′
E(e) ≤ E(π).

Now take optimal tour Π∗, and letW∗ be defined as in Section 4.2.1, that is consist-
ing of mergers of maximal windows which together cover all backward-facing edges
(where the direction is defined with respect to the x-axis). The edges not in windows
of W∗ constitute forward-facing paths. Now consider some window w̄a,b ∈ W∗, and
we will show that we can afford to run Arora’s (m, k)-TSP on this window with
sufficiently small parameter δ′.

We begin with the set Eb of backward-facing edges of Π∗. As the angle of all paths
in Π∗ was shown above to be in the range [0, πππ

2
− 1

m′
] radians (and backward-facing

75

edges necessarily have angle greater than πππ
2
) we can apply Lemma 4.4 with parameter

γ = 1
m′

, and conclude that

‖Eb‖ ≤
24(m′)2

11
E(Π∗) = O(m3) · E(Π∗).

We now turn to the set Ef of forward-facing edges of Π∗. Set E ′f ⊂ Ef will contain
edges whose angle is very close to the angle of their path. More precisely, let path
π∗i have angle φi. E

′
f includes every edge of every path π∗i with angle in the range[

φi − 1
2m′

, φi + 1
2m′

]
. Now consider edges of Ef \ E ′f : Applying Lemma 4.4 with

parameter γ = 1
2m′

, we have that∥∥Ef \ E ′f∥∥ ≤ 24(2m′)2

11
E(Π∗) = O(m3) · E(Π∗).

Finally, we now turn to the set E ′f . First recall that by the Taylor expansion,

sin(x) = x − x3

3!
+ . . . Each edge in E ′f accounts for a progression in the x-direction

of at least

‖e‖ cos

(
πππ

2
− 1

2m′

)
= ‖e‖ sin

(
1

2m′

)
≥ ‖e‖

(
1

2m′
− 1

6(2m′)3

)
> ‖e‖ 1

3m′
.

Now consider window w̄a,b ∈ W∗, and its associated paths π∗i (c
∗
i (w̄a,b), d

∗
i (w̄a,b)).

Clearly π∗i (c
∗
i (w̄a,b), d

∗
i (w̄a,b)) cannot progress in the x-direction inside the window

for more than its length without heading backwards, and so

1

3m′
∥∥π∗i (c∗i (w̄a,b), d∗i (w̄a,b)) ∩ E ′f∥∥ ≤ |b[0]− a[0]|+ ‖π∗i (c∗i (w̄a,b), d∗i (w̄a,b)) ∩ Eb‖ .

Now recall that by construction, each window w̄a,b ∈ W∗ contains backward-facing
edges whose lengths sum to at least the window length, and so

∑
w̄a,b∈W∗ |b[0]−a[0]| ≤

‖Eb‖. Applying Arora’s algorithm with parameter δ′ on each of the non-overlapping
windows in W∗ will approximate the optimum ‖Π∗‖ within total additive error∑
w̄a,b∈W∗

m∑
i=1

δ′ ‖π∗i (c∗i (w̄a,b), d∗i (w̄a,b))‖

≤ δ′
(
‖Eb‖+

∥∥Ef \ E ′f∥∥+
∑

w̄a,b∈W∗

m∑
i=1

∥∥E ′f ∩ π∗i (c∗i (w̄a,b), d∗i (w̄a,b))∥∥)
≤ δ′

(
‖Eb‖+

∥∥Ef \ E ′f∥∥+
∑

w̄a,b∈W∗

m∑
i=1

3m′
[
|b[0]− a[0]|+ ‖Eb ∩ π∗i (c∗i (w̄a,b), d∗i (w̄a,b))‖

])
≤ δ′

(
‖Eb‖+

∥∥Ef \ E ′f∥∥ 3m2.5 · 2 ‖Eb‖
)

= O(δ′m5.5E(Π∗)).

76

So we can afford to execute Arora’s (m, k)-TSP algorithm with parameter δ′ = cδ
m5.5

for suitable constant c > 1.

Running Time. The table V has nO(m) entries, and computing each entry requires
consulting nO(m) other entries. In addition, one has to invoke nO(m) times Arora’s
k-TSP algorithm (modified as explained in Section 4.1.3 to find m tours), and each

of these is executed in time k2n(2m log n)(d/δ′)O(d)
. Plugging our δ′ = cδ

m5.5 yields total

running time nO(m)(log n)(md/δ)O(d)
, which completes the proof of Theorem 4.3.

4.3 A PTAS for Orienteering

Having shown in Theorem 4.3 how to compute a δ-excess-approximation to an opti-
mal (m, k)-TSP tour, we can use this algorithm as a subroutine to solve the orien-
teering problem. As in [CH08], we show how to reduce the orienteering problem to
nO(1/δ) instances of the (O(1/δ), k)-TSP problem.

Lemma 4.5. A (1 − δ)-approximation to orienteering problem on n-point set P , a
budget B and a starting point s, can be computed by making nO(1/δ) queries to an
O(δ)-excess-approximation oracle for (m, k)-TSP, with parameters m = O(1/δ) and
k = O(kopt), where kopt denotes the number of points visited by an optimal path.

Then Theorem 4.1 follows from Lemma 4.5, with oracle queries executed by the
algorithm of Theorem 4.3.

Proof. Let π∗ be an optimal rooted orienteering path starting at s of length at most
B that visits kopt points of P , let π∗(i, j) = 〈pi, . . . , pj〉 be the portion of the path π∗

from pi to pj, and let E(i, j) = ‖π∗(i, j)‖ − ‖pi − pj‖ be its excess. Set m = b1/δc,
and let αi = d(i − 1)(kopt − 1)/me + 1 for every 1 ≤ i ≤ m + 1. By definition, we
have α1 = 1 and αm+1 = kopt . Furthermore, each subpath π∗(αi, αi+1) visits

αi+1−αi−1 = (di(kopt −1)/me+1)−(d(i−1)(kopt −1)/me+1)−1 ≤ b(kopt −1)/mc

points, excluding the endpoints pαi and pαi+1
.

Consider the subpaths π∗(α1, α2), . . . , π∗(αm, αm+1) of π∗ and their respective ex-
cesses

E1 = E(α1, α2), . . . , Em = E(αm, αm+1).

Clearly, there exists an index ν, 1 ≤ ν ≤ m, such that Eν ≥ 1
m

(
∑m

i=1 Ei). By
connecting the vertex pαν directly to the vertex pαν+1 in π∗, we obtain a new path

77

π′ = 〈p1, p2 . . . , pαν , pαν+1 , pαν+1+1, . . . , pkopt 〉. Observe that ‖π′‖ = ‖π∗‖ − Eν , and as
noted above, π′ visits at least

kopt − (αν+1 − αν − 1) ≥ kopt − b(kopt − 1)/mc ≥ (1− 1/m)kopt

points of P .

By applying an (m, kopt)-TSP oracle on the m pairs (si = pαi , ti = pαi+1
) for every

i ∈ [m] with accuracy parameter 1/m, one can compute a path π̂ that visits at least
(1− 1/m)kopt ≥ (1− δ)kopt points of P , of length

‖π̂‖ ≤
m∑
i=1

(‖π′(αi, αi+1)‖+
1

m
Ei)

≤ ‖π′‖+ Eν
= ‖π∗‖
≤ B.

As the value of kopt is not known in advance, the algorithm tries all possible values of
k from 1 to n, returning the maximum value k′ for which it finds a tour within budget
B (that is, the algorithm terminates at the failed attempt to find a tour visiting k′+1
points). As we proved above, (1 − δ)kopt ≤ k′ ≤ kopt . In addition, since we do not
know the optimal orienteering path π∗ in advance, we guess the m = b1/δc points
pαi , which gives nO(1/δ) queries of (m, k)-TSP.

4.4 Appendix

Lemma 4.6. For every unit-length vectors v1, . . . , vm ∈ Rd, there are signs
σ1, . . . , σm ∈ {±1} and a unit-length x ∈ Rd (direction in space) such that

∀i ∈ [m], 〈x, σivi〉 ≥
1

8m3/2
and thus 0 ≤ angle(x, σivi) ≤

πππ

2
− 1

8m3/2
.

We actually prove that the inner product is at least 1
8m
√
d
, and arguing that without

loss of generality d ≤ m, the stated bound follows.

Proof. Let x ∈ Rd be a random vector where each entry is an iid Gaussian N(0, 1),
i.e., chosen from the distribution x ∼ N(0, Id). Then by Markov’s inequality
Pr[‖x‖2 ≥ 4d] ≤ 1/4. Now fix i ∈ [m]. The inner product 〈x, vi〉 has the same
distribution as a standard Gaussian g ∼ N(0, 1), for which elementary observations
about its pdf (like the monotonicity) show that

∀γ ∈ (0, 1), Pr
g

(
|g| ∈ [0, γ]

)
≤ e1/2 · Pr

g

(
|g| ∈ [1− γ, 1]

)
≤ e1/2 · 1

γ
.

78

Plugging γ = 1
4m

, we have that

Pr
x

(
|〈x, vi〉| ≤ 1

4m

)
< 1

2m
.

Now applying a union bound over these m+1 events (one about ‖x‖2 and one for each
i), we see there positive probability that all these events fail, the vector y = x/ ‖x‖
is a unit-length vector (in same direction as x) and satisfies

∀i ∈ [m], |〈y, vi〉| > 1
4m·‖x‖ ≥

1
8m
√
d
.

Finally, for each i ∈ [m] we can pick a sign σi ∈ {±1} such that 〈y, σivi〉 is non-
negative, and then 〈y, σivi〉 = |〈y, vi〉|. We may assume that d ≤ m, as otherwise we
can restrict attention to the span of the vectors, and conclude the required 〈y, σivi〉 ≥

1
8m3/2 .

To bound the angle, let θi := πππ
2
− angle(y, σivi) and then 1

8m3/2 ≤ 〈y, σivi〉 ≤ cos(πππ
2
−

θi) = sin(θi) ≤ θi, where the last inequality relies on observing that θi ∈ [0, πππ
2
].

References

[AA97] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, pages 542–
547. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.646143.

[AFGN18] I. Abraham, A. Filtser, A. Gupta, and O. Neiman. Metric embedding
via shortest path decompositions. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
952–963. ACM, 2018. doi:10.1145/3188745.3188808.

[AGK14] A. Andoni, A. Gupta, and R. Krauthgamer. Towards (1+ε)-approximate
flow sparsifiers. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 279–293, 2014. doi:

10.1137/1.9781611973402.20.

[AMN98] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained
geometric network optimization. In Proceedings of the Fourteenth Annual
Symposium on Computational Geometry, pages 307–316, 1998. doi:

10.1145/276884.276919.

[AR98] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM J. Comput., 27(1):291–
301, 1998. doi:10.1137/S0097539794285983.

79

http://dx.doi.org/10.1109/SFCS.1997.646143
http://dx.doi.org/10.1145/3188745.3188808
http://dx.doi.org/10.1137/1.9781611973402.20
http://dx.doi.org/10.1137/1.9781611973402.20
http://dx.doi.org/10.1145/276884.276919
http://dx.doi.org/10.1145/276884.276919
http://dx.doi.org/10.1137/S0097539794285983

[Aro98] S. Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. J. ACM, 45(5):753–782, 1998.
doi:10.1145/290179.290180.

[ASV14] C. Archetti, M. G. Speranza, and D. Vigo. Chapter 10: Vehicle
routing problems with profits. In Vehicle Routing: Problems, Meth-
ods, and Applications, Second Edition, pages 273–297. SIAM, 2014.
doi:10.1137/1.9781611973594.ch10.

[Bal95] E. Balas. The prize collecting traveling salesman problem: II. polyhedral
results. Networks, 25(4):199–216, 1995. doi:10.1002/net.3230250406.

[BBCM04] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation al-
gorithms for deadline-TSP and vehicle routing with time-windows. In
Proceedings of the 36th Annual ACM Symposium on Theory of Comput-
ing, pages 166–174, 2004. doi:10.1145/1007352.1007385.

[BCK+07] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff. Approximation algorithms for orienteering and discounted-
reward TSP. SIAM J. Comput., 37(2):653–670, 2007. doi:10.1137/

050645464.

[Ben09] C. Bentz. A simple algorithm for multicuts in planar graphs with outer
terminals. Discrete Appl. Math., 157(8):1959–1964, April 2009. doi:

10.1016/j.dam.2008.11.010.

[Ber90] M. W. Bern. Faster exact algorithms for Steiner trees in planar networks.
Networks, 20(1):109–120, 1990. doi:10.1002/net.3230200110.

[BG08] A. Basu and A. Gupta. Steiner point removal in graph metrics. Un-
published Manuscript, available from http://www.math.ucdavis.edu/

~abasu/papers/SPR.pdf, 2008.

[BK96] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in

Õ(n2) time. In Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on the Theory of Computing, STOC 1996, pages 47–55, 1996.
doi:10.1145/237814.237827.

[BKK07] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. A polynomial-time
approximation scheme for Steiner tree in planar graphs. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
1285–1294, 2007. Available from: http://dl.acm.org/citation.cfm?

id=1283383.1283521.

80

http://dx.doi.org/10.1145/290179.290180
http://dx.doi.org/10.1137/1.9781611973594.ch10
http://dx.doi.org/10.1002/net.3230250406
http://dx.doi.org/10.1145/1007352.1007385
http://dx.doi.org/10.1137/050645464
http://dx.doi.org/10.1137/050645464
http://dx.doi.org/10.1016/j.dam.2008.11.010
http://dx.doi.org/10.1016/j.dam.2008.11.010
http://dx.doi.org/10.1002/net.3230200110
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://dx.doi.org/10.1145/237814.237827
http://dl.acm.org/citation.cfm?id=1283383.1283521
http://dl.acm.org/citation.cfm?id=1283383.1283521

[BKM09] G. Borradaile, P. N. Klein, and C. Mathieu. An O(n log n) approxima-
tion scheme for Steiner tree in planar graphs. ACM Trans. Algorithms,
5(3):31:1–31:31, 2009. doi:10.1145/1541885.1541892.

[BLS10] G. Borradaile, J. R. Lee, and A. Sidiropoulos. Randomly removing g
handles at once. Comput. Geom., 43(8):655–662, 2010. doi:10.1016/j.
comgeo.2010.04.007.

[BM88] D. Bienstock and C. L. Monma. On the complexity of covering vertices
by faces in a planar graph. SIAM J. Comput., 17(1):53–76, February
1988. doi:10.1137/0217004.

[Bor04] G. Borradaile. Exploiting Planarity for Network Flow and Connectivity
Problems. PhD thesis, Brown University, 2004.

[CGH16] Y. K. Cheung, G. Goranci, and M. Henzinger. Graph minors for preserv-
ing terminal distances approximately - lower and upper bounds. In 43rd
International Colloquium on Automata, Languages, and Programming,
ICALP, pages 131:1–131:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.

131.

[CGRT03] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and mini-
mum latency tours. In 44th Symposium on Foundations of Computer Sci-
ence FOCS 2003, pages 36–45, 2003. doi:10.1109/SFCS.2003.1238179.

[CH08] K. Chen and S. Har-Peled. The Euclidean orienteering problem revisited.
SIAM J. Comput., 38(1):385–397, 2008. doi:10.1137/060667839.

[Che18] Y. K. Cheung. Steiner point removal - distant terminals don’t (really)
bother. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018, pages 1353–1360, 2018.
doi:10.1137/1.9781611975031.89.

[Chu12] J. Chuzhoy. On vertex sparsifiers with Steiner nodes. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012,
pages 673–688, 2012. doi:10.1145/2213977.2214039.

[CK04] C. Chekuri and A. Kumar. Maximum coverage problem with group bud-
get constraints and applications. In Approximation, Randomization, and
Combinatorial Optimization, Algorithms and Techniques, 7th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2004, and 8th International Workshop on
Randomization and Computation, RANDOM 2004, Cambridge,, pages
72–83, 2004. doi:10.1007/978-3-540-27821-4_7.

81

http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1016/j.comgeo.2010.04.007
http://dx.doi.org/10.1016/j.comgeo.2010.04.007
http://dx.doi.org/10.1137/0217004
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.131
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.131
http://dx.doi.org/10.1109/SFCS.2003.1238179
http://dx.doi.org/10.1137/060667839
http://dx.doi.org/10.1137/1.9781611975031.89
http://dx.doi.org/10.1145/2213977.2214039
http://dx.doi.org/10.1007/978-3-540-27821-4_7

[CKP12] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering
and related problems. ACM Trans. Algorithms, 8(3):23:1–23:27, 2012.
doi:10.1145/2229163.2229167.

[CKRV15] C. Chekuri, S. Kannan, A. Raja, and P. Viswanath. Multicommodity
flows and cuts in polymatroidal networks. SIAM J. Comput., 44(4):912–
943, 2015. doi:10.1137/130906830.

[CLLM10] M. Charikar, T. Leighton, S. Li, and A. Moitra. Vertex sparsifiers and
abstract rounding algorithms. In 51st Annual Symposium on Foundations
of Computer Science, pages 265–274. IEEE Computer Society, 2010. doi:
10.1109/FOCS.2010.32.

[CP05] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed
graphs. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Pro-
ceedings, pages 245–253, 2005. doi:10.1109/SFCS.2005.9.

[CSW13] C. Chekuri, F. B. Shepherd, and C. Weibel. Flow-cut gaps for integer
and fractional multiflows. Journal of Combinatorial Theory, Series B,
103(2):248 – 273, 2013. doi:10.1016/j.jctb.2012.11.002.

[CSWZ00] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis.
Computing mimicking networks. Algorithmica, 26:31–49, 2000. doi:

10.1007/s004539910003.

[CW04] D. Z. Chen and X. Wu. Efficient algorithms for k-terminal cuts on
planar graphs. Algorithmica, 38(2):299–316, Feb 2004. doi:10.1007/

s00453-003-1061-2.

[CX00] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. In 32nd
Annual ACM Symposium on Theory of Computing, STOC ’00, pages
469–478. ACM, 2000. doi:10.1145/335305.335359.

[CXKR06] H. T. Chan, D. Xia, G. Konjevod, and A. W. Richa. A tight lower
bound for the Steiner point removal problem on trees. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 9th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, APPROX 2006 and 10th In-
ternational Workshop on Randomization and Computation, RANDOM
2006, pages 70–81, 2006. doi:10.1007/11830924_9.

[EGK+14] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen,
and K. Talwar. Vertex sparsifiers: New results from old techniques.
SIAM Journal on Computing, 43(4):1239–1262, 2014. doi:10.1137/

130908440.

82

http://dx.doi.org/10.1145/2229163.2229167
http://dx.doi.org/10.1137/130906830
http://dx.doi.org/10.1109/FOCS.2010.32
http://dx.doi.org/10.1109/FOCS.2010.32
http://dx.doi.org/10.1109/SFCS.2005.9
http://dx.doi.org/10.1016/j.jctb.2012.11.002
http://dx.doi.org/10.1007/s004539910003
http://dx.doi.org/10.1007/s004539910003
http://dx.doi.org/10.1007/s00453-003-1061-2
http://dx.doi.org/10.1007/s00453-003-1061-2
http://dx.doi.org/10.1145/335305.335359
http://dx.doi.org/10.1007/11830924_9
http://dx.doi.org/10.1137/130908440
http://dx.doi.org/10.1137/130908440

[EMV87] R. E. Erickson, C. L. Monma, and A. F. Veinott. Send-and-split method
for minimum-concave-cost network flows. Math. Oper. Res., 12(4):634–
664, 1987. doi:10.1287/moor.12.4.634.

[FF56] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[FHL05] U. Feige, M. T. Hajiaghayi, and J. R. Lee. Improved approximation
algorithms for minimum-weight vertex separators. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing, pages 563–572,
2005. doi:10.1145/1060590.1060674.

[Fil18] A. Filtser. Steiner point removal with distortion O(log k). In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, pages 1361–1373, 2018. doi:10.1137/1.
9781611975031.90.

[Fil20] A. Filtser. A face cover perspective to `1 embeddings of planar graphs.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2020, pages 1945–1954. SIAM, 2020. doi:

10.1137/1.9781611975994.120.

[FKT19] A. Filtser, R. Krauthgamer, and O. Trabelsi. Relaxed Voronoi: A simple
framework for terminal-clustering problems. In 2nd Symposium on Sim-
plicity in Algorithms, SOSA@SODA 2019, volume 69 of OASICS, pages
10:1–10:14, 2019. doi:10.4230/OASIcs.SOSA.2019.10.

[FM95] T. Feder and R. Motwani. Clique partitions, graph compression and
speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995.

[Fre91] G. N. Frederickson. Planar graph decomposition and all pairs shortest
paths. J. ACM, 38(1):162–204, January 1991. doi:10.1145/102782.

102788.

[Fre95] G. N. Frederickson. Using cellular graph embeddings in solving all pairs
shortest paths problems. Journal of Algorithms, 19(1):45 – 85, 1995.
doi:10.1006/jagm.1995.1027.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximat-
ing arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–
497, 2004. doi:10.1016/j.jcss.2004.04.011.

[FS17] Z. Friggstad and C. Swamy. Compact, provably-good lps for orienteering
and regret-bounded vehicle routing. In Integer Programming and Combi-
natorial Optimization - 19th International Conference, IPCO 2017, Pro-
ceedings, volume 10328 of Lecture Notes in Computer Science, pages 199–
211. Springer, 2017. doi:10.1007/978-3-319-59250-3_17.

83

http://dx.doi.org/10.1287/moor.12.4.634
http://dx.doi.org/10.1145/1060590.1060674
http://dx.doi.org/10.1137/1.9781611975031.90
http://dx.doi.org/10.1137/1.9781611975031.90
http://dx.doi.org/10.1137/1.9781611975994.120
http://dx.doi.org/10.1137/1.9781611975994.120
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.10
http://dx.doi.org/10.1145/102782.102788
http://dx.doi.org/10.1145/102782.102788
http://dx.doi.org/10.1006/jagm.1995.1027
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1007/978-3-319-59250-3_17

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geo-
metric problems. In Proceedings of the 8th Annual ACM Symposium on
Theory of Computing, pages 10–22, 1976. doi:10.1145/800113.803626.

[GHP17] G. Goranci, M. Henzinger, and P. Peng. Improved guarantees for vertex
sparsification in planar graphs. In 25th Annual European Symposium
on Algorithms, ESA 2017, volume 87 of LIPIcs, pages 44:1–44:14, 2017.
doi:10.4230/LIPIcs.ESA.2017.44.

[GKNR15] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi. Running
errands in time: Approximation algorithms for stochastic orienteering.
Math. Oper. Res., 40(1):56–79, 2015. doi:10.1287/moor.2014.0656.

[GKR00] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation
algorithm for the group Steiner tree problem. J. Algorithms, 37(1):66–84,
2000. doi:10.1006/jagm.2000.1096.

[GKR20] L.-A. Gottlieb, R. Krauthgamer, and H. Rika. Faster algorithms for
orienteering and k-TSP. 2020. arXiv:2002.07727.

[GLV87] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem.
Naval Research Logistics (NRL), 34(3):307–318, 1987. doi:10.1002/

1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D.

[GLV16] A. Gunawan, H. C. Lau, and P. Vansteenwegen. Orienteering problem: A
survey of recent variants, solution approaches and applications. European
Journal of Operational Research, 255(2):315–332, 2016. doi:10.1016/

j.ejor.2016.04.059.

[GNR10] A. Gupta, V. Nagarajan, and R. Ravi. An improved approximation
algorithm for requirement cut. Oper. Res. Lett., 38(4):322–325, 2010.
doi:10.1016/j.orl.2010.02.009.

[GNRS04] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts, trees and
l1-embeddings of graphs. Combinatorica, 24(2):233–269, 2004. doi:

10.1007/s00493-004-0015-x.

[GR16] G. Goranci and H. Räcke. Vertex sparsification in trees. In Approximation
and Online Algorithms - 14th International Workshop, WAOA, pages
103–115, 2016. doi:10.1007/978-3-319-51741-4_9.

[Gup01] A. Gupta. Steiner points in tree metrics don’t (really) help. In Proceed-
ings of the Twelfth Annual Symposium on Discrete Algorithms, January
7-9, 2001, Washington, DC, USA., pages 220–227, 2001. Available from:
http://dl.acm.org/citation.cfm?id=365411.365448.

84

http://dx.doi.org/10.1145/800113.803626
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.44
http://dx.doi.org/10.1287/moor.2014.0656
http://dx.doi.org/10.1006/jagm.2000.1096
http://arxiv.org/abs/2002.07727
http://dx.doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
http://dx.doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
http://dx.doi.org/10.1016/j.ejor.2016.04.059
http://dx.doi.org/10.1016/j.ejor.2016.04.059
http://dx.doi.org/10.1016/j.orl.2010.02.009
http://dx.doi.org/10.1007/s00493-004-0015-x
http://dx.doi.org/10.1007/s00493-004-0015-x
http://dx.doi.org/10.1007/978-3-319-51741-4_9
http://dl.acm.org/citation.cfm?id=365411.365448

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing
multiterminal flow networks and computing flows in networks of small
treewidth. J. Comput. Syst. Sci., 57(3):366–375, 1998. doi:10.1006/

jcss.1998.1592.

[IR82] A. Itai and M. Rodeh. Representation of graphs. Acta Inf., 17:215–219,
1982. doi:10.1007/BF00288971.

[Kar93] D. R. Karger. Global min-cuts in rnc, and other ramifications of
a simple min-cut algorithm. In Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, SODA, pages
21–30, 1993. Available from: http://dl.acm.org/citation.cfm?id=

313559.313605.

[KKN15] L. Kamma, R. Krauthgamer, and H. L. Nguyen. Cutting corners
cheaply, or how to remove Steiner points. SIAM Journal on Comput-
ing, 44(4):975–995, 2015. doi:10.1137/140951382.

[Kle06] P. N. Klein. A subset spanner for planar graphs, : with application to
subset TSP. pages 749–756, 2006. doi:10.1145/1132516.1132620.

[KLL02] T. Kloks, C. Lee, and J. Liu. New algorithms for k-face cover, k-
feedback vertex set, and k-disjoint cycles on plane and planar graphs.
In Graph-Theoretic Concepts in Computer Science, 28th International
Workshop, WG 2002, Revised Papers, pages 282–295, 2002. doi:

10.1007/3-540-36379-3_25.

[KLR19] R. Krauthgamer, J. R. Lee, and H. Rika. Flow-cut gaps and face covers
in planar graphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 525–534, 2019. doi:

10.1137/1.9781611975482.33.

[KNvL19] S. Kisfaludi-Bak, J. Nederlof, and E. J. van Leeuwen. Nearly eth-
tight algorithms for planar Steiner tree with terminals on few faces.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA, pages 1015–1034, 2019. doi:10.1137/1.

9781611975482.63.

[KNZ14] R. Krauthgamer, H. L. Nguyen, and T. Zondiner. Preserving terminal
distances using minors. SIAM J. Discrete Math., 28(1):127–141, 2014.
doi:10.1137/120888843.

[KPR93] P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decom-
position, and multicommodity flow. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’93, pages
682–690, 1993. doi:10.1145/167088.167261.

85

http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1007/BF00288971
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=313559.313605
http://dx.doi.org/10.1137/140951382
http://dx.doi.org/10.1145/1132516.1132620
http://dx.doi.org/10.1007/3-540-36379-3_25
http://dx.doi.org/10.1007/3-540-36379-3_25
http://dx.doi.org/10.1137/1.9781611975482.33
http://dx.doi.org/10.1137/1.9781611975482.33
http://dx.doi.org/10.1137/1.9781611975482.63
http://dx.doi.org/10.1137/1.9781611975482.63
http://dx.doi.org/10.1137/120888843
http://dx.doi.org/10.1145/167088.167261

[KPZ19] N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz. An exponential lower
bound for cut sparsifiers in planar graphs. Algorithmica, 81(10):4029–
4042, 2019. doi:10.1007/s00453-018-0504-8.

[KR13] R. Krauthgamer and I. Rika. Mimicking networks and succinct rep-
resentations of terminal cuts. In Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pages
1789–1799, 2013. doi:10.1137/1.9781611973105.128.

[KR14] A. Khan and P. Raghavendra. On mimicking networks represent-
ing minimum terminal cuts. Inf. Process. Lett., 114(7):365–371, 2014.
doi:10.1016/j.ipl.2014.02.011.

[KR20] R. Krauthgamer and H. I. Rika. Refined vertex sparsifiers of planar
graphs. SIAM Journal on Discrete Mathematics, 34(1):101–129, 2020.
doi:10.1137/17M1151225.

[KRS01] G. Konjevod, R. Ravi, and F. S. Salman. On approximating planar
metrics by tree metrics. Inform. Process. Lett., 80(4):213–219, 2001.
doi:10.1016/S0020-0190(01)00161-2.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.
doi:10.1007/BF01200757.

[LM10] F. T. Leighton and A. Moitra. Extensions and limits to vertex sparsifica-
tion. In Proceedings of the 42nd ACM Symposium on Theory of Comput-
ing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
47–56, 2010. doi:10.1145/1806689.1806698.

[LMM15] J. R. Lee, M. Mendel, and M. Moharrami. A node-capacitated Okamura-
Seymour theorem. Math. Program., 153(2, Ser. A):381–415, 2015. doi:

10.1007/s10107-014-0810-0.

[LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–
832, 1999. doi:10.1145/331524.331526.

[LR10] J. R. Lee and P. Raghavendra. Coarse differentiation and multi-flows
in planar graphs. Discrete & Computational Geometry, 43(2):346–362,
2010. doi:10.1007/s00454-009-9172-4.

[LS09] J. R. Lee and A. Sidiropoulos. On the geometry of graphs with a
forbidden minor. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, pages 245–254, 2009. doi:

10.1145/1536414.1536450.

86

http://dx.doi.org/10.1007/s00453-018-0504-8
http://dx.doi.org/10.1137/1.9781611973105.128
http://dx.doi.org/10.1016/j.ipl.2014.02.011
http://dx.doi.org/10.1137/17M1151225
http://dx.doi.org/10.1016/S0020-0190(01)00161-2
http://dx.doi.org/10.1007/BF01200757
http://dx.doi.org/10.1145/1806689.1806698
http://dx.doi.org/10.1007/s10107-014-0810-0
http://dx.doi.org/10.1007/s10107-014-0810-0
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1007/s00454-009-9172-4
http://dx.doi.org/10.1145/1536414.1536450
http://dx.doi.org/10.1145/1536414.1536450

[LS13] J. R. Lee and A. Sidiropoulos. Pathwidth, trees, and random
embeddings. Combinatorica, 33(3):349–374, 2013. doi:10.1007/

s00493-013-2685-8.

[Mit99] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geometric
TSP, k-MST, and related problems. SIAM J. Comput., 28(4):1298–1309,
1999. doi:10.1137/S0097539796309764.

[MM16] K. Makarychev and Y. Makarychev. Metric extension operators, vertex
sparsifiers and Lipschitz extendability. Israel Journal of Mathematics,
212(2):913–959, 2016. doi:10.1007/s11856-016-1315-8.

[MNS85] K. Matsumoto, T. Nishizeki, and N. Saito. An efficient algorithm for
finding multicommodity flows in planar networks. SIAM Journal on
Computing, 14(2):289–302, 1985. doi:10.1137/0214023.

[Moi09] A. Moitra. Approximation algorithms for multicommodity-type problems
with guarantees independent of the graph size. In 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 3–12, 2009. doi:10.1109/

FOCS.2009.28.

[Nao90] M. Naor. Succinct representation of general unlabeled graphs. Dis-
cret. Appl. Math., 28(3):303–307, 1990. doi:10.1016/0166-218X(90)

90011-Z.

[OS81] H. Okamura and P. Seymour. Multicommodity flows in planar graphs.
Journal of Combinatorial Theory, Series B, 31(1):75 – 81, 1981. doi:

10.1016/S0095-8956(81)80012-3.

[Pap77] C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-
complete. Theor. Comput. Sci., 4(3):237–244, 1977. doi:10.1016/

0304-3975(77)90012-3.

[PU89] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube.
SIAM J. Comput., 18:740–747, August 1989. doi:10.1137/0218050.

[Räc08] H. Räcke. Optimal hierarchical decompositions for congestion minimiza-
tion in networks. In 40th Annual ACM Symposium on Theory of Com-
puting, pages 255–264. ACM, 2008. doi:10.1145/1374376.1374415.

[Rao99] S. Rao. Small distortion and volume preserving embeddings for planar
and euclidean metrics. In Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, SCG ’99, pages 300–306. ACM, 1999. doi:
10.1145/304893.304983.

87

http://dx.doi.org/10.1007/s00493-013-2685-8
http://dx.doi.org/10.1007/s00493-013-2685-8
http://dx.doi.org/10.1137/S0097539796309764
http://dx.doi.org/10.1007/s11856-016-1315-8
http://dx.doi.org/10.1137/0214023
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1016/0166-218X(90)90011-Z
http://dx.doi.org/10.1016/0166-218X(90)90011-Z
http://dx.doi.org/10.1016/S0095-8956(81)80012-3
http://dx.doi.org/10.1016/S0095-8956(81)80012-3
http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1137/0218050
http://dx.doi.org/10.1145/1374376.1374415
http://dx.doi.org/10.1145/304893.304983
http://dx.doi.org/10.1145/304893.304983

[Sid10] A. Sidiropoulos. Optimal stochastic planarization. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 163–170, 2010. doi:10.

1109/FOCS.2010.23.

[ST11] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM
J. Comput., 40(4):981–1025, July 2011. doi:10.1137/08074489X.

[Tre00] L. Trevisan. When Hamming meets Euclid: The approximability of ge-
ometric TSP and Steiner tree. SIAM J. Comput., 30(2):475–485, 2000.
doi:10.1137/S0097539799352735.

[Tur84] G. Turán. On the succinct representation of graphs. Discret. Appl. Math.,
8(3):289–294, 1984. doi:10.1016/0166-218X(84)90126-4.

[TV02] P. Toth and D. Vigo, editors. The Vehicle Routing Problem, volume 9
of SIAM monographs on discrete mathematics and applications. SIAM,
2002. doi:10.1137/1.9780898718515.

[Whi32] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34(2):339–362, 1932. doi:10.1090/S0002-9947-1932-1501641-2.

88

http://dx.doi.org/10.1109/FOCS.2010.23
http://dx.doi.org/10.1109/FOCS.2010.23
http://dx.doi.org/10.1137/08074489X
http://dx.doi.org/10.1137/S0097539799352735
http://dx.doi.org/10.1016/0166-218X(84)90126-4
http://dx.doi.org/10.1137/1.9780898718515
http://dx.doi.org/10.1090/S0002-9947-1932-1501641-2

	Introduction
	Cut-Sparsifiers of Planar Graphs
	Refined Flow-Cut Gap in Planar Graphs
	Faster Algorithms for Euclidean Orienteering and k-TSP

	Refined Vertex Sparsifiers of Planar Graphs
	Opening
	Main Results and Techniques
	Cuts vs. Distances
	Related Work
	Preliminaries

	Elementary Cutsets in General Graphs
	Mimicking Networks for Planar Graphs
	Proof of Theorem 2.11

	Mimicking Networks for Planar Graphs with Bounded (G)
	Proof of Theorem 2.15 and Lemma 2.16
	Proof of Theorem 2.18
	Proof of Theorem 2.20
	Flow Sparsifiers

	Terminal-Cuts Scheme
	Cut-Sparsifier vs. DAM in planar networks
	Proof of Theorem 2.38
	Proof of Theorem 2.39
	Duality Applications

	Planar Duality

	Flow-Cut Gaps and Face Covers in Planar Graphs
	Opening
	The Flow-Cut Gap
	The Vertex-Capacitated Flow-Cut Gap
	Stochastic Embeddings

	Approximation by random trees
	Random partitions, embeddings, and peeling
	Approximation by OS-instances
	From OS-instances to random trees

	Polymatroid flow-cut gaps
	Embeddings into thin trees

	Faster Algorithms for Orienteering and k-TSP
	Opening
	Our Results
	Related Work
	Preliminaries

	A -excess-approximation algorithm for rooted (m,k)-TSP
	Algorithm for rooted k-TSP
	Algorithm for rooted (m,k)-TSP

	A PTAS for Orienteering
	Appendix

