
Thesis for the degree Master of Science

Mimicking Networks
and Succinct Representations

of Terminal Cuts

Inbal Rika

under the supervision of

Prof. Robert Krauthgamer

January 11, 2013

The only real valuable thing
is intuition.

Albert Einstein

II

Acknowledgements

I would like to express my deep appreciation and my sincere gratitude to my Masters
thesis advisor, Prof. Robert Krauthgamer, for his kindly and patient guidance, friendly
support and for his devoted attention. It was a pleasure to work and to be inspired by
him.

I would like to thank my fellow students, the faculty members and the administrative
staff of the Department of Computer Science and Applied Mathematics for the pleasant
atmosphere and the convenient workspace.

III

Abstract

Given a large edge-weighted network G with k vertices designated as terminals, we
wish to compress it and store, using little memory, the value of the minimum cut (or
equivalently, maximum flow) between every bipartition of terminals. One appealing
methodology to implement a compression of G is to construct a mimicking network :
a small network G′ with the same k terminals, in which the minimum cut value be-
tween every bipartition of terminals is the same as in G. This notion was introduced by
Hagerup, Katajainen, Nishimura, and Ragde [JCSS ’98], who proved that such G′ of size
at most 22k always exists. Obviously, by having access to the smaller network G′, certain
computations involving cuts can be carried out much more efficiently.

We provide several new bounds, which narrow the previously gap between known
upper and lower bounds from doubly-exponential to only singly-exponential, both for
planar and for general graphs. Our first and main result is that every k-terminal planar
network admits a mimicking network G′ of size O(k222k), which is moreover a minor of
G. On the other hand, some planar networks G require |E(G′)| ≥ Ω(k2). For general
networks, we show that certain bipartite graphs only admit mimicking networks of size
|V (G′)| ≥ 2Ω(k), and moreover, every data structure that stores the minimum cut value
between all bipartitions of the terminals must use 2Ω(k) machine words, which proves that
the trivial upper bound is tight.

IV

Contents

1 Introduction 6
1.1 Our Results . 8

1.1.1 Upper Bounds . 8
1.1.2 Lower Bounds . 9
1.1.3 Succinct Data Structures . 9

1.2 Related Work . 10

2 Upper Bound for Planar Graphs 11
2.1 Technical Outline . 11
2.2 Preliminaries . 11
2.3 Proof of Theorem 1.3 . 12

3 Lower Bounds 18
3.1 Techniques and Proof Outline . 18
3.2 Proof of Lemma 3.2 . 19
3.3 Lower bound for general graphs . 20
3.4 Lower bound for planar graphs . 22

4 Lower Bounds for Data Structures 26
4.1 Proof for deterministic schemes . 26
4.2 Proof for randomized schemes . 27

5 Concluding Remarks 29
5.1 Upper Bounds . 29
5.2 Lower Bounds . 30
5.3 Extensions of Mimicking Networks . 32

References 36

5

1 Introduction

These days, more than ever, we deal with huge graphs such as social networks, commu-
nication networks, roadmaps and so forth. But even when our main interest is only in a
small portion of the input graph G, we still need to process all or most of it in order to
answer our query, since the runtime and memory requirements of many common graph
algorithms depend on the input (graph) size. Therefore, a natural question is whether
we can represent the graph G in a succinct structure that contains only the relevant
information about the original graph.

Turán [Tur84] had previously studied the problem of succinctly representing an un-
labeled planar graph. The representation obtained was optimal in size but could not
be used to speed-up algorithms. The problem of finding a succinct representation of
unlabeled general graphs, was solved a few years later by Naor [Nao90].

Later on, Feder and Motwani [FM95] were the first to introduce the basic concept
of graph compression. They require that the compressed graph has fewer edges than
the original graph, and that each graph can be quickly computed from the other one.
Their results are stronger than previous ones in two important aspects. First, their
results are derived for the case of labeled graphs. Second, since their results are not only
concerned with representing a graph using the fewest possible number of bits, but also
with finding representations that do not obscure the structure present in the graph so as
to enable an efficient implementation of a large class of algorithms. Feder and Motwani
have demonstrated how their paradigm leads to significantly improved running time of
the best algorithms known for graph problems such as matchings, vertex connectivity,
edge connectivity and all-pairs shortest paths.

We ask whether for every labeled graph G we can find a smaller graph (in terms of
vertices or edges) G′ that exactly (or approximately) preserves some properties of the
original graph G such as distances, cuts or connectivity. Notice that in a sense, G′ is a
compressed graph of G. Indeed, we do not require G′ to be computed very quickly from
G (and we do not require to be able to restore the original graph G from G′), but typical
graph algorithms run faster on the smaller graph G′ than on the bigger original graph G.
If G has some special structure which associates it to a family of graphs, such as planar
graphs, trees, bounded treewidth etc., then we could ask that G′ preserves that property
of G, and has also a similar structure as G such that they both belong to the same graph
family. For example, Krauthgamer and Zondiner [KZ12] study planar graphs, and seek a
smaller graph that is a minor of the original graph (and thus also a planar) and preserves
the distances between a specific set of vertices.

Another significant advantage of the compressed graph G′ is that it requires far less
memory than storing the original graph G, which could be critical for machines with
limited resources such as smartphones, assuming that the preprocessing can be executed
in advance on much more powerful machines. This paradigm becomes indispensable when
computations on the compressed graph are to be performed repeatedly (after a one-time
preprocessing).

We focus on cuts and flows, which are of fundamental importance in computer science,
engineering, and operations research, because of their frequent usage in many application
areas. More specifical, we consider the cuts and flows between k ”important” vertices
denoted by Q called terminals. One of the central (and classical) problems in network

6

flows is the characterization of the (single commodity) flow behavior of networks with
k > 2 terminals, first motivated and solved by Gomory and Hu [GH61] and later improved
and simplified by many others. The Gomory-Hu approach, as well as its subsequent
improvements and simplifications, deals only with the case where all the vertices in the
graph are the terminals, i.e. V = Q. They computing maximum flow between all pairs
of vertices (terminals) in a network. However, there may be cases where the terminals is
a small subset of the vertices in the network, i.e. Q ⊂ V and |Q| << |V |. Under this
perspective, there is a recent, renewed interest in the problem of characterizing the flow
behavior of networks with a small number of terminals [HKNR98, Moi09].

Specifically, we study the compression of a large graph G containing k terminals,
into a smaller graph G′ containing the same terminals, while maintaining the following
condition: the minimum cut between every bipartition of the terminals has exactly the
same value in G and in G′. The above cut condition can be also stated in terms of
maximum flow, because it effectively deals with the single-source single-sink case, for
which we have the max-flow min-cut theorem of Ford and Fulkerson [FF]. We now turn
to define this problem more formally, restricting our attention (throughout) to undirected
graphs.

A network (G, c) is a graph G with an edge-costs function c : E(G)→ R+. The size of
a network is the number of vertices of G. The network is called a k-terminal network if the
graph G has k distinguished vertices called terminals, denoted Q = {q1, . . . , qk} ⊆ V (G).
In such a network, a cut (W,V (G) \ W) is said to be S-separating if it separates the
terminals subset S ⊂ Q from the remaining terminals S̄ := Q \ S, i.e. if W ∩Q is either
S or S̄. When clear from the context, (W,V (G) \W) may refer not only to a bipartition
of the vertices, but also to its corresponding cutset (set of edges crossing the cut). The
cost of a cut (W,V (G) \W) is the sum of costs of all the edges in the cutset. We let
mincutG,c(S, S̄) and min-cutsetG,c(S, S̄) denote the cost and the cutset (correspondingly)
of an S-separating cut in the network (G, c) of minimum cost (breaking ties arbitrarily).
We omit the subscript c when clear from the context.

Definition 1.1 (Mimicking Network [HKNR98]). Let (G, c) be a k-terminal network. A
mimicking network of (G, c) is a k-terminal network (G′, c′) with the same set of terminals
Q, such that for all S ⊂ Q,1

mincutG′,c′(S, S̄) = mincutG,c(S, S̄).

The above definition (albeit for directed networks) was introduced by Hagerup, Kata-
jainen, Nishimura, and Ragde [HKNR98], who proved that following theorem.

Theorem 1.2 ([HKNR98]). Every k-terminal network (G, c) admits a mimicking network
of size at most 22k .

Proof (sketch). Let (G, c) be a k-terminal network, and let (Si, S̄i) be the 2k−1 − 1 bi-
partitions of the terminals Q. For every bipartition i, fix a minimum Si-separating cut.
Define an equivalence relation on the vertices of G by declaring that two vertices are
equivalent (in the same equivalence class) if and only if for all i, they are in the same side
of the (fixed) minimum Si-separating cut. The mimicking network G′ has a vertex for

1Throughout, we omit the trivial exclusion S 6= ∅, Q.

7

each equivalence class in the relation, and the terminals are the vertices associated to the
equivalence classes which contain terminals. Think of G′ as a complete graph, where the
cost of every edge between two vertices (equivalence classes) is the sum of the costs of all
edges that one of their endpoints is in one equivalence class and the second endpoint is
in the other; if there are no such edges in G then the cost of the edge in G′ is 0. It is easy
to be convinced that G′ preserves all the minimum terminal cuts, since all the edges that
their two endpoints are in the same equivalence class never participate in any terminal
min-cut.

We now turn to bound the number of equivalence classes. To simplify the counting,
we associate a binary vector with 2k−1 − 1 entries to each vertex in G, where the i-th
entry will be 1 if the vertex is in the same side of Si in the minimum Si-separating cut
and 0 otherwise. In this setting two vertices are in the same class if the vectors associated
to them are the same. Thus, the number of different classes is the number of different
vectors, which is bounded by 22(k−1)−1.

Notice that we prove a slightly better upper bound of 22(k−1)−1. The improvement is
achieved since we compute a mimicking network for undirected graphs, and so the number
of different bipartitions of terminals is bounded by 2(k−1) − 1, while [HKNR98] compute
a mimicking network for directed graphs, and so the number of different bipartitions
(ordered pairs) is bounded by 2k.

Subsequently, Chaudhuri, Subrahmanyam, Wagner, and Zaroliagis [CSWZ00] studied
specific graph families, showing an improved upper bound of O(k) for graphs G that have
bounded treewidth. For the special case of outerplanar graphs G, the mimicking network
G′ they construct is furthermore outerplanar. Some of these previous results hold also
for directed networks.

The only lower bound we are aware of on the size of mimicking networks is k + 1 for
every k > 3, even for a star graph, due to [CSWZ00]. For k = 4, 5 they further show
a matching upper bound. These results are summarized in Table 1. We mention that
several other variants of the problem were studied in the literature, in particular when
cut values are preserved approximately, see Section 1.2 for details.

1.1 Our Results2

The following results are going to appear in a paper in SODA 2013.

1.1.1 Upper Bounds

We first prove (in Section 2) a new upper bound for planar graphs, which significantly
improves over the bound that follows from previous work (namely, 22k known for general
graphs [HKNR98]). See also Table 1 for the known bounds.

Theorem 1.3. Every planar k-terminal network (G, c) admits a mimicking network of
size at most O(k222k), which is furthermore a minor of G.

Notice that our theorem constructs for an input graph G a mimicking network that
is actually a minor of G, and thus preserves additional properties of G such as planarity.

2The following results are going to appear in a paper in SODA 2013.

8

Graph family Lower bounds Upper bounds

General graphs 2Ω(k) Theorem 1.4 22k [HKNR98]
Planar graphs |E(G′)| ≥ Ω(k2) Theorem 1.5 O(k222k) Theorem 1.3
Bounded treewidth O(k) [CSWZ00]
Star graphs k + 1 [CSWZ00]

Table 1: Known bounds for the size of mimicking networks

1.1.2 Lower Bounds

We further provide (in Section 3) two nontrivial lower bounds. See Table 1 for comparison
with the known bounds. The following theorem addresses general graphs, and narrows the
previous doubly-exponential gap (between k + 1 and 22k) to be only singly-exponential.

Theorem 1.4. For every k > 5 there exists a k-terminal network such that every mim-
icking network of it has size 2Ω(k). This holds even for bipartite networks with all the
terminals on one side and all the non-terminals on the other side.

The next theorem is for mimicking networks of planar graphs, proving a lower bound
on the number of edges. If the mimicking network is guaranteed to be sparse (say planar,
as is the case in our bound in Theorem 1.3) then we get a similar bound for the number
of vertices. But if the mimicking network could be arbitrary (e.g., a complete graph) we
do not know how to prove it cannot have O(k) vertices.

Theorem 1.5. For every k > 5 there exists a planar k-terminal network such that every
mimicking network of it has at least Ω(k2) edges.

Remark. Very recently, we were informed of new results, obtained independently of
ours, by Khan, Raghavendra, Tetali and Végh [KRTV12]. Their results include improved
upper bounds for general graphs (albeit still doubly-exponential in k), for trees, and for
bounded treewidth graphs, as well as lower bounds that are comparable to ours.

1.1.3 Succinct Data Structures

Our final result is an alternative formulation of graph compression as the problem of
storing succinctly (i.e., summarizing or sketching) all the 2k−1 − 1 terminal cuts in a
k-terminal network.

Definition 1.6. A terminal-cuts (TC) scheme is a data structure that uses storage (mem-
ory) M to support the following two operations on a k-terminal network (G, c), where
n = |V (G)| and c : E(G)→ {1, . . . , nO(1)}.

1. Preprocessing P , which gets as input the network and builds M .

2. Query Q, which gets as input a subset of terminals S, and uses M (without access
to (G, c)) to output mincutG,c(S, S̄).

9

Observe that putting together the two conditions above givesQ(S;P (G, c)) = mincutG,c(S, S̄)
for all S ⊂ Q. The storage requirement (or space complexity) of the TC scheme is the
(maximum) number of machine words used by M . Since the value of every cut in (G, c)
is at most nO(1), and since we need to be able to represent every vertex in G, we shall
count the size of the TC scheme in terms of machine words of O(log n) bits. An obvious
upper bound is 2k machine words, by explicitly storing a list of all the cut values. Per-
haps surprisingly, we can show a matching lower bound for any data structure using the
technology developed to prove Theorem 1.4. We prove the following theorem, including
its extension to randomized schemes, in Section 4.

Theorem 1.7. For every k > 5, a terminal-cuts scheme for k-terminal networks requires
storage of 2Ω(k) machine words.

This theorem is related to, but different from, Theorem 1.4. A TC scheme can possibly
use its memory M to store an entire mimicking network; a more naive approach would be
to store all the terminal-cut values, using at most 2k machine words. Indeed, our theorem
shows that the worst-case memory usage of this naive approach is essentially optimal.

1.2 Related Work

Graph compression can be interpreted quite broadly, and indeed it was studied extensively
in the past, with many results known for different graphical features (the properties we
wish to preserve). For instance, in the context of preserving the graph distances, concepts
such as spanners [PS89] and probabilistic embedding into trees [AKPW95, Bar96], have
developed into a rich area with productive area, and variations of it that involve a subset
of terminal vertices were studied more recently, see e.g. [CE06, KZ12].

In the context of preserving cuts (and flows), which is also our theme, the problem
of graph sparsification [BK96] has recently seen an immense progress, see [BSS09] and
references therein. Even closer to our own work are analogous questions that involve
a subset of terminals, and the goal is to find a small network that preserves (the cost
of) all minimum terminal cuts approximately. In particular, Chuzhoy [Chu12] recently
showed a constant factor approximation using a network whose size depends on (certain)
edge-costs is in the original graph. Another variation of our problem is that of a cut
(and flow) sparsifier, in which the compressed network should contain only k vertices
(the terminals) and the goal is to minimize the approximation factor (sometimes called
congestion), see [CLLM10, EGK+10, MM10] for the latest results.

10

2 Upper Bound for Planar Graphs

In this section we prove Theorem 1.3, showing that every planar k-terminal network (G, c)
admits a mimicking network of size O(k222k), which is in fact a minor of G.

2.1 Technical Outline

LetG be a planar k-terminal network, and assume it is connected. Let ES = min-cutsetG,c(S, S̄)

be the cutset of a minimum S-separating cut in (G, c), and let Ê be the union of ES over
all subsets S ⊂ Q. Removing the edges Ê from the graph G disconnects it to some
number of connected components, and we construct our mimicking network G′ by con-
tracting every such connected component into a single vertex. It is easy to verify that
these contractions maintain the minimum terminal cuts. This method of constructing G′

resembles the one in [HKNR98], except that the sets of vertices that we unite are always
connected, hence our G′ is a minor of G. We proceed to bound the number of connected
components one gets in this way, as this will clearly be the size of our mimicking network
G′.

We first consider removing from G a single cutset ES (for arbitrary S ⊂ Q), and show
(in Lemma 2.1) that it can disconnect the graph into at most k connected components.
We then extend this result to removing from G two cutsets, namely ES and ET (for
arbitrary S, T ⊂ Q), and show (in Lemma 2.2) such a removal can disconnect the graph
into at most 3k connected components. Next, we consider removing all the m = 2k−1− 1
cutsets of the minimum terminal cuts from G (i.e., G \ Ê). However, naive counting of
the number of resulting connected components, which argues that every additional cutset
splits each existing component into at most O(k) components, would give us in total a
poor bound of roughly km.

The crucial step here is to use the planarity of G to improve the dependence on m
significantly, and we indeed obtain a bound that is quadratic in m by employing the dual
graph of G denoted by G∗. Loosely speaking, the cutsets in G correspond to (multiple)
cycles in G∗, and thus we consider the dual edges of Ê, which may be viewed as a subgraph
of G∗ comprising of (many) cycles. We now use Euler’s formula and the special structure
of this subgraph of cycles; more specifically, we count its vertices of degree > 2, which
turns out to require the aforementioned bound of 3k for two sets of terminals S, T . This
gives us a bound on the number of faces in this subgraph (in Lemma 2.6), which in turn
is exactly the number of connected components in the primal graph (Corollary 2.7).

2.2 Preliminaries

Recall that a graph is called a multi-graph if we allow it to have parallel edges and loops.
A cycle in a multi-graph G is a sequence of edges (u0, v0), . . . , (ul−1, vl−1) such that
vi = u(i+1) mod l for all i = 0, . . . , l−1. The cycle is simple if it contains l distinct vertices
and l distinct edges. Note that two parallel edges define a simple cycle of length 2, and
that a loop is a cycle of length 1 that contributes 2 to the degree of its vertex. A circuit
is a collection of cycles (not necessarily disjoint) C = {C1, . . . , Cl}. Let E(C) =

⋃l
i=1Ci

be the set of edges that participate in one or more cycles in the collection (note it is not
a multiset, so we discard multiplicities). The cost of a circuit C is defined as

∑
e∈E(C) c(e).

11

For a graph G, let CC(G) denote the set of connected components in the graph. In
particular, if CC(G) = {P1, . . . , Ph} then V (G) = P1 ∪ · · · ∪ Ph as a disjoint union. For
a subset of the vertices W ⊂ V (G), let δ(W) denote the set of edges with exactly one
endpoint in W , i.e. δ(W) = {(u, v) ∈ E(G) : u ∈ W, v /∈ W}. A vertex in G with degree
more than 2 will be called a meeting vertex of G. We introduce special notation for two
(disjoint) sets of vertices:

V2(G) = {v ∈ V : deg(v) = 2};
Vm(G) = {v ∈ V : deg(v) > 2};

and for two (disjoint) sets of edges:

E2(G) := {(u, v) ∈ E(G) : u, v ∈ V2(G)};
Em(G) := {(u, v) ∈ E(G) : u ∈ Vm(G) or v ∈ Vm(G)}.

2.3 Proof of Theorem 1.3

Let (G, c) be a k-terminal network with terminals Q = {q1, . . . , qk}, where G is a con-
nected plane graph with faces F (if G is not connected we can apply the proof for every
connected component separately). We may assume, using small perturbation on the edges
cost, that every two different subsets of edges in G have different total cost. In the proof
we will use the notations ES and Ê defined in Section 2.1.

Lemma 2.1 (One cutset). For every subset of terminals S, the graph G\ES has at most
k connected components.

Proof. If there are more than k connected components then there is at least one connected
component without any terminal vertex. Since G is connected, we can unite it to any
other connected component by removing some edge from ES. We get a new cutset that
separates S from S̄ with smaller total cost than ES in contradiction to the minimality.

Lemma 2.2 (Two cutsets). For every two subsets of terminals S and T , the graph
G \ (ES ∪ ET) has at most |CC(G \ ES)|+ |CC(G \ ET)|+ k connected components.

We illustrate this lemma in Figure 1. The idea is that if G \ (ES ∪ET) has too many
connected components, then we can find one that contains no terminals, and that moving
it to the other side of (say) G \ ES contradicts the minimality of ES.

Proof of Lemma 2.2. Let CC(G \ (ES ∪ ET)) = {P0, . . . , Ph}. For every Pi, we let
WS(Pi) := δ(Pi) ∩ ES be the set of edges in ES that have exactly one of their end-
points in Pi, and similarly WT (Pi) := δ(Pi) ∩ ET . We can use the above notation to
associate every connected components Pi of G \ (ES ∪ ET), to one of the following four
sets:

1. WS(Pi) = ∅; in particular, Pi ∈ CC(G \ ET).

2. WT (Pi) = ∅; in particular, Pi ∈ CC(G \ ES).

3. WS(Pi) = WT (Pi); in particular Pi ∈ CC(G \ ES) ∩ CC(G \ ET).

12

4. WS(Pi) 6= ∅, WT (Pi) 6= ∅ and WS(Pi) 6= WT (Pi); in particular Pi /∈ CC(G \ ES) ∪
CC(G \ ET).

Every connected component that belongs to the last set (i.e. there are at least two
different edges in δ(Pi), one from ET and one from ES) will be called a mixed connected
component of G\(ES∪ET). Thus, the number of connected components in G\(ES∪ET) is
bounded by |CC(G\ES)|+|CC(G\ES)| plus the number of mixed connected components
of G \ (ES ∪ ET).

Assume towards contradiction that there are more than k mixed connected compo-
nents in G \ (ES ∪ ET). Therefore, there exists at least one mixed connected compo-
nent, say without loss of generality P0, without any terminal in it. Since P0 is a mixed
connected component in G \ (ES ∪ ET) we know that WS(P0) 6= ∅, WT (P0) 6= ∅ and
WS(P0) 6= WT (P0). For simplicity from now on we will drop the P0 and refer WS and
WT to WS(P0) and WT (P0) correspondingly. By the perturbation on the edges cost the
total cost of these two subsets must be different. Assume without loss of generality that
c(WS) < c(WT). We will replace the edges WT by the edges WS in the cutset of T and call
this new set of edges E ′T , i.e. E ′T = (ET ∪WS) \WT . It is clear that c(E ′T) < c(ET). We
will prove that E ′T is also a cutset that separate T from T̄ in the graph G, contradicting
the definition of ET . See Figures 1 and 2.

Denote CC(G \ ET) = {P ′0, . . . , P ′h′} and assume without loss of generality that the
set of edges WS connects the connected component P0 and the t connected components
P1, . . . Pt of G \ (ES ∪ ET) into one connected component P ′0 in G \ ET . Therefore,
by adding the edges ES \ (WS ∪WT) to the graph G \ (ES ∪ ET) We will get the graph
G′ = G\(ET ∪WS) and its connected components will be P0, P1, . . . , Pt, P

′
1, . . . , P

′
h′ . Since

the graph G′ do not contains any edge from ET , the sets T and T̄ are still separated.
Now it remain to add the edges WT to the graph G′ in order to get the desirable

graph G \ E ′T . Assume without loss of generality that P ′0 contains terminals from T .
Then, by the minimality of ET , if edges from WT connect between P ′0 and P ′i , then the
terminals of P ′i are from T̄ . In particular, adding the edges WT to G′ will connect P0 to
some connected components P ′i that contains only terminals from T̄ . Since P0 does not
contains any terminals, the connected component that was combined by the edges WT

contains only terminals from T̄ , and so E ′T separate between T and T̄ .

𝐺 ∖ 𝐸𝑆 𝐺 ∖ 𝐸𝑇 𝐺 ∖ (𝐸𝑆∪ 𝐸𝑇) 𝑆 = {𝑞3} 𝑆 = {𝑞1, 𝑞2}

𝑽𝒊

Figure 1: As depicted in gray, G \ ES has two connected components, G \ ET has three,
and G\ (ES ∪ET) has five. Notice the connected component Vi of G\ (ES ∪ET) contains
no terminals.

13

𝐺 ∖ 𝐸′𝑇 𝑆 = {𝑞1, 𝑞2}

𝑽𝒊

Figure 2: E ′T = (ET ∪WS) \WT , where the red edges we removed are WT , and the blue
edges we added are WS.

Planar duality. Recall that every planar graph G has a dual graph G∗, whose vertices
correspond to the faces of G, and whose faces correspond to the vertices of G, i.e.,
V (G∗) = {v∗f : f ∈ F (G)} and F (G∗) = {f ∗v : v ∈ V (G)}. Every edge e = (v, u) ∈ E(G)
with cost c(e) that lies on the boundary of two faces f1, f2 ∈ F (G) has a dual edge
e∗ = (v∗f1 , v

∗
f2

) ∈ E(G∗) with the same cost c(e∗) = c(e) that lies on the boundary of the
faces f ∗v and f ∗u . For every subset of edges H ⊂ E(G), let H∗ := {e∗ : e ∈ H} denote the
subset of the corresponding dual edges in G∗.

The following theorem describes the duality between two different kinds of edge sets
– minimum cuts and minimum circuits – in a plane multi-graph. It is a straightforward
generalization of the case of st-cuts (whose duals are cycles) to three or more terminals.
We are not aware of a reference for this precise statement, although it is similar to
[HS85, Rao87]. See also Figure 3 for illustration.

Theorem 2.3 (Duality of cutsets and circuits). Let G be a connected plane multi-graph,
let G∗ be its dual graph, and fix a subset of the vertices W ⊆ V (G). Then, H ⊂ E(G)
is a cutset in G that has minimum cost among those separating W from V (G) \ W if
and only if the dual set of edges H∗ ⊆ E(G∗) is actually E(C) for a circuit C in G∗ that
has minimum cost among those separating the corresponding faces {f ∗v : v ∈ W} from
{f ∗v : v ∈ V (G) \W}.

Recall that removing edges from a graph G disconnects it into (one or more) connected
components. The next lemma characterizes this behavior in terms of the dual graph G∗.
See Figure 4 for illustration. Recall that G[H] is a standard notation for the subgraph of
G induced by the subset (of edges or vertices) H.

Lemma 2.4 (Dual of a connected component). Let G be a connected plane multi-graph,
let G∗ be its dual, and fix a subset of edges H ⊂ E(G). Then P is a connected component
in G \H if and only if its dual set of faces {f ∗v : v ∈ P} is a face of G∗[H∗].

Leveraging the planarity. We proceed with the proof of Theorem 1.3, and now use
the duality of planar graphs. In the following corollary we will deal with the dual graph
G∗[E∗S ∪ E∗T] for two arbitrary subsets of terminals S and T .

14

𝐺:

𝑐(𝑒) =8

5
4

2

1

3

𝑞2

𝑞3

𝑞1

𝐺∗:

𝑞2

𝑞3

𝑞1

𝑐(𝑒∗) =8

𝑆 = 𝑞1, 𝑞3 𝑆 = {𝑞2}

Figure 3: A planar 3-terminal network G (in black), with ES depicted as dashed edges.
The dual graph G∗ is shown in blue, with E∗S depicted as dashed edges.

Corollary 2.5. For all S, T ⊂ Q, the graph G∗[E∗S∪E∗T] has at most 6k meeting vertices.

Proof. According Lemmas 2.1 and 2.2, the graph G \ (ES ∪ ET) has at most |CC(G \
ES)| + |CC(G \ ET)| + k ≤ 3k connected components. By Lemma 2.4 every connected
component in G\(ES∪ET) corresponds to a face in G∗[E∗S∪E∗T]. Therefore, G∗[E∗S∪E∗T]
has at most 3k faces.

By the duality of cuts and circuits, every set of edges E∗S is a circuit. Therefore, every
vertex v appearing in these edges E∗S, has degree at least 2. E∗S∪E∗T is circuit as well, and
all its vertices have degree at least 2, i.e. V (G∗[E∗S∪E∗T]) = V2(G∗[E∗S∪E∗T])∪Vm(G∗[E∗S∪
E∗T]). To simplify the notation we denote G∗ST = G∗[E∗S ∪ E∗T]. By Handshaking lemma,

2|E(G∗ST)| =
∑

v∈V (G∗ST)

deg(v)

≥ 3|Vm(G∗ST)|+ 2|V2(G∗ST)|
= 2|V (G∗ST)|+ |Vm(G∗ST)|.

By Euler’s formula

3k ≥ |F (G∗ST)|
= |E(G∗ST)| − |V (G∗ST)|+ |CC(G∗ST)|+ 1

≥ 1

2
|Vm(G∗ST)|,

and the corollary follows.

Recall that in Section 2.1 we defined Ê :=
⋃
S⊂QES, and denote its set of dual edges

by Ê∗ := {e∗ : e ∈ Ê} =
⋃
S⊂QE

∗
S.

Lemma 2.6. The graph G∗[Ê∗] has at most O(k222k) faces.

15

Figure 4: The graph G is in black. Removing the black dashed edges H disconnects
the graph G into three connected components. The blue bold dashed edges are the dual
edges H∗, that form the dual subgraph G∗[H∗].

Proof. Using Theorem 2.3 we get that for every S ⊂ Q, ES is a minimum cutset in G if
and only if E∗S (the dual set of edges of ES) is a minimum circuit in G∗. Moreover, as
defined in Section 2.3 Ê∗ =

⋃
S⊂QE

∗
S. Thus, Ê∗ is also a circuit, and so

|V (G∗[Ê∗])| = |V2(G∗[Ê∗])|+ |Vm(G∗[Ê∗])|, (1)

|E(G∗[Ê∗])| = |E2(G∗[Ê∗])|+ |Em(G∗[Ê∗])|. (2)

According to the definitions and the Handshaking lemma we get that

|E2(G∗[Ê∗])| ≤ |V2(G∗[Ê∗)|. (3)

By a union bound, the two following inequalities holds

|Vm(G∗[Ê∗])| ≤
∑
S⊂Q
|V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])| (4)

|Em(G∗[Ê∗])| ≤
∑
S⊂Q
|E(G∗[E∗S]) ∩ Em(G∗[Ê∗])| (5)

Fix a subset S. We will start by bounding the set of vertices V (G∗[E∗S])∩Vm(G∗[Ê∗]).
For every vertex v in V (G∗[E∗S])∩ Vm(G∗[Ê∗]) there exists a subset T such that v is also
in V (G∗[E∗S]) ∩ Vm(G∗[E∗S ∪ E∗T]). According to Corollary 2.5, |Vm(G∗[E∗S ∪ E∗T])| ≤ 6k.
Therefore |V (G∗[E∗S]) ∩ Vm(G∗[E∗S ∪ E∗T])| ≤ 6k, and by union bound on all the subsets
T we get |V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])| ≤ 6k2k.

We will now move to bound E(G∗[E∗S]) ∩ Em(G∗[Ê∗]). By Lemma 2.1 there are at
most k cycles that cover the graph G∗[E∗S], so every vertex in V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])
can be shared by at most k cycles of G∗[E∗S], which bound the degree of every vertex in
G∗[E∗S] by 2k. Thus

16

|E(G∗[E∗S]) ∩ Em(G∗[Ê∗])| (6)

≤ 2k|V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])| = O(k22k)

We can bound |CC(G∗[Ê∗])| by extending the argument in Lemma 2.1. Assume to-
ward contradiction that |CC(G∗[Ê∗])| ≥ k+ 1. Thus, there exists at least one connected
component P in G∗[Ê∗] that does not contains any terminal face of G∗. By the construc-
tion of Ê∗, there exists a subset S such that P contains at least one cycle C of the circuit
E∗S. Since P does not contain any terminal face, we can remove some edge e∗ of the cycle
C from the circuit E∗S and get a circuit with smaller cost that separates between f ∗S and
f ∗
S̄

in contradiction.
Now by Euler’s formula,

|F (G∗[Ê∗])|
= |E(G∗[Ê∗])| − |V (G∗[Ê∗])|+ 1 + |CC(G∗[Ê∗])|
≤ |Em(G∗[Ê∗])| − |Vm(G∗[Ê∗])|+ 1 + k

≤
∑

S⊂QO(k22k) + 1 + k = O(k222k)

the first inequality is by Equations (1), (2) and (3), the second inequality is by Equations
(5) and (6), and the lemma follows.

Corollary 2.7. There are at most O(k222k) connected components in the graph G \ Ê.

This corollary follows from Lemma 2.6 by applying Lemma 2.4 with H = Ê. We now
complete the proof of Theorem 1.3. Merge the vertices in each connected component of
G \ Ê into a single vertex (formally, contract all the internal edges in each connected
component) and call this new multi-graph M . Notice there is at most one terminal
vertex in each connected component. So a vertex in M , which corresponds to a connected
component (of G \ Ê) that contains some terminal vertex q, will be identified with that
terminal q. To be concrete, the vertices and the terminals of M are the sets

V (M) := {vi : Pi ∈ CC(G \ Ê)}
Q(M) := {q = vi : Pi ∈ CC(G \ Ê) and q ∈ Pi}

In addition, (vi, vj) is an edge in M if there exist two vertices ui, uj ∈ E(G) such that
ui ∈ Pi, uj ∈ Pj and (ui, uj) is an edge in G. The cost of every edge (vi, vj) ∈ E(M) is

c′(vi, vj) :=
∑

ui∈Pi,uj∈Pj : (ui,uj)∈E(G)

c(ui, uj).

It is easy to verify that M is a minor of G with O(k222k) vertices that includes the same
k terminals Q. We now prove that (M, c′) is a mimicking network of G using the same
argument as in [HKNR98], but applied to the connected components. Fix a subset of
terminals S. Since we only contract edges, every cut that separates S and S̄ inM has a cut
in G that separates S and S̄ with the same cost, thus mincutM,c′(S, S̄) ≥ mincutG,c(S, S̄).
In the other direction, notice that by the construction of M , all the vertices in each
connected component of G \ Ê are on the same side of the minimum S-separating cut in
G. Thus, there is a cut in M that separates between S and S̄ and has cost mincutG(S, S̄).
Combining these together, we get the equality mincutM,c′(S, S̄) = mincutG,c(S, S̄) for
every S, and Theorem 1.3 follows.

17

3 Lower Bounds

In this section we prove Theorems 1.4 as well as Theorem 1.5.

3.1 Techniques and Proof Outline

All our lower bounds are proved using the same technique, which basically counts the
number of “degrees of freedom” needed to express all the relevant cut values. Formally,
we develop a certain machinery based on linear algebra, which relates the size of any
mimicking network to the rank of some matrix.

The lower bound proofs start by describing a k-terminal network (G, c) that seems
minimal in the sense that it does not admit a smaller mimicking network. The networks
used in Theorems 1.4 and 1.5 are different. We then identify the minimum cost S-
separating cuts for all (or some) S ⊂ Q, and capture this information in a matrix.

Definition 3.1 (Cutsets-edges incidence matrix). Let (G, c) be a k-terminal network,
and fix an enumeration S1, . . . , Sm of all m = 2k−1−1 distinct and nontrivial bipartitions
Q = Si∪ S̄i. The cutset-edge incidence matrix of (G, c) is the matrix AG,c ∈ {0, 1}m×E(G)

given by

(AG,c)i,e =

{
1 if e ∈ min-cutset(G,c)(Si, S̄i);

0 otherwise.

We also define the vector of minimum-cut values between every bipartition of terminals

ΦG,c =

 mincutG,c(S1, S̄1)
...

mincutG,c(Sm, S̄m)

 ∈ Rm.

Here and throughout, we shall omit the subscript c when it is clear from the context.
Observe that if we think of the edge costs c as a column vector ~c ∈ (R+)E(G), then
AG · ~c = ΦG. For a given S ⊂ Q, a minimum S-separating cut (W,V (G) \W) is called
unique if all other S-separating cuts have a strictly larger cost.

The core of our analysis is the next lemma, as it immediately provides a lower bound
on the size of any mimicking network; the theorems would follow by calculating the rank
of AG.

Lemma 3.2 (Main Technical Lemma). Let (G, c) be a k-terminal network. Let AG be its
cutset-edge incidence matrix, and assume that for all S ⊂ Q the minimum S-separating
cut of G is unique. Then there is for G an edge-costs function ĉ : E(G) → R+, under
which every mimicking network (G′, c′) satisfies |E(G′)| ≥ rank(AG,c).

Notice that the bound is proved not for (G, c) but rather for (G, ĉ); indeed, the
edge-costs ĉ are a small random perturbation of c. Thus, the proof of this lemma first
shows that a small perturbation does not change the cutset-edge incidence matrix, i.e.
AG,c = AG,ĉ. This is where the uniqueness property is used. Next, fix a small graph
G′ that can potentially be a mimicking network, but without specifying its edge-costs
c′; now let EG′ be the event that (G, ĉ) admits a mimicking network of the form (G′, c′).
Since G′ has too few edges (whose costs are undetermined/free variables), we can use
linear algebra to show that Pr[EG′] = 0. The lemma then follows by a union bound over
the finitely many (unweighted) graphs G′ of the appropriate size.

18

3.2 Proof of Lemma 3.2

We turn to proving Lemma 3.2. Recall that this lemma considers a k-terminal network
(G, c), and assuming a certain (uniqueness) condition, asserts that there is for G a mod-
ified edge-costs function ĉ, under which every mimicking network must have at least
rank(AG,c) edges, where AG,c is a cutset-edge incidence matrix of (G, c).

The proof employs two lemmas and the following notation. For S ⊂ Q, let ∆G,c(S) ≥
0 be the difference between the two smallest costs among all S-separating cuts in G.
Observe that if these two are not equal 0 (i.e., ∆G,c(S) > 0) then the minimum S-
separating cut is said to be unique in G. We also denote ∆G,c := minS⊂Q ∆G,c(S).
Without loos of generality, if ∆G,c > 0 we assume that ∆G,c > 1 (if it is not the case, i.e.
0 < ∆G,c ≤ 1, we can multiple all the edges cost by 2∆G,c without changing AG,c).

Lemma 3.3. For every edge-costs function w : E(G) → [0, 1
∆G,c|E(G)|] the cutset-edge

incidence matrix of (G, c) is equal to the cutset-edge incidence matrix of (G, c + w), i.e.
AG,c = AG,c+w, where c+ w : e→ c(e) + w(e).

Proof. Let w be an edge-costs function w : E(G) → [0, 1
∆G,c|E(G)|]. Since (G, c) and

(G, c+ w) have the same vertices and edges, every Si-separating cut in (G, c) is also a Si-
separating cut in (G, c+ w) and vice versa. The value of every such cutset in (G, c+ w)
is ranged from the value of this cutset in G to the value of this cutset in G plus 1

∆G,c
.

In particular, mincutG,c(Si, S̄i) ≤ mincutG,c+w(Si, S̄i) ≤ mincutG,c(Si, S̄i) + 1
∆G,c

. Thus,

mincutG,c+w(Si, S̄i) is smaller (by at least ∆G,c − 1
∆G,c

) than every cut that separates Si

and S̄i in G. Therefore it must be the case that the cutsets of the minimum Si-separating
cuts in (G, c) and in (G, c+ w) are the same.

We proceed with the proof of Lemma 3.2. Sample an edge-costs function w : E(G)→
[0, 1

∆G,c|E(G)|] by independently choosing each w(e) from that range uniformly at random.

By the above lemma, AG,c = AG,c+w so in the rest of the proof we will omit the edge-costs
function and denote this matrix by AG. Now we argue that every mimicking network
of (G, c + w) must has at least r := rank(AG) edges. Consider some network G′ with
|E(G′)| < r, and let’s see if it can potentially be a mimicking network of (G, c+ w).
Notice that every edge-costs function c′ : E(G′) → R+ for this G′ yields a cutset-edge
incidence matrix AG′,c′ of size m × (r − 1) (if some graph has less than r − 1 edges we
can pad the irrelevant columns with zeros). Since this matrix has only ones and zeros in
its entries, there are only 2m(r−1) such matrices. The next lemma proves that for every
fixed matrix A ∈ {0, 1}m×(r−1), the probability that there exists an edge-costs function
c′ : E(G′)→ R+ such that A · ~c′ = AG · (~c+ ~w) = ΦG is zero.

Lemma 3.4. Fix a matrix A ∈ {0, 1}m×(r−1), and let WAG
and WA be the span of the

columns of AG and A, respectively. If each w(e) is independently sampled uniformly at
random from [0, 1

∆G,c|E(G)|], then

Pr
w

[AG · (~c+ ~w) ∈ WA] = 0.

Proof. Without loss of generality let the first r columns of the matrix AG, {~a1, . . . , ~ar},
be the basis for the space WAG

. Since rank(A) < r = rank(AG) we get that dim(WA) <

19

dim(WAG
). Thus there must be some basis vector of WAG

, say without loss of generality
~a1, that is not in the subspace WA and denote by c(e1) + w(e1) its corresponding cost.

We will calculate the number of vectors in WA that can be expressed as linear combi-
nation with the vector ~a1. Let f(α) = α~a1 +

∑r
i=2(c(ei) + w(ei))~ai. If there are at least

two such vectors, f(α) and f(α′) (where α, α′ 6= 0) in WA, then ~a1 will be in WA because
WA is a subspace. So there is at most one α such that f(α) ∈ WA.

Since each w(ei) is sampled independently from a uniform distribution over [0, 1
∆G,c|E(G)|],

the probability that c(e1) + w(e1) = α is 0. By independence of w(ei) for all i ∈ [r] we
can sample w(e1) last which completes Lemma 3.4.

To complete the proof of Lemma 3.2, we will calculate the probability that there exists
a mimicking network (G′, c′) for the network (G, c+ w), such that |E(G′)| < r.

Pr
w

[∃ mimicking network (G′, c′) with |E(G′)| < r]

= Pr
w

[∃ 0-1 matrix AG′,c′ s.t. AG′,c′ · ~c′ = AG(~c+ ~w)]

≤ Pr
w

[∃ 0-1 matrix AG′,c′ s.t. AG(~c+ ~w) ∈ WAG′,c′
]

≤
∑

A∈{0,1}m×(r−1)

Pr
w

[AG · (~c+ ~w) ∈ WA] = 0,

where the first equality is by the definition of a mimicking network, the following inequal-
ity is because the condition is necessary (but not sufficient), the second inequality is by a
union bound over all possible matrices, and the final equality is by Lemma 3.4. Denoting
ĉ = c+w, we see that every mimicking network (G′, c′) for the network (G, ĉ) has at least
rank(AG) edges. Lemma 3.2 follows.

3.3 Lower bound for general graphs

We now prove Theorem 1.4 which asserts that for every k there exists a k-terminal network
such that its mimicking network must have 2Ω(k) non-terminals. The proof constructs a
bipartite k-terminal network, with all its terminals on one side and all its non-terminals
on the other side. As we will show, the rank of its cutset-edge incidence matrix is at least
2Ω(k), and the corresponding cuts are unique, hence applying Lemma 3.2 to this matrix
will complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Consider a complete bipartite graph G = (Q,U,E), where one
side of the graph consists of the k terminals Q = {q1, . . . , qk}, the other side of the
graph consists of l =

(
k
2
3
k

)
non-terminals U = {uS1 , . . . , uSl

}, with S1, . . . , Sl denoting the

different subsets of terminals of size 2
3
k. The costs of the edges of G are as follows: every

non-terminal uSi
is connected by edges of cost 1 to every terminal in Si, and by edges of

cost 2+ε to every terminal in S̄i = Q\Si, for sufficient small ε > 0, in fact ε = 1
k

suffices.
Let c(uSi

, qj) denote the cost of edge (uSi
, qj), and define c(uSi

, Sj) :=
∑

q∈Sj
c(uSi

, q).

Lemma 3.5. The minimum Si-separating cut is obtained uniquely by the cut (W,V (G) \
W) where W = {uSi

} ∪ S̄i and V (G) \W = {uSj
: j 6= i} ∪ Si.

20

Proof. First, notice that for every i ∈ [l] the total cost of all edges incident to uSi
is

c(uSi
, Q) = c(uSi

, Si) + c(uSi
, S̄i) =

2k

3
· 1 +

k

3
(2 + ε) =

4k

3
+
kε

3
(7)

Consider such a set Si, and let us calculate the minimum Si-separating cut. Since
non-terminals are not connected to each other, the decision is done separately for every
non-terminal uSj

by simply comparing the costs of the edges (uSj
, Si) versus (uSj

, S̄i).
The crucial observation is that for non-terminal uSi

:

c(uSi
, Si) = |Si| · 1 =

2k

3
< (2 + ε)|S̄i| = c(uSi

, S̄i)

For a non-terminal uSj
where i 6= j,

c(uSj
, Si) = |Sj ∩Si| ·1 + |Si \Sj| · (2 + ε) = |Si| ·1 + |Si \Sj| · (1 + ε) >

2k

3
+ 1 > c(uSj

, S̄i)

where the last inequality is by (7) and because we choose ε such that kε
3
< 1. It follows

that for every Si the minimum Si-separating cut will be {uSi
} ∪ S̄i on one side, and

{uSj
: j 6= i} ∪ Si on the other side, and moreover it is the unique minimizer.

Lemma 3.6. Let AG be a cutset-edge incidence matrix of G.Then rank(AG) ≥ l.

Proof. By definition, AG is a matrix of size m × kl. Since
(
k
2
3
k

)
= l ≤ m = 2k−1 − 1,

we need to show that l rows of AG are linearly independent. Assume without loss of
generality that the first l rows of AG corresponds to the l subsets of terminals of size 2

3
k,

such that row t corresponds to subset St. We will prove that these l first rows of AG are
linearly independent, i.e.

∑l
t=1 αtAGt = 0̄ ⇐⇒ α1 = . . . = αl = 0. We will focus on a

column j in AG that corresponds to some edge (uSi
, q) where q ∈ Si. In order to know

how the j-th column in AG looks like, we need to know in which minimum cuts the edge
(uSi

, q) participates, i.e. we go over all the rows of AG and in each row t we will ask if
the edge is in the cutset of the minimum St-separating cut or not (if there is 1 or 0 in
(AG)t,j).

According to the construction of G, if q ∈ Si, then the terminal q and the non-
terminal uSi

are in different sides of the minimum Si-separating cut, and the edge (uSi
, q)

in that cutset. For some subset St, where t 6= i and q ∈ S̄t, the side of the minimum
cut that contains the terminal q will be {uSt} ∪ S̄t, and the other side that contains
uSi

will be {uSf
: f ∈ [l], f 6= t} ∪ St. Then again, the edge (uSi

, q) will be in that
cutset. It remain to look on some subset St, where t 6= i and q ∈ St. The cut will
be the same as above, but now both of the vertices will be in one side of the cut, i.e.
q, uSi

∈ {uSf
: f ∈ [l], f 6= t} ∪ St, so the edge (uSi

, q) will not participate in this cutset.
In conclusion, The edge (uSi

, q) participate in the cutset of the minimum Si-separating
cut, and in all the cutsets of the minimum St-separating cut such that St do not contains
the terminal q. Hence we will get that the entry j (the column of AG that corresponds
to the edge (uSi

, q)) in the vector
∑l

t=1 αtAGt is:

(
l∑

t=1

αtAGt)j =
l∑

t=1

αt(AG)t,j = αi +
∑

t∈[l]: q /∈St

αt = 0 (8)

21

Every two different subsets Si and Si′ , have at least 1
3
k terminals in common. In par-

ticular there exist some terminal q contained in both of them. Looking at the entries
corresponding to (uSi

, q) and (uSi′
, q) in the vector

∑l
h=1 αhAGh we have

αi +
∑

t∈[l]: q /∈St

αt = 0

αi′ +
∑

t∈[l]: q /∈St

αt = 0

Thus αi = αi′ for every i, i′ ∈ [l]. So we get the equation
(
k−1
2
3
k−1

)
α1 = 0 in every entry

in the vector equation
∑l

t=1 αtAGt = 0, and Lemma 3.6 follows.

We can now complete the proof of Theorem 1.4. Applying Lemma 3.2 to our bipartite
graph G and its cutset-edge incidence matrix AG, we get that every mimicking network
G′ of G has at least l = 2Ω(k) edges. It follows that |V (G′)| ≥

√
|E(G′)| ≥ 2Ω(k).

3.4 Lower bound for planar graphs

In this section we prove Theorem 1.5, which shows a planar k-terminal network, every
mimicking network of which must have at least k2 edges. The proof constructs a grid of
size O(k2) with 2k terminals, and applies Lemma 3.2 on graph’s cutset-edge incidence
matrix.

Proof of Theorem 1.5. Construct a planar 2k-terminal network G with 2k terminals Q =
{v1, . . . , vk, h1, . . . , hk} as follows. Consider a grid with k columns and k rows. Let ui,j
be the non-terminal vertex at the ith column and jth row of the grid. To every vertex
u1,j, for 1 ≤ j ≤ k, we attach a terminal vertex vj of degree one, and at every vertex ui,1,
for 1 ≤ i ≤ k, we attach a terminal vertex hi of degree one. From now on, we will refer
to i and j as indices between 1 to k, including 1, excluding k.

The costs associated with the edges of G are as follows: every edge that connects
between a terminal to a non-terminal costs k4. The cost of all the edges between the
vertices ui,k and ui+1,k, and between the vertices uk,j and uk,j+1, is k4. All the remaining
vertical edges will have cost 1, i.e. all the edges between ui,j and ui+1,j. All the remaining
horizontal edges, i.e. every edge between ui,j and ui,j+1, will cost 1− εi,j, where εi,j = j

k4
.

Notice that for every k > 2 the sum of all the εi,j in G is

k−1∑
i,j=1

εij ≤
1

k4

k∑
i,j=1

2k =
2k3

k4
< 1 (9)

Denote by Si,j the subset of the terminals {h1, . . . , hi, v1, . . . , vj}. We are interested
in all the (k − 1)2 minimum Si,j-separating cuts. See the grid G in Figure 5.

Lemma 3.7. The minimum Si,j-separating cut is obtained uniquely by the cut (W,V (G)\
W) where W = Si,j ∪ {uα,β : 1 ≤ α ≤ i, 1 ≤ β ≤ j}.

Proof. Let ci,j be the cost of the Si,j-separating cut (W,V (G) \ W) described in the
lemma. By a simple calculation, ci,j = i + j −

∑i
α=1 εα,j. Assume towards contradic-

tion that the above cut (W,V (G) \W) is not the minimum Si,j-separating cut in G, i.e.

22

1−𝜀11 . . .

. . .

. . .

. . .

. . .

. . .

𝒖𝟏𝟐 𝒖𝟏𝟑

𝒖𝟐𝟑

𝒖𝟑𝟑 𝒖𝟑𝟐

𝒖𝟐𝟐 𝒖𝟐𝟏

𝒖𝟏𝟏

𝒖𝟑𝟏

𝒖𝒌𝟏 𝒖𝒌𝟐 𝒖𝒌𝟑 𝒖𝟏𝟐 𝒖𝒌𝒌

𝒖𝟏𝒌

𝒖𝟐𝒌

𝒖𝟑𝒌

𝑣1 𝑣2 𝑣3 𝑣𝑘

ℎ1

ℎ2

ℎ3

ℎ𝑘

𝑚𝑖𝑛𝑐𝑢𝑡𝐺(𝑆23, 𝑆 23)

1−𝜀12

1−𝜀22

1−𝜀13

1−𝜀23

1−𝜀32 1−𝜀33 1−𝜀31

1−𝜀21

Figure 5: The 2k-terminal network, which used in Theorem 1.5, with minimum S23-
separating cut (the red dashed line). All the vertical and horizontal bold edges has cost
k4, the remaining horizontal edges has cost 1 − εi,j and all the remaining vertical edges
has cost 1.

mincutG(Si,j, S̄i,j) < ci,j < k. Thus all the edges that are contained in min-cutsetG(Si,j, S̄i,j)
have costs less then k. In particular, the edges with cost k4 are not contained in
mincutG(Si,j, S̄i,j), so the two terminals vk and hk are connected (which means, not
disconnected when we remove that cutset).

The cut (W,V (G) \W) contains i horizontal edges and j vertical edges. This is the
minimal number of vertical and horizontal edges that need to be removed in the minimum
cut in order to separate Si,j from S̄i,j. Otherwise, if we remove less then i horizontal edges,
there must be some terminal, hα, in Si,j, such that no horizontal edges were removed from
its row, thus hα connected to the terminals vk and hk that in S̄i,j. The argument for j
vertical edges is similar.

Another observation is that the total cost of every i+ j + 1 or more edges in G (with
cost less then k4) is not less than i+ j + 1−

∑k
α,β=1 εα,β > i+ j, where the inequality is

by Equation (9). We conclude that the minimum cut has exactly j vertical edges and i
horizontal edges.

By now we know that the cutset min-cutsetG(Si,j, S̄i,j) contains i horizontal edges
and j vertical edges. Furthermore, we know that the cutset (W,V (G) \W) contains the
first i horizontal edges between the jth column to the (j + 1)st column , and the first j
vertical edges between the ith row to the (i+ 1)st row. Thus, min-cutsetG(Si,j, S̄i,j) must
contains at least one different edge than the cut (W,V (G) \W). There are two cases:

1. If min-cutsetG(Si,j, S̄i,j) contains at least one vertical edge on some column β > j,
then it contains no more than j−1 vertical edges from the columns between 1 to j.
As before, there exist some terminal that is connected to at least one terminal from

23

S̄i,j. The same argument works for horizontal edge that removed from row α > i.
Hence, this case is impossible.

2. If all the edges that participate in min-cutsetG(Si,j, S̄i,j) are from the first i rows
and first j columns. We will calculate the minimal value of a cut that we can obtain.
As mentioned above, in order to separate we need to remove one edge from every
column and from every row. The cost of all the vertical edges is identical so already
need to pay j. Notice that in every row α the following inequality chain holds

εα,1 < εα,2 < . . . < εα,k−1

Therefore, the cost of the cheapest edge that we can take from that row is 1− εα,j.
Summing all these costs we get j +

∑i
α=1(1− εα,j).

From the second case we get that mincutG(Si,j, S̄i,j) = ci,j, and that the cut (W,V (G)\W)
is the only cut with that value as we wanted.

Proceeding with the proof of Theorem 1.5, let AG be a cutset-edge incidence matrix
of G (see Definition 3.1).

Lemma 3.8. rank(AG) ≥ (k − 1)2

Proof. Assume without loss of generality that the first (k−1)2 columns of AG correspond
to all the horizontal edges that their cost involve an εi,j variable. We will order them
according to their order in the grid from left to right, up to down. i.e. the first (k − 1)2

columns of AG will correspond to the edge costs in the following order:

1− ε1,1 , . . . , 1− ε1,k−1 , 1− ε2,1 , . . . , 1− ε2,k−1 , . . . , 1− εk−1,1 , . . . , 1− εk−1,k−1

In addition, without loss of generality the first (k − 1)2 rows of AG correspond to the
(k − 1)2 minimum Si,j-separating cuts in G which deals with the (k − 1)2 subsets of
terminals we are interested in according to the following order:

S1,1 , . . . , S1,k−1 , S2,1 , . . . , S2,k−1 , . . . , Sk−1,1 , . . . , Sk−1,k−1

We will show that the sub matrix of AG formed by first (k − 1)2 rows and columns
of AG is a lower triangular matrix, which imply that the first (k − 1)2 columns are
linearly independent. Given column t that corresponds to 1− εij, we need to show that
the entry t, t is 1, and all the t − 1 first entries are 0. As we set above, the t-th row
of AG corresponds to the minimum Si,j-separating cut. According to Lemma 3.7 the
total costs of the horizontal edges that participate in the minimum Si,j-separating cut is∑i

α=1(1− εα,j). Thus it is clear that entry t, t is 1, because the edge 1− εij participates
in the minimum Si,j-separating cut. It remains to show that all the t − 1 first entries
are 0. All the first t− 1 rows correspond to subsets of terminals Sα,β such that α < i or
α = i and β < j. As we saw above, the edge 1− εi,j participates only in all the minimum
cuts of the subsets Sα,j where α ≥ i. Thus, there is 0 in all the first t − 1 entries in the
t-th column. So we prove that the first (k − 1)2 rows and columns of AG form a lower
triangular matrix as we wanted, and the Lemma follows.

24

To complete the proof of Theorem 1.5, we apply Lemma 3.2 to our grid G and its
cutset-edge incidence matrix AG. We get that there exists an edge-costs function for G
such that every mimicking network of G has at least rank(AG) = Ω(k2) edges and the
theorem follows.

25

4 Lower Bounds for Data Structures

We can extend the definition of a (deterministic) TC scheme to a randomized one by
letting the two operations access a common source of random bits. (We do not assume
the random bits are stored explicitly in M , even though it might be required in some
implementations.) We then change the requirement from the query operation to be

Pr[Q(S;M) = mincutG,c(S, S̄)] ≥ 2/3,

where the probability is taken over the data structure’s random bits. Our lower bound
in Theorem 1.7 holds also for randomized schemes, even those with shared randomness
(that is not stored explicitly).

4.1 Proof for deterministic schemes

We now prove Theorem 1.7, which asserts that a terminal-cuts scheme requires 2Ω(k) words
in the worst-case. Fix k and let (G, c) be the k-terminal bipartite graph constructed in
Section 3.3. Recall that l :=

(
k

2k/3

)
is the number of subsets of terminals of size 2k/3, each

corresponding to a non-terminal in G. The number of vertices in G is n := k+ l = 2Θ(k),
and size of a machine word is O(log n) = Θ(k) bits. Assume towards contradiction there
is a terminal-cuts scheme that can handle every k-terminal network using less than l/100
bits. For now, let us assume the scheme is deterministic.

Let AG,c be the cutset-edge incidence matrix of (G, c). By Lemma 3.6, rank(AG,c) ≥ l.
Let us assume that the first l columns of AG,c are linearly independent (otherwise, we
just reorder them), and let ej denote the edge of G corresponding to the j-th column of
AG,c.

LetW denote the collection of 2l edge-costs functions w : E(G)→ {0, 1
6k2l
} satisfying

that w(ej) = 0 for all j > l. As in Section 3.3, every function w ∈ W defines a graph
(G, c+ w), whose cutset-edge incidence matrix is denoted AG,c+w. We can now apply
Lemma 3.3, since 6k > ∆G,c and |E(G)| = kl, and obtain that for all w ∈ W the network
(G, c+w) has the same cutset-edge incidence matrix as (G, c), i.e. AG,c = AG,c+w. Using
the above bound on the rank of AG,c we can deduce that for every two different functions

w 6= w′ ∈ W , we have AG,c · (~c + ~w) 6= AG,c · (~c + ~w′), i.e. there exists S ⊂ Q such that
mincutG,c+w(S, S̄) 6= mincutG,c+w′(S, S̄).

Now, the assumed terminal-cuts scheme uses less than l/100 bits, and thus, by the
pigeonhole principle, there must be w 6= w′ ∈ W , whose preprocessing results with the
exact same memory image M = P (G, c+w) = P (G, c+w′). Consequently, for all queries
S ⊂ Q, the scheme will report the same answer under inputs (G, c+ w) and (G, c+ w′),
which means that mincutG,c+w(S, S̄) = mincutG,c+w′(S, S̄) and is a contradiction.

Notice that the edge costs of the graphs (G, c+w) for w ∈ W can be easily scaled so
that they are all in the range {0, 1, . . . , nO(1)}. We conclude that a terminals-cut scheme

for k terminals requires, in the worst case, storage of at least l/100
O(logn)

≥ 2Ω(k) words. This
proves Theorem 1.7 for deterministic schemes.

26

4.2 Proof for randomized schemes

The proof for randomized schemes follows the same outline, the main difference being
that we replace the simple collision argument between w 6= w′, with well-known entropy
(information) bounds. First, the data structure’s success probability can be amplified
to at least (say) 1− 1

210k
, by straightforward independent repetitions and using Chernoff

bound, while increasing the storage requirement by a factor of O(k). More formally,
denote by Q′ the TC scheme that runs the TC scheme Q independently O(k) (say ck
times for big enough constant c > 0) times, store all the O(k) different values it get as an
estimation for mincutG,c(S, S̄), and output as an answer the median value among them.

Lemma 4.1. Pr[Q′(S;M) = mincutG,c(S, S̄)] ≥ 1− 2ck.

Proof. Fix a partition Q = S ∩ S̄). Define a random variable Xi for repetition i of the
scheme such that Xi = 1 if Q(S;M) = mincutG,c(S, S̄), otherwise Xi = 0, and define
X =

∑
iXi. Thus,

Pr[Xi = 1] = Pr[Q(S;M) = mincutG,c(S, S̄)] ≥ 2/3

and

E[X] = 1 · 2

3
ck + 0 · 1

3
ck ≥ 2

3
ck.

Notice that

Pr[Q′(S;M) 6= mincutG,c(S, S̄)] ≤ Pr[X ≤ 1

2
ck] ≤ Pr[X ≤ (1−1

4
)E[X]] ≤ e−(1/4)2E[X]/2 ≤ 2−10k.

Where the first equality is due to the fact that if more than half of the ck values are
equal to mincutG,c(S, S̄) then Q′(S;M) = mincutG,c(S, S̄). Using a Chernoff bound and
by setting c ≥ 336 we get that the two last inequalities, and the lemma follows.

So assume henceforth this high probability event does occur, and let us choose w ∈ W
at random - which corresponds to choosing a random string of l bits. Using the data struc-
ture, one can retrieve with very high probability (1−2−10k) the value mincutG,c+w(S, S̄) =
AG,c · (~c+ ~w). Applying a union bound over all 2k subsets S ⊂ Q as follows,

Pr[∀S, Q(S;M) = mincutG,c(S, S̄)] ≥ 1− Pr[∃S, Q(S;M) 6= mincutG,c(S, S̄)]

≥ 1−
∑
S

Pr[Q(S;M) 6= mincutG,c(S, S̄)]

≥ 1− 2−10k · 2k ≥ 0.9

with probability at least 0.9 one would retrieve correctly all these values. In this case,
since the first l columns of AG,c yield an invertible matrix, we could actually recover the
vector w itself (with probability at least 0.9). But since w is effectively a random string
of l bits, it follows by standard entropy bounds that M must have at least Ω(l) bits.

More formally, denote by g the procedure described above that uses M to predict w
with error probability at most ε = 0.1, i.e. Pr[g(M) = w] ≥ 1− ε = 0.9, then we turn to
state and prove the following lemma.

27

Lemma 4.2. The size of the data structure is |M | ≥ Ω(l).

Proof. By Fano’s inequality [CT06] H(w|M) ≤ H(ε, 1 − ε) + ε log(2l − 1) = εl + O(1).
Now using mutual information we get the following

H(w)−H(w|M) = I(w;M) = H(M)−H(M |w) ≤ H(M) ≤ |M |

Since w is a random vector we know that H(w) = l. Thus,

|M | ≥ H(w)−H(w|M) ≥ l(1− ε)−O(1) = 0.9l −O(1) ≥ Ω(l).

And the proof is completed just like for a deterministic scheme.

28

5 Concluding Remarks

We studied the problem of preserving minimum terminal cuts, while our main goal was
to narrow the double exponential gap on the size of mimicking networks. We first han-
dled the case of mimicking networks for general graphs, and then proceeded to work on
mimicking networks for planar graphs. In both cases we narrowed the gap into only
exponential one. In general graphs the improvement was in the lower bound, and in the
graphs the improvement was in the upper bound on the size of the mimicking network.
In this section we discuss and propose potential directions to make further progress on
the mimicking network problem.

5.1 Upper Bounds

We can try to improve the upper bound, in order to narrow the exponential gap. For
general graphs we wish to achieve an exponential upper bound, and for planar graphs we
wish to achieve a polynomial upper bound in terms of the number of terminals.

General Graphs We can start to explore the impact of the terminal min-cuts on
the structure of the graph using the cutset-edge incidence matrix (Definition 3.1) and
the vector of all the terminal min-cuts. Given a vector of terminal min-cuts, it will be
interesting to construct some graph that realizes the terminal min-cuts in the vector.
Then we can ask for efficiency (in terms of size and running time) while constructing this
graph. For k < 6 there are known algorithms that given such vector of terminal cuts,
constructs a graph of size O(k) [CSWZ00]. The problem arise when k ≥ 6, and it is no
longer possible to determine the relationship (bigger or smaller) between every terminal
min-cut values of some subsets of terminals S and T with some common terminals (for
example if Q = {q1, . . . , q6}, then for S = {q1, q2, q3} we do not know for sure whether the
min-cut that separates {q1, q2} and Q\{q1, q2} is smaller then the min-cut that separates
{q1, q3} and Q \ {q1, q3}).

In addition, we could try to use the properties of the cutset-edge incidence matrix of
the graph and its terminal min-cut vector in order to construct a mimicking network of
smaller size as follows. Explore what can the linear dependency between the rows or the
columns of the matrix teach us about the structure of the original graph, and how can
we use this information in order to construct a smaller mimicking network.

A cutset-edges incidence matrix has 2k−1−1 rows (the number of different bipartitions
of the terminals), and the number of columns (i.e. the number of edges in the graph)
is significantly larger than 2k (otherwise we do not need to compress it). Therefore
the rank of the matrix is at most exponential in k, which suggests a lot of redundant
information in the columns. Consider the following graph compression algorithm. Given
a k terminal network (G, c), BG,c is a full-rank submatrix of AG,c, constructed by selecting
the maximum possible number of rows. Pad with 0 all the relevant places, and multiply
both sides of the linear equations (mentioned in Definition 3.1) by B−1

G,c in order to retrieve
the costs of the edges that corresponds to the independent columns of BG,c (the rest of
the edges in the original graph will get cost 0). Call this new graph (G′, c′). Since the
rank of every cutset-edge incidence matrix is at most 2k−1−1 we will get at most 2k−1−1
edges with positive cost, and so the number of vertices (after removing edges with cost

29

0) will be at most exponential in k as well. The last question that need to be answered in
order to prove that (G′, c′) is a mimicking network of (G, c) is that the terminal min-cuts
in (G, c) that (G′, c′) preserves are also the minimum ones in (G′, c′).

There are two other different graph parameters that we can explore in order to attack
the problem. One of them is independent sets of vertices. Try to simplify the structure
of the general graph by considering all its independent sets, then explore the relations
between them in terms of minimum terminal cuts (note that since we can always preserve
all the edges between the terminals we can place them in the same independent set).
Another way is to determine some local neighborhood around every terminal and around
some non-terminals, then explore the connectivity between them (maybe in terms of
minimum matching - in intention to find the specific edges that participate in the terminal
min-cuts).

Planar Graphs In order to understand the structure of a planar graph better in terms
of minimum terminal cuts we suggest to study the structure of the dual graph first as
follows. Using Theorem 2.3 that deals with the duality between minimum cuts and
circuits, consider minimum terminal circuits instead of cuts. Construct a plane graph
such that all its 2k different minimum terminal circuits are obtained by only poly(k)
different parts. Then turn to study the structure of its primal plane graph while looking
for some special pattern in it.

Excluded Minors Having proved a new upper bound result for planar graphs, which
is a minor-closed family, it is naturally to ask whether these results can be extend for any
minor-closed graph family with the complete graph Kl as a forbidden minor.

One way to extend our proof of Theorem 1.3 (upper bound for planar graphs) is to
amplify Lemma 2.2 in the following way. Instead of bounding the number of connected
components by 3k we will try to bound it by O(f(l)k), where f is some function of l.
Then need to use the excluded minor properties in order to bound efficiently the number
of connected component after removing all the terminal cuts from the graph.

Another way to improve the upper bound for minor-closed graph family with the
complete graph Kl as a forbidden minor involves Hadwiger number and the chromatic
number as follow. It is known that every graph G with Hadwiger number l − 1 (i.e.
Kl−1 is the largest complete graph that is a minor of G) has a vertex with at most
O((l − 1)

√
log(l − 1)) incident edges [Kos84]. By applying a greedy coloring algorithm

that removes this low-degree vertex, colors recursively the remaining graph, and then
adds back the removed vertex and colors it, one can show that the chromatic number
of G is at most O((l − 1)

√
log(l − 1)). Thus, we can conclude that the graph can be

partitioned into O((l − 1)
√

log(l − 1)) independent sets of vertices in every graph that
does not contain the complete graph Kl as a minor. As mentioned in the discussion above
for general graphs, maybe the simplification of the graph structure to only a bounded
number of independent sets can assist to construct a smaller size mimicking networks.

5.2 Lower Bounds

In order to further narrow the exponential gap, we can try to improve the exponential
lower bound for general graphs (Theorem 1.4) to match the known doubly exponential

30

upper bound O(22k) of [HKNR98]. We may also try to improve the lower bound for
planar graphs to match the exponential upper bound O(k222k) (Theorem 1.3).

General Graphs The technique presented in Section 3.1 can be used only to prove a
lower bound of at most 2k−1−1. This is due to the fact that the number of rows in every
cutset-edge incidence matrix (Definition 3.1) is equal to 2k−1− 1, which is the number of
different bipartitions of the terminals. Thus the rank of that matrix is at most 2k−1 − 1,
and so by Lemma 3.2 we can only prove that the size of every mimicking network is at
least Ω(2k).

Thereupon, we tried to study more carefully the structure of the graph. In particular,
we wanted to construct a graph which achieves the upper bound in [HKNR98], i.e. a graph
that all its terminal min-cuts create 22k different equivalence class (see proof sketch of
Theorem 1.2). We wondered whether some special structure between the non-terminal
vertices can increase the number of equivalence classes. Thus, we started with the k-
terminal graph constructed in Section 3.3 (lower bound for general graphs) which has only
2Ω(k) equivalence classes, and extended it (by adding non-terminals as a new independent
set in the graph) to be a tripartite graph. Sadly, this tripartite graph did not help us to
confirm or disprove our assumption and the question remains open.

Planar Graphs Since in the thesis we proved an upper bound that is roughly expo-
nential in k (Theorem 1.3), we can hope to improve the lower bound to be (roughly)
exponential in k. Thus, we can perhaps use Lemma 3.2 to close the gap almost com-
pletely. The only constraint we need to fulfil is to construct a planar graph, which yields
a cutset-edges incidence matrix of rank r to prove a lower bound of

√
r. Notice that the

mimicking network of a planar graph is not necessarily planar, and so we can not use the
planarity properties on the mimicking network - the linear relation between the number
of vertices and the number of edges etc..

Excluded Minors Again, similarly to the upper bound case, we inquire whether the
lower bound result for planar graphs can be extended to any minor-closed graph family
with the complete graph Kl as a forbidden minor or with the complete bipartite graph
Kl,l, where the terminals in the minor are independent set, as a forbidden minor. We will
discuss the second case.

Consider a bipartite graph with the complete bipartite graph kl,l as a forbidden mi-
nor, when all the terminals are an independent set and all the non-terminals form an
independent set. The easiest case is when all the terminals are divided into disjoint sets
of size at most l, all the non-terminals are divided to a disjoint sets of size at most l, and
every set of terminals connects to a distinct set of non-terminals, which lead (using the
known upper bound) to a mimicking network of size O(k22l/l).

The construction of the mimicking network begins to be more complicated when
terminals connect to some non-terminals from different sets. In particular, consider the
terminal min-cuts of (S, S̄) and (T, T̄), where S and T have some terminals in common,
and these terminals connect to some common set of non-terminals. Maybe considering
these cases can help to improve the lower bound.

31

5.3 Extensions of Mimicking Networks

Directed Graphs The upper bound of Hagerup, Katajainen, Nishimura, and Ragde
[HKNR98] holds for both directed and undirected graphs. We studied only the case of
undirected graphs; our lower bounds actually hold for directed graphs as well. It is an
interesting question whether there is a significant difference between the maximum size
of a mimicking network in the directed and undirected versions of the problem, either for
general graphs or for some natural family of graphs.

A Generalization The following definition increases the number of cuts that must be
preserved. Yet, it equivalent to the original mimicking network definition (Definition 1.1).

Definition 5.1. Let (G, c) be a k-terminal network. A generalized mimicking network
of (G, c) is a k-terminal network (G′, c′) with the same set of terminals Q, such that for
all disjoint S, T ⊂ Q, mincutG′,c′(S, T) = mincutG,c(S, T).

We turn to prove the equivalence of Definition 1.1 and the above one. Let (G, c) be
a k-terminal network, let (G′, c′) be a mimicking network of (G, c) and let (G′′, c′′) be
a generalized mimicking network of (G, c). Since Definition 1.1 is a special case of the
above definition, its easy to verify that (G′′, c′′) is also a mimicking network of (G, c). In
the following claim we prove the other direction.

Claim 5.2. (G′, c′) is a generalized mimicking network of (G, c).

Proof. Let S and T be a two disjoint subsets of terminals, i.e. S, T ⊂ Q such that
S∩T = ∅. Every cut that separates S and T must also separate some subset of terminals
S ⊆ W and the rest of the terminals T ⊆ Q \W . Thus, we can express the value of the
minimum cut that separates S and T in G and G′ as follows:

mincutG,c(S, T) = min
W : S⊆W⊆Q\T

{mincutG,c(W,Q \W)}

mincutG′,c′(S, T) = min
W : S⊆W⊆Q\T

{mincutG′,c′(W,Q \W)}

Since G′ is a mimicking network of G, we know that for every W ⊆ Q\T the equality
mincutG,c(W,Q \W) = mincutG′,c′(W,Q \W) holds. Thus,

min
W : S⊆W⊆Q\T

{mincutG,c(W,Q \W)} = min
W : S⊆W⊆Q\T

{mincutG′,c′(W,Q \W)}

and the claim follows.

Accordingly, all the results that were discussed and asserted in the thesis (the upper
bounds and the lower bounds) hold for the more general definition as well.

Special Graphs Families Usually, graphs that belong to some family F have some
special structure which is sometimes important to preserve, for example planar graphs,
trees and bounded treewidth. Thus, the above definition restricts the mimicking network
G′ to be with a special (limited) structure.

32

Definition 5.3. Let F be a family of graphs, and let (G, c) ∈ F be a k-terminal net-
work. A special mimicking network of (G, c) is a k-terminal network (G′, c′) with the
same set of terminals Q, such that (G′, c′) ∈ F , and for all S ⊂ Q, mincutG′,c′(S, S̄) =
mincutG,c(S, S̄).

For example, the mimicking network we construct for planar graph (Theorem 1.3) is
a minor, and thus is itself planar. It is also known that every k-terminal network which is
outerplanar has a mimicking network of size O(k) which is also outerplanar [CSWZ00]. It
is interesting to ask how many non-terminals we need to ”add” to an optimal mimicking
network of some graph in order to preserve the structure of the graph in addition to
its terminal cuts. A different variation of this question is to study the tradeoff (the
relation) between the size of the mimicking network to its structure similarity of the
original graph. Notice that the answers to these two questions can differ from one graph
family to another.

Terminal Vertex-Cuts Let (G, c) be a k-terminal network with a non-negative cost
associated to each vertex, and assume the terminals Q is an independent set. A minimum
vertex-cut of (G, c) that separates between a subset of terminals S and its complement
S̄ is a set of vertices W ⊆ V (G) with the minimum total cost, such that the vertex
deletion G \ W disconnects the terminals S from the terminals S̄. Denote its cost by
vertex-cutG,c(S, S̄). We can now define the vertex-cut version of mimicking network.

Definition 5.4. Let (G, c) be a k-terminal network. A vertex-cut mimicking network of
(G, c) is a k-terminal network (G′, c′) with the same set of terminals Q, such that for all
S ⊂ Q, vertex-cutG′,c′(S, S̄) = vertex-cutG,c(S, S̄).

Unfortunately, our upper bound proof for planar graphs can not be extended to the
above definition of vertex-cut mimicking network. The first lemma in the proof (Lemma
2.1) bounds the number of connected components in the graph G \W by k, where W is
a cutset edges. But in our case, W is a set of vertices. Thus, we can only argue that the
number of connected components in G \W is bounded by k times the highest degree in
G (take for example the star graph). Since the double exponential upper bound result
for general graphs (Theorem 1.2) holds for that definition, it is interesting to ask whether
our upper bound result for planar graphs (Theorem 1.3) holds as well, maybe with a
different proof.

Approximate Mimicking Network The following definition relaxes the requirements
from a mimicking network. It preserves the terminal cuts approximately instead of ex-
actly, which in a sense add more freedom.

Definition 5.5. Let (G, c) be a k-terminal network and let ε > 0. An ε-mimicking
network of (G, c) is a k-terminal network (G′, c′) with the same set of terminals Q, such
that for all S ⊂ Q, mincutG,c(S, S̄) ≤ mincutG′,c′(S, S̄) ≤ (1 + ε) mincutG,c(S, S̄).

It can be asked whether the additional freedom leads to a significant improvement in
the size of the optimal mimicking network of any graph.

33

Multi-Commodity Flow All our results deal with minimum cut, which is equiva-
lent to single-commodity maximum flow. The following definition preserves the multi-
commodity terminal flow in a network.

Definition 5.6 (Multi-commodity Mimicking Network). Let (G, c) be a k-terminal net-
work. A mimicking network of (G, c) is a k-terminal network (G′, c′) with the same set
of terminals Q, such that for all pairs {si, ti} ∈

(
Q
2

)
and for all di ∈ R+, the multi-

commodity flow {(si, ti, di) : i = 1, . . . ,
(
k
2

)
} is feasible in G if and only if it is feasible in

G′.

Since we are not aware of previous results on this problem, the question is whether
we can bound the size of the optimal multi-commodity mimicking network by a function
of k. Since the number of constraints is infinite, we suggest to reduce the number of
choices for the demands di that we need to deal with in the following way. Convert the
problem into a system of linear inequalities, where the feasible demands in the graph form
a polytope, and the number of demands that we need to take into account are these at the
extreme points. Then try to bound the number of extreme points by a function of k. A
related problem is addressed by Chuzhoy [Chu12], as the multi-commodity flow preserved
approximately in the compressed graph. She proves that every k-terminal network has a
compressed k-terminal network of exponential size that depends on the total capacity of
all edges incident on the terminals, and preserves the multi-commodity flow by a constant
factor.

34

References

[AKPW95] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its
application to the k-server problem. SIAM J. Comput., 24(1):78–100, February
1995.

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In 37th Annual Symposium on Foundations of Computer Science, pages
184–193. IEEE, 1996.

[BK96] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In 28th Annual ACM Symposium on Theory of Computing, pages 47–55. ACM,
1996.

[BSS09] J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. In
41st Annual ACM symposium on Theory of computing, pages 255–262. ACM, 2009.

[CE06] D. Coppersmith and M. Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math., 20:463–501, 2006.

[Chu12] J. Chuzhoy. On vertex sparsifiers with Steiner nodes. In 44th symposium on Theory
of Computing, pages 673–688. ACM, 2012.

[CLLM10] M. Charikar, T. Leighton, S. Li, and A. Moitra. Vertex sparsifiers and abstract
rounding algorithms. In 51st Annual Symposium on Foundations of Computer
Science, pages 265–274. IEEE Computer Society, 2010.

[CSWZ00] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis. Computing
mimicking networks. Algorithmica, 26:31–49, 2000.

[CT06] T. M. Cover and J. A. Thomas. Elements of information theory (2. ed.). Wiley,
2006.

[EGK+10] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar.
Vertex sparsifiers: New results from old techniques. In 13th International Workshop
on Approximation, Randomization, and Combinatorial Optimization, volume 6302
of Lecture Notes in Computer Science, pages 152–165. Springer, 2010.

[FF] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404.

[FM95] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995.

[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9:551–570, 1961.

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing multi-
terminal flow networks and computing flows in networks of small treewidth. J.
Comput. Syst. Sci., 57:366–375, 1998.

[HS85] D. S. Hochbaum and D. B. Shmoys. An O(|V |2) algorithm for the planar 3-cut
problem. SIAM J. Algebraic Discrete Methods, 6(4):707–712, 1985.

35

[Kos84] A. V. Kostochka. Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica, 4(4):307–316, 1984.

[KRTV12] A. Khan, P. Raghavendra, P. Tetali, and L. A. Végh. On mimicking networks
representing minimum terminal cuts. CoRR, abs/1207.6371, 2012.

[KZ12] R. Krauthgamer and T. Zondiner. Preserving terminal distances using minors. In
39th International Colloquium on Automata, Languages, and Programming, volume
7391 of Lecture Notes in Computer Science, pages 594–605. Springer, 2012.

[MM10] K. Makarychev and Y. Makarychev. Metric extension operators, vertex sparsifiers
and lipschitz extendability. In 51st Annual Symposium on Foundations of Computer
Science, pages 255–264. IEEE, 2010.

[Moi09] A. Moitra. Approximation algorithms for multicommodity-type problems with
guarantees independent of the graph size. In 50th Annual Symposium on Foun-
dations of Computer Science, FOCS, pages 3–12. IEEE, 2009.

[Nao90] M. Naor. Succinct representation of general unlabeled graphs. Discrete Applied
Mathematics, 28(3):303–307, 1990.

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989.

[Rao87] S. Rao. Finding near optimal separators in planar graphs. In 28th Annual Sympo-
sium on Foundations of Computer Science, pages 225–237. IEEE, 1987.

[Tur84] G. Turán. On the succinct representation of graphs. Discrete Applied Mathematics,
8(3):289 – 294, 1984.

36

	Introduction
	Our Results
	Upper Bounds
	Lower Bounds
	Succinct Data Structures

	Related Work

	Upper Bound for Planar Graphs
	Technical Outline
	Preliminaries
	Proof of Theorem 1.3

	Lower Bounds
	Techniques and Proof Outline
	Proof of Lemma 3.2
	Lower bound for general graphs
	Lower bound for planar graphs

	Lower Bounds for Data Structures
	Proof for deterministic schemes
	Proof for randomized schemes

	Concluding Remarks
	Upper Bounds
	Lower Bounds
	Extensions of Mimicking Networks

	References

