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Abstract

Given a graph G, graph compression problems ask to construct succinct data struc-
tures that maintain certain properties of G. Within this context, this thesis studies
problems of vertex sparsification in graphs, where the input is a graph G = (V,E) and
a set T ⊆ V of terminals, perhaps with some extra attributes, such as edge weights or
capacities, and the goal is to construct a “small” graph that maintains properties of T .

Our first result involves distance sparsifiers. Specifically, we study the Steiner Point
Removal (SPR) problem, where, given an edge-weighted graph G = (V,E,w) and a
subset of terminals T ⊆ V , the goal is to construct a graph G′ = (T,E′, w′) that is
isomorphic to a minor of G, and such that inter-terminal distances are distorted by at
most α ≥ 1. We show that SPR can always be solved with distortion α ≤ O(log5 |T |).

In the second part of the thesis we study randomized low-diameter metric decom-
positions. We present a new property of randomized decompositions called degree of
separation, which gives a tail bound on the probability that “many” distinct subsets
intersect a shortest path in a metric space. We also design a new decomposition of
metrics that are induced by so called p-path-separable graphs, which roughly refers to
edge-weighted graphs that admit vertex-separators consisting of at most p shortest paths
in the graph.

The third part of this thesis considers cut sparsifiers, and specifically generalizes a
classical result of Gomory and Hu (1961), who showed that in every edge-weighted graph
G = (V,E,w), the minimum st-cut values, when ranging over all s, t ∈ V , take at most
|V | − 1 distinct values. That is, these

(|V |
2

)
instances exhibit redundancy factor Ω(|V |).

Motivated by this result, we obtain tight bounds for the redundancy factor of several
generalizations of the minimum st-cut problem. A natural application of these bounds
is to construct small data structures that store all relevant cut values. We initiate this
direction by giving some upper and lower bounds.

In the final part of this thesis we introduce a batch version of sparse recovery, where
the goal is to construct a sequence of estimates A′1, . . . , A

′
m ∈ Rn of unknown signals

A1, . . . , Am ∈ Rn, using linear measurements, under an assumption of average sparsity.
We resolve the question of minimizing the number of measurements up to polylogarith-
mic factors, by presenting a randomized adaptive scheme that with high probability
performs Õ(km) measurements, which is asymptotically tight up to logarithmic factors.
Additionally, we show that adaptivity is necessary for every non-trivial scheme that
solves the batch sparse recovery problem.
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1 Introduction

In today’s day and age, our technology-driven civilization generates and consumes massive
amounts of data. For many reasonable purposes, most of this data is irrelevant, or even
useless, and therefore the utility of compressing the data while keeping the important or
relevant information, either exactly or approximately is clear, both theoretically and prac-
tically. Once the compressed data (be it a graph, a network traffic log, an image or audio
signal etc.) is computed as a pre-processing step, further processing can be performed on the
compressed instance instead of on the original one, using less resources like running time,
memory and communication bandwidth, or achieving better accuracy (for example, when
the solution is approximate and the approximation ratio depends on the size of the object
in question). The main theme of this thesis is algorithms for lossy compression of data and
retrieval of information from partial, compressed or corrupted data.

Within this context we mainly focus on graph compression. Loosely speaking, graph
compression is the process of constructing, given a graph G, a (small) data structure, that
maintains certain features (quantities) of G, such as distances, cut or flow values. Exten-
sively studied examples for this genre include graph spanners, distance oracles, cut and flow
sparsifiers, and spectral sparsifiers, see e.g. [PS89, TZ05, BK96, BSS09]. A prime example
for this genre is vertex-sparsification, where G has a designated subset of vertices T , referred
to as terminals, and the goal is construct a new graph G′ (rather than an arbitrary data
structure), such that

• T ⊆ V (G′) and |V (G′)| is ”small”; and

• certain properties of T , such as cut or flow values and connectivity requirements, or
structural properties of G (e.g. planarity) are maintained in G′ (either exactly or
approximately).

When properties of T are maintained approximately, the approximation ratio is referred to as
the quality of the sparsifier. The algorithmic utility of such constructions is clear – once the
new graph is computed (as a preprocessing step), further processing can be performed on G′

instead of on G, using less resources like runtime and memory, or achieving better accuracy;
for example, when the solution is approximate, and the approximation factor depends on
the number of vertices, executing the algorithm on a smaller graph may attain a better
approximation ratio.

This work focuses mainly on two vertex sparsification problems: Distance Sparsifiers
and Cut Sparsifiers. These examples are extensively studied in the literature and have
many applications, both theoretical and practical. Prior studies introduced new combina-
torial techniques, and showed interesting connections to several other problems e.g. the
0-extension problem, embedding into trees and several metric decomposition problems, as
well as connections between distance and cut sparsifiers.

This thesis is divided into four parts. In what follows, we present a brief overview of each
part.



1.1 Distance Sparsifiers and Steiner Point Removal

The first part of the thesis deals with distance sparsifiers, which are vertex sparsifiers that
maintain inter-terminal distances, either exactly or approximately. Specifically, we focus on
sparsifiers whose vertex set is exactly the designated set of terminals.

Formally, given an edge-weighted undirected graph, G = (V,E,w), let dG,w denote the
shortest-path metric induced by w on V . Given a designated set of terminals T ⊆ V , an
α-quality distance sparsifier for G is an edge-weighted graph G′ = (V ′, E ′, w′) such that

• G′ is isomorphic to a minor of G (thus maintaining certain properties of G, e.g. pla-
narity).

• T ⊆ V ′ and V ′ is ”small” (in terms of |T |).

• Distances between the terminals are distorted by at most factor α ≥ 1, that is,

∀u, v ∈ T, dG,w(u, v) ≤ dG′,w′(u, v) ≤ α · dG,w(u, v) .

Vertices in V ′ \T are usually referred to as Steiner points. Our results deal with the Steiner
Point Removal (SPR) problem, where the second requirement above is the strongest possible,
that is V ′ = T . This formulation of the SPR problem was proposed by Chan, Xia, Konjevod,
and Richa [CXKR06, Section 5], who posed the problem of bounding the distortion α. In
the first part of this thesis we answer their open question, and give a polylog(|T |)-quality
sparsifier. The formal statement follows.

Theorem 1.1. Let G = (V,E,w) be an edge-weighted graph with terminal set T ⊆ V . Then
there exists a graph G′ = (T,E ′, w′), that is isomorphic to a minor of G and attains quality
O(log5 |T |), i.e.,

∀u, v ∈ T, 1 ≤ dG′,w′(u, v)

dG,w(u, v)
≤ O(log5 |T |).

Moreover, G′ is computable in randomized polynomial time.

A previous result by Englert et al. [EGK+10] introduced a variation of the Steiner
Point Removal problem. They gave an algorithm which produces an O(log |T |) quality
distance preserving graph, which is a convex combination of minors of the original graph.
The fundamental innovation of Theorem 1.1 over [EGK+10] is the existence of a single minor
of G that maintains distances with polylogarithmic quality.

We prove Theorem 1.1 in Part A, and elaborate on previous work as well as potential
applications. This result has been published in the SIAM Journal of Computing [KKN15].

1.2 Metric Decompositions

In recent decades, the problem of decomposing a metric space into low-diameter subspaces
has become a key step in the solution for many problems, including metric embeddings (e.g.
[Ass83, Bar96, Rao99, GKL03, FRT04, KLMN05]), distance oracles and routing schemes
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design (e.g. [AP90, DSB97, Tal04, CGMZ05, MN07]), graph sparsification (e.g. [EGK+14],
as well as the results described in Section 1.1) and optimization problems, such as multi-
commodity cuts [KPR93, GVY96, LR99], 0-extension [CKR04] and the traveling salesman
problem [Tal04].

Following the more recent literature, our results in the second part of the thesis focus on
randomized (or stochastic) decompositions, which generally refers to a probability distribu-
tion over partitions of a metric space into sets (called clusters) of low diameter, such that
nearby points are likely to be “clustered” together. Specifically, we consider padded decom-
positions, in which, loosely speaking, for every point x we “expect” the cluster containing x
to contain in addition a (small) ball around x. A formal definition follows.

Let (X, d) be a metric space, and denote the ball of radius % > 0 around x ∈ X by
B(x, %) := {y ∈ X : d(x, y) ≤ %}. Let Π be a partition of X. Every S ∈ Π is called a cluster,
and for every x ∈ X, let Π(x) denote the unique cluster S ∈ Π such that x ∈ S.

Definition 1.2. A metric space (X, d) is called β-decomposable if for every ∆ > 0, there is
a probability distribution µ over partitions of X, satisfying the following requirements:

(a). Diameter bound: for all Π ∈ supp(µ) and all S ∈ Π, diam(S) ≤ ∆.

(b). Padding probability: for every x ∈ X, Pr
Π∼µ

[B(x,∆/β) ⊆ Π(x)] ≥ 1/2.

µ is called a β-decomposition of X.

We note that while definition 1.2 is commonly used in literature, and is given here for
sake of simplicity, our work, described in detail in Part B involves a slightly refined definition
of padded decompositions introduced by Abraham et al. [AGG+14].

1.2.1 Metric Decompositions with Concentration

Our proof in Part A for the SPR problem in fact features a new property of metric decompo-
sitions, called degree of separation. We believe that this tool is important, and that further
applications of this property will be found. In previous work (e.g. [EGK+14]) that proved
existence of a convex combination of minors of G that maintains distances approximately, it
was enough to show that the metric space induced by the graph was β-decomposable, and
rely on linearity of expectation. However, to show existence of a single minor that main-
tains distances with low quality, β-decomposability was not sufficient, and we proposed the
following notion of degree of separation, which provides high probability bounds.

Let P = (x0, x1, . . . , x`) be a shortest path, i.e. a sequence of points in X such that∑
i∈[`] d(xi−1, xi) = d(x0, x`). We denote its length by d(P ) := d(x0, x`), and say that P

meets some S ⊆ X if S∩P 6= ∅. Given a partition Π of X, we define the degree of separation
of P with respect to Π as

ZP (Π) :=
∑
S∈Π

1{P meets S}.

Roughly speaking, the degree of separation property augments Definition 1.2 with a tail
bound on ZP (Π).
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Theorem 1.3. For every n-point metric space (X, d) and every ∆ > 0 there is a padded
decomposition µ, that satisfies requirements (a)-(b) of Definition 1.2 for β = O(log n), and
furthermore

(c). Degree of separation: For every shortest path P of length d(P ) ≤ ∆
β

,

∀t ≥ 1, Pr
Π∼µ

[ZP > t] ≤ 2e−Ω(t). (1.1)

In Section 6 of Part B we present a slightly stronger and more elaborate result than
Theorem 1.3, that involves terminals and discusses general shortest paths rather than paths
of small length. This result was published in SIAM Journal of Computing [KKN15].

1.2.2 Metric Decomposition of Path-Separable Graphs

A second result regarding metric decompositions deals with metrics that arise as shortest-
path metrics in (certain) graphs. Specifically, given G = (V,E,w) a connected graph with
non-negative edge weights, recall that dG,w denotes the shortest-path metric induced on V by
G. We say that a graph G is β-decomposable if the metric space (V, dG,w) is β-decomposable.
Loosely speaking, a p-path-separable graph is an edge-weighted graph G = (V,E,w) that
admits a vertex separator consisting of at most p shortest paths. Note that such separators
inherently depend on the weight assignment w, and not only the “topology” of G, since
they are composed of shortest paths in G. Our result is that every p-path-separable graph
G admits an O(ln(p ln |V |))-decomposition. This result refines the Θ(ln |V |) bound known
for general graphs. Moreover, this result implies new bounds for special families of graphs.
While formally describing the main result requires the technically involved definition of p-
path-separable graphs, and is therefore deferred to Part B, a principal implication gives
bounds for graph families with low treewidth.

Proposition 1.4. Let G = (V,E) be of treewidth t. Then for every assignment w of edge
weights to E, (V, dG,w) is O(ln(t ln |V |))-decomposable.

The known upper bound for graphs of treewidth t is β = O(t) due to [AGG+14]. Our
decomposition provides a tradeoff between t and |V | and matches or improves all other
bounds when t ≥ ln ln |V |. It is conjectured that β = O(log t), which would be tight due to
the lower bound of Bartal [Bar96], and our result provides partial evidence in favor of this
conjecture. Specifically, it provides a tight upper bound if t ≥ ln |V |. The technical details
are presented in Section 7 of Part B. This result was accepted for publication in Algorithmica
[KK16].

1.3 Cut Sparsifiers for Restricted Families of Cuts

The third part of the thesis deals with cut sparsifiers. It initiates the study of small data
structures that store the cut values of certain families of cuts in a given graph. Specifically,
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we show that for the families in question we can, in a sense, enumerate all cut values more
efficiently than the näıve approach due to inherent redundancy.

Consider first the minimum st-cut problem, where, given an edge-weighted graph G =
(V,E,w) and two vertices s, t ∈ V , the goal is to find a set of edges of minimum total weight
that separates s, t (meaning that removing these edges from G ensures there is no s - t path).
This problem is one of the most fundamental combinatorial optimization problems, and was
studied extensively, see e.g. the famous minimum-cut/maximum-flow duality [FF56]. It has
numerous theoretical applications, such as bipartite matching and edge-disjoint paths, in ad-
dition to being extremely useful in many practical settings, including network connectivity,
network reliability, and image segmentation, see e.g. [AMO93] for details. Several general-
izations of the problem, such as multiway cut, multicut, and k-cut, have been well-studied
in operations research and theoretical computer science.

In every undirected graph G = (V,E,w), there are in total
(|V |

2

)
instances of the minimum

st-cut problem, given by all pairs s, t ∈ V . Potentially, each of these instances could have a
different value for the minimum cut. However, the seminal work of Gomory and Hu [GH61]
discovered that undirected graphs admit a significantly stronger bound (see also [AMO93,
Lemma 8.15] or [CCPS98, Section 3.5.2]).

Theorem 1.5 ([GH61]). Let G = (V,E,w) be an edge-weighted undirected graph. Then the
number of distinct values over all possible

(|V |
2

)
instances of the minimum st-cut problem is

at most |V | − 1.

The beautiful argument of Gomory and Hu shows the existence of a tree T = (V,E ′, w′),
usually called a flow-equivalent tree, such that for every s, t ∈ V the minimum st-cut value in
T is exactly the same as in G. (They further show how to construct a so-called cut-equivalent
tree, which has the stronger property that every vertex-partitioning that attains a minimum
st-cut in T , also attains a minimum st-cut in G; see Section 8.3 for more details on this and
related work.) Every G which is a tree (e.g., a path) with distinct edge weights has exactly
|V | − 1 distinct values, and hence the Gomory-Hu bound is existentially tight.

Another way to state Theorem 1.5 is that there is always a huge redundancy between
the

(|V |
2

)
minimum st-cut instances in a graph. More precisely, the “redundancy factor”,

measured as the ratio between the number of instances and the number of distinct optimal
values attained by them, is always Ω(|V |). In Part C we study the redundancy factor in
several generalizations of minimum st-cut. Specifically, we study the Group-Cut problem.
Given an undirected edge-weighted graph G = (V,E,w), Given two disjoint sets A,B ⊆ V
find a minimum (A,B)-cut, i.e., a set of edges of minimum weight that separates every vertex
in A from every vertex in B. Our main result regarding Group-Cut gives a tight bound
on the redundancy factor of the family of all instances where A and B are of given sizes α
and β, respectively. This result generalizes Theorem 1.5, which proves a similar bound for
the special case α = β = 1.

Theorem 1.6. For every two constants α, β = O(1), there are at most O(nα+β−1) distinct
cut values over all possible Ω(|V |α+β) instances of Group-Cut satisfying |A| = α, |B| = β.
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Theorem 1.6 implies that the family of (α, β)-group-cuts has redundancy factor Ω(|V |).
Our work further shows that this bound is existentially tight (attained by some graph G)
for all α, β and n.

Theorem 1.6 is proved in Part C. We additionally present similar results regarding two
more generalizations of st-cuts, and show that for the analogous problems in directed graphs
the redundancy factor is at most a constant. The results presented in Part C were published
in the International Workshop in Graph-Theoretic Concepts in Computer Science [CKK16].

1.4 Batch Sparse Recovery

The fourth and final part of this thesis goes beyond the boundaries of vertex sparsification
in graphs, and deals with the broader theme of data compression, and more specifically with
a field called sparse recovery (or compressed sensing).

In sparse recovery the goal is to reconstruct a signal vector x ∈ Rn using only linear
measurements, meaning that x can be accessed only via queries of a linear form x 7→ atx =∑

i aixi. To keep a tab on the number of linear measurements, one usually assumes that
the unknown signal x ∈ Rn is k-sparse (defined as having at most k non-zero entries, i.e.,
‖x‖0 ≤ k), or that x is close to a k-sparse vector x∗, and then the goal is to construct an
estimate to x. The astounding development of a concrete mathematical foundation for the
problem by Candès, Tao and Romberg [CRT06] and by Donoho [Don06], over a decade ago,
has granted the problem huge attention, see, e.g., [CW08, GI10, EK12, FR13] for exposition
and references.

Probably the most well studied version of the problem, called stable sparse recovery, is
formulated as follows. A scheme for dimension n and sparsity bound k ∈ [n], consists of
(a) t = t(n, k) non-adaptive linear measurements, arranged as the rows of a sensing matrix
S ∈ Rt×n; and (b) a recovery algorithm that uses the measurements vector Sx to output
x′ ∈ Rn. Together, these should satisfy, for every signal x ∈ Rn,

‖x− x′‖p ≤ C min
k-sparse x∗

‖x− x∗‖p , (1.2)

where C ≥ 1 and p are some (predetermined) constants. The main goal is to minimize the
number of measurements t = t(n, k).

Average Sparsity and Batch Recovery. Although it is well established that many sig-
nal types are typically sparse, a reasonable sparsity bound k need not hold for all signals,
and in some natural scenarios, a good upper bound might simply not be known in advance.
Consider, for example, m servers operating in a large network, and denote the frequency
vector of the requests made to server j ∈ [m] by a column vector Aj ∈ Rn. To perform
network analysis, such as anomalies detection and traffic engineering, a designated coordi-
nator needs to examine information from all the m servers, represented as a collective traffic
matrix A = (A1, . . . , Am) ∈ Rn×m. This vast amount of information exceeds communication
constraints, and thus the coordinator usually collects only the most relevant data, such as
the “heavy” entries from each server [CQZ+14, Yu14]. Since typical traffic vectors have few
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heavy entries, it is more plausible to assume the columns have average sparsity k (or even
Θ(k)), than the significantly stricter assumption that every Aj is k-sparse.

To formalize this scenario as the problem of batch sparse recovery, we will need the
following notation. We gather a sequence of column vectors A1, . . . , Am ∈ Rn into an n×m
matrix A := (A1, . . . , Am). For p ∈ [1,∞), we let ‖A‖p denote the `p-norm when A is viewed
as a “flat” vector of dimension nm, i.e., ‖A‖pp :=

∑
ij |Aij|p =

∑
j∈[m]‖Aj‖pp, for example,

p = 2 gives the Frobenius norm. Similarly, let ‖A‖0 :=
∑

j∈[m] ‖Aj‖0 denote the sparsity of
A, i.e., the number of nonzero entries in A.

Definition 1.7. In batch recovery, the input is a matrix A ∈ Rn×m as well as a parameter
k ∈ [n]. The goal is to perform linear measurements to columns of A (one column in each

measurement), and recover a matrix A′ satisfying ‖A−A
′‖1

‖A‖1 ≤ Cε for some constant C ≥ 1,

where ε = min
(km)-sparse A∗

‖A−A∗‖1
‖A‖1 .

In Part D we show the existence of an adaptive algorithm that recovers a sequence of
m vectors with average sparsity k using at most Õ(km) linear measurements. Formally, we
show the following.

Theorem 1.8. There is a randomized adaptive scheme for batch recovery that, for every
input A and k, outputs a matrix A′ such that with high probability ‖A−A′‖1

‖A‖1 = O(ε), where

ε is the optimum as in Definition 1.7. The algorithm performs O(km log n logm) linear
measurements in O(logm) adaptive rounds, and its output A′ is O(km logm)-sparse.

We prove Theorem 1.8 in Part D and provide some background to previous results and
several future research directions in compressed sensing. We additionally show that every
non-trivial algorithm for batch sparse recovery must employ adaptivity. Specifically, we
show that every non-adaptive randomized algorithm for batch recovery must make Ω(mn)
linear measurements in the worst case. The results presented in Part D have recently been
submitted for publication [AKK17].
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Part A

Distance Sparsifiers

2 Introduction: The Steiner Point Removal Problem

Let G = (V,E,w) be an edge-weighted graph and let T = {t1, . . . , tk} ⊆ V be a designated
set of k terminals. Here and throughout, dG,w(·, ·) denotes the shortest-path metric between
vertices of G according to the weights w. Recall that the Steiner Point Removal problem,
first formulated by Chan, Xia, Konjevod, and Richa [CXKR06, Section 5], asks to construct
on the terminals a new graph G′ = (T,E ′, w′) such that (i) distances between the terminals
are distorted at most by factor α ≥ 1, formally

∀u, v ∈ T, dG,w(u, v) ≤ dG′,w′(u, v) ≤ α · dG,w(u, v);

and (ii) the graph G′ is (isomorphic to) a minor of G.
Requirement (ii) above expresses structural similarity between G and G′; for instance, if

G is planar then so is G′. The SPR formulation above actually came about as a generalization
to a result of Gupta [Gup01], which asserts that if G is a tree, then there exists a tree G′,
which preserves terminal distances with distortion α = 8. Later Chan et al. [CXKR06]
observed that this same G′ is actually a minor of the original tree G, and proved the factor
of 8 to be tight. The upper bound for trees was later extended by Basu and Gupta [BG08],
who achieve distortion α = O(1) for the larger class of outerplanar graphs.

How to construct minors. We now describe a general methodology that is natural for
the SPR problem. The first step constructs a minor G′ with vertex set T , but without
any edge weights, and is prescribed by Definition 2.2. The second step determines edge
weights w′ that are minimal subject to dG′,w′ dominating dG,w on the terminals T , as given
in Definition 2.3. These steps are illustrated in Figure 2. Our definitions are actually more
general (anticipating the technical sections), and consider G′ whose vertex set is sandwiched
between T and V .

Definition 2.1. A partial partition of a set V is a collection V1, . . . , Vk of pairwise disjoint
subsets of V , referred to as clusters.

Definition 2.2 (Terminal-Centered Minor). Let G = (V,E) be a graph with k terminals T =
{t1, . . . , tk}, and let V1, . . . , Vk be a partial partition of V , such that each induced subgraph
G[Vj] is connected and contains tj. The graph G′ = (V ′, E ′) obtained by contracting each
G[Vj] into a single vertex that is identified with tj, is called the terminal-centered minor of
G induced by V1, . . . , Vk.

By identifying the “contracted super-node” Vj with tj, we may think of the vertex-set V ′

as containing T and (possibly) some vertices from V \T , which implies V ′ ⊂ V . A terminal-
centered minor G′ of G can also be described by a mapping f : V → T ∪ {⊥}, such that
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Figure 1: The graph G, a 9-cycle with unit edge weights, is depicted on the left with 3
terminals and disjoint subsets V1, V2, V3. Its terminal-centered minor G′ and the standard-
restriction edge weights are shown on the right.

f |T ≡ id and f−1({tj}) is connected in G for all j ∈ [k]. Indeed, simply let Vj = f−1({tj})
for all j ∈ [k], and thus V \ (∪jVj) = f−1({⊥}).

Definition 2.3 (Standard Restriction). Let G = (V,E,w) be an edge-weighted graph with
terminal set T , and let G′ = (V ′, E ′) be a terminal-centered minor of G. (Recall we view
V ′ ⊂ V .) The standard restriction of w to G′ is the edge weight w′ given by the respective
distances in G, formally

∀(x, y) ∈ E ′, w′xy := dG,w(x, y).

This edge weight w′ is optimal in the sense that dG′,w′ dominates dG,w (where it is defined,
i.e., on V ′), and the weight of each edge (x, y) ∈ E ′ is minimal under this domination
condition.

2.1 Main Result

Our main result below gives an efficient algorithm that achieves polylog(k) distortion for the
SPR problem. Its proof spans Sections 3 and 4, though the former contains the heart of the
matter. For the convenience of the readers we restate the main theorem.

Theorem 1.1 Let G = (V,E,w) be an edge-weighted graph with k terminals T ⊆ V . Then
there exists a terminal-centered minor G′ = (T,E ′, w′) of G that attains distance distortion
O(log5 k), i.e.,

∀u, v ∈ T, 1 ≤ dG′,w′(u, v)

dG,w(u, v)
≤ O(log5 k).

Moreover, w′ is the standard restriction of w, and G′ is computable in randomized polynomial
time.

This theorem answers a question of Chan et al. [CXKR06]. The only distortion lower
bound known for general graphs is a factor of 8 (which actually holds for trees) [CXKR06],
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and thus it remains a challenging open question whether O(1) distortion can be achieved in
general graphs.

Our proof of Theorem 1.1 begins similarly to the proof of Englert et al. [EGK+10], by
iterating over the “distance scales” 2i, going from the smallest distance dG,w(u, v) among
all terminals u, v ∈ T , towards the largest such distance. Each iteration i first employs a
“stochastic decomposition”, which is basically a randomized procedure that finds clusters of
V whose diameter is at most 2i. Then, some clusters are contracted to a nearby terminal,
which must be “adjacent” to the cluster; this way, the current graph is a minor of the previous
iteration’s graph, and thus also of the initial G. After iteration i is executed, we roughly
expect “neighborhoods” of radius proportional to 2i around the terminals to be contracted.
As i increases, these neighborhoods get larger until eventually all the vertices are contracted
into terminals, at which point the edge weights are set according to the standard restriction.
To eventually get a minor, it is imperative that every contracted region is connected. To
guarantee this, we perform the iteration i decomposition in the graph resulting from previous
iterations’ contractions (rather than the initial G), which introduces further dependencies
between the iterations.

The main challenge is to control the distortion, and this is where we crucially deviate
from [EGK+10] (and differ from all previous work). In their randomized construction of
a minor G′, for every two terminals u, v ∈ T it is shown that G′ contains a uv-path of
expected length at most O(log k)dG(u, v). Consequently, they design a distribution D over
minors G′, such that the stretch dG′(u, v)/dG(u, v) between any u, v ∈ T has expectation
at most O(log k). Note, however, that it is possible that no G′ ∈ supp(D) achieves a low
stretch simultaneously for all u, v ∈ T . In contrast, in our randomized construction of G′,
the stretch between u, v ∈ T is polylogarithmic with high probability, say at least 1 − 1/k3.
Applying a simple union bound over the

(
k
2

)
terminal pairs, we can then obtain a single

graph G′ achieving a polylogarithmic distortion. Technically, these bounds follow by fixing
in G a shortest-path P between two terminals u, v ∈ T , and then tracking the execution of
the randomized algorithm to analyze how the path P evolves into a uv-path P ′ in G′. In
[EGK+10], the length of P ′ is analyzed in expectation, which by linearity of expectation,
follows from analyzing the case where P consists of a single edge; In contrast, we provide
for P a high-probability bound, which inevitably must consider (anti)correlations along the
path.

The next section features a new tool that we developed in our quest for high-probability
bounds, and which may be of independent interest. For the sake of clarity, we provide
below a vanilla version that excludes technical complications such as terminals, strong diam-
eter, and consistency between scales. The proof of Theorem 1.1 actually does require these
complications, and thus cannot use the generic form described below.

2.2 Related Work

Applications. Vertex-sparsification, and the “graph compression” approach in general, is
obviously beneficial when G′ can be computed from G very efficiently, say in linear time,
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and then G′ may be computed on the fly rather than in advance. But compression may
be valuable also in scenarios that require the storage of many graphs, like archiving and
backups, or rely on low-throughput communication, like distributed or remote processing.
For instance, the succinct nature of G′ may be indispensable for computations performed
frequently, say on a smartphone, with preprocessing done in advance on a powerful machine.

We do not have new theoretical applications that leverage our SPR result, although we
anticipate these will be found later. Either way, we believe this line of work will prove tech-
nically productive, and may influence, e.g., work on metric embeddings and on approximate
min-cut/max-flow theorems.

Probabilistic SPR. Here, the objective is not to find a single graph G′ = (T,E ′, w′), but
rather a distribution D over graphs G′ = (T,E ′, w′), such that every graph G′ ∈ supp(D) is
isomorphic to a minor of G and its distances dG′,w′ dominate dG,w (on T ×T ), and such that
the distortion inequalities hold in expectation, that is,

∀u, v ∈ T, E
G′∼D

[dG′,w′(u, v)] ≤ α · dG,w(u, v).

This problem, first posed by Chan et al. in [CXKR06], was answered by Englert et al. in
[EGK+10] with α = O(log |T |).

Distance Preserving Minors. This problem is a relaxation of SPR in which the minor
G′ may contain a few non-terminals, while preserving terminal distances exactly. Formally,
the objective is to find a small graph G′ = (V ′, E ′, w′) such that (i) G′ is isomorphic to a
minor of G; (ii) T ⊆ V ′ ⊆ V ; and (iii) for every u, v ∈ T , dG′,w′(u, v) = dG,w(u, v). This
problem was originally defined by Krauthgamer, Nguy˜̂en and Zondiner [KNZ14], who showed
an upper bound |V ′| ≤ O(|T |4) for general graphs, and a lower bound of Ω(|T |2) that holds
even for planar graphs.

3 Terminal-Centered Minors: Main Construction

This section proves Theorem 1.1 when D :=
maxu,v∈T dG(u,v)

minu,v∈T dG(u,v)
satisfies the following assumption

(the extension to the general case is proved in Section 4).

Assumption 3.1. D ≤ 2k
3
.

By scaling all edge weights, we may further assume that minu,v∈T dG(u, v) = 1.

Notation 1. Let V1, . . . , Vk ⊆ V . For S ⊆ [k], denote VS :=
⋃
j∈S Vj. In addition, denote

V⊥ := V \ V[k] and V⊥+j := V⊥ ∪ Vj for any j ∈ [k].

We now present a randomized algorithm that, given a graph G = (V,E,w) and terminals
T ⊂ V , constructs a terminal-centered minor G′ as stated in Theorem 1.1. The algorithm
maintains a partial partition {V1, V2, . . . , Vk} of V , starting with Vj = {tj} for all j ∈ [k].
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The sets grow monotonically during the execution of the algorithm. We may also think of
the algorithm as if it maintains a mapping f : V → T ∪ {⊥}, starting with f(tj) = tj for
all j ∈ [k] and gradually assigning a value in T to additional vertices, which correspond
to the set V[k]. Thus, we will also refer to the vertices in V[k] as assigned, and to vertices
in V⊥ as unassigned. The heart of the algorithm is two nested loops (lines 4-9). During
every iteration of the outer loop, the inner loop performs k iterations, one for every terminal
tj. Every inner-loop iteration picks a random radius (from an exponential distribution) and
“grows” Vj to that radius (but without overlapping any other set) thus removing nodes from
V⊥ and assigning them to Vj. Every outer-loop iteration increases the expectation of the
radius distribution. Eventually, all nodes are assigned, i.e. {V1, V2, . . . , Vk} is a partition of V .
Note that the algorithm does not actually contract the clusters at the end of each iteration
of the outer loop. However, subsequent iterations grow each Vj only in the subgraph of G
induced by the respective V⊥+j, which is effectively the same as contracting clusters to their
respective terminals at the end of each outer-loop iteration.

Every cluster in the partial partition maintained by the algorithm needs to induce a
connected subgraph of G. In particular, the algorithm has to grow the clusters so that they
do not overlap. We therefore require the following definition.

Definition 3.2. For U ⊆ V , let G[U ] denote the subgraph of G induced by U , with induced
edge lengths (i.e. w|E(G[U ])). For a subgraph H of G with induced edge lengths, a vertex
v ∈ V (H) and r > 0, denote BH(v, r) := {u ∈ V (H) : dH(u, v) ≤ r}, where dH is the
shortest path metric in H induced by w.

Input: G = (V,E,w), T = {t1, . . . , tk} ⊆ V
Output: A partition {V1, V2, . . . , Vk} of V .

1: set b← 1 + 1/(45 log k)
2: for every j ∈ [k] set Vj ← {tj}, rj = 0.
3: set i← 0. // i is the iteration number of the outer loop.
4: while V[k] 6= V do
5: i← i+ 1.
6: for all j ∈ [k] do
7: choose independently at random Ri

j ∼ exp(bi).
8: rj ← rj +Ri

j.
9: Vj ← Vj ∪BG[V⊥+j ](tj, rj). // This is the same as Vj ← BG[V⊥+j ](tj, rj).

10: return {V1, V2, . . . , Vk}.
Algorithm 3.1: Partitioning V

Claim 3.3. The following properties hold throughout the execution of the algorithm.

1. For all j ∈ [k], Vj is connected in G, and tj ∈ Vj.
2. For every j1, j2 ∈ [k], if j1 6= j2, then Vj1 ∩ Vj2 = ∅.
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3. For every outer loop iteration i and every j ∈ [k], if V ′j denotes the set Vj at the
beginning of the i-th iteration (of the outer loop), and V ′′j denotes the set Vj at the end
of that iteration, then V ′j ⊆ V ′′j .

In what follows, we analyze the stretch in distance between a fixed pair of terminals. We
show that with probability at least 1−O(k−5), the distance between these terminals in G′ is
at most O(log5 k) times their distance in G. By a union bound over all

(
k
2

)
pairs of terminals,

we deduce Theorem 1.1. Let s, t ∈ T , and let P ∗ be a shortest st-path in G. Due to the
triangle inequality, we may focus on pairs which satisfy V (P ∗) ∩ T = {s, t}, where V (P ∗) is
the node set of P ∗. We denote ` := w(P ∗) = dG,w(s, t).

3.1 High-Level Analysis

Following an execution of the algorithm, we maintain a (dynamic) path P between s and t.
In a sense, in every step of the algorithm, P simulates an st-path in the terminal-centered
minor induced by V1, V2, . . . , Vk. At the beginning of the execution, set P to be simply P ∗.
During the course of the execution update P to satisfy two invariants. At every step of
the algorithm, the weight of P is an upper bound on the distance between s and t in the
terminal centered minor induced by V1, . . . , Vk (in that step). In addition, if I is a subpath
of P , whose inner vertices are all unassigned, then I is a subpath of P ∗. Throughout the
analysis, we think of P as directed from s to t, thus inducing a linear ordering of the vertices
in P .

Definition 3.4. A subpath of P will be called active if it is a maximal subpath whose inner
vertices are unassigned.

Note that a single edge whose endpoints are both assigned will not be considered active.
We now describe how P is updated during the execution of the algorithm. Consider line

9 of the algorithm for the i-th iteration of the outer loop, and some j ∈ [k]. We say that the
ball B = BG[V⊥+j ](tj, rj) punctures an active subpath A of P , if there is an inner node of A
that belongs to the ball. If B does not puncture any active subpath of P , we do not change
P . Otherwise, denote by u, v the first and last unassigned nodes (possibly not in the same
active subpath) in V (P ) ∩B respectively. Then we do the following.

We replace the entire subpath of P between u and v with a concatenation of a shortest
utj-path and a shortest tjv-path that lie in B; this is possible, since G[B] is connected, and
u, tj, v ∈ B. This addition to P will be called a detour from u to v through tj. The process
is illustrated in figures 2(a)-2(b). Beginning with P ∗, the figure describes the update after
the first four balls. Note that the detour might not be a simple path. It is also worth noting
that here u and v may belong to different active subpaths of P . For example, in figure 2(c),
the new ball punctures two active subpaths, and therefore in figure 2(d), the detour goes
from a node in one active subpath to a node in another active subpath. Note that in this
case, we remove from P portions which are not active.

It is worth noting that this update process implies that at any given time, there is at
most one detour that goes through tj. If, for some iteration i′ < i of the outer loop, and
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(f) Update detour for V3.

Figure 2: Updating P

for some u′, v′ ∈ V (P ), we added a detour from u′ to v′ through tj in iteration i′, we keep
only one detour through tj, from the first node between u, u′ and to the last between v, v′.
For example, in figure 2(e), the ball centered in t3 punctures an active subpath. Only one
detour is kept in figure 2(f).

The total weight of all detours during the execution will be called the additional weight
to P (ignoring portions of P that are deleted from P ). Denote the set of active subpaths of
P at the beginning of the i-th iteration of the outer loop by Ai.

Let V fin
1 , . . . , V fin

k be the partition returned by the algorithm, let G′ the terminal-centered
minor induced by that partition, and let w′ be the standard restriction of w to G′. Denote
by P fin the path obtained at the end of the execution.

Claim 3.5. At every step of the algorithm the following holds:

1. The weight of P is an upper bound on the distance between s and t in the terminal
centered minor induced by V1, . . . , Vk. Moreover, once Ai = ∅ (namely, P has no
active subpaths), the weight of P is an upper bound on the distance between s and t
in the terminal centered minor induced by V fin

1 , . . . , V fin
k (actually, from this point on,

P = P fin).

2. If A is a subpath of P , whose inner points are all in V⊥, then A is a subpath of P ∗.
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3. If A1, A2 are two different active subpaths of P , they are internally disjoint.

4. |Ai| ≤ k for all i.

Proof. Follows easily by induction on i, j.

Corollary 3.6. dG′,w′(s, t) ≤ w(P fin).

Let A ∈ Ai. During the execution of the inner loop, A is either removed from P entirely,
or some subpaths of A remain active (perhaps A remains active entirely). Therefore, for every
A′ ∈ Ai+1, either A′ is a non-trivial subpath of A (by non-trivial we mean |V (A′)| ≥ 3), or
A′ and A are internally disjoint. Therefore there is a laminar structure on

⋃
iAi.

We describe this structure using a tree T , whose node set is {〈i, A〉| A ∈ Ai}. The root
of T is 〈1, P ∗〉, and for every i and every A ∈ Ai, the children of 〈i, A〉, if any, are all pairs
〈i+ 1, A′〉, where A′ ∈ Ai+1 is a subpath of A. Whenever we update P we log the weight of
the detour by charging it to one of the nodes of T as follows. Consider a detour from u to
v in the i-th iteration of the outer loop for some i. Before adding this detour, u and v are
unassigned nodes in P . Because u is unassigned, u is an inner vertex of some active subpath.
In either case, there is exactly one active subpath containing u. The weight of the detour is
charged to the unique active subpath A ∈ Ai such that u ∈ A. For every i and A ∈ Ai, let
wi,A be the total weight charged to 〈i, A〉. If the node is never charged, the weight of the
node is set to 0. Therefore,

w(P fin) ≤ w(P ∗) +
∑
〈i,A〉∈T

wi,A. (3.1)

Eqn. (3.1) together with Corollary 3.6 imply that if we show that with high probability, the
total weight charged to the tree is at most O(log5 k) · `, we can deduce Theorem 1.1. For the
rest of this section, we therefore prove the following lemma.

Lemma 3.7. With probability at least 1− O(k−5), the total weight charged to the tree is at
most O(log5 k)`.

Consider an iteration i ≥ 1 and an active subpath A ∈ Ai. Informally, since the distortion
is measured relatively to ` = w(P ∗), if the expected radius bi is small compared to w(A),
then with high probability a detour will not add “much” to the distortion, and thus we are
more concerned with the opposite case where w(A) is small relative to the current expected
radius.

Formally, let p = 1/100. An active subpath A ∈ Ai will be called short if w(A) ≤ pbi.
Otherwise, A will be called long. Notice that P ∗ ∈ A1 is long, and for i ≥ logb(`/p), every
A ∈ Ai is short.

Definition 3.8. Let i > 1 and let A ∈ Ai be a short subpath. Denote by Ti,A the subtree of
T rooted in 〈i, A〉. Denote the parent of 〈i, A〉 in T by 〈i − 1, A′〉 for A′ ∈ Ai−1. If A′ is
long, Ti,A will be called a short subtree of T .
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Once an active subpath becomes short (during the course of the iterations), we want all
its vertices to be assigned quickly, and by a few detours. For this reason, the height and
weight of short subtrees will play an important role in the analysis of the height and weight
of T .

To bound the total weight of the tree T , we analyze separately the weights charged to
long active subpaths at each level, and the weights of short subtrees rooted at each level.
More formally, for every i ≤ logb(`/p), denote by li the total weight charged to nodes of the
form 〈i, A〉, where A ∈ Ai is a long active subpath. Denote by si the total weight charged to
short subtrees rooted at the level i of T . For i ≥ logb(`/p), every A ∈ Ai is short and thus
〈i, A〉 belongs to some short subtree rooted at level at most logb(`/p). Therefore,

∑
〈i,A〉∈T

wi,A =

logb(`/p)∑
i=1

(li + si) . (3.2)

We will first analyze the behavior of short subpaths of active paths, and then use it to bound
si. To bound the weight of long active paths, we will divide them into short segments, and
then sum everything up to bound li.

3.1.1 The Effect of a Single Ball on a Short Segment

Let i0 ≥ 1 and let I be a subpath of P such that all the inner nodes of I are unassigned in
the beginning of the i0-th iteration of the outer loop, and w(I) ≤ pbi0 . Note that I is not
necessarily maximal with that property, and therefore is not necessarily an active subpath.
However, I is a subpath of some (unique) active subpath A ∈ Ai0 . We first consider the
effect of a single ball over I, in some iteration i ≥ i0.

Fix some i ≥ i0, and some j ∈ [k]. Let X denote the number of active subpaths A′ such
that V (A′) ∩ V (I) 6= ∅ at the beginning of the j-th iteration of the inner loop (during the
i-th iteration of the outer loop). Note that every such subpath A′ is necessarily a subpath
of A, due to the laminar structure of active subpaths. Since every such active subpath will
add at least one detour before it is completely assigned, we want to show that X is rapidly
decreasing. Let X ′ denote the number of active subpaths A′ such that V (A′) ∩ V (I) 6= ∅
at the end of the j-th iteration. Denote by B the ball considered in this iteration, namely
B := BG[V⊥+j ](tj, rj).

Proposition 3.9. With certainty, X ′ ≤ X + 1.

Proof. Let A1, A2, . . . , AX be all active subpaths of A which intersect I and are active in
the beginning of the j-th iteration ordered by their location on P . For α ∈ [X] denote by
uα, vα the first and last unassigned nodes in Aα, respectively. If B does not puncture any of
these subpaths, then X ′ ≤ X < X + 1 (Note that subpaths of A can still be removed if B
punctures active subpaths of P not contained in A). So assume B punctures Aα. Assume
first that Aα is the only subpath of P which is active and is punctured by B. Then there are
three options: If both uα, vα ∈ B, then Aα is replaced and removed entirely from P when
adding the detour, and X ′ ≤ X − 1 < X + 1. If uα ∈ B and vα /∈ B, let v′ be the last node
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in V (Aα)∩B then the uαv
′ segment of Aα is replaced, and the segment v′vα remains active.

Therefore X ′ ≤ X < X + 1. The argument is similar, if uα /∈ B and vα ∈ B. Otherwise,
some of the inner portion of Aα is replaced by a non-active path, and both end segments
of Aα remain active, therefore X ′ = X + 1. Next, assume the ball punctures several active
subpaths of A, and maybe more subpaths of P . Denote by Iα, Iβ the first and last subpaths
of A punctured by B. Denote by u the first node in V (Iα) ∩ B, and v the last node in
V (Iβ) ∩ B. When updating P , the entire subpath of P between u and v is removed. Thus
X ′ ≤ X − (β − α + 1) ≤ X < X + 1.

We now want to show that if some unassigned vertex v ∈ V (I) gets assigned due to a
ball B, i.e., B punctures some active subpath intersecting I, then X is likely to decrease.
Recalling that unassigned nodes in P must be in P ∗, this goal is stated formally as

Pr[X ′ ≥ X | B ∩ V (I) ∩ V (P ∗) 6= ∅] ≤ p .

However, this statement is not sufficient for our needs, as it does not imply that with high
probability a short active subpath is assigned quickly. Indeed, let I be a short active subpath
and suppose no ball punctures any subpath of I for many iterations following i0; then the
detour that will eventually be added to replace a subpath of I might be too long relative to
I (as expected radii increase exponentially). Therefore, when arguing that with reasonable
probability X decreases, we shall condition on a more refined event, which generalizes the
notion of a ball puncturing an active subpath. Loosely speaking, we consider events in
which the ball B includes a vertex v /∈ P ∗ (i.e., v is already assigned), and assume there is
an unassigned u ∈ V (I), such that uv is an edge in G (since P ∗ is a shortest path, this edge
uv must be part of P ∗), which means there is an active subpath intersecting I adjacent to
v (in particular, v is one of its endpoints). By the memoryless property of the exponential
distribution, conditioned on v ∈ B, with reasonable probability B covers that subpath. The
formal definition follows.

Definition 3.10. Let I be a subpath of P . We say that a ball B reaches I if there is
v ∈ V (I) ∩ B such that either v ∈ V (P ∗) is unassigned, or v has an unassigned neighbor
which is in V (I).

Consider again the case where I is active. Then both its endpoints are assigned. Note
that the endpoints of I cannot both be assigned to the same terminal (otherwise I would
have been removed entirely). By the definition of the balls in the algorithm, B ⊆ G[V⊥+j]
and therefore B may reach I and not puncture it if and only if I has exactly one endpoint
in Vj. Note that all active subpaths are reached at least twice in every iteration of the outer
loop (by the clusters which contain their endpoints). Therefore in every iteration of the
outer loop at least two balls reach I with certainty, even though it could be the case that no
ball punctures I.

Proposition 3.11. Pr[X ′ ≥ X | B reaches I] ≤ p .
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Proof. Assume that B reaches I. Then there exists a node v ∈ V (I) ∩B such that either v
is unassigned, or v has an unassigned neighbor u ∈ V (I). Let d = dG[V⊥+j ](tj, v). Assume
first that v ∈ V (P ∗) is unassigned. Let A′ be the active subpath such that v ∈ V (A′).
Following the analysis of the previous proof, if X ′ ≥ X, then B punctures exactly one active
subpath (namely A′) that intersects I and does not cover the part of A′ contained in I, or
B punctures exactly two such active subpaths and covers neither of them. In either case,
B punctures A′ and does not cover the part of A′ contained in I. Since w(I) ≤ pbi0 ≤ pbi,
the length of A′ is at most pbi. We conclude that rj + Ri

j ≥ d, and rj + Ri
j < d + pbi. If v

has an unassigned neighbor u ∈ V (I), we get the same conclusion, since this again means
rj +Ri

j ≥ rj ≥ d. By the memoryless property,

Pr[X ′ ≥ X | B reaches I] ≤ Pr[Ri
j < d− rj + pbi | Ri

j ≥ d− rj] ≤ 1− e−p ≤ p .

3.1.2 The Effect of a Sequence of Balls on a Short Segment

Consider now the first N balls that reach I, starting from the beginning of iteration i0 of
the outer loop, and perhaps during several iterations of that loop. For every a ∈ [N ], let Ya
be the indicator random variable for the event that the a-th ball reaching I decreased the
number of active subpaths intersecting I. In these notations, Proposition 3.11 stated that

∀a ∈ [N ], Pr[Ya+1 = 1 | Y1, . . . , Ya] ≥ 1− p .

Let Y =
∑

a∈[N ] Ya and let Z ∼ Bin(N, 1− p). Simple induction on N implies the following
claim.

Claim 3.12. ∀k, Pr [Y > k] ≥ Pr[Z > k].

Lemma 3.13. With probability at least 1 − 1/k10, after 90 log k balls have reached I, there
are no active subpaths intersecting I.

Proof. AssumeN = 70 log k. Since whenever Ya = 0, the number of active subpaths increases
by at most 1, and whenever Ya = 1, the number of active subpaths decreases by at least
1, if Y > N/2, then there are no active subpaths intersecting I. Therefore by the Chernoff
bound,

Pr[there are no active subpaths intersecting I after N balls reach I]

≥ Pr[Y > N/2] ≥ Pr[Z > N/2] ≥ 1− 1/k10 .
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3.2 The Behavior of Short Subtrees

As stated before, the most crucial part of the proof is to bound the weight and height of
short subtrees of T . Let i0 > 1, and let A ∈ Ai0 be a short subpath such that Ti0,A is a
short subtree of T . Clearly, A′ is short for every node 〈i′, A′〉 of Ti0,A. In order to bound the
height of Ti0,A we combine the fact that not too many balls may reach A, with the fact that
at least two balls reach A during each iteration of the outer loop.

Claim 3.14. With probability at least 1− 1/k10, the height of Ti0,A is at most 45 log k.

Proof. In the notations of Lemma 3.13, consider some i ≥ i0. If A has an active subpath
at the end of the i-th iteration of the outer loop, then at least two times during the i-th
iteration an active subpath of A is reached by a ball. After 45 log k iterations of the outer
loop, if A has an active subpath, then N ≥ 90 log k. By similar arguments to Lemma 3.13,

Pr[The height of Ti0,A is at most N/2] ≥ Pr[Y > N/2] ≥ Pr[Z > N/2] ≥ 1− 1/k10 .

We denote by E1 the event that for every i, and every A ∈ Ai, if Ti,A is a short subtree
then after at most 90 log k balls reach an active subpath of A, A has no more active subpaths
and in addition, the height of Ti,A is at most 45 log k.

Lemma 3.15. Pr[E1] ≥ 1− 1/k5.

Proof. Fix some i, and A ∈ Ai. Assume that Ti,A is a short subtree. By definition, 〈i, A〉
has no short ancestor. For i′ = logb(`/p) ≤ logb(D/p), P ∗ itself is short, since bi

′
= `/p,

and thus all tree nodes in level i′ (and lower) are short. Therefore, i ≤ i′. Since there are
at most k nodes in every level of the tree, the number of short subtrees of T is at most
k · logb(D/p) = k · (logbD + logb 100) ≤ k4 log k + O(k log k) ≤ O(k4 log k). By the previous
lemma, and a union bound over all short subtrees, the result follows.

Since every node in level logb(`/p) of the tree belongs to some short subtree, we get the
following corollary.

Corollary 3.16. With probability at least 1 − 2/k5, the height of T is at most logb(`/p) +
O(log k) ≤ 10 logbD.

We denote by E2 the event that for all i ≤ 10 logbD and j ∈ [k], the radius of the j-th
ball of the i-th iteration of the outer loop is at most O(bi log k). We wish to prove that E2

holds with high probability. We will need the following lemma, which gives a concentration
bound on the sum of independent exponential random variables.

Lemma 3.17. Let X1, . . . , Xn be independent random variables such that each Xj ∼ exp(λj)
for λj > 0, and denote λ = maxj λj. Then X =

∑
j Xj has expectation µ = E[X] =

∑
j λj

and satisfies
∀δ > 1, Pr[X > (1 + δ)µ] ≤ e(1−δ) µ

2λ .
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Proof. We proceed by applying Markov’s inequality to the moment generating function (sim-
ilarly to proving Chernoff bounds). Let j ∈ [n] and consider 0 ≤ t ≤ 1

2λj
. Then the moment

generating function of Xj is known and can be written as E
[
etXj

]
= 1

1−tλj ≤ 1+2tλj ≤ e2tλj .

Now set t = 1
2λ

and use Markov’s inequality to get

Pr[X > (1 + δ)µ] = Pr[etX > et(1+δ)µ] ≤ E
[
etX
]

et(1+δ)µ
=

∏
j∈[n] E

[
etXj

]
et(1+δ)µ

≤ e2tµ

et(1+δ)µ
= e(1−δ) µ

2λ .

Lemma 3.18. Pr[E2] ≥ 1− 1/k5.

Proof. Fix i ≤ 10 logbD and j ∈ [k]. In the notations of Algorithm 3.1, let rj be the radius
of the jth ball in the ith iteration of the outer loop. Then rj =

∑
i′≤iR

i′
j is the sum of

independent exponential random variables. E[rj] =
∑

i′≤i b
i′ = b · bi−1

b−1
≥ 20bi log k. Applying

Lemma 3.17 we get that

Pr[rj > 40bi log k] = Pr[rj > 2E[rj] ] ≤ e
−E[rj ]

bi ≤ k−10

By assumption 3.1, 10 logbD = O(logD log k) = O(k3 log k). Thus by a union bound over
all values of i and j in question,

Pr[∀i, j. rj ≤ 40bi log k in the ith iteration of the outer loop] ≥ 1− k · 10 logbD
k10

≥ 1− 1

k5
.

Summing everything up, we can now bound with high probability the weights of all short
subtrees of T .

Claim 3.19. Conditioned on the events E1 and E2, for every i0 > 1 and A ∈ Ai0, if Ti0,A is
a short subtree of T , then the total weight charged to nodes of Ti0,A is at most O(bi0 log2 k)
with certainty.

Proof. Conditioned on E1, at most 90 log k detours are charged to nodes of every short
subtree and for i = i0 + 45 log k, there are no more active subpaths of A. Conditioned on
E2, the most expensive detour is of weight at most O(bi0+45 log k log k), we get that the total
weight charged to nodes of the subtree is 90 log k ·O(bi0 · b45 log k · log k) ≤ O(bi0 log2 k), since
b45 log k = O(1).

3.3 Bounding The Weight Of T
We are now ready to bound the total weight charged to the tree. Recall that for every
i ≤ logb(`/p) we denoted by li the total weight charged to nodes of the form 〈i, A〉, where
A ∈ Ai is a long active subpath, and by si the total weight charged to short subtrees rooted
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in the i-th level of T . Since ` ≥ 1, P ∗ ∈ A1 is long. Therefore, s1 = 0. We can therefore
rearrange Eqn. (3.2) to get the following.

∑
〈i,A〉∈T

wi,A =

logb(`/p)∑
i=1

(li + si+1) . (3.3)

Let i ≤ logb(`/p). Let A ∈ Ai be a long active subpath. That is, w(A) ≥ pbi. Thinking
of A as a continuous path, divide A into w(A)/(pbi) segments of length pbi. Some segments
may contain no nodes. Let I be a segment of A, and assume I contains nodes (otherwise,
no cost is charged to A on account of detours from I). Following Lemma 3.13, we get the
following.

Lemma 3.20. With probability at least 1− 1/k10, no more than 90 log k balls reach I.

Denote by E3 the event that for every i ≥ logb(`/k
2), and for every long active subpath

A ∈ Ai, in the division of A to segments of length pbi, every such subsegment is reached by
at most 90 log k balls.

Lemma 3.21. Pr[E3] ≥ 1− 1/k5.

Proof. Since for every i ≥ logb(`/p), every A ∈ Ai is short, the number of relevant iterations
(of the outer loop) is at most logb(`/p) − logb(`/k

2) = logb(k
2/p) ≤ O(log2 k). For every

i ≥ logb(`/k
2) and every long path A ∈ Ai, the number of segments of A is at most

w(A)/(pbi) ≤ w(A)/(p`/k2) ≤ k2/p. Therefore the number of relevant segments for all
i ≥ logb(`/k

2) and for all long A ∈ Ai is at most O(k2 log2 k) Applying a union bound over
all relevant segments the result follows.

Since Pr[E1] ≥ 1− 1/k5 and Pr[E2] ≥ 1− 1/k5, we get the following corollary.

Corollary 3.22. Pr[E1 ∧ E2 ∧ E3] ≥ 1−O(k−5)

It follows that it is enough for us to prove that conditioned on E1, E2 and E3, with
probability 1 the total weight charged to the tree is at most O(log5 k)`.

Lemma 3.23. Conditioned on E2 and E3, li ≤ O(bik log k). In addition, if i ≥ logb(`/k
2),

then li ≤ O(log2 k) · ` with probability 1.

Proof. To see the first bound, observe that by the update process of P , at most k detours
are added to P during the i-th iteration. Conditioned on E2, each one of them is of weight
at most O(bi log k). To see the second bound, let A ∈ Ai be a long active subpath. The
additional weight resulting from detours from vertices of A is at most the number of segments
of A of length pbi, times the additional weight to each segment. Therefore, the additional
weight is at most

wi,A ≤ w(A)/pbi ·O(log k) ·O(bi log k) = O(log2 k) · w(A) .
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Since all paths in Ai are internally disjoint subpaths of P ∗, we get:

li =
∑

long A∈Ai

wi,A ≤
∑

long A∈Ai

O(log2 k) · w(A) ≤ O(log2 k) · ` .

Lemma 3.24. Conditioned on events E1, E2 and E3, si+1 ≤ O(bi+1k log2 k). In addition,
if i ≥ logb(`/k

2), then si+1 ≤ O(log3 k) · `.

Proof. Conditioned on E1 and E2, we proved in Claim 3.19 that the total weight charged
to a short subtree rooted in level i + 1 is at most O(bi+1 log2 k) with certainty. Since there
are at most k such subtrees, the first bound follows. To get the second bound, note that by
the definition of a short subtree, for every short subtree T ′ rooted at level i+ 1, the parent
of the root of T ′ consists of a long active subpath A of level i. Conditioned on E3, every
segment of A is intersected by at most 90 log k balls. Therefore, 〈i, A〉 can have at most
(w(A)/pbi) · 90 log k children, and in particular, children consisting of short active subpaths.
The cost of a short subtree rooted in the i + 1 level of T is at most O(bi log2 k). Thus the
total cost of all short subtrees rooted in children of A is bounded by

(w(A)/pbi) · 90 log k ·O(bi log2 k) ≤ O(log3 k) · w(A) .

Summing over all (internally disjoint) long subpaths of level i, the result follows.

We now turn to prove Lemma 3.7.

of Lemma 3.7. Since Pr[E1 ∧E2 ∧E3] ≥ 1−O(k−5), it is enough to show that conditioned
on E1, E2 and E3, the total weight charged to the tree is at most O(log5 k)` with certainty.

Recall that
∑
〈i,A〉∈T wi,A =

∑logb(`/p)
i=1 (li + si+1). Following Lemmas 3.23 and 3.24 we get

that

logb(`/k
2)∑

i=1

(li + si+1) ≤
logb(`/k

2)∑
i=1

O(bik log k + bi+1k log2 k)

≤ O(k log2 k)

logb(`/k
2)∑

i=1

bi = O(k log2 k)
b

b− 1
· `
k2

= o(1) · ` .

In addition,

logb(`/p)∑
i=logb(`/k

2)+1

(li + si+1) ≤
logb(`/p)∑

i=logb(`/k
2)+1

O(log2 k)`+O(log3 k)`

≤ O(log3 k)` · (logb(`/p)− logb(`/k
2))

≤ O(log3 k)` ·O(log2 k) = O(log5 k) · ` .

29



4 Terminal-Centered Minors: Extension to General

Case

In this section we complete the proof of Theorem 1.1 by reducing it to the special case where
Assumption 3.1 holds (which we proved in Section 3). We first outline the reduction, which
is implemented using a recursive algorithm, as follows. The algorithm initially rescales edge
weights of the graph so that minimal terminal distance is 1. If D < 2k

3
then we apply

Algorithm 3.1 and we are done. Otherwise, we construct a set of at most k− 1 low-diameter
balls which are mutually far apart, and whose union contains all terminals. Then, for each
of the balls, we apply Algorithm 3.1 on the graph induced by that ball. Each ball is then
contracted into a “super-terminal”. We apply the algorithm recursively on the resulting
graph G̃ with the set of super-terminals as the terminal set. Going back from the recursion,
we “stitch” together the output of Algorithm 3.1 on the balls in the original graph with the
output of the recursive call on G̃, to construct a partition of V as required. The detailed
algorithm and proof of correctness are described in Section 4.1. Before that, we need a few
definitions.

Assume that the edge weights are already so that the minimum inter-terminal distance
is 1. Denote by D the set of all distances between terminals, rounded down to the nearest
powers of 2. Note that |D| < k2. Consider the case D > 2k

3
. There must exist 0 ≤ m0 ≤

k3−k such that D∩{2m0 , 2m0+1, . . . , 2m0+k} = ∅. Define R := {(x, y) ∈ T 2 : dG(x, y) < 2m0}.

Claim 4.1. R is an equivalence relation.

Proof. Reflexivity and symmetry of R follow directly from the definition of a metric. To see
that R is transitive, let x, y, z ∈ T , and assume (x, y), (y, z) ∈ R. Therefore dG(x, y) < 2m0

and dG(y, z) < 2m0 . By the triangle inequality, dG(x, z) < 2m0+1. SinceD∩{2m0 , . . . , 2m0+k} =
∅, dG(x, z) < 2m0 , and therefore (x, z) ∈ R.

For every equivalence class U ∈ T/R, we pick an arbitrary u ∈ U , and define Û =
BG(u, 2m0).

Claim 4.2. U := {Û}U∈T/R is a partial partition of V . Moreover, for every U ∈ T/R,

U ⊆ Û , G[Û ] is connected and of diameter at most 2m0+1 < 2k
3
.

Proof. Let U ∈ T/R. Let u ∈ U be such that Û = BG(u, 2m0). For every x ∈ U , by the

definition of R, d(x, u) < 2m0 , and thus x ∈ Û . Therefore U ⊆ Û . By the definition of a ball,
G[Û ] is connected and of diameter at most 2m0+1 < 2k

3
. To see that U is a partial partition

of V , take U ′ ∈ T/R such that U 6= U ′, and let u′ ∈ U ′ be such that Û ′ = BG(u′, 2m0). Since

(u, u′) /∈ R, dG(u, u′) ≥ 2m0 , and since D ∩ {2m0 , . . . , 2m0+k} = ∅, dG(u, u′) ≥ 2m0+k+1, thus
Û ∩ Û ′ = ∅.

30



Input: G = (V,E,w), T = {t1, . . . , tk} ⊆ V
Output: A partition {V1, V2, . . . , Vk} of V .

1: rescale the edge weights so that the minimal terminal distance is 1.
2: if D := maxu,v∈T dG(u, v) ≤ 2k

3
then

3: run Algorithm 3.1, and return its output.
4: else
5: define R and U as above.
6: for all Û ∈ U do
7: run Algorithm 3.1 independently on G[Û ].
8: contract Û to a single “super-terminal”, maintaining edge weights of all remaining

edges.
9: denote the resulting graph G̃.

10: run Algorithm 4.1 recursively on G̃ with the set of super-terminals.
11: for all super-terminals u ∈ G̃ do
12: let u1, . . . , ur be the terminals contracted to u in line 8 in an arbitrary order.
13: for all vertices v assigned to u in the recursive call do
14: assign v to its nearest terminal among u1, . . . , ur.

Break ties by the ordering of u1, . . . , ur. // Making sure we construct a minor.
15: return the resulting partition of V .

Algorithm 4.1: Partitioning V - The General Case

4.1 Detailed Algorithm

Our algorithm for the general case of Theorem 1.1 is given as Algorithm 4.1 (which makes
calls to Algorithm 3.1). It is clear that this algorithm returns a partition of V . In addition,
since every level of recursion decreases the number of terminals in the graph, the depth of
the recursion is at most k. During each level of the recursion, Algorithm 3.1 is invoked at
most k times. Therefore, Algorithm 3.1 is invoked at most k2 times, each time on a set of
at most k terminals. Note that the result of Lemma 3.7 still applies if k is only an upper
bound on the number of terminals, and not the exact number of terminals. Therefore, we
get that there exists C0 > 0, such that all O(k2) times that the algorithm is invoked, it
achieves a weight stretch factor of at most C0 log5 k, with probability at least 1 − O(k−3).
Applying a union bound, we get that with high probability, the stretch bound is obtained in
all invocations of the algorithm. It remains to show that this suffices to achieve the desired
stretch factor in G.

Lemma 4.3. With probability at least 1− 1/k, on a graph with τ ≤ k terminals, Algorithm
4.1 obtains a stretch factor of at most C0 log5 k + log5 k · 2−k∑k′≤τ 2(k′)2 ≤ 2C0 log5 k.

Proof. It is enough to show that conditioned on the event that every invocation of Algo-
rithm 3.1 achieves a stretch factor of at most C0 log5 k, the generalized algorithm achieves
the desired stretch factor. We prove this by induction on k. For the case k = 2, rescaling
the weights assures that D = 1 ≤ 2k

3
, and therefore Algorithm 3.1 is applied on G. The
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result follows from the proof of Section 3. Assuming correctness for every k̃ < k, we prove
correctness for k. Let s, t ∈ T . If (s, t) ∈ R, then s and t are in the same set in U , and
by the conditioning, the stretch factor of the distance between s and t is at most C0 log5 k.
This does not change in steps 4 − 7 of the algorithm. Otherwise, Let s̃, t̃ be the terminals
(or super-terminals) associated with s and t in G̃ respectively. Denote d = dG,w(s, t) and
d̃ = dG̃,w̃(s̃, t̃). Denote by G′ = (V ′, E ′, w′) the terminal-centered minor induced by the par-
tition returned by the recursive call, and by G′′ = (V ′′, E ′′, w′′) the terminal-centered minor
induced by the partition returned in the final step of the algorithm. Denote d′ = dG′,w′(s̃, t̃).
and d′′ = dG′′,w′′(s, t). Let u be a super terminal on a shortest path P ′ between s̃ and t̃ in
G′. Let P ′′ be the path obtained from P ′ in G′′ in the following manner. In the place of
every super-terminal u in P ′, originating in some node set Û , we add a path between the
corresponding terminals in Û (based on the terminal-centered minor constructed for G[Û ] in
step 3). The edges of P ′ are also replaced with corresponding edges in G′′.

Recall that in G′, the weight of every edge is the distance between its endpoints in G̃ (by
the definition of a terminal-centered minor). In G′′ the weight of every edge is the distance
between its endpoints in G. Therefore the weight P ′ contained at most k − 1 edges. In G′′

the weight of each such edge increases by at most k2m0 . In addition, every expansion of
a super-terminal adds at most k2m0 to the path. Therefore, w′′(P ′′) ≤ w′(P ′) + 2k22m0 ≤
d′ + d · 2k22−k. By the induction hypothesis

d′ ≤
(
C0 log5 k + log5 k · 2−k

∑
k′≤k−1

(k′)2

)
d̃.

Since d̃ ≤ d, we get that

d′′ ≤
(
C0 log5 k + log5 k · 2−k

∑
k′≤k−1

2(k′)2

)
d+ d · 2k22−k

≤
(
C0 log5 k + log5 k · 2−k

∑
k′≤k

2(k′)2

)
d.

This completes the proof of Lemma 4.3 (and in fact also of Theorem 1.1).
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Part B

Metric Decompositions

5 Introduction: Randomized Metric Decompositions

A randomized decomposition of the metric (X, d) is a distribution µ over partitions of X,
although we usually impose additional requirements in order to obtain more specialized de-
compositions. One of the most basic versions of randomized decompositions is often referred
to as padded decompositions (see Definition 1.2). Our results in this section employ a refined
definition of so-called padded decompositions, introduced by Abraham et al. [AGG+14].

Recall that if Π is a partition of X, then every S ∈ Π is called a cluster, and for every
x ∈ X, Π(x) denotes the unique cluster S ∈ Π such that x ∈ S.

Definition 5.1. A metric space (X, d) is called β-decomposable for β > 0 if for every ∆ > 0
there is a probability distribution µ over partitions of X, satisfying the following properties.

(a). Diameter Bound: For every Π ∈ supp(µ) and S ∈ Π, diam(S) ≤ ∆.

(b). Padding: For every x ∈ X and 0 ≤ γ ≤ 1/100,

Pr
Π∼µ

[B(x, γ∆) ⊆ Π(x) ] ≥ 2−βγ .

We note that Definition 1.2, which is more common in the literature (see e.g. [KLMN05,
LN04]) is a special case of Definition 5.1 obtained by setting in (b) γ = 1/β. Our results
provide constructions that satisfy Definition 5.1, and thus immediately apply also to the
more common definition.

5.1 Preliminaries

The Truncated Exponential Distribution. Define the truncated exponential with pa-
rameters λ > 0 and 0 ≤ α < β < ∞, denoted Texp[α,β](λ), to be distribution given by the
probability density function

gλ,[α,β](x) =
1

λ(e−α/λ − e−β/λ)e
−x/λ ∀x ∈ [α, β] .

Note that this is the pdf of an exponential random variable with mean λ that is conditioned
to be in the range [α, β].

r-Nets. Given a metric space (V, d), an r-net of (V, d) is a set Y ⊆ V satisfying

1. Packing: For all distinct u, v ∈ Y we have d(u, v) > r.

2. Covering: For every v ∈ V , there is some u ∈ Y such that d(v, u) ≤ r.
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6 Metric Decompositions with Concentration

Bartal [Bar96] proved that every n-point metric is O(log n)-decomposable, and that this
bound is tight. We remark that by now there is a rich literature on metric decompositions,
and different variants of this notion may involve terminals, or (in a graphical context) con-
nectivity requirements inside each cluster, see e.g. [LS93, Bar96, CKR01, FRT04, Bar04,
LN05, GNR10, EGK+10, MN07, AGMW10, KR11].

Degree of separation. Consider a metric space (X, d), and let P = (x0, x1, . . . , x`) be
a shortest path in X. We denote its length by d(P ) := d(x0, x`), and say that P meets a
cluster S ⊆ X if S ∩ P 6= ∅. Given a partition Π of X, we define the degree of separation of
P with respect to Π ZP (Π) as the number of different clusters in the partition Π that meet
P . Formally,

ZP (Π) :=
∑
S∈Π

1{P meets S}. (6.1)

Throughout, we omit the partition Π when it is clear from the context. When we consider
a random partition Π ∼ µ, the corresponding ZP = ZP (Π) is actually a random variable. If
this distribution µ satisfies requirement (b) of Definition 5.1, then

E
Π∼µ

[ZP ] ≤ 1 +
∑
i∈[`]

Pr
Π∼µ

[Π(xi−1) 6= Π(xi)]

≤ 1 +
∑
i∈[`]

Pr
Π∼µ

[B(xi−1, d(xi−1, xi)) 6⊆ Π(xi−1)]

≤ 1 +
∑
i∈[`]

(1− 2−βd(xi−1,xi)/∆)

≤ 1 +
∑
i∈[`]

βd(xi−1, xi)

∆
= 1 +

βd(P )

∆
.

(6.2)

But what about the concentration of ZP ? More precisely, can every finite metric be de-
composed, such that every shortest path P admits a tail bound on its degree of separation
ZP ?

A tail bound. We answer this last question in the affirmative by proving a stronger version
of Theorem 1.3 that does involve terminals in Section 6.1. The tail bound over Pr[ZP ≥ t]
in Theorem 1.3 (eqn. (1.1) on page 11) can be compared to a naive estimate that holds for
every β-decomposition µ: using (6.2) we have E[ZP ] ≤ 2 for every path P with d(P ) ≤ ∆

β
,

and then by Markov’s inequality Pr[ZP ≥ t] ≤ 2/t.
We remark that for general metric spaces, it is known that β = O(log n) is tight [Bar96].

However, for requirements (a)-(b) of Definition 5.1 several decompositions are known to have
better values of β for special families of metric spaces (e.g. metrics induced by planar graphs
[KPR93]). We leave it open whether for these families the bounds of Theorem 1.3 can be
improved, say to β = O(1).
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6.1 A Tail Bound for the Degree of Separation

In this section we prove a slightly stronger result than that of Theorem 1.3, stated as Theorem
6.2 below. Let (X, d) be a metric space, and let {t1, . . . , tk} ⊆ X be a designated set of
terminals. Recall that a partial partition Π of X is a collection of pairwise disjoint subsets
of X. For a shortest path P in X, define ZP = ZP (Π) using Eqn. (6.1), which is similar to
before, except that now Π is a partial partition. We first extend Definition 5.1.

Definition 6.1. We say that X is β-terminal-decomposable with concentration if for every
∆ > 0 there is a probability distribution µ over partial partitions of X, satisfying the following
properties.

• Diameter Bound: For all Π ∈ supp(µ) and all S ∈ Π, diam(S) ≤ ∆.

• Padding Probability: For every x ∈ X and 0 ≤ γ ≤ 1/100,

Pr
Π∼µ

[∃S ∈ Π such that 0 < |S ∩B(x, γ∆)| < |B(x, γ∆)| ] ≤ 1− 2−βγ .

• Terminal Cover: For all Π ∈ supp(µ), we have T ⊆ ⋃S∈Π S.

• Degree of Separation: For every shortest path P and every t ≥ 1,

Pr
Π∼µ

[
ZP > tmax{βd(P )

∆
, 1}
]
≤ O

(
min

{
kβ,

⌈
βd(P )

∆

⌉})
e−Ω(t).

Theorem 6.2. Every finite metric space with k terminals is (4 log k)-terminal-decomposable
with concentration.

For simplicity of notation, we prove the result with cluster diameter at most 2∆ instead
of ∆. Fix a desired ∆ > 0, and set for the rest of the proof λ := ∆

log k
and g := gλ,[0,∆] (the

pdf of the truncated exponential distributions Texp[0,∆](λ)). For x ∈ X and r > 0, we use
the standard notation of a closed ball B(x, r) := {y ∈ X : d(x, y) ≤ r}. We define the
distribution µ via the following procedure that samples a partial partition Π of X.

1: for j = 1, 2, . . . , k do
2: choose Rj ∼ Texp[0,∆](λ) independently at random, and let Bj = B(tj, Rj).

3: set Sj = Bj \
⋃j−1
m=1 Bm.

4: return Π = {S1, . . . , Sk} \ {∅}.

The diameter bound and terminal partition properties hold by construction. The proof
of the padding probability is identical to the one in [Bar96, Section 3]. The following two
lemmas prove the degree of separation property, which will conclude the proof of Theorem 6.2.
Fix a shortest path P in X, and let us assume that t/2 is a positive integer; a general t ≥ 1
can be reduced to this case up to a loss in the unspecified constant.

Lemma 6.3. If d(P ) < λ, then Pr[ZP > t] ≤ 2e−Ω(t).
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Proof. Split the k terminals into Jfar := {j ∈ [k] : d(tj, P ) > ∆− 2λ} and Jnear := [k] \ Jfar.
Define random variables Zfar := #{j ∈ Jfar : Bj ∩ P 6= ∅} and Znear := #{j ∈ Jnear :
Sj ∩ P 6= ∅}. Then ZP ≤ Zfar + Znear and

Pr[ZP > t] ≤ Pr[Zfar + Znear > t] ≤ Pr[Zfar > t/2] + Pr[Znear > t/2].

For every j ∈ Jfar,

Pr[Bj ∩ P 6= ∅] ≤ Pr[Rj ≥ ∆− 2λ] =

∫ ∆

∆−2λ

g(x)dx =
k

k − 1
(e−

∆−2λ
λ − e−∆

λ ) ≤ 8

k
,

and therefore E[Zfar] ≤ 8. Since Zfar is the sum of independent indicators, by the Chernoff
bound, Pr[Zfar > t/2] ≤ 2−t/2 for all t ≥ 32e. For smaller t, observe that Pr[Zfar = 0] ≥
(1− 8/k)k ≥ Ω(1), and thus for every t ≥ 1 we have Pr[Zfar > t/2] ≤ e−Ω(t).

Next, consider the balls among {Bj : j ∈ Jnear} that have non-empty intersection with
P . Let m denote the number of such balls, and let j1 < . . . < jm denote their indices. In
other words, we condition henceforth on an event E ∈ {0, 1}Jnear that determines whether
Rj ≥ d(tj, P ) occurs or not for each j ∈ Jnear. The indices of coordinates of E that are
equal to 1 are exactly j1, . . . jm. For a ∈ [m], let Ya be the indicator variable for the event
that the ball Bja does not contain P . Note that since {Rj}j∈[k] are independent, then so are
{Ya}a∈[m]. Then

Pr
[
Ya = 1 | E

]
= Pr

[
P 6⊆ Bja | P ∩Bja 6= ∅

]
≤ Pr

[
Rj < d(tja , P ) + λ | Rj ≥ d(tja , P )

]
≤ 1− e−1

1− e−2
≤ 3

4
.

Having conditioned on E , the event {Znear > t/2} implies that m > t/2 and moreover, Ya = 1
for all a ∈ [t/2], and since {Ya}a∈[m] are independent, Pr[Znear > t/2 | E ] ≤ (3/4)t/2 ≤ e−Ct

for an appropriate constant C > 0. The last inequality holds for all such events E (with the
same constant C > 0), and thus also without any such conditioning.

Altogether, we conclude that Pr[ZP > t] ≤ 2e−Ω(t).

Lemma 6.4. If d(P ) ≥ λ, then Pr[ZP > td(P )/λ] ≤ O
(

min
{
k log k,

⌈
d(P )
λ

⌉})
e−Ω(t).

Proof. Treating P as a continuous path, subdivide it into r := dd(P )/λe segments, say
segments of equal length that are (except for the last one) half open and half closed. The
induced subpaths P1, . . . , Pr of P are disjoint (as subsets of X) and have length at most
λ each, though some of subpaths may contain only one or even zero points of X. Writing
ZP =

∑
i∈[r] ZPi , we can apply a union bound and then Lemma 6.3 on each Pi, to obtain

Pr[ZP > td(P )/λ] ≤ Pr
[
∃i ∈ [r] such that ZPi > t/2

]
≤ O

(⌈
d(P )

λ

⌉)
· e−Ω(t).
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Furthermore, for every j ∈ [k], let Aj := {i ∈ [r] : Pi ∩ B(tj,∆) 6= ∅}, and since P is a
shortest path, |Aj| ≤ 4∆/λ = 4 log k. Observe that ZPi = 0 (with certainty) for all i /∈ ∪jAj,
hence

Pr[ZP > td(P )/λ] ≤ Pr
[
∃i ∈ ∪j∈[k]Aj such that ZPi > t/2

]
≤ 4k log ke−Ω(t) .

By substituting β = 4 log k and λ = ∆/ log k, it is easy to verify that Lemmas 6.3 and
6.4 complete the proof of Theorem 6.2.

7 Metric Decomposition of Path-Separable Graphs

Bartal’s proof [Bar96] that every n-point metric space is O(log n)-decomposable, and that
this bound is tight for general metric spaces, has motivated an extensive research on restricted
families of metric spaces. Notable progress has been made for families defined by topological
restrictions, such as shortest-path metrics in graphs excluding a fixed minor [KPR93, FT03,
AGG+14] or bounded-genus graphs [LS10, AGG+14] and geometric restrictions, such as a
bounded doubling dimension [GKL03] or hyperbolic structure [KL06]. Our work considered
metrics induced by graphs of bounded “path separability”, which is a blend of topological
and geometric restrictions, as defined below. The metric spaces we study in this section
arise as shortest-path metrics in (certain) graphs. Specifically, given an undirected graph
edge-weighted G = (V,E,w), recall that dG,w denotes the shortest-path metric induced on
V by w. If w is clear from the context we will simply denote dG. Denote by BG(u, %) the
ball of radius % > 0 around u ∈ V in the metric space (V, dG). We say that a graph G is
β-decomposable if the metric space (V, dG) is β-decomposable.

Shortest-Path Separators. Given a graph G = (V,E,w) and a set S ⊆ V , an S-flap
is a connected component of G[V \ S]. We say that S is a (balanced) vertex separator
if every S-flap U has size |U | ≤ |V |/2. Vertex separators are widely used in divide-and-
conquer algorithms. Thorup [Tho04] observed that every planar graph has a vertex separator
composed of three shortest paths 1, and used this property to design distance and reachability
oracles for planar graphs. Abraham and Gavoille [AG06] extended this notion and defined
path separability. Intuitively, a graph is path separable if it has a vertex separator composed
of a few shortest-paths.

Notation 2. For sets X1, . . . , Xm and S ⊆ [m], we denote XS :=
⋃
j∈S Xj.

Definition 7.1. [AG06] A graph G = (V,E,w) is called p-path separable for p ∈ N if there
exists S ⊂ V such that the following holds.

1. There exist P1, . . . , Pm ⊆ V such that S = P[m] and every Pj is the union of pj shortest-
paths in Gj := G \ P[j−1].

1If we only require that every S-flap U has size |U | ≤ 2|V |/3, then two shortest paths suffice.
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2.
∑

j∈[m] pj ≤ p.

3. S is a vertex separator, and every S-flap is p-path-separable.

Abraham and Gavoille showed that for every graph H there is a number p = p(H) such
that every graph (V,E) that excludes H as a minor is p-path-separable under every edge
weights w. Diot and Gavoille [DG10] proved that every graph of treewidth t is d(t− 1)/2e-
path-separable with every edge weights w.

7.1 Main Results

Theorem 7.2. Every p-path-separable graph (V,E,w) is O(ln(p ln |V |))-decomposable.

We further note that if, in addition, for every subgraph G′ of G, we can find a p-path-
separator in polynomial time then we can efficiently sample from the distribution guaranteed
in Theorem 7.2.

Combining our theorem with the result of Diot and Gavoille [DG10] we get an upper
bound for bounded treewidth graphs.

Corollary 7.3. Every graph (V,E) of treewidth t with every edge weights w is O(ln(t ln |V |))-
decomposable.

Previously, no bound was known for p-path-separable graphs other than O(log |V |) due
to Bartal [Bar96]. For graphs of treewidth t the known upper bound is β = O(t) due
to [AGG+14]. Our decomposition provides a tradeoff between t and |V | and matches or
improves all other bounds when t ≥ ln ln |V |. It is conjectured that β = O(log t), which
would be tight due to the lower bound of Bartal [Bar96], and our result provide partial
evidence in favor of this conjecture.

Many known results “interface” the metric only through decompositions, and thus plug-
ging in our decomposition bounds immediately yields new results for the aforementioned
families of metric spaces. For example, using a result from [KLMN05] we conclude that ev-
ery n-vertex graph of treewidth t (with every edge weights w) can be embedded in a Hilbert
space with distortion O(

√
ln(t lnn) · lnn), which improves over the known bound O(

√
t lnn)

whenever t ≥ ln lnn.

7.2 Techniques

Carving Random Balls. A common approach for constructing a decomposition of a
metric (V, d) is to choose a sequence of centers c1, . . . , ck ∈ V and corresponding radii
R1, . . . , Rk ≤ ∆/2, where the choice of centers and/or radii may involve randomization, and
then define

Sj = {v ∈ V : j = min{i ∈ [k] : d(v, ci) ≤ Ri}} .
Clearly, each Sj has diameter at most ∆. This approach goes back to [Bar96], and has seen
many useful variations, for example, randomly ordering the centers [CKR04] or reducing the
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(a) Original unit weighted
graph G. When all outer-
cycle vertices are centers and
all Ri ∈ [1, 2], vertex x is
threatened by 8 centers.

(b) If balls are carved in this
subgraph, x is threatened by
only 5 centers.

Figure 3: When carving balls in a subgraph of G, the number of threateners to a vertex is
smaller.

number of centers [CKR04, GKL03]. As it turns out, it is enough to bound the number of
centers locally. More formally, for every v ∈ V we control the number of centers cj that
threaten v in the sense that Pr[d(v, cj) < Rj + γ∆] > 0.

Carving Balls in Subgraphs. Inspired by ideas from [AGG+14], we introduced another
modification to the approach described theretofore. In addition to the above, for every center
cj we choose a corresponding subgraph Gj of G, such that cj ∈ V (Gj), and define

Sj = {v ∈ V : j = min{i ∈ [k] : v ∈ V (Gi) and dGi(v, ci) ≤ Ri}} .

Choosing the subgraphs and centers carefully allows us to reduce the number of centers that
threaten a vertex v in two ways. The first and more obvious manner is by making sure that
v ∈ V (Gi) for only a few indices i. The second aspect is a bit more subtle. Since distances
are considered in subgraphs of G, they might be larger than the corresponding distances in
the original graph G, as demonstrated in Figure 3, thus reducing the number of threateners
of a vertex v.

Note that we need to ensure that {Sj}j∈[k] is indeed a partition of V , i.e. that the balls
{BGj(cj, Rj)}j∈[k] cover all of V .

7.3 Decomposing Path-Separable Graphs

In this section we prove Theorem 7.2. We present a procedure which, given a p-path-separable
graph G and a parameter ∆ > 0, produces a random partition Π of V . The algorithm works
in two phases. The first phase, presented in detail as Algorithm 7.1, constructs a sequence
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of centers. This is performed deterministically and by recursion. The algorithm finds a
path-separator S of G and chooses a ∆/4-net on each path of the separator to serve as
centers. For every center vertex, the algorithm chooses a corresponding subgraph of G.
The algorithm is then invoked recursively on every S-flap. The second phase, presented in
detail in Algorithm 7.2, samples random radii and carves balls around the centers to obtain
a partition of V . The radii are all sampled independently at random from a truncated
exponential distribution.

Denote by Ñ the union of all ∆/4-nets throughout the execution of Algorithm 7.1. Note
that Ñ is independent of the random radii (in fact, it is constructed deterministically). For
sake of clarity, for a center t ∈ Ñ let Gt, Rt, Bt be the subgraph, radius and ball corresponding
to t respectively. To prove that Algorithm 7.2 produces a partition of V , consider v ∈ V .
During the execution of Algorithm 7.1 there exists a subgraphG′ ofG such that Algorithm 7.1
is (recursively) invoked on G′ and v is in the path-separator S of G′ chosen by the algorithm
(in fact, G′ is unique). Let P be the path in S such that v ∈ P , let c ∈ P be the closest net
point to v, and let G′′ be the respective subgraph, then P ⊆ G′′. By the definition of a net,
dP (v, c) ≤ ∆/4, and therefore v ∈ BP (c,∆/4) ⊆ BG′′(c, Rc) (recall Rc ≥ ∆/4 is the radius
chosen for c). Therefore

⋃
S∈Π S = V , and Algorithm 7.2 indeed outputs a partition of V .

To prove the diameter requirement, let S ∈ Π, and let x, y ∈ S. Then there exists t ∈ Ñ
such that S ⊆ Bt ⊆ BG(t, 2∆/5) and therefore dG(x, y) < ∆.

Next, we prove the padding property of the decomposition. Let x ∈ V , and let 0 ≤ γ ≤
1/80. Denote B = BG(x, γ∆). We say that B is settled by t ∈ Ñ if Bt is the first ball (in
order of execution) to have non-empty intersection with B. Therefore, B 6⊆ Π(x) iff B is
settled by t and Bt ∩B 6= B for some t ∈ Ñ . Let Ñx := {t ∈ Ñ : Pr[Bt ∩B 6= ∅] > 0} be the
set of centers that threaten x. In order to bound the size of Ñx we consider the execution of
Algorithm 7.1. Consider first a single recursion level. Denote the current graph by G′, and
let P ′1, . . . , P

′
m and G′1, . . . , G

′
m be as in Definition 7.1. Let j ∈ [m] and let P be some path

in P ′j . Consider the ∆/4-net N picked by the algorithm. Since P is a shortest-path in G′j,∣∣{t ∈ N : Pr[Bt ∩B 6= ∅] > 0}
∣∣ ≤ ∣∣{t ∈ N : BG′j

(t, 2∆/5) ∩B 6= ∅}
∣∣ .

Let s, t ∈ N be such that BG′j
(s, 2∆/5) ∩ B 6= ∅ and BG′j

(t, 2∆/5) ∩ B 6= ∅. Since P is a

shortest path in G′j, we get that dP (s, t) ≤ 2∆/5 + 2γ∆ + 2∆/5 < ∆. Therefore∣∣{t ∈ N : BG′j
(t, 2∆/5) ∩B 6= ∅}

∣∣ ≤ ∆

∆/4
= 4 .

Since in every recursive call of Algorithm 7.1, the number of vertices in the input graph
is reduced by at least a factor of 1/2, the depth of the recursion is at most log n. Every
recursion level contains exactly one subgraph that contains x. Since the number of paths
in each such subgraph is at most p, we conclude that |Ñx| ≤ 4p log n. For simplicity, let us
further assume this inequality holds with equality, and denote k := 4p log n.

Let t1, . . . , tk be the elements of Ñx in the order in which the algorithm considers them.
Denote by E the event that B 6⊆ Π(x), and for every i ∈ [k], denote by Ei the event that B
was not settled before ti was considered.
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Input: A p-path-separable graph G and a parameter ∆.
Output: A sequence (c1, G1), (c2, G2), . . ..

1: let P1, . . . , Pm, G1, . . . , Gm be as in Definition 7.1.
2: for j = 1 to m do
3: for all paths P ∈ Pj do
4: let (c1, c2, . . .) be a ∆/4-net of (P, dG|P ) in an arbitrary order.
5: let Nj be the sequence (c1, Gj), (c2, Gj), . . ..
6: let N be the concatenation of N1, N2, . . . , Nm in that order.
7: for all connected components G′ of G \ P[m] do
8: invoke Choose-Centers(G′,∆) and append the output sequence to N .
9: return N .

Algorithm 7.1: Choose-Centers(G,∆)

Input: A p-path-separable graph G and a parameter ∆.
Output: A partition Π of V .

1: let (c1, G1), (c2, G2), . . . be the sequence returned by Choose-Centers(G,∆).
2: let λ← ∆

10 ln(9p logn)
.

3: let Π← ∅.
4: for all j ≥ 1 do
5: choose Rj ∼ Texp[∆/4,2∆/5](λ) independently at random.

6: let Sj ← BGj(cj, Rj) \
(⋃

S∈Π S
)
.

7: let Π← Π ∪ {Sj}.
8: return Π \ {∅}.

Algorithm 7.2: Decomposing Path-Separable Graphs

Lemma 7.4. Pr[E | Ej] ≤
(

1 + k−j+1
k3/2−1

)
(1− e−20γ ln k) for all j ∈ [k].

Proof. Consider some j ∈ [k]. Conditioned on Ej, there are three possible outcomes to the
jth round. Either B was not settled also in the jth round, and then (for j ≤ k − 1) the
final status of B is left to the following rounds, or B was settled in the jth round, and in
that case, either B 6⊆ Π(x), (and thus E occurred), or B ⊆ Π(x). The ”bad” event E can
therefore only occur (either in the jth round or some time in the future) if either j ≤ k − 1
and Rtj < dG(x, tj)− γ∆ or if

∣∣Rtj − dG(x, tj)
∣∣ ≤ γ∆.

Denote a = max{∆/4, d(x, tj)− γ∆}, b = min{d(x, tj) + γ∆, 2∆/5}, then

Pr
[ ∣∣Rtj − dG(x, tj)

∣∣ ≤ γ∆
]

=

∫ b

a

1

λ(k−10/4 − k−20/5)
e−x/λdx

=
e−

∆/4
λ

k−10/4 − k−20/5
(1− e− b−aλ ) · e−a−∆/4

λ .

Since b− a ≤ 2γ∆, then 1− e− b−aλ ≤ 1− e−20γ ln k. Substituting e−
∆/4
λ = k−2.5 we get that

Pr
[ ∣∣Rtj − dG(x, tj)

∣∣ ≤ γ∆
]
≤ k3/2

k3/2 − 1
(1− e−20γ ln k) · e−a−∆/4

λ . (7.1)
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Similarly we get that

Pr[Rtj < dG(x, tj)− γ∆] ≤ k3/2

k3/2 − 1
(1− e−a−∆/4

λ ) . (7.2)

The proof proceeds by induction over j = k, k − 1, . . . , 1. As previously noted,

Pr[E | Ek] ≤ Pr
[ ∣∣Rtk − dG(x, tk)

∣∣ ≤ γ∆
]
.

Plugging (7.1) we get that

Pr[E | Ek] ≤
k3/2

k3/2 − 1
(1− e−20γ ln k) · e−a−∆/4

λ ≤
(

1 +
1

k3/2 − 1

)
(1− e−20γ ln k) ,

where the last inequality follows from the fact that a ≥ ∆/4. Next, let j ∈ [k − 1]. Then as
previously explained,

Pr[E | Ej] = Pr
[∣∣Rtj − dG(x, tj)

∣∣ ≤ γ∆
]

+ Pr[Rtj < dG(x, tj)− γ∆] ·Pr[E | Ej+1] . (7.3)

By plugging (7.1) and (7.2) into (7.3) and using the induction hypothesis, we get that

Pr[E | Ej] ≤
k3/2

k3/2 − 1

(
e−

a−∆/4
λ + (1− e−a−∆/4

λ )

(
1 +

k − j
k3/2 − 1

))
(1− e−20γ ln k)

=
k3/2

k3/2 − 1

(
1 +

(1− e−a−∆/4
λ )(k − j)

k3/2 − 1

)
(1− e−20γ ln k)

≤
(

1 +
k − j + 1

k3/2 − 1

)
(1− e−20γ ln k) ,

which proves Lemma 7.4.

To complete the proof of Theorem 7.2, note that since γ ≤ 1/80 and for k ≥ 3,

Pr[E ] = Pr[E | E1] ≤
(

1 +
k

k3/2 − 1

)
(1− e−20γ ln k)

≤
(
1 + e−20γ ln k

)
(1− e−20γ ln k) = (1− e−40γ ln k) .

By setting β = 40 ln k
ln 2

= O(ln(p lnn)) we get that Pr[B(x, γ∆) ⊆ Π(x) ] ≥ 2−βγ, thus proving
the last part of Theorem 7.2.
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Part C

Cut Sparsifiers for Restricted Families
of Cuts

8 Introduction : Counting Cuts in Restricted Cut Fam-

ilies

Our work studies the redundancy factor for the following generalizations of minimum st-cut.
Let G = (V,E,w) be an undirected edge-weighted graph.

• Group-Cut : Given two disjoint sets A,B ⊆ V find a minimum (A,B)-cut, i.e., a set
of edges of minimum weight that separates every vertex in A from every vertex in B.

• Multiway-Cut : Given S ⊆ V find a minimum-weight set of edges, whose removal
ensures that for every s 6= s′ ∈ S there is no s - s′ path.

• Multicut : Given Q ⊆ V × V find a minimum-weight set of edges, whose removal
ensures that for every (q, q′) ∈ Q there is no q - q′ path.

In order to present our results about the redundancy in these cut problems in a stream-
lined way, we introduce next the terminology of vertex partitions and demand graphs.

Cut Problems via Demand Graphs. Denote by Par(V ) the set of all partitions of V ,
where a partition of V is, as usual, a collection of pairwise disjoint subsets of V whose union
is V . Given a partition Π ∈ Par(V ) and a vertex v ∈ V , denote by Π(v) the unique S ∈ Π
satisfying v ∈ S. Given a graph G = (V,E,w), define the function CutG : Par(V ) → R≥0

to be CutG(Π) =
∑

uv∈E : Π(u) 6=Π(v) w(uv). We shall usually omit the subscript G, since the
graph will be fixed and clear from the context.

Cut problems as above can be defined by specifying the graph G and a collection D of
demands, which are the vertex pairs that need to be separated. We can view (V,D) as an
(undirected and unweighted) demand graph, and by slight abuse of notation, D will denote
both this graph and its edges. For example, an instance of Group-Cut is defined by G and
demands that form a complete bipartite graph KA,B (to formally view it as a graph on V ,
let us add that vertices outside of A ∪ B are isolated). We say that partition Π ∈ Par(V )
agrees with D if every uv ∈ D satisfies Π(u) 6= Π(v). The optimal cut-value for the instance
defined by G and D is given by

mincutG(D) := min{CutG(Π) : Π ∈ Par(V ) agrees with D}.

Redundancy among Multiple Instances. We study multiple instances on the same
graph G = (V,E,w) by considering a family D of demand graphs. For example, all minimum
st-cut instances in a single G corresponds to the family D of all demands of the form D =
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{(s, t)} (i.e., demand graph with one edge). The collection of optimal cut-values over the
entire family D of instances in a single graph G, is simply {mincut(D) : D ∈ D}. We are
interested in the ratio between the size of this collection as a multiset and its size as a set,
i.e., with and without counting multiplicities. Equivalently, we define the redundancy factor
of a family D of demand graphs to be

redundancy(D) :=
|D|

|{mincut(D) : D ∈ D}| ,

where throughout, |A| denotes the size of A as a set, i.e., ignoring multiplicities.

Motivation and Potential Applications. A natural application of the redundancy fac-
tor is to construct small data structures that stores all relevant cut values. For the minimum
st-cut problem, Gomory and Hu were able to collect all the cut values into a tree on the same
vertex set V . This tree can easily support fast query time, or a distributed implementation
(labeling scheme) [KKKP05].

In addition, large redundancy implies that there is a small collection of cuts that contains
a minimum cut for each demand graph. Indeed, first make sure all cut values in G are distinct
(e.g., break ties consistently by perturbing edge weights), and then pick for each cut-value
in {mincut(D) : D ∈ D} just one cut that realizes it. This yields a data structure that
reports, given demands D ∈ D, a vertex partition that forms a minimum cut (see more in
Section 8.2).

8.1 Main Results

Throughout, we denote n = |V |. We use the notation Oγ(·) to suppress factors that depend
only on γ, and similarly for Ω and Θ.
The Group-Cut problem. In this problem, the demand graph is a complete bipartite
graph KA,B for some subsets A,B ⊂ V . We give a tight bound on the redundancy factor
of the family of all instances where A and B are of given sizes α and β, respectively. The
special case α = β = 1 is just all minimum st-cuts in G, and thus recovers the Gomory-Hu
bound (Theorem 1.5). The following is a restatement of Theorem 1.6 using the terminology
and notation defined in the previous section.

Theorem 8.1. For every graph G = (V,E,w) and α, β ∈ N, we have |{mincut(KA,B) :
|A| = α, |B| = β}| = Oα,β(nα+β−1), hence the family of (α, β)-group-cuts has redundancy
factor Ωα,β(n). Furthermore, this bound is existentially tight (attained by some graph G) for
all α, β and n.

The Multiway-Cut problem. In this problem, the demand graph is a complete graph
KS for some subset S ⊆ V . We give a tight bound on the redundancy factor of the family
of all instances where S is of a given size k ≥ 2. Again, the Gomory-Hu bound is recovered
by the special case k = 2.
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Theorem 8.2. For every graph G = (V,E,w) and for every integer k ∈ N, we have
|{mincut(KS) : |S| = k}| = Ok(n

k−1), hence the family of k-multiway-cuts has redundancy
factor Ωk(n). Furthermore, this bound is existentially tight for all n and k.

The Multicut problem. In this problem, the demand graph is a collection D of demand
pairs. We give a tight bound on the redundancy factor of the family of all instances where
D is of a given size k ∈ N. Again, the Gomory-Hu bound is recovered by the special case
k = 1.

Theorem 8.3. For every graph G = (V,E,w) and k ∈ N, we have |{mincut(D) : D ⊆
V × V, |D| = k}| = Ok(n

k), and hence the family of k-multicuts has redundancy factor
Ωk(n

k). Furthermore, this bound is existentially tight for all n and k.

Theorem 8.3 is a bit surprising, since it shows a redundancy factor that is polynomial,
rather than linear, in n (for fixed α, β and k), so in general Multicut has significantly
larger redundancy than Group-Cut and Multiway-Cut.

8.2 Extensions and Applications

Our main results above actually apply more generally and have algorithmic consequences,
as discussed below briefly.
Terminals Version. In this version, the vertices to be separated are limited to a subset
T ⊆ V called terminals, i.e., we consider only demands inside T × T . All our results above
(Theorems 8.1, 8.2, and 8.3) immediately extend to this version of the problem — we simply
need to replace |V | by |T | in all the bounds. As an illustration, the terminals version of
Theorem 1.5 states that the

(|T |
2

)
minimum st-cuts (taken over all s, t ∈ T ) attain at most

|T | − 1 distinct values. (See also [CCPS98, Section 3.5.2] for this same version.) Extending
our proofs to the terminals version is straightforward; for example, in Section 9.1 we need
to consider polynomials in |T | variables instead of |V | variables.

Data Structures. Flow-equivalent or cut-equivalent trees, such as those constructed by
Gomory and Hu [GH61], may be viewed more generally as succinct data structures that
support certain queries, either for the value of an optimal cut, or for its vertex-partition,
respectively. Motivated by this view, we define data structures, which we call as evaluation
schemes, that preprocess an input graph G, a set of terminals T , and a collection of demand
graphs D, so as to answer a cut query given by a demand graph D ∈ D. The scheme has
two flavors, one reports the minimum cut-value, the second reports a corresponding vertex-
partition. In Section 12 we initiate the study of such schemes, and provide constructions
and lower bounds for some special cases.

Functions Different From Cuts. Recall that the value of the minimum st-cut equals
min{CutG(X, V \ X) : X ⊆ V, s ∈ X, t /∈ X}. Cheng and Hu [CH91] extended the
Gomory-Hu bound (Theorem 1.5) to a wider class of problems as follows. Instead of a graph
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G, fix a ground set V and a function f : 2V → R. Now for every s, t ∈ V , consider the
optimal value min{f(X) : X ⊆ V, |X ∩ {s, t}| = 1}. They showed that ranging over all
s, t ∈ V , the number of distinct optimal values is also at most |V | − 1. All our results above
(Theorems 8.1, 8.2, and 8.3) actually extend to every function f : Par(V ) → R. However,
to keep the notation simple, we opted to present all our results only for the function Cut.

Directed Graphs. What happens if we ask the same questions for the directed variants
of the three problems considered previously? Here, an s → t cut means a set of edges
whose removal ensures that no s → t path exists. Under this definition, we can construct
explicit examples for the directed variants of our three problems above where there is no
non-trivial redundancy, i.e., the number of distinct cut values is asymptotically equal to the
total number of instances. See Appendix 13 for more details.

8.3 Related Work

Gomory and Hu [GH61] showed how to compute a cut-equivalent tree, and in particular a
flow-equivalent tree, using |V | − 1 minimum st-cut computations on graphs no larger than
G. Gusfield [Gus90] has shown a version where all the cut computations are performed on
G itself (avoiding contractions). For unweighted graphs, a faster (randomized) algorithm for
computing a Gomory-Hu tree which runs in Õ(|E| · |V |) time was recently given by Bhalgat
et al. [BHKP07].

We already mentioned that Cheng and Hu [CH91] extended Theorem 1.5 from cuts to
an arbitrary function f : 2V → R. They further showed how to construct a flow-equivalent
tree for this case (but not a cut-equivalent tree). Benczúr [Ben95] showed a function f for
which there is no cut-equivalent tree. In addition, he showed that for directed graphs, even
flow-equivalent trees do not exist in general.

Another relevant notion here is that of mimicking networks, introduced by Hagerup,
Katajainen, Nishimura, and Ragde [HKNR98]. A mimicking network for G = (V,E,w) and
a terminals set T ⊆ V is a graph G′ = (V ′, E ′, w′) where T ⊂ V ′ and for every X, Y ∈ T ,
the minimum (X, Y )-cut in G and in G′ have the exact same value. They showed that

every graph has a mimicking network with at most 22|T | vertices. Some improved bounds
are known, e.g., for graphs that are planar or have bounded treewidth, as well as some lower
bounds [CSWZ00, KR13, KR14]. Mimicking networks deal with the Group-Cut problem
for all A,B ⊂ V ; we consider A,B of bounded size, and thus typically achieve much smaller
bounds.

9 Group-Cut: The Case of Complete Bipartite De-

mands

This section is devoted to proving Theorem 8.1. First we give two proofs, one in Section 9.1
via polynomials and the second in Section 9.2 via matrices, for the bound | {mincut(KA,B) :
|A| = α, |B| = β}| = Oα,β(nα+β−1). Then in Section 9.3 we construct examples of graphs for
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which this bound is tight. Since |{KA,B : |A| = α, |B| = β}| =
(
n
α

)
·
(
n−α
β

)
= Θα,β(nα+β), it

follows that the redundancy factor is Ωα,β(n).

9.1 Proof via Polynomials

In this section we show the bound | {mincut(KA,B) : |A| = α, |B| = β}| = Oα,β(nα+β−1) using
polynomials. Let r =

(
n
α

)(
n−α
β

)
and let {KA1,B1 , KA2,B2 , . . . , KAr,Br} be the set of demand

graphs for (α, β)-Group-Cut. For every vertex v ∈ V we assign a boolean variable denoted
by φv. Given an instance A,B we can assume that the optimal partition only contains two
parts, one which contains A and other which contains B, since we can merge other parts
into either of these parts.

Fix some j ∈ [r]. Recall that Π = {U, V \ U} ∈ Par(V ) agrees with, i.e., is a feasible
solution for, the demand graph KAj ,Bj if and only if the following holds: Π(u) 6= Π(v)
whenever u ∈ Aj and v ∈ Bj or vice versa.

Fix arbitrary aj ∈ Aj and bj ∈ Bj. We associate with the demand graph KAj ,Bj the
formal polynomial Pj over the variables {φv : v ∈ V }

Pj = Πb∈Bj

(
φaj − φb

)
· Πa∈Aj\{aj}

(
φa − φbj

)
.

Note that Pj is a polynomial of degree α+β−1. Given U ⊆ V , we may think of Π = {U, V \U}
as a vector in {0, 1}n. We denote by Pj(Π) the value of the polynomial Pj (over F2) when
instantiated on Π.

Lemma 9.1. A partition Π is feasible for the demand graph KAj ,Bj if and only if Pj(Π) 6= 0

Proof. Suppose Π is feasible for the demand graph KAj ,Bj . So Π(u) 6= Π(v) if u ∈ Aj, v ∈ Bj

or vice versa. Since every term of Pj contains one variable from each of Aj and Bj, it follows
that Pj(Π) 6= 0.

Conversely, assume Pj(Π) 6= 0. Let u ∈ Aj. Since Π(u) 6= Π(bj) and Π(bj) 6= Π(aj) it
follows that Π(u) = Π(aj). Similarly for every v ∈ Bj, Π(v) = Π(bj). Therefore, it follows
that Π(u) 6= Π(v) whenever u ∈ Aj and v ∈ Bj or vice versa, i.e., Π is feasible for KAj ,Bj .

Next we show that the polynomials corresponding to demand graphs with distinct values
under mincut are linearly independent.

Lemma 9.2. Reorder the demand graphs such that mincut(KA1,B1) < . . . < mincut(KAq ,Bq).
Then the polynomials P1, . . . , Pq are linearly independent.

Proof. Let Π1, . . . ,Πq be the optimal partitions for the instances corresponding to the de-
mand graphsKA1,B1 , . . . , KAq ,Bq respectively, i.e., for each i ∈ [q] we have that mincut(KAi,Bi) =
Cut(Πi). Since mincut(KAi,Bi) < mincut(KAj ,Bj) whenever i < j, it follows that Πi is not
feasible for the demand graph KAj ,Bj for all i < j.

Suppose that the polynomials P1, P2, . . . , Pq are not linearly independent. Then there
exist constants λ1, . . . , λq ∈ R which are not all zero such that P =

∑
j∈[q] λjPj is the zero
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polynomial. We will now show that each of the constants λ1, λ2, . . . , λq is zero, leading to a
contradiction. Instantiate P on Π1. Recall that Π1 is not feasible for any KAi,Bi with i ≥ 2.
Therefore, by Lemma 9.1, we have that Pi(Π1) = 0 for all i ≥ 2. Therefore λ1P1(Π1) = 0.
Since Π1 is an (optimal) feasible partition for instance corresponding to KA1,B1 , applying
Lemma 9.1 we get that P1(Π1) 6= 0. This implies λ1 = 0. Hence, we have P =

∑
2≤j≤q λjPj

is the zero polynomial. Now instantiate P on Π2 to obtain λ2 = 0 via a similar argument as
above. In the last step, we will get that λq−1 = 0 and hence P = λqPq is the zero polynomial.
Instantiating on Πq gives 0 = P (Πq) = λqPq(Πq). Since Πq is (optimal) feasible partition for
the demand graph KAq ,Bq it follows that Pq(Πq) 6= 0, and hence λq = 0.

Note that each of the polynomials P1, P2, . . . , Pq is contained in the vector space of
polynomials with n variables and degree ≤ α + β − 1. This vector space is spanned by
{∏v∈V φ

rv
v :

∑
v∈V rv ≤ α+β−1} and therefore is of dimension

(
n+(α+β−1)
α+β−1

)
= Oα,β(nα+β−1).

From Lemma 9.2 and the fact that size of any set of linearly independent elements is at most

the size of a basis, it follows that
∣∣∣ {mincut(KA,B) : |A| = α, |B| = β}

∣∣∣ = Oα,β(nα+β−1).

9.2 Proof via Matrices

In this section we show the (slightly stronger) bound that | {mincut(KA,B) : |A| ≤ α, |B| ≤
β}| = Oα,β(nα+β−1) using matrices. Let Par2(V ) ⊆ Par(V ) be the set of partitions of V into
exactly two parts. Let Q := {(A,B) : |A| ≤ α, |B| ≤ β}. Consider the matrix M over
F2 with |Q| rows (one for each element from Q) and | Par2(V )| = 2n columns (one for each
partition Π of V into two parts). We now define the entries of M. Given (A,B) ∈ Q and
Π ∈ Par2(V ), we set M(A,B),Π = 1 if and only if the partition Π ∈ Par2(V ) agrees with the
demand graph KA,B, which is equivalent to saying that Π(u) 6= Π(v) whenever u ∈ A and
v ∈ B or vice versa.

Fix a vertex v0 ∈ V , and consider the set R := {(A,B) ∈ Q : v0 ∈ A ∪B} .
Claim 9.3. Over F2, the row space of M is spanned by the rows corresponding to elements
from R

Proof. Consider (A,B) ∈ Q and Π ∈ Par2(V ). If v0 ∈ A ∪ B then (A,B) ∈ R. Henceforth
we assume that v0 /∈ A ∪B. Let

L(Π) :=M(A,B),Π +
∑
A′⊂A

M(v0∪A′,B),Π +
∑
B′⊂B

M(A,B′∪v0),Π ,

where addition is over F2. Note that (v0 ∪ A′, B), (A,B′ ∪ v0) ∈ R for every A′ ⊂ A and
B′ ⊂ B, and therefore it is enough to show that L(Π) ≡ 0 (mod 2).

Assume first that M(A,B),Π = 1, i.e. Π agrees with the demand graph KA,B. Without
loss of generality assume that Π(v0) = Π(a) for some a ∈ A. Then we haveM(v0∪A′,B),Π = 1
for all A′ ⊂ A, and M(A,v0∪B′),Π = 0 for all B′ ⊂ B. So, L(Π) = 1 + (2|A| − 1) ≡ 0 (mod 2).

Otherwise, we haveM(A,B),Π = 0. If for every v ∈ A∪B it holds that Π(v) 6= Π(v0) then

L(Π) = 0 +M(v0,B),Π +M(A,v0),Π = 1 + 1 ≡ 0 (mod 2) .
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Hence suppose that there exists v ∈ A ∪ B such that Π(v) = Π(v0). Without loss of
generality, assume v ∈ A. Then M(A,B′+v0),Π = 0 for all B′ ⊂ B. Note that if A1, A2 ⊂ A
satisfy M(v0∪A1,B),Π = 1 = M(v0∪A2,B),Π, then M(v0∪A1∪A2,B),Π = 1. Hence there is an
inclusion-wise maximal set A∗ ⊂ A such that M(v0∪A∗,B),Π = 1. Since M(A,B),Π = 0, we
conclude that A∗ ⊂ A. Moreover |A∗| ≥ 1 since v ∈ A. Therefore

L(Π) =M(A,B),Π +
∑
A′⊂A

M(v0∪A′,B),Π =
∑
A′⊆A∗

M(v0∪A′,B),Π = 2|A
∗| ≡ 0 mod(2)

An argument similar to Lemma 9.2 shows that rows corresponding to demand graphs with

distinct values under mincut are linearly independent. Hence, we have
∣∣∣ {mincut(KA,B) :

|A| ≤ α, |B| ≤ β}
∣∣∣ ≤ rank(M) ≤ |R|, where the last inequality follows from Claim 9.3. We

now obtain the final bound

|R| =
∑

i≤α−1,j≤β

(
n−1
i

)
·
(
n−i−1
j

)
+

∑
j≤β−1,i≤α

(
n−1
j

)
·
(
n−j−1

i

)
=

∑
i≤α−1,j≤β

Oi,j(n
i+j) +

∑
j≤β−1,i≤α

Oi,j(n
i+j)

= Oα,β(nα+β−1)

9.3 Lower Bound on Number of Distinct Cuts for (α, β)-Group-
Cut

We now turn to prove that the bound given in Theorem 8.1 is existentially tight. To this end,
we construct an infinite family Gα,β

n of graphs satisfying |{mincut(KA,B) : |A| = α, |B| =
β}| ≥ Ωα,β(nα+β−1).

Let n, α, β ∈ N be such that n is odd, and both α and β − 1 divide (n− 3)/2. We define
a graph Gα,β

n on n vertices as follows. Gα,β
n is composed of two graphs that share a common

vertex Hα
n and Jβn defined below.

• Hα
n has (n + 1)/2 vertices, and is given by α parallel paths P1, . . . , Pα between two

designated vertices s, t, each path having (n−3)/2α internal vertices. The edge weights
are given by distinct powers of 2, monotonically decreasing from s to t. All edges in
Hα
n incident on t have ∞ weight (see Figure 4).

• Jβn has (n+ 1)/2 vertices, and is given by (β− 1) parallel paths Q1, . . . , Qβ−1, between
t and a designated vertex u, each having (n− 3)/2(β − 1) internal vertices. As in Hα

n ,
edge weights are given by distinct powers of 2, monotonically decreasing from t to u,
and all of which are strictly smaller than the weights of Hα

n . All edges in Jβn incident
on u have ∞ weight.
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Figure 4: The graph Gα,β
n used in the lower bound of Section 9.3. The left part of the graph

is Hα
n , consisting of α parallel s - t paths. The right part of the graph is Jβn , consisting of

(β− 1) parallel t -u paths. The gray vertices are in A, and the black ones are in B. The red
edges represent the minimum cut for this choice of A and B.

The following claim implies the desired lower bound.

Claim 9.4. |{mincut(KA,B) : |A| = α, |B| = β}| ≥ Ωα,β(nα+β−1).

Proof. Pick one internal vertex from each Pi for i ∈ [α] to form A. Similarly for β − 1
elements in B, we pick one internal vertex from each Qj for j ∈ [β]. In addition, s ∈ B (as
demonstrated in Figure 4). We claim that every such choice of A,B gives a distinct value
for the minimum (A,B)-cut.

Indeed, for i ∈ [α] let ai be the unique element in A ∩ Pi. In order to separate A from
B, we need to separate ai from s. This implies that at least one edge on the segment of Pi
between s and ai has to be in the cut. By monotonicity of weights and minimality of the cut,
this must be the edge incident to ai. Similarly, for every b ∈ B \ {s}, the left edge incident
to b must be cut. It can be easily seen (as demonstrated in Figure 4) that this set of edges
is also enough to separate A and B.

By the choice of weights, each such cut has a unique value, and therefore |{mincut(KA,B) :
|A| = α, |B| = β}| ≥ ((n− 3)/2α)α((n− 3)/2(β − 1))β−1 = Ωα,β(nα+β−1).

10 Multiway-Cut: The Case of Clique Demands

This section is devoted to proving Theorem 8.2. In Section 10.1 we show that for every
graph G = (V,E,w) we have | {mincut(KS) : |S| = k}| = Ok(n

k−1). The proof follows the
lines of the proof from Section 9.2. In Section 10.2 we construct an infinite family of graphs
for which this bound is tight. Since |{KS : |S| = k}| =

(
n
k

)
= Θk(n

k), it follows that the
redundancy factor is Ωk(n).

10.1 Upper Bound on Number of Distinct Cuts for k-Multiway-

Cut

In this section we show that | {mincut(KS) : |S| = k}| = Ok(n
k−1). Let Park(V ) ⊆ Par(V )

be the set of partitions of V into exactly k parts. Let Q := {A ⊆ V : |A| = k}. Consider
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the matrixM over F2 with |Q| rows (one for each element from Q) and | Park(V )| columns
(one for each partition Π of V into k parts). We now define the entries ofM. Given A ∈ Q
and Π ∈ Park(V ), we setMA,Π = 1 if and only if the partition Π ∈ Park(V ) agrees with the
demand graph KA. That is if and only if we have Π(u) 6= Π(v) for every u, v ∈ A such that
u 6= v Fix a vertex v0 ∈ V , and consider the set R := {A ∈ Q : v0 ∈ A} .

Claim 10.1. Over F2, the row space ofM is spanned by the rows corresponding to elements
from R

Proof. Consider A ∈ Q and Π ∈ Park(V ). If v0 ∈ A then A ∈ R. Henceforth we assume
that v0 /∈ A. Let

L(Π) :=MA,Π +
∑
a∈A

M{v0}∪A\{a},Π

where addition is over F2. Note that ({v0} ∪ A \ {a}) ∈ R for every a ∈ A, and hence it is
enough to show that L(Π) ≡ 0 (mod 2).

Assume first that MA,Π = 1. Since Π ∈ Park(V ), there is a unique element a∗ ∈ A such
that Π(v0) = Π(a∗). Then M{v0}∪A\{a},Π = 0 for all a ∈ A \ {a∗} and M{v0}∪A\{a∗},Π = 1.
Therefore

L(Π) :=MA,Π +
∑
a∈A

M{v0}∪A\{a},Π = 1 + 1 ≡ 0 (mod 2) .

Next, assume MA,Π = 0. If M{v0}∪A\{a},Π = 0 for all a ∈ A, then clearly L(Π) ≡ 0
(mod 2). Otherwise, there exists a′ ∈ A such that M{v0}∪A\{a′},Π = 1. Since MA,Π = 0,
it follows that Π(a′) 6= Π(v0). Therefore there is some a′′ ∈ A such that Π(a′) = Π(a′′).
Since M{v0}∪A\{a′},Π = 1, it follows that M{v0}∪A\{a′′},Π = 1 and M{v0}∪A\{a},Π = 0 for any
a ∈ A \ {a′, a′′}. Therefore

L(Π) :=MA,Π +
∑
a∈A

M{v0}∪A\{a},Π = 0 + 1 + 1 ≡ 0 (mod 2) .

An argument similar to Lemma 9.2 shows that rows corresponding to demand graphs

with distinct values under mincut are linearly independent. Hence, we have
∣∣∣ {mincut(KS) :

|S| = k}
∣∣∣ ≤ rank(M) ≤ |R|, where the last inequality follows from Claim 10.1. We now

obtain the final bound since |R| =
(
n−1
k−1

)
= Ok(n

k−1)

10.2 Lower Bound on Number of Distinct Cuts for k-Multiway-
Cut

We now turn to prove that the bound given in Theorem 8.2 is existentially tight. To this end,
we construct an infinite family Pn of graphs satisfying |{mincut(KS) : |S| = k}| ≥ Ωk(n

k−1).
For n ∈ N consider the path graph Pn = (Vn, En, w) where Vn = {1, 2, . . . , n} and

En = {{i, i + 1} : 1 ≤ i ≤ n − 1}. For each i ∈ [n − 1] we denote the edge {i, i + 1}
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by ei and set w(ei) = 2i. By choice of the weights, it follows that any set of k − 1 edges
from En has different weight. Now consider a set E∗ ⊆ En of exactly k − 1 edges. We will
show that there is an set S∗ ⊆ Vn of size k such that E∗ is the minimum solution for the
k-Multiway-Cut instance with S∗ as the input. Let E∗ = {i1, i2, . . . , ik−1}. Then it is
easy to see (by choice of weights) that E∗ is the minimum weight solution for the instance
with input S∗ = {i1, i2 . . . , ik−1, ik−1 + 1}. Note that eik−1

is an edge implies ik−1 ≤ n − 1
and so ik−1 + 1 is well-defined.

This implies that for the path graph Pn (with the weight function specified above) we

have
∣∣∣ {mincut(KS) : |S| = k}

∣∣∣ ≥ (n−1
k−1

)
, and hence we have

∣∣∣ {mincut(KS) : |S| = k}
∣∣∣ =

Ωk(n
k−1).

11 Multicut: The Case of Demands with Fixed Num-

ber of Edges

This section is devoted to proving Theorem 8.3. In Section 11.1 we show that for every graph
G, | {mincut(D) : D ⊆ V × V, |D| = k}| = Ok(n

k). This proof follows the lines of the proof
from Section 9.1. Then in Section 11.2 we construct an infinite family of graphs for which

this bound is tight. Since |{D : D ⊆ V × V, |D| = k}| =
((n2)
k

)
= Θk(n

2k), it follows that the

redundancy factor is Ωk(n
k).

11.1 Upper Bound on Number of Distinct Cuts for k-Multicut

In this section we show that | {mincut(D) : D ⊆ V × V, |D| = k}| = Ok(n
k). Let r =

((n2)
k

)
and the set of demand graphs for k-Multicut be {D1, . . . , Dr}. For every vertex v ∈ V
we assign a variable denoted by φv which can take values from [n]. Fix some j ∈ [r]. Recall
that Π ∈ Par(V ) agrees with (or equivalently, is feasible for) the demand graph Dj if and
only if u− v ∈ Dj implies Π(u) 6= Π(v).

We associate with the demand graph Dj the formal polynomial

Pj = Πu−v∈Dj

(
φu − φv

)
Note that Pj is a polynomial of degree k. We denote by Pj(Π) the value of the polynomial
Pj (over F2) when instantiated on Π. The proof of the next lemma is straightforward.

Lemma 11.1. A partition Π is feasible for the instance corresponding to the demand graph
Dj if and only if Pj(Π) 6= 0

Proof. Suppose Π is feasible for the instance corresponding to the demand graph Dj. So for
every edge u− v ∈ Dj we have Π(u) 6= Π(v) and hence Pj(Π) 6= 0.

Conversely, assume Pj(Π) 6= 0. Hence, for each edge u − v ∈ Dj we have Π(u) 6= Π(v)
which is exactly the condition for Π being feasible for the demand graph Dj.
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The proof of the following lemma is very similar to that of Lemma 9.2, and hence we
omit the details.

Lemma 11.2. Reorder the demand graphs such that mincut(D1) < mincut(D2) < . . . <
mincut(Dq). Then the polynomials P1, P2, . . . , Pq are linearly independent.

Note that each of the polynomials P1, P2, . . . , Pq is contained in the vector space of
polynomials with n variables and degree ≤ k. It is well known that the size of a basis
of this vector space is

(
n+k
k

)
= Ok(n

k). From Lemma 11.2 and the fact that size of any set

of linearly independent elements is at most the size of a basis, it follows that
∣∣∣ {mincut(D) :

D ⊆ V × V, |D| = k}
∣∣∣ = Ok(n

k).

11.2 Lower Bound on Number of Distinct Cuts for k-Multicut

We now turn to prove that the bound given in Theorem 8.3 is existentially tight. To this end,
we construct an infinite family PMn of graphs satisfying |{mincut(D) : D ⊆ V × V, |D| =
k}| ≥ Ωk(n

k).
For even n ∈ N consider the graph PMn = (Vn, Dn, w) which is a perfect matching on

n vertices. Let Vn = {1, 2, . . . , n} and Dn = {{2i − 1, 2i} : 1 ≤ i ≤ n/2}. For each i ∈ [n]
we denote the edge {2i− 1, 2i} by di and set w(di) = 2i. By choice of the weights, it follows
that any set of k edges from Dn has different total weight. Now consider a set D∗ ⊆ Dn of
exactly k edges. We will now show that there is an set D∗∗ ⊆ Dn of size k such that D∗

is the minimum solution for the k-Multicut instance whose demand graph is D∗∗. It is
easy to see that D∗ is the only solution (and hence of minimum weight too) for the instance
whose demand graph is D∗. Hence taking D∗∗ = D∗ suffices.

This implies that for the perfect matching graph PMn = (Vn, Dn) (with the weight
function specified above) we have |{mincut(D) : D ⊆ Vn × Vn, |D| = k}| ≥

(
n/2
k

)
= Ωk(n

k).

12 Evaluation Schemes: Constructing Succinct Data

Structures

Gomory and Hu [GH61] showed that for every undirected edge-weighted graph G = (V,E,w)
there is a tree T = (V,E ′, w′) that represents the minimum st-cuts exactly both in terms of
the cut-values and in terms of their vertex-partitions. The common terminology for the first
property, probably due to Benczúr [Ben95], is to say that T is flow-equivalent to G. The
second property, which is actually stronger, says that T is cut-equivalent to G. 2

These (flow-equivalent and cut-equivalent) trees can be viewed more generally as succinct
data structures that support certain queries, either for the value of an optimal cut, or for its
vertex-partition.

2 We say that T is flow-equivalent to G when for every s, t ∈ V the minimum st-cut value in T is exactly
the same as in G. We say it is cut-equivalent to G when every vertex-partitioning that attains a minimum
st-cut in T , also attains a minimum st-cut in G.
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Motivated by this view, we define two types of data structures, which we call a flow-
evaluation scheme and a cut-evaluation scheme (analogously to the common terminology in
the literature). These schemes are arbitrary data structures (e.g., need not form a tree), and
address the terminals version (of some cut problem). Both of these schemes, first preprocess
an input that consists of a graph G = (V,E,w), a terminals set T ⊂ V , and a collection of
demand graphs D. The preprocessed data can then be used (without further access to G)
to answer a cut query given by a demand graph D ∈ D. The answer of a flow-evaluation
scheme is the corresponding minimum cut-value mincut(D). The answer of a cut-evaluation
scheme is a vertex-partition that attains this cut-value mincut(D). Formally, we define the
following.

Definition 12.1. A flow-evaluation scheme is a data structure that supports the following
two operations.

1. Preprocessing P , which gets as input a graph G = (V,E,w), a set of terminals T ⊆ V
and a family D of demand graphs on T and constructs a data structure P (G, T,D).

2. Query Q, which gets as input D ∈ D and uses P (G, T,D) to output mincut(D). Note
that Q has no access to G itself.

A cut-evaluation scheme also supports a third operation.

3. Query Q′, which gets as input D ∈ D and uses P (G, T,D) to output a partition Π ∈
Par(T ) which attains mincut(D).

We provide below some constructions and lower bounds for flow-evaluation schemes
and cut-equivalent schemes, for the three cut problems in question, i.e. Group-Cut,
Multiway-Cut and Multicut. Note that all our upper bounds are for the stronger
version of cut-evaluation schemes, and our lower bound is for the weaker version of flow-
evaluation schemes for the (2, 1)-Group-Cut problem. In order to measure bit complexity
for the bounds, we assume hereafter that all weights are integers.

12.1 Upper Bounds for Cut-Evaluation Schemes

The next theorem follows from the terminal version of Theorem 8.1. Similar results also
hold for the Multiway-Cut and Multicut problems; the proofs follow in the same manner
from Theorem 8.2 and Theorem 8.3 respectively.

Theorem 12.2. There exists a cut-evaluations scheme such that for every graph G =
(V,E,w), a set of terminals T ⊆ V and α, β ∈ N, for the family D = {KA,B : A,B ⊆
T, |A| = α, |B| = β} of demand graphs at most Oα,β(|T |α+β−1 · (|T | + logW )) bits are
stored, where W =

∑
e∈E w(e), and such that the query time is Oα,β(|T |α+β−1).

Proof. Let q be the number of distinct values attained by demand graphs on T . Apply-
ing the upper bound of Theorem 8.1 adjusted for the terminals version, we get that q ≤
Oα,β(|T |α+β−1). Order the demand graphs {KA1,B1 , . . . , KAq ,Bq} such that mincut(KAi,Bi) <
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mincut(KAj ,Bj) for all i < j. For every j ∈ [q] we associate with KAj ,Bj a partition
Πj ∈ Par2(T ) which attains mincut(KAj ,Bj). Representing Πj as a bit vector of length |T |,
we list all values in an increasing order. Each entry of this structure is of size O(|T |+logW ).
Therefore the size of the evaluation scheme is at most Oα,β(|T |α+β−1 · (|T |+ logW )) bits. To
see the bound of the query time, note that given A,B ⊆ T such that |A| = α and |B| = β,
the evaluation scheme holds mincut(KA,B) and a partition Π that attains it. Moreover,
going over the list, mincut(KA,B) is the first value in the list for which Π agrees with the
associated partition.

12.2 Lower Bound on Flow-Evaluation Schemes for (2, 1)-Group-
Cut

Next we use an information-theoretic argument which shows a lower bound on the stor-
age required by any flow-evaluation scheme for (2, 1)-Group-Cut. Since a cut-evaluation
scheme is stronger than a flow-evaluation scheme, this lower bound immediately extends also
to cut-evaluation schemes.

Theorem 12.3. For every n ≥ 3, a flow-evaluation scheme for (2, 1)-Group-Cut on
graphs with n terminals (in which T = V ) and with edge-weights bounded by a polynomial in
n requires storage of Ω(n2 log n) bits.

Let 3 ≤ n ∈ N, let D = {KA,B : A,B ⊂ [n], |A| = 2, |B| = 1} and let G = (V,E) be the
complete graph on V = T = [n]. For every j ∈ [n− 1], (j, j + 1) ∈ E are referred to as path
edges, and the rest of the edges are referred to as fork edges as demonstrated in Figure 5.

A Path Edge

A Fork Edge

Figure 5: Edge types in G. Black edges correspond to path edges, while red edges correspond
to fork edges (we illustrate only a few fork edges for simplicity).

To prove Theorem 12.3 we assign random edge weights to the graph in the range {1, . . . , 2n5}.
We then show that given query access to {mincut(D) : D ∈ D} we can recover all edge
weights. This, in turn, implies that we can recover at least Ω(n2 log n) bits, and thus implies
Theorem 12.3.

We assign edge weights to the edges of G as follows:

(P1) For every j ∈ [n], w(j, j + 1) is chosen uniformly at random in [2(n− j)n4, (2(n− j) +
1)n4]. This ensures that the weights of the path edges are non-increasing as we go from
left to right. Moreover, whenever j > i,

w(j, j + 1) ≤ (2(n− j) + 1)n4 = (2n− 2j + 1)n4 < (2n− 2i)n4− n4 ≤ w(i, i+ 1)− n4 .
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(P2) The weights of all fork edges are chosen uniformly at random from {0, 1, 2, . . . , n− 1}.
Thus the total weight to all fork edges is at most n3. Note that this is strictly smaller
than the difference between weights of any two path edges (which is at least n4).

Claim 12.4. Let 1 ≤ i < j ≤ n, then mincut(K{1,j},{i}) =
∑

e∈E:|e∩{i,...,j−1}|=1

we.

Proof. By Property (P2) the total weigtht of all the fork edges is at most n3, which is less
than the difference between weights of any two path edges (which is at least n4). Hence, the
value mincut(K{1,j},{i}) is determined only by which path edges we choose.

Note that the minimum cut separating {1, j} from {i} needs to pick at least one edge
each from the paths 1 − i and i − j. By Property (P1) the path edges have non-increasing
weights going from left to right, and hence the two cheapest edges on the paths 1−2− . . .− i
and i − (i + 1) − . . . − j are (i − 1, i) and (j − 1, j) respectively. Therefore, it follows that
mincut(K{1,j},{i}) = Cut(C,C), where C = {i, i + 1, . . . , j − 1}. By definition of Cut(C,C)
it follows that

mincut(K{1,j},{i}) =
∑

e∈E:|e∩{i,...,j−1}|=1

we

Lemma 12.5. Given access to queries Q as in Definition 12.1, we can recover w.

Lemma 12.5 implies that we can recover Ω(n2 log n) random bits given access to queries
Q as in Definition 12.1, and thus implies Theorem 12.3.

Proof. For every 1 ≤ i < j ≤ n, we show that we can recover wij. The proof continues
by induction on j − i, starting with the case j = i + 1. By Claim 12.4, we get that
mincut(K{1,i+1},{i}) =

∑
e∈E:i∈ewe and mincut(K{1,i+2},{i+1}) =

∑
e∈E:i+1∈ewe. Therefore

mincut(K{1,i+1},{i}) + mincut(K{1,i+2},{i+1}) = 2wi,i+1 +
∑

e∈E:|e∩{i,i+1}|=1

we (12.1)

In addition we have mincut(K{1,i+2},{i}) =
∑

e∈E:|e∩{i,i+1}|=1we. Plugging this into (12.1) we
get that

wi,i+1 =
1

2

(
mincut(K{1,i+1},{i}) + mincut(K{1,i+2},{i+1})− mincut(K{1,i+2},{i})

)
,

and therefore we can recover wi,i+1. Next, let 1 ≤ i < j ≤ n, and assume that we can recover
wpq for all 1 ≤ p < q ≤ n such that q − p < j − i. In addition, we assume that j < n. The
proof is similar for the case j = n. From Claim 12.4 we get that

mincut(K{1,j+1},{i}) =
∑

e∈E:|e∩{i,...,j}|=1

we =

j∑
k=i

∑
m/∈{i,...,j}

wmk (12.2)
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Let i < k < j, then by Claim 12.4∑
m/∈{i,...,j}

wmk =
∑

e∈E:k∈e

we −
∑

m∈{i,...,j}

wmk = mincut(K{1,k+1},{k})−
∑

m∈{i,...,j}

wmk .

For every m ∈ {i, . . . , j}, |k −m| < j − i, and therefore we can recover wmk. It follows that
we can recover

∑
m/∈{i,...,j}wmk. Plugging this into (12.2), and rearranging we get that

mincut(K{1,j+1},{i})−
∑
i<k<j

∑
m/∈{i,...,j}

wmk =
∑

m/∈{i,...,j}

wim +
∑

m/∈{i,...,j}

wjm (12.3)

It remains to show that we can recover wij assuming we can recover
∑

m/∈{i,...,j}wim +∑
m/∈{i,...,j}wjm. Applying Claim 12.4 once more, we get that∑
m/∈{i,...,j}

wim =
∑

e∈E:i∈e

we −
∑

m∈{i,...,j}

wim = mincut(K{1,i+1},{i})− wij −
∑

m∈{i,...,j−1}

wim ,

and similarly ∑
m/∈{i,...,j}

wjm = mincut(K{1,j+1},{j})− wij −
∑

m∈{i+1,...,j}

wim .

By the induction hypothesis, we can recover wim for all m ∈ {i, . . . , j − 1} and wjm for all
m ∈ {i+ 1, . . . , j}, and therefore we can recover wij.

This completes the proof of Theorem 12.3. We note that similar arguments give a lower
bound of Ω(n3 log n) by allowing weights which are exponential in n3. Details omitted.

13 No Non-trivial Redundancy for Directed Graphs

In this section, we consider the directed versions of the three cut problems considered in
this context, viz. the Group-Cut, Multiway-Cut, Multicut. Note that in directed
graphs, an s → t cut is a set of edges whose removal ensures there is no s → t path. We
construct an infinite family of graphs which have no non-trivial redundancy for any of these
problems, i.e., the number of distinct cut values is asymptotically equal to the total number
of instances.

Let n ∈ N, and let X, Y be two disjoint n-element sets. Consider the graph Gn := KX→Y ,
which is the orientation of the complete bipartite graph KX,Y obtained by orienting each
edge from a vertex of X towards a vertex of Y . We assign edge weights in Gn in such a
manner that every set of edges has distinct weight (for example, we may assign each edge a
distinct power of 2).
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Group-Cut in Directed Graphs. In the directed version of the (α, β)-Group-Cut
problem, given sets A,B ⊆ V such that |A| = α and |B| = β, we want to find a set of
edges of minimum weight whose removal ensures there is no path from any vertex of A to
any vertex of B. The total number of demand graphs for Gn is therefore |{KA→B : |A| =
α, |B| = β}| =

(
2n
α

)
·
(

2n−α
β

)
= Θα,β(nα+β). Let A ⊆ X,B ⊆ Y be such that |A| = α, |B| = β.

A minimum (A,B)-cut must include all the edges of KA→B, and furthermore these edges are
enough. By choice of weights, the value of the minimum (A,B)-cut is unique. This implies
that in Gn we have | {mincut(KA→B) : |A| = α, |B| = β}| ≥

(
n
α

)
·
(
n
β

)
= Ωα,β(nα+β) , and

hence there is no non-trivial redundancy.
We note that for the special case of st-cuts in directed graphs (i.e. (α, β)-Group-Cut

with α = β = 1), Lacki et al. [LNSW12] show that there exists an infinite family of planar
graphs, which have no non-trivial redundancy. That is, for every graph in the family there
are Ω(|V |2) distinct st-cuts.

Multiway-Cut in Directed Graphs. In the directed version of the k-Multiway-Cut
problem, given a k-element set S ⊆ V we want to find a set of edges of minimum weight
whose removal ensures there is no s → s′ path for any distinct s, s′ ∈ S. Let k ≤ n be
even. The number of instances S in Gn is

(
2n
k

)
= Θk(n

k). Let A ⊆ X,B ⊆ Y be such that
|A| = |B| = k/2, and let S = A∪B. Then |S| = k, and therefore constitutes an instance for
the directed k-Multiway-Cut problem. For this instance any multiway cut must include
all the edges of KA→B, and furthermore these edges are enough. Therefore the number of
distinct cut values for the directed Multiway-Cut problem is at least | {mincut(KA→B) :
A ⊆ X,B ⊆ Y, |A| = |B| = k/2}| =

(
n
k/2

)
·
(
n
k/2

)
= Ωk(n

k).

Multicut in Directed Graphs. In the directed version of the k-Multicut problem,
given a set of demands D ⊆ V × V such that |D| = k, we want to find a set of edges of
minimum weight whose removal ensures there is no s→ s′ path for any (s, s′) ∈ D. The total
number of such demand graphs for Gn is |{D ⊆ V × V : |D| = k}| =

(
2n(2n−1)

k

)
= Θk(n

2k).
Let D be a set of edges of Gn such that |D| = k. It is evident that the minimum set of edges
satisfying D is, in fact, D itself. By the choice of weights, the number of distinct values is
at least | {mincut(D) : D ⊆ V × V, |D| = k}| ≥

(
n2

k

)
= Ωk(n

2k).

14 Future Directions

A natural direction for future work is to construct better data structures for the problems
discussed in this part. Our tight bounds on the number of distinct cut values (redundancy
factor) yield straightforward schemes with improved storage requirement, as described in
Section 12. But one may potentially improve these schemes in several respects. First, our
storage requirement exceeds by a factor of |T | the number of distinct cut values. The latter
(number of distinct cut values) may be the “right bound” for storage requirement, and it is
thus important to prove storage lower bounds; we only proved this for (2, 1)-Group-Cut.
Second, it would be desirable to achieve fast query time, say sublinear in |T | or perhaps even
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constant. Third, one may ask for a distributed version of the data structure (i.e., a labeling
scheme) that can report the same cut values; this would extend the known results [KKKP05]
for minimum st-cuts. All these improvements require better understanding of the structure
of the optimal vertex partitions (those that attain minimum cut values). Such structure is
known for minimum st-cuts, where the Gomory-Hu tree essentially shows the existence of a
family of minimum st-cuts, one for each s, t ∈ V , which is laminar.

Another very interesting question is to explore approximation to the minimum cut, i.e.,
versions of the above problems where we only seek for each instance a cut within a small
factor of the optimal. For instance, the cut values of (α, β)-Group-Cut can be easily
approximated within factor α ·β using Gomory-Hu trees, which requires storage that is linear
in |T |, much below the aforementioned “right bound” |T |α+β−1. Can a better approximation
be achieved using similar storage?
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Part D

Batch Sparse Recovery

15 Introduction : Stable vs. Batch Sparse Recovey

We introduce a batch version of sparse recovery, where the goal is to construct A′1, . . . , A
′
m ∈

Rn that estimate a sequence of unknown signals A1, . . . , Am ∈ Rn, using linear measurements,
each involving exactly one signal vector, under an assumption of average sparsity. More
precisely, given a matrix A ∈ Rn×m and a parameter k ∈ [n], the goal is to perform linear
measurements to columns of A, one column in each measurement, and recover a matrix A′

satisfying ‖A−A
′‖1

‖A‖1 ≤ Cε for some constant C ≥ 1, where

ε = min
(km)-sparse A∗

‖A− A∗‖1

‖A‖1

.

The special case m = 1 (i.e. A = A1 ∈ Rn) is known as stable sparse recovery. Recall
that a scheme for dimension n and sparsity bound k ∈ [n], consists of (a) t = t(n, k) non-
adaptive linear measurements, arranged as the rows of a sensing matrix S ∈ Rt×n; and (b) a
recovery algorithm that uses the measurements vector SA = SA1 ∈ Rt to output an estimate
A′1 ∈ Rn. Together, these should satisfy, for every signal A ∈ Rn,

‖A− A′‖p ≤ C min
k-sparse A∗

‖A− A∗‖p , (15.1)

which is called an `p/`p guarantee, where C ≥ 1 and p are some (predetermined) constants.
The above is often called the “for all” model (or sometimes a uniform or deterministic
guarantee). In contrast, in the “for each” model, the scheme (and in particular the matrix
S) is random, and for every signal A ∈ Rn with high probability, the `p/`p guarantee (15.1)
holds. The main goal is to minimize the number of measurements t = t(n, k). For C =
Θ(1), known schemes achieve the `1/`1 guarantee (15.1) in the “for all” model using t =
O(k log(n/k)) measurements [CRT06], and this bound is asymptotically tight even in the
“for each” model [BIPW10]. A similar upper bound on t is known also for `2/`2 guarantee
in the “for each” model [GLPS12], and again this bound is tight [PW11]. There are many
other variants which focus on different considerations, for instance, when the measurements
may be constructed adaptively, there is a scheme with t = O(k log log(n/k)) [IPW11]. In
some schemes, the output A∗ is itself sparse, and/or C can be made arbitrarily close to 1
(at the cost of increasing t).

15.1 Our Results

Our main result gives an adaptive algorithm that recovers a sequence of m vectors with
average sparsity k using at most Õ(km) linear measurements. Known sparse recovery lower
bounds imply that this bound is asymptotically tight up to logarithmic factors, even in
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the simple case where every vector in the sequence is exactly k-sparse. Our result and the
ensuing discussion are stated in terms of the `1 norm, although all our results extend to the
`2 norm in a standard manner. We repeat the formal statement for the convenience of the
readers.

Theorem 1.8 There is a randomized adaptive scheme for batch recovery that, for every
input A and k, outputs a matrix A′ such that with high probability ‖A−A′‖1

‖A‖1 = O(ε), where

ε is the optimum as in Definition 1.7. The algorithm performs O(km log n logm) linear
measurements in O(logm) adaptive rounds, and its output A′ is O(km logm)-sparse.

The theorem is proved in Section 17. The algorithm extends to the scenario where instead
of k we are given ε as a part of the input (k is implicit from x and ε), by the approach of
repeatedly doubling the guess for k. More details are given in Section 15.2.

The main challenge in the batch recovery setting is to discover how the km heavy entries
of A are distributed among the columns A1, . . . , Am. Once this distribution is known, even
approximately, the algorithm can perform robust sparse recovery separately on each column.
Formally, let A∗ be a (km)-sparse matrix such that ‖A − A∗‖1 ≤ ε‖A‖1, and denote the
sparsity of its j-th column by kj := ‖A∗j‖0. If the values {kj}j∈[m] are known, then the
columns can be recovered near-optimally using

∑
j∈[m] O(kj log(n/kj)) = O(km log n) linear

measurements, all in one additional round.
The key innovation in our algorithm (presented in Section 17) is that in addition to

traditional sparse recovery separately on each column, our algorithm adopts a broader view
and constructs a matrix A′ that estimates A.

Intuitively, every algorithm for batch recovery must employ such a broader view and
learn how the heavy entries are distributed across the columns, before it can successfully
reconstruct A. Indeed, our second result shows that this is more than mere intuition, and
proves that in the non-adaptive setting, batch recovery is significantly harder than standard
sparse recovery. Specifically, in Section 18 we prove the following theorem, which shows
that non-adaptive algorithms for reconstructing A require Ω(nm) measurements, even in the
noise-free case ε = 0.

Theorem 15.1. For every m > n, every non-adaptive randomized scheme for batch recovery
must make Ω(mn) linear measurements in the worst case, even when k = 2 and the input is
(2m)-sparse (i.e., ε = 0).

15.2 A Noise-Capped Variant of Sparse Recovery

In addition to our main result we give a variant of stable sparse recovery, where the input
specifies an intended noise level ε ∈ [0, 1] instead of an intended sparsity bound k ∈ [n].
While each of these two parameters completely determines the other one, which of them is
given explicitly does matter algorithmically. Specifically, in our noise-capped variant, the
input is x ∈ Rn and ε ∈ [0, 1], and the goal is to recover x′ ∈ Rn that satisfies

‖x− x′‖1 ≤ O(ε)‖x‖1 , (15.2)
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using a small number of linear measurements to x, where small is with respect to the minimal
sparsity k needed to approximate x with relative error ε. We prove the following theorem
in Appendix 19 using once more the approach of repeatedly doubling the guess for k (and
applying standard sparse recovery).

Theorem 15.2 (Noise-Capped Sparse Recovery). There is an adaptive randomized scheme
that, for every input x ∈ Rn and ε ∈ [0, 1], outputs x′ ∈ Rn, such that with high probability:
(i) x′ satisfies (15.2); (ii) the algorithm performs O(k log n) linear measurements in O(log k)
adaptive rounds, where k = k(x, ε) := min{‖x∗‖0 : ‖x − x∗‖1 ≤ ε‖x‖1}; and moreover (iii)
the output x′ is (2k)-sparse.

We additionally show that in the non-adaptive setting, noise-capped recovery is signif-
icantly harder than stable sparse recovery, and requires at least n measurements, even in
very simple settings. Since even the naive algorithm makes only n measurements, we obtain
that a (non-trivial) noise-capped recovery scheme must be adaptive.

Proposition 15.3. Every non-adaptive randomized scheme for noise-capped sparse recovery
(randomized means that, for every input x ∈ Rn and ε ∈ [0, 1], the output x′ with high prob-
ability satisfies (15.2)) must perform, with high probability at least n linear measurements,
even in the case ε = 0 and k(x, 0) = 1.

The validity of Proposition 15.3 is easily verified. For consider such a scheme in the case
ε = 0. Since it is non-adaptive, the number of measurements t depends only on n and the
scheme’s coins, and it thus must be independent of k(x, 0). As the scheme succeeds on every
input x ∈ Rn with high probability, including non-sparse inputs, the scheme must perform
with high probability at least n measurements.

15.3 Related Work

The recovery of a matrix from partial or corrupted measurements has numerous applica-
tions in theoretical fields such as streaming and sublinear algorithms as well as practical
ones, such as signal processing, communication-networks analysis, computer vision and ma-
chine learning. In many of these natural settings the matrix is typically sparse. Such set-
tings include covariance matrices [DSBN15], adjacency matrices of sparse or random graphs
[McG09, DSBN15], image and video processing for facial recognition [WYG+09] and medical
imaging [Mal08], in addition to traffic analysis of large communication networks [CQZ+14].
Woodruff and Zhang [WZ12, WZ13] considered a distributed model known as the message-
passing model, similar to that described in the previous section. m servers, each holding
partial information regarding an unknown matrix A (not necessarily a column, though),
need to communicate with a designated coordinator in order to compute some function of
A. The communication they consider is not restricted to linear measurements. They show
communication complexity lower bounds in terms of bit-complexity for several designated
functions (e.g. ‖A‖0 or ‖A‖∞).

Considerable work has been made on the reconstruction of a matrix from linear mea-
surements performed on the matrix rather than on each column separately. That is, each
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measurement is of the form A 7→ B •A =
∑
AijBij, where B ∈ Rn×m is a sensing “vector”.

This model offers a much richer set of linear measurements, and, in fact, in terms of sparse
recovery reduces matrix reconstruction to stable sparse recovery, albeit in some models, e.g.
the message-passing model, such measurements are infeasible. Waters, Sankaranarayanan
and Baraniuk [WSB11] give an adaptive sensing algorithm for recovering a matrix which is
the sum of a low-rank matrix and a sparse matrix using linear measurements on A.

Dasarathy et al. [DSBN15] recently considered matrix recovery from bilinear measure-
ments (also called tensor products), i.e., measurements of the form A 7→ vtAu =

∑
Aijviuj,

where v, u are sensing vectors. This model can be viewed as a restriction of the afore-
mentioned model, in which every sensing vector B is a matrix of rank 1. They show how
to reconstruct a sparse matrix using bilinear measurements, in the special case where the
heavy entries of A are not concentrated in a few columns.

16 Preliminaries

It is well known [CRT06] that given a sparsity parameter s, there exist sensing matrices and
associated recovery algorithms for the stable sparse recovery problem such that the number
of linear measurements is O(s log n).

Claim 16.1 ([CRT06]). Let s ∈ [n], there exists a sensing matrix S ∈ Rt×n for t =
O
(
s log n

s

)
, and an associated recovery algorithm such that for every x ∈ Rn, given Sx,

produces an s-sparse vector x′(s) that satisfies ‖x − x′(s)‖1 ≤ 3 min
x∗ s−sparse

‖x − x∗‖1. More-

over, such S can be found efficiently with high probability.

We note that the choice of a “for all” guarantee in Claim 16.1 is not required in our case.
The role of Claim 16.1 in our algorithms can be replaced by any (adaptive or non-adaptive)
stable sparse recovery guarantee either in the “for all” or “for each” models.

Indyk [Ind06] showed that one can construct a matrix S ∈ Rt×n, where t = O (log n)
such that for every x ∈ Rn, given Sx, we can estimate ‖x‖1 up to a constant factor with
high probability.

Claim 16.2 ([Ind06]). There exists a sensing matrix S ∈ Rt×n for t = O (log n), and an
associated algorithm such that for every x ∈ Rn, given Sx, produces a number %(x) that
satisfies 1

2
‖x‖1 ≤ %(x) ≤ 2‖x‖1 with probability at least 1 − 1

nΩ(1) . Moreover, such S can be
found efficiently.

17 Batch Reconstruction

In this section we prove Theorem 1.8 by presenting an iterative algorithm that, given access
to A1, . . . , Am via linear measurements, in addition to a parameter k as in Definition 1.7, con-
structs vectors Aalg1 , . . . , Aalgm satisfying ‖Aalg‖0 ≤ O(km logm) and ‖A−Aalg‖1 ≤ O(ε)‖A‖1.
We will additionally show that the algorithm performs a total of at most O(km logm log n)
linear measurements.
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The algorithm, described in detail as Algorithm 17.1, performs log(2m) iterations. Through-
out the execution, it maintains a set I ⊆ [m], of the indices of all columns not yet fixed by
the algorithm. Initially I is the entire set [m]. At every iteration ` ∈ [log(2m)], the algo-
rithm performs standard sparse recovery on each of the columns indexed by I with sparsity
parameter 2`+1k, and constructs vectors {Atmpj }j∈I . Applying Claim 16.2, the algorithm

additionally estimates the residual error ‖Aj − Atmpj ‖1 for all j ∈ I, and then chooses the
1
2
|I| indices for which the residual error is smallest. For each such index j, the algorithm

fixes Aalgj to be Atmpj , and removes j from I. After log(2m) iterations, the algorithm returns

Aalg1 , . . . , Aalgm .

1: initialize I ← [m].
2: for ` = 1 to log(2m) do
3: for all j ∈ I do
4: let Atmpj ← A′j(2

`+1k) // by applying Claim 16.1

5: ρj ← ρ(Aj − Atmpj ) // by applying Claim 16.2

6: let I` ⊆ I be the set of
⌈
m/2`

⌉
indices j ∈ I with smallest ρj.

7: let I ← I \ I`
8: for all j ∈ I` do
9: let Aalgj ← Atmpj // fix the columns {Atmpj : j ∈ I`}

10: return Aalg1 , . . . , Aalgn .

Algorithm 17.1: Algorithm for Batch Reconstruction

Prior to analyzing Algorithm 17.1 in the next section, let us note that we can easily
bound the number of times it invokes Claims 16.2 and 16.1, and show that with probability
at least 1− 1

nΩ(1) all invocations succeed. We therefore condition on that event. For sake of
simplicity, we assume that m is a power of 2. The next claim follows by simple induction.

Proposition 17.1. For every ` ∈ [log(2m)], at the beginning of the `th iteration, |I| = m
2`−1 .

It follows that at the end of the last iteration of the main loop, I = ∅, and thus the
output columns are all well-defined.

17.1 Controlling the Noise and the Number of Measurements

The main challenge is to bound the relative error by O(ε). We remark that if one is willing
to pay an extra factor of logm, then there is a simple analysis for this algorithm, as follows.
Let A∗ denote a (km)-sparse matrix satisfying ‖A − A∗‖1 ≤ ε‖A‖1. By straightforward
averaging, for every ` ∈ [log(2m)], at most m

2`+1 columns A∗j have ‖A∗j‖1 > 2`+1k, and at

most m
2`+1 columns A∗j have ‖Aj − A∗j‖1 >

2`+1

m
ε‖A‖1. The total number of columns in these

two groups is at most 2 · m
2`+1 = 1

2
|I|, and thus at least d1

2
|I|e = |I`| columns in I are not in

these two groups. By the sparse recovery guarantees on these columns and the choice of I`,

∀j ∈ I`, ‖Aj − Aalgj ‖1 ≤
3 · 2`+1

m
ε‖A‖1. (17.1)
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Summing these over all values of ` we get that ‖A − Aalg‖1 ≤ O(ε logm). To improve this
guarantee to O(ε), we need to tighten the bound in (17.1). We replace the term ‖A‖1/m,
which represents the norm of an average column, with the norm of a specific column, and
the crux is that they sum up (over all iterations `) very nicely, because these summands
correspond (essentially) to distinct columns.

We start the analysis by first bounding the number of linear measurements performed by
the algorithm, as well as the sparsity of Aalg.

Lemma 17.2. During the `th iteration of the main loop, Algorithm 17.1 performs O(km log n)
linear measurements, and moreover

∑
j∈I` ‖A

alg
j ‖0 ≤ O(km).

Proof. At the beginning of the `th iteration, |I| ≤ m
2`−1 . For every j ∈ I, the algorithm

performs O(2`+1k log n) linear measurements on Aj, and by Claim 16.1 we have ‖Atmpj ‖0 ≤
O(2`+1k). Thus the total number of measurements performed during the `th iteration is
O(2`+1k log n) · |I| ≤ O(mk log n). Similarly we get that

∑
j∈I` ‖A

alg
j ‖0 =

∑
j∈I` ‖A

tmp
j ‖0 ≤

O(km).

The algorithm performs log(2m) iterations, and thus at the end of execution, ‖Aalg‖0 ≤
O(km logm). Moreover, the total number of linear measurements performed throughout the
execution is at most O(km log n logm). It remains to show that ‖A− Aalg‖1 ≤ O(ε)‖A‖1.

To this end, denote for every j ∈ [m], εj =
‖Aj−A∗j‖1
‖A‖1 , and note that

∑
j∈[m] εj = ε. Let

ε(1) ≥ ε(2) ≥ . . . ≥ ε(m) be a non-increasing ordering of {εj}j∈[m].

Lemma 17.3. For every ` ∈ [log(m/2)] and j ∈ I`, ρj
‖A‖1 ≤ 6ε(2−`−1m).

Proof. Fix some ` ∈ [log(m/2)], and consider the set I at the beginning of the `th iteration.
Recall that |I| = m/2`−1, and I` is the set of m/2` indices j ∈ I with smallest ρj. Observe
that to prove the claim, it is enough to show that

Pr
j∈I

[
ρj
‖A‖1

> 6ε(2−`−1m)

]
≤ 1

2
.

To this end, consider an arbitrary j ∈ I with
ρj
‖A‖1 > 6ε(2−`−1m). If, in addition, ‖A∗j‖0 ≤

2`+1k, then by Claim 16.1

‖Aj −Atmpj ‖1 = ‖Aj −A′j(2`+1k)‖1 ≤ 3 min
x∗ 2`+1k−sparse

‖Aj − x∗‖1 ≤ 3‖Aj −A∗j‖1 = 3εj‖A‖1 .

By Claim 16.2, ‖Aj − Atmpj ‖1 ≥ 1
2
ρ(Aj − Atmpj ) = 1

2
ρj, and therefore

εj‖A‖1 ≥
1

3
‖Aj − Atmpj ‖1 ≥

1

6
ρj > ε(2−`−1m)‖A‖1 .

We conclude that for every j ∈ I, if
ρj
‖A‖1 > 6ε(2−`−1m), then either ‖A∗j‖0 > 2`+1k or

εj > ε(2−`−1m). By definition, εj > ε(2−`−1m) occurs for at most m
2`+1 indices j ∈ [m]. In

addition, since Ej∈[m][‖A∗j‖0] = k, then at most m
2`+1 indices j ∈ [m] satisfy ‖A∗j‖0 > 2`+1k.

Thus at most m
2`

= 1
2
|I| indices j ∈ [m] satisfy

ρj
‖A‖1 > 6ε(2−`−1m). The claim follows.
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Lemma 17.4. For every ` ∈ [log(m/2)],∑
j∈I`

‖Aj − Aalgj ‖1 ≤ 24‖A‖1

∑
j∈[ m

2`+1 ,
m

2`
−1]

ε(j) .

Proof. Fix some ` ∈ [log(m/2)], and let j ∈ I`. Then Aalgj was fixed in the `th iteration, and

thus by the previous claim, ‖Aj − Aalgj ‖1 ≤ 2ρ(Aj − Aalgj ) = 2ρj ≤ 12ε(2−`−1m)‖A‖1. Since
|I`| = m

2`
and {ε(j)}j∈[m] is non-increasing∑
j∈I`

‖Aj − Aalgj ‖1 ≤ 12‖A‖1 · m2` · ε(2−`−1m) ≤ 12‖A‖1 · 2
∑

j∈[ m

2`+1 ,
m

2`
−1]

ε(j) .

Corollary 17.5. ‖A− Aalg‖1 ≤ O(ε)‖A‖1.

Proof. Since
⋃
`∈[log(2m)] I` = [m], and the sets {I`}`∈log(2m) are pairwise disjoint, then

‖A−Aalg‖1 =

log(2m)∑
`=1

∑
j∈I`

‖Aj − Aalgj ‖1 =
∑

j∈Ilog(2m)∪Ilogm

‖Aj − Aalgj ‖1 +

logm∑
`=1

∑
j∈I`

‖Aj − Aalgj ‖1 .

Observe first that |Ilog(2m) ∪ Ilogm| = 3. Moreover, for every j ∈ Ilog(2m) ∪ Ilogm, Aalgj
is constructed by applying standard sparse recovery on Aj with sparsity parameter ≥ mk.

Since ‖A∗j‖0 ≤ km, then similarly to the previous proof we get that ‖Aj−Aalgj ‖1 ≤ 3εj‖A‖1 ≤
3ε‖A‖1. Therefore by the previous lemma

‖A−Aalg‖1 ≤ 9ε‖A‖1+24‖A‖1

logm∑
`=1

∑
j∈[ m

2`+1 ,
m

2`
−1]

ε(j) ≤ 9ε‖A‖1+24‖A‖1

m∑
j=1

ε(j) = O(ε)‖A‖1 .

Theorem 1.8 follows from Lemma 17.2 and Corollary 17.5.

18 Adaptivity is Necessary Even for Noise-Free Signals

To prove Theorem 15.1, we first note that every non-adaptive scheme ALG to the problem
of reconstructing a km-sparse matrix A ∈ Rn×m can be viewed as the concatenation of two
algorithms. ALGs constructs sensing matrices S1, . . . , Sm, and ALGr is given the measure-
ments S1A1, . . . , SmAm, and recovers A. For every j ∈ [m], let tj denote the number of
rows of (i.e. measurements performed by) Sj. The total number of linear measurements
performed by ALGs is therefore tALG :=

∑
j∈[m] tj.
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Assume that for every A ∈ Rn×m, ALG reconstructs A with success probability ≥ 1
2
.

Since ALG is non-adaptive, the number of measurements rALG depends only on k,m, n.
By Yao’s minimax principle, it suffices to show a distribution D over (2m)-sparse matrices

in Rn×m such that for every deterministic algorithm ALGdet, if PrA∼D[ALGdet succeeds] ≥ 1
2
,

then tALGdet ≥ Ω(mn). Consider a matrix A constructed as follows. Choose uniformly at ran-
dom i∗ ∈ [m]. For every j ∈ [m] \ {i∗}, let Aj = (1, 0, 0, . . . , 0)t, and let Ai∗ = (x1, . . . , xn)t,
where x1, . . . , xn ∼ N(0, 1) i.i.d. ALGs

det constructs sensing matrices S1, . . . , Sm. The fol-
lowing lemma implies Theorem 15.1.

Lemma 18.1. Fix j ∈ [m], and assume that tj ≤ n− 1, then conditioned on i∗ = j, ALGr
det

fails to recover Aj with probability 1.

Proof. Conditioned on i∗ = j, the distribution of Aj is independent of {Ai}i 6=j. We can
therefore analyze the success probability of ALGr

det on Aj as if ALGr
det receives only (Sj, SjAj)

as input, and attempts to recover Aj. Denote U = Ker(Sj) and ν = dimU , then since Sj is
underdetermined, ν ≥ 1, and there is an orthonormal basis u1, . . . , un to Rn satisfying that
u1, . . . , uν is a basis of U , and uν+1, . . . , un is a basis of U⊥. For every y ∈ Im(Sj) there exists
a unique x′ ∈ U⊥ satisfying Sjx = y. Since ALGr

det is deterministic, there exists a unique
x ∈ Rn such that ALGr

det returns x when invoked on (Sj, y).
Denote Aj =

∑
`∈[n] y`u`, then since {u`}`∈[n] is orthonormal, then y1, . . . , yn ∼ N(0, 1)

i.i.d. Following the above discussion, the value of SjAj is independent of y1, . . . , yν . Moreover,
for every yν+1, . . . , yn ∈ R, there exist unique values y∗1, . . . , y

∗
ν such that ALGr

det(Sj, SjAj)
is correct if and only if y` = y∗` for all ` ∈ [ν]. Therefore,

Pr[ALGr
det fails|i∗ = j] =

∫
yν+1,...,yn∈R

∫
(y1,...,yν)6=(y∗1 ,...,y

∗
ν)

 ∏
`∈[n+1]

f(y`)

dy1 . . . dyn = 1 ,

where f is the pdf of the standard normal distribution.

Proof of Theorem 15.1. Denote J := {j ∈ [m] : tj ≥ n}. From Lemma 18.1, whenever j /∈ J ,
Pr[ALGr

det recovers Aj|i∗ = j] = 0. Since ALGdet reconstructs A with probability ≥ 1
2
, then

1

2
≤ Pr[ALGr

det recovers A] = Pr[ALGr
det recovers A|i∗ ∈ J ] Pr[i∗ ∈ J ] ≤ Pr[i∗ ∈ J ] .

Therefore,

tALGdet =
∑
j∈[m]

tj ≥
∑

j∈[m]:tj≥n

tj ≥ n · m
2
≥ Ω(mn) .

19 Noise-Capped Sparse Recovery

We now prove Theorem 15.2 by presenting an adaptive algorithm that constructs a sensing
matrix S ∈ Rk∗×n and, given Sx, can recover a (2k∗)-sparse vector x′ close to x, where
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k∗ = k(x, ε) = min{‖x∗‖0 : ‖x−x∗‖1 ≤ ε‖x‖1}. The algorithm is iterative, and, given x ∈ Rn

and a parameter ε ∈ [0, 1], performs with high probability O(k∗ log n) linear measurements
on x, and constructs a (2k∗)-sparse vector xalg satisfying ‖x− xalg‖1 ≤ O(ε)‖x‖1.

Loosely speaking, starting with k = 1, during each iteration, the algorithm invokes
Claim 16.1: namely it performs O(k log n

k
) linear measurements on x and thus constructs

x′(k). Ideally, we wish to proceed as follows. If ‖x−x′(k)‖1 ≤ O(ε)‖x‖1 the algorithm halts
and then returns x′(k). Otherwise, it doubles k and performs another iteration. However,
since we only have access to x via linear measurements, we cannot compute ‖x − x′(k)‖1

or ‖x‖1 exactly (using a small number of measurements). Not all is lost, though. Applying
Claim 16.2, the algorithm can perform additional O(log n) linear measurements on x and
estimate ‖x‖1 with high probability. Moreover, since x′(k) is known, and by utilizing the
linearity of the measurements, we can also estimate ‖x− x′(k)‖1 with high probability. The
algorithm is given in detail as Algorithm 19.1. We now turn to prove Theorem 15.2.

Input: x ∈ Rn accessed by linear measurements and an upper bound ε ≥ min
x∗ k∗−sparse

‖x−x∗‖1
‖x‖1 .

Output: A 2k∗-sparse x′ ∈ Rn satisfying ‖x− x′‖1 ≤ O(ε)‖x‖1.
1: `← 0
2: xalg ← 0.
3: while %(x− xalg) ≥ 12ε%(x) do
4: `← `+ 1
5: xalg ← x′(2`) as in Claim 16.1.
6: return xalg

Algorithm 19.1: Sparse Recovery Given ε ≥ 0

Fix x ∈ Rn and ε ∈ [0, 1]. By the definition of k∗ there exists a k∗-sparse x∗ ∈ Rn

satisfying ‖x − x∗‖1 ≤ ε‖x‖1. Denote by Λ the number of iterations performed by the
algorithm, when invoked on x, ε. Fix some ` ∈ Λ. Let E` denote the event that the algorithm
fails to estimate ‖x − x′(2`)‖1. That is, %(x − x′(2`)) /∈

[
1
2
‖x− x′(2`)‖1 , 2‖x− x′(2`)‖1

]
.

Similarly, let E0 denote the event that the algorithm failed to estimate ‖x‖1. By Claim 16.2,
Pr[E`] ≤ 1

nΩ(1) for every 0 ≤ ` ≤ Λ. Since by performing n linear measurements we can
uniquely characterize x, that is x′(n) = x, then Λ ≤ log n with certainty. Applying a union
bound we get that Pr

[⋃
0≤`Λ E`

]
≤ 1

nΩ(1) . We can therefore condition on
⋂

0≤`≤Λ Ē`.

Lemma 19.1. Algorithm 19.1 performs at most O(k∗ log n) linear measurements in O(log k∗)
adaptive rounds. Furthermore, in the end of the execution ‖xalg‖0 ≤ 4k∗.

Proof. Consider the `th iteration for ` = dlog k∗e. Then k∗ ≤ 2` ≤ 2k∗. Since x∗ is k∗-sparse,
we get that

‖x− x′(2`)‖1 ≤ 3 min
y 2`−sparse

‖x− y‖1 ≤ 3‖x− x∗‖1 ≤ 3ε‖x‖1 .

Therefore, %(x − x′(2`)) ≤ 6ε‖x‖1 ≤ 12ε%(x), and the algorithm halts. It follows that the
algorithm performs at most dlog k∗e iterations. The total number of linear measurements
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performed is therefore at most O
(∑dlog k∗e

`=1 2` log n
)

= O(k∗ log n). Moreover, ‖xalg‖0 ≤
2dlog k∗e = 2k∗.

To finish the proof of Theorem 15.2, it remains to show that ‖x− xalg‖1 ≤ O(ε)‖x‖1. It
is enough to see that by the halting condition of the algorithm, in the end of the execution

‖x− xalg‖1 ≤ 2%(x− xalg) ≤ 24ε%(x) ≤ O(ε)‖x‖1 .

This completes the proof of Theorem 15.2.

20 Future Directions

A natural important question that arises from the main results, and is not completely resolved
within the context of our previous work is whether we can obtain tight bounds on the number
of adaptive rounds needed for a batch sparse recovery scheme that performs Õ(km) linear
measurements. A more refined question asks for the correct tradeoff between the number of
adaptive rounds and number of linear measurements. We note that both questions are not
resolved even for the simpler special case of a single vector (i.e. the noise-capped recovery).

We showed in Theorem 15.1 that every random non-adaptive scheme for batch sparse
recovery must perform Ω(mn) measurements for every A and k with high probability, even
for the case ε = 0. As it turns out, for the case ε = 0, two adaptive rounds are indeed enough
to get an optimal number of linear measurements. Indeed, in the first round the algorithm
estimates, up to a constant factor, the “correct” sparsity bound of each column, i.e., ‖Aj‖0,
which can be done by performing O(log n) linear measurements on every column [KNW10].
In the second round of measurements, the algorithm employs stable sparse recovery (e.g.
Claim 16.1) to reconstruct the unknown entries while using the correct sparsity bound, up
to a constant factor. The total number of measurements is therefore O(mk log n), which is
optimal by known sparse recovery lower bounds.

For arbitrary values of ε ∈ (0, 1), however, the scheme we have presented uses O(logm)
adaptive rounds of measurements in order to bound the number of measurements by Õ(km).
We suspect that a doubling approach similar to that in Algorithm 17.1 is, in a sense, required
and therefore every batch recovery scheme that performs Õ(km) measurements must perform
Ω(logm) adaptive rounds.
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construction algorithm for unweighted graphs. In 39th Annual ACM Symposium on
Theory of Computing, STOC’07, pages 605–614. ACM, 2007.

[BIPW10] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff. Lower bounds for sparse recovery.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1190–1197,
2010.

70

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
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