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Abstract

The k-Median clustering problem of a point set A asks to find a set of k center points
that minimizes the sum of distances to the points in A. A coreset for a k-median instance
is a compressed set of data points that succinctly represents the input and is often used
to improve the efficiency of algorithms in terms of space and running time. We use two
definitions: a strong coreset preserves the cost of every center set compared to the input
instance, and a weak coreset preserves the cost only for certain center sets (optimal for
the coreset).

The first part of the thesis investigates the construction of a weak coreset by the
simple and natural method of uniform sampling. In Euclidean space Rd, it is known
[MS18] that a large enough uniform sample from the input can serve as a weak coreset
for the 1-median problem under the `2 distance. We improve this bound, which depends
on the dimension d, and obtain a weak coreset for 1-median by a uniform sample whose
size is dimension-independent, under both `1 and `2 distances. We then construct a weak
coreset for 2-median, again by uniform sampling, for inputs that are "well-separated"
[ABS12, MOP04]. In these inputs, the optimal clusters are far away and approximately
of the same size, in which case we can apply our analysis for 1-median to each optimal
cluster separately.

The rank-aggregation problem can be viewed as 1-median over the metric space of
permutations equipped with Kendall-tau distance [Ken38, Kem59]. We study its gener-
alization to a k-median problem and design for it a strong coreset by applying results
from [JKS16, BJKW21]. We then use our coreset to obtain a PTAS for two special
cases, when k is small and when the input is "well-separated". In the former, our PTAS
computes a coreset and then chooses the best performing medians among all possible
partitions of the coreset. This method has running time exponential in k. In the latter
case, when the input satisfies a separation property proposed in [ABS10], we use a coreset
and a modification of an algorithm from [ABS10] (for a slightly different setting) to find
a (1 + ε)-factor approximate solution in polynomial time.
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Chapter 1

Introduction

Clustering is a ubiquitous and essential tool in the field of data analysis and unsupervised
learning that is well-known to be computationally hard to solve optimally. In the problem of
k-clustering, the goal is to partition the dataset into k subsets (called clusters), where the items
in each cluster have similar characteristics, often captured by a distance measure. This thesis
focuses on a special case of k-clustering, called metric k-Median, that is defined by specifying a
metric space M = (V,D) and a point set A ⊆ V of size n, with the goal to optimize

min
C⊂V
|C|=k

∑
x∈A

min
c∈C

D(x, c).

An optimal solution, i.e., an optimal set of k centers for A, which need not be unique, is denoted
by C∗(A). The objective value of a set A with respect to a set of centers C is denoted by
cost(A, C), and the optimal objective for A by OPT(A, k) := cost(A, C∗(A)). It is emphasized,
that in center-based k-clustering, a solution with k center points naturally induces a k-partition
of A, formed by grouping points that have the same nearest center in C.

In the last few decades, huge amounts of data are regularly collected and stored ("big data"),
and thus efficient methods to find approximate solutions and store the input are increasingly
in the spotlight. Approximation algorithms for the k-median problem are abundant and it is
evident that the complexity of the problem exacerbates when the size of the data set A gets
extremely large, in both number of data points and possibly their dimension. See the related
work (Section 1.2) for more details. Naturally, when storing a small portion of the dataset for
later use, one hopes that it can be used to provide a similar result as if one used the input set.
This property is usually compromised with the simplicity of the reduction method, and we will
strive to prove that uniform sampling, which is a very simple method, is effective in this regard.

A coreset construction is a data-reduction (compression) method for clustering problems,
that has emerged in the last two decades, and since became prevalent in theoretical computer
science and machine learning [AHPV04, HPM04, Che09, FL11, SW18, BJKW21, Fel20, CSS21]
(see Section 1.2 for a full picture). Intuitively, one can view a coreset S as a weighted set of
points, usually a subset of the input set A, which correctly captures the structure of the input.
The usual definition of a coreset for clustering problems, also known as a strong coreset, requires
that every solution will have a similar cost when evaluated on both the coreset and the input.

Definition 1.0.1 (Strong Coreset). Let A be a set of n points in some metric space (V,D). A
weighted set S ⊆ A is called a strong (ε, k)-coreset of A if

∀C ⊆ V, |C| = k, costw(S, C) ∈ (1± ε) cost(A, C)

where costw(S, C) :=
∑

x∈S w(x) minc∈C D(x, c).

In contrast, one can have a weaker definition, known as a weak coreset, that only preserves
the cost of optimal k centers of S.
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Definition 1.0.2 (Weak Coreset). Let A be a set of n points in some metric space (V,D). A set
S ⊆ A is called a weak (ε, k)-coreset of A if for every optimal k-median solution for S, denoted
by C∗(S), it holds that

cost(A, C∗(S)) ∈ (1± ε)OPT(A, k).

Remark. This definition of a weak coreset is taken from [MS18]. However, there are multiple
definitions in the literature, generally capturing similar ideas [FMS07, FL11, Phi16, HV20].

For the reasoning described above, the most fundamental performance measure for coreset
design is its size, seeking to minimize it. The primary framework for constructing small-size
strong coresets, was introduced by [LS10, FL11, FSS20], and is based on the importance sampling
technique. Intuitively, the algorithm performs independent sampling of the input according to
a distribution that gives higher probability to points that might contribute more to the cost.

In the main part of the thesis we strive to understand the power of uniform sampling for
coreset construction and ask, whether uniform sampling produces weak coresets for clustering.
Concretely, we aim to find tight size bounds for a weak (ε, 1)-coreset that is constructed by
uniform sampling in both `1 and `2 settings and improve the dependency in the dimension for
both cases [MS18]. We emphasize that the motivation for using uniform sampling lies mainly
in its simplicity, both theoretically and in practice. Theoretically, uniform sampling is data-
oblivious, simple to describe, and its power for coreset constructions is not so well understood.
In practice, it is very easy to implement uniform sampling.

The above question is phrased for weak coresets, since constructing a (small) strong coreset
using only uniform sampling is impossible even for the one-dimensional real line and k = 1. For
example, consider an input with n points, where two points are located at opposite sides, that
are very far from the rest of the points in A. To preserve the cost of every candidate center, one
must sample these two points, and if one uses uniform sampling, the number of samples must be
Ω(n) [MS18]. Uniform sampling for clustering was examined in [MOP01, CS04]. They generate
a uniform sample and then apply a known metric k-median approximation algorithm on the
sample. This method achieves a constant factor approximation in sublinear time. However,
they assumes a finite metric space with bounded diameter, and the sample size depends on this
value. Additionally, there are approximation algorithms that use uniform sampling in certain
regions of space. For instance, Chen’s algorithm [Che09] uses uniform sampling in rings around
approximate centers that are computed beforehand. Nevertheless, this can be seen as a precursor
to the importance sampling technique, and in this work we avoid the step of pre-computing
approximate centers, and just sample uniformly from the entire input set.

It is still unknown whether uniform sampling on its own can yield a weak (ε, k)-coreset for
k > 1, hence, to ease the analysis, we assume henceforth that the input satisfies an additional
property of "well-separated" optimal clusters. This assumption is a common relaxation approach
since it allows for simpler and better clustering algorithms, see surveys by [Ben15, BR14]. Intu-
itively, "well-separated" instance is structured such that each optimal cluster has small radius
compared to the inter-cluster distances. Therefore we ask, can one construct a smaller coreset
for "well-separated" instance, by using a uniform sample? This notion will be formalized using
definitions proposed by Awasthi, Blum, and Sheffet [ABS12, ABS10] (to be formally presented
in the next section). Note that there are several other competing definitions that capture similar
separability ideas. An overview and references are found in the related work section.

A secondary, somewhat independent, goal of this thesis is to present an application of strong
coresets to the metric space of permutations over N items, equipped with the Kendall-tau dis-
tance, denoted by (PN ,Kτ ). A permutation σ ∈ PN can be viewed as a ranking, which is
bijection σ : [N ] → [N ], where σ[i] denotes the location (or rank) of alternative i ∈ [N ]. The
Kendall-tau distance measure was introduced by Kendall [Ken38] as a measure of rank correla-
tion, and was later generalized into a distance by Kemeny [Kem59]. It is defined by counting
the number of pairwise disagreements between the permutations of every two alternatives (also
known as the bubble-sort distance).
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Definition 1.0.3 (Kendall-tau Distance). The Kendall-tau distance between two rankings
σ1, σ2 ∈ PN , is defined by

Kτ (σ1, σ2) =
∑

i<j∈[N ]

1 [sign (σ1[i]− σ1[j]) 6= sign (σ2[i]− σ2[j])] .

Rank-aggregation is a generic name for the problem of finding, given a set A ⊆ PN , a single
ranking over N candidates that correctly represents the combined preferences given by n voters.
Here, we focus on the specific case (also known as Kemeny-aggregation [Kem59, DKNS01]) where
the objective is to find a ranking π∗ ∈ PN that minimizes the sum of Kendall-tau distances to
all input rankings in A, i.e.,

min
π∈PN

∑
σ∈A

Kτ (σ, π). (1.1)

This definition is consistent with the definition of 1-median used in the first part, and is com-
putationally prohibitive to solve exactly. Research regarding the computational complexity of
the rank-aggregation problem was initiated by Bartholdi et al. [BTT89a, BTT89b] who proved
that Kemeny-aggregation (1.1) is NP-hard. A synopsis of improvements and approximation
algorithms can be found in the related work Section 1.2.

We consider a generalization of rank-aggregation, that we call the k-clustering rank-aggregation,
or k-rank-aggregation in short. In this problem, the goal is to partition a set of n voters that
each ranks N possible candidates, into k disjoint sets (clusters), with a representative ranking
(the median) for each set. As in the k-median definition, we would like to find a set Π ⊆ PN of
size k that minimizes the objective ∑

σ∈A
min
π∈Π

Kτ (σ, π).

As one could expect, 1-rank-aggregation corresponds to the already NP-hard rank-aggregation
problem [Kem59], hence, we do not strive to solve its generalization exactly, and we resort to
approximation algorithms. There is a known (1+ε)-approximation algorithm (PTAS) for k = 1,
by Schudy and Mathieu [KS07, Sch12], and there is no approximation algorithm for k > 1. Hence
we ask, can we use coresets to approximate the k-rank-aggregation problem for general k?

1.1 Our Results
This section proceeds to partially answer the questions outlined above. The results focus on
coresets for the k-Median problem under various metric spaces, and comprise of two parts.

Weak Coresets by Uniform Sampling
This part contains three results that deal with constructing weak coresets by sampling uniformly
and independently with replacement from the input. The first two results, present a weak coreset
for the 1-median objective. They guarantee a weak (ε, 1)-coreset in Rd of dimension-independent
size under either `2 or `1 distances.

Theorem 1.1.1 (Informal version of Theorems 2.1.5 and 2.2.9). Let A ⊆ Rd be a set of n points,
equipped with the `p-distance for p ∈ {1, 2}. Let ε ∈ (0, 1

10) and let S ⊆ A be a multiset obtained
by s = Õ(ε−2p) independent and uniform draws (with replacement) from A. Then, with high
probability, S is a weak (ε, 1)-coreset of A.

This theorem extends and improves some previously known dimension-dependent results
from [Tho05, MS18, McG18]. Our improved analysis for `2 uses a Johnson-Lindenstraus (JL)
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[JL84] dimensionality reduction, with target dimension independent of n and d, and relies on a
result of [MMR19] that the JL-transform preserves the cost of every partition. Intuitively, when
the target dimension is independent of d, we can perform dimension-dependent uniform sampling
in the target space to obtain a dimension-independent weak coreset in the input space. For `1,
we perform a fine-grained analysis, based on considering each dimension separately and dividing
it into geometrically decreasing-size intervals. For each interval, we estimate the probability
that the sample median falls in that interval, and the approximation factor in this case. Formal
statements and their analyses are written in Sections 2.1 and 2.2.

The third result considers "well-separated" inputs, and construct a weak (ε, k)-coreset for
k = 2. Intuitively, the optimal clusters for these inputs are separated in space and have roughly
the same size. This allows us to employ the previous results of k = 1 for each optimal cluster
separately. The separation notion is captured by the α-center proximity property from [ABS12]
which states that in every optimal clustering, every input point is a factor-α closer to its own
optimal center than to any other center.

Definition 1.1.2 (α-center proximity [ABS12]). A k-median instance A ⊆ V satisfies the α-
center proximity property for α > 1, if for every optimal center set C∗, every p ∈ A with its
closest center c∗i ∈ C∗, and every other optimal center c∗j 6= c∗i , it holds that

αD(p, c∗i ) < D(p, c∗j ).

The second property the input needs to satisfy, is that the "average" size of a cluster in an
optimal solution is approximately n

k .

Definition 1.1.3 (η-Balanced Optimal Clusters). Let A ⊆ V be a k-median instance. The
instance is said to have η-balanced optimal clusters for η ≤ 1 if for every optimal partition
(A∗1, . . . , A

∗
k) and every i ∈ [k], the size of A∗i is at least η nk .

In [MOP04] there is a discussion about the necessity of the above assumption and some
reasonable justifications for uniform sampling. In a nutshell, if we have a small-size optimal
cluster, say O(

√
n), then there is a very low probability of sampling a point in this cluster

(unless the sample size is depends on n). However, if that optimal cluster is also very far away
from the rest of the points, then the points that belong to this cluster contribute a lot to the
cost, and thus it is un-affordable to sample none of them. Since the goal of clustering is to
divide the input into distinct classes, this assumption can also be viewed as a justification to
"neglecting" a small number of outliers that might not fit into any of the classes.

Overall, for the special case of instances that satisfy the two assumptions specified above, a
weak (ε, 2)-coreset is constructed by uniform sampling.

Theorem 1.1.4 (Informal version of Theorem 2.3.1). Let ε > 0 and p ∈ {1, 2} and k = 2. Let
A be a set of n points in (Rd, `p), that satisfy the α-center proximity property for a large enough
fixed α > 1 and has η-balanced optimal clusters. Then with constant probability, a uniform
sample S of size s = Õ(ε−2pη−1k log k) is a weak (ε, k)-coreset.

The proof is based on the separability property and the 1-median result above for each
optimal cluster separately. Roughly speaking, the separability property implies that an optimal
"local" center for each cluster can serve as a "global" center in an optimal 2-median solution. We
emphasize that this method results in dimension-independent coreset size. The formal theorem
and its analysis can be found in Chapter 2.3, and it immediately raises the obvious question: how
can we generalize the result to k ≥ 2? Finally, we remark that if datasets in practice satisfy the
above conditions, then this theorem provides theoretical justification for why uniformly sampling
is effective in reducing the dataset size, while preserving the cost of the optimal solution. To
the best of our knowledge, this is the first result that relies on a separability assumption to get
an improved coreset construction.
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PTAS for k-Clustering Rank-Aggregation
Now, we present two applications of strong (ε, k)-coresets, in order to (1 + ε)-approximate the
k-rank-aggregation problem. This part of the thesis is independent of the first part, and the
coresets are not based on uniform sampling, but rather on recent results that use the impor-
tance sampling framework. In particular, a strong coreset for (PN ,Kτ ) is obtained using a
known dimension-independent coreset construction by [BJKW21] and an isometric embedding
of PN into `22 [JKS16]. Another key component in our result is a PTAS for 1-rank-aggregation
(Corollary 7.3 by [Sch12]). Our algorithms invoke it (in a black-box manner) to find a 1-median
of each set in certain partitions.

The first result is for small k (e.g. constant).

Theorem 1.1.5 (Informal version of Theorem 3.2.1). Let ε, δ ∈ (0, 1). Let A ⊆ PN of size n
be a k-rank-aggregation instance. Then, there is a (1 + ε)-approximation randomized algorithm
that succeeds with probability at least 1− δ and in time

O

(
poly(n,N,

1

ε
) · kpoly(k, 1ε ,

1
δ )
)
.

If ε is treated as a constant, the above running time is actually polynomial in n and N , and
thus this algorithm is actually an FPT-PTAS in k. The algorithm operates by computing a
strong (ε, k)-coreset of A ⊆ PN , and then trying all possible partitions of the coreset, where for
each partition it uses the 1-median PTAS from [Sch12] to find an approximate center for each
set (cluster). See section 3.2 for full details.

The second result does not restrict the value of k, but rather considers a special subset of
inputs that satisfy a separability condition (a different one than in the results above) known as
the β-distributed property.

Definition 1.1.6. (β-distributed [ABS10]) A k-median instance A is called β-distributed for
β > 0, if for every optimal center c∗i of an optimal cluster A∗i , and every data point p /∈ A∗i , it
holds that

D(p, c∗i ) ≥ β
OPT(A, k)

|A∗i |
.

This definition implies that in a β-distributed instance, for every optimal cluster, the optimal
center is far away from every outside point. Using this definition, we have the following theorem.

Theorem 1.1.7. (Informal version of Theorem 3.3.1) Let ε ∈ (0, 1). Let A ⊆ PN of size n be
a k-rank-aggregation instance that satisfies the β-distributed property. Then there is a (1 + ε)-
approximation algorithm that returns a solution in time

Õ

((n
ε

)O(ε−5β−1)
kO(β−1) poly

(
n,N,

1

ε

))
.

Our algorithm is an adaptation of an algorithm from [ABS10]. The setting in [ABS10] is
different since their algorithm only deals with center points that are part of the input and thus it
is affordable to enumerate all possible centers and take the best one. In our setting, the centers
are chosen from a prohibitively large ambient space (N ! points to be exact) and the algorithm
cannot efficiently try all possible options. Our modification to the algorithm from [ABS10] is an
added step that guesses, by exhaustive search, a coreset (that is known to exist) for every cluster
with high cost and then applies on this coreset the 1-rank-aggregation PTAS [KS07, Sch12] to
find an approximate center. We remark that since the instance is separated, it is not possible to
have many clusters with high cost, and thus this exhaustive search still results in a reasonable
running time. Additionally, the algorithm guesses the coresets since it does not know in advance
what are the sets from which it needs to extract a coreset. We note that if ε and β are treated
as constants, then this algorithm’s running time avoids the exponential dependency in k. See
Section 3.3 for the specifics.
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1.2 Related Work
k-Clustering. The notoriously difficult k-median problem generated a huge amount of re-
search that considered many variants. It is a special case of the general k-clustering problem
or the facility location problem, and two of its most important versions are the "continuous"
and "discrete" k-median. In the former, which is also the focus of this thesis, the centers
C can be any arbitrary set of k points from the ambient metric space V , while in the lat-
ter, the k centers come from a specific set of points that is given as input, e.g., the input
set A. Along with the many settings for k-median problem, there are also plenty of algorith-
mic approaches for approximating a solution, to name a few, linear programming rounding
[LV92, CGTS02], primal-dual methods [JV01, ANFSW19], dual fitting [JMS02], local search
[CG99, KPR00, AGK+04], sampling [MOP01, CS04, MP04, MOP04] and combinations of these
methods [Ind99, LS13]. For the discrete case, the state of the art is (2.675 + ε)-approximation
[BPR+15], which relies on two improved steps from previous works of [AGK+04, LS13]. It is
possible to derive a (5.35 + ε)-approximation for the continuous case by only considering input
points as centers and losing a factor of 2. Additionally, we mention approximation algorithms
in noteworthy metric spaces. In Euclidean space, the problem is APX-hard when both k and
d are part of the input [GI03], however it admits a PTAS if we fix one of these parameters
[ARR98, HPM04, Che09, CKM19, FRS19]. A PTAS also exists for bounded doubling metrics,
as shown in recent results [FRS19, CFS19].

Regarding the hardness of the problem, [JMS02] showed that the discrete metric k-median
is NP-hard to approximate better than 1 + 2

e factor, which is an improvement to a classic
result by [GK99]. For the continuous case, it was recently shown by [CKL21] to be NP-hard to
approximate within a 2− o(1)-factor.

Coreset Constructions. Strong coreset constructions for k-median (and k-clustering in
general), saw many advances since the first definitions in [AHPV04, HPM04]. They are no-
tably useful, when there are constraints on the available amount of storage, or in streaming
and distributed settings, using the merge-and-reduce framework [BS80, AHPV04]. The first
construction was geometric-based for Euclidean spaces of dimension d by [HPM04], of size
O
(
kε−d log n

)
which is exponential in d, and it was later shown that the factor of log n can

be avoided in Euclidean spaces by [HPK07]. Subsequently, Chen [Che09] designed strong (ε, k)-
coresets for general metric spaces, which employ a few uniform sampling steps from rings around
approximate centers and achieve size O

(
k2ε−2 log2 n

)
. We remark that in general metric spaces

it is shown in [BBH+20] that the log n factor in the size of strong (ε, k)-coresets is inevitable,
even for k = 1. This fact rules out the possibility of removing the log n factor in general metric
spaces even for separable inputs (using definitions that implicitly assume k > 1). Succeeding
Chen, a framework based on importance sampling and VC-dimension arguments was introduced
by [LS10, FL11]. The importance sampling technique is different compared to uniform sampling,
since the algorithm constructs a sampling distribution, where "important" points are sampled
with higher probability. Compared to uniform sampling, this distribution is harder to estimate
in practice, hence the advantage of using uniform sampling in this thesis. Until recently, this
framework produced the best coreset sizes by improvements and refinements in multiple papers
for different settings and metrics spaces, [SW18, BBH+20, HV20, FSS20, BJKW21]. For Eu-
clidean spaces, the works of [BFL16, SW18, HV20, BJKW21] removed the dependency in the
dimension d for the coreset size using different proof techniques and running times. Coresets
were found in additional metric spaces. For example, in metric spaces of bounded doubling di-
mension, denoted ddim, [HJLW18] showed a construction of coreset of size O

(
k3 · ddim · ε−2

)
.

In graph metrics, [BBH+20] constructs a coreset for graphs with bounded treewidth of size lin-
ear in the treewidth, and in [BJKW21] a framework for excluded-minor or bounded highway
dimension graphs was designed.
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The current state of the art is by [CSS21], which propose a completely new construction
framework. In this framework, one need only to show the existence of a centroid set in order to
obtain a small (logarithmic in the size of the centroid set) coreset. Their framework applies to
Euclidean spaces, achieving coreset size of O(k log kε−4) (independent of both n and dimension
d), to general metric spaces achieving coreset size of O(kε−2 log n), and to the special graph
families mentioned above.

For a comprehensive surveys of coresets and their construction techniques, see [MS18, Fel20].
Finally, we remark that some of the papers mentioned above also leverage the coresets to design
approximation algorithms for the corresponding clustering problem.

Separability Conditions. There are about five central, up to small variants, competing
separability conditions for the k-clustering problem, that capture approximately the same notion
of separated optimal clusters. In the papers listed below, the authors used these definitions to
restrict the k-clustering problem, and suggested improved (exact or approximation) algorithms
for these cases. Here, we briefly discuss the conditions themselves and emphasize that some
of them imply the conditions used in this thesis, and thus motivate our choice of these defini-
tions. The first condition is known as γ-perturbation resilient [BL12]. The intuition around this
property was the fact that most distance measures used on real-life datasets are based on some
heuristic measure, and thus do not exactly capture the dissimilarity between the objects. Hence,
if we assume the input is γ-perturbation stable, then the optimal clusters should stay invariant if
we perturb the distances between the objects a little (by up to a factor of γ). This definition is a
successfull one, since it implies the α-center proximity condition (for γ = α) that is more useful
for proving algorithms correctness [ABS12, ACM+20]. An important property of the α-center
proximity condition, is that for large enough α, specifically for α ≥ 1+

√
2, the k-median problem

can be optimally solved in polynomial time using an algorithm that is based the single-linkage
algorithm and dynamic programming to find the best partition [ABS12, BL16]. Two additional
conditions, are known as the ε-separated [ORSS13] and (c, ε)-approximation stability [BBG09].
The former assumes that the optimal cost of clustering using k-centers is factor ε smaller then
the optimal clustering using k − 1 centers. The latter definition provides a guarantee that an
approximation to the cost is actually an approximation to the true target clustering. Both
of [ORSS13] and [BBG09] definitions imply the β-distributed condition (for slightly different
parameters), which allows for designing a PTAS for the discrete k-medians [ABS10].

For surveys on these separability notions, see [ABD09, BR14, Ben15] and references therein.
Additionally, the separability definitions were surveyed from a more practical perspective in
[Ben15]. They discuss if these definitions can get us closer to resolving the "clustering is difficult
only when it doesn’t matter" interpretation [DLS12].

Rank Aggregation. The rank aggregation problems have deep roots in the fields of social
choice theory, voting and statistics [Ken38, Kem59, YL78, You88], and we only present here an
overview from a computational point of view. As mentioned above, it is known to be NP-hard
to optimize exactly [BTT89b, BTT89a]. The case of n = 2 voters is easy to solve by simply
choosing one of the voters (or any point on one of their shortest paths) as an optimal solution. It
was later shown to be NP-hard for even integer n ≥ 4 number of voters [DKNS01, BBD05]. The
complexity of constant odd number of votes was open until recently, when [BBG+19] showed
that it is NP-hard for every n ≥ 7. Thus, exact polynomial algorithms for n = 3 and n = 5
number of voters is still unresolved. See [MHP18] for a recent investigation for the case of n = 3.

There is a diverse landscape of approximation algorithms for the 1-rank-aggregation prob-
lem and we briefly survey the main results. First, we consider randomized constant factor
approximation algorithms. Two 2-approximation algorithms were suggested by [ACN08]. The
simple one is a 2-approximation achieved by picking any input permutation at random. A more
intricate approach leverages a reduction from the set of rankings A to a directed tournament
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graph, which allows for divide-and-conquer algorithm (performing "quick-sort" type iteration
on the vertices) to create an output ranking (the graph topological sort). It is also shown by
[ACN08] that choosing the best output among the two above algorithms guarantees an even
better 11/7-approximation. Additionally, an analysis by [CFR10] guarantees that a simple po-
sitional method, attributed as early as to Borda [Bor84], provides a 5-approximation. Another
approach uses a distance measure called the Spearman-footrule distance [DG77]. It was shown
in [DKNS01] that it is possible to optimally solve the corresponding rank-aggregation using this
distance measure, and since for every two permutations, their Spearman-footrule distance is
at most a factor 2 from their Kendall-tau distance [DG77], it immediately yields yet another
2-approximation. The best constant factor approximation of 4/3 was given by [ACN08], using
randomized LP rounding. The randomized pivot-based and linear programming algorithms were
derandomized by [ZW07].
Somewhat in parallel to the above results, the method of local search (swap adjacent candidates
until local minimum is reached) from [DKNS01] was used to formulate a PTAS (that guarantees
(1 + ε)-approximation) [KS07, Sch12]. Their idea was to reduce the problem into a directed
tournament graph, and begin from a known constant factor approximation. Then, they improve
by divide and conquer split and local search on each part. We use their result in a black-box
manner every time our algorithm will search for a 1-median of a certain subset of the input.

Finally, we also mention that there are notions of partial rankings (such as q-ratings and
top-r lists) [FKS03, FKM+04, FKM+06, Ail10]. A PTAS was also designed for top-r lists by
combining two of the above methodologies [MM20]. It starts with an initial constant factor
approximation using positional or comparison-sort algorithm, and then performs incremental
improvements using local search.

1.3 Open Questions
In this thesis, we mention multiple open questions along the way, and we repeat here the main
questions that are left open. For the first part, the most obvious future work is to extend the
weak (ε, 2)-coreset result to general k > 2. In general, the fundamental power of the uniform
sampling for weak coresets constructions is interesting. Can this technique work for other metric
spaces? Regarding separability notions, it will be useful to understand whether large enough
uniform sample preserves the separability property of the input set for k ≥ 2, even at a cost of
deteriorating the separability parameter. Finally, do we really need the separability condition
to construct a weak coreset for k ≥ 2? If so, what is the weakest assumption that can make it
work?

From the second part of the thesis, the most glaring open question, is to design a PTAS for
k-rank-aggregation without the β-distributed separability assumption. For example, is there a
different algorithm that leverages the structure of the permutation space (PN ,Kτ ) rather than
just using a 1-median approximation as a black-box?
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Chapter 2

Weak Coresets by Uniform Sampling

In this chapter, we study weak coresets, denoted by S, that are constructed using uniform sam-
pling from an input set A. The sampling is performed by s independent draws, with replacement,
from the input set A, where every point x ∈ A is sampled with uniform probability of 1

n . In
Sections 2.1 and 2.2 we obtain a weak (ε, 1)-coresets of dimension-independent size in both the `2
and `1 metrics spaces respectively (with different size bounds). Section 2.3 considers inputs that
satisfy separability assumptions (Definitions 1.1.2 and 1.1.3), to obtain a weak (ε, 2)-coreset.
These assumptions allow us to argue about each optimal cluster independently and to use the
above results for k = 1.

All through this chapter, we denote by m(X) an optimal median of a set X. If the median
is not unique, then m(X) refers to an arbitrary one. Additionally, m̂(X) denotes a point that is
a (1± ε)-approximate median. We emphasize that both m(·) and m̂(·) are not easily computed
in general.

2.1 Dimension-Independent Weak (ε, 1)-Coreset in `2

In this section we consider a set A ⊂ Rd equipped with the Euclidean distance `2, and wish
to construct a weak (ε, 1)-coreset of size that is dimension-independent by using only uniform
sampling from A (Theorem 2.1.5). This is the first bound that is dimension independent, and
improves over [MS18]. Before proving it, we need to review the dimension-dependent bound.

Dimension-Dependent Bound
The following is a known result for dimension-dependent size weak (ε, 1)-coreset obtained by
using uniform sampling.

Theorem 2.1.1 (Theorem 4 of [MS18]). Let ε ∈ (0, 1). Let A ⊆ Rd and let S be a uniform
sample of A of size |S| ≥ Ω(ε−2d log d

ε log(1
δ )). Then with probability at least 1− δ, S is a weak

(ε, 1)-coreset of A i.e., ∑
x∈A
‖x−m(S)‖2 ≤ (1 + ε)

∑
x∈A
‖x−m(A)‖2 .

We now show that this theorem extends also to a (1 + ε)-approximation of m(S).

Theorem 2.1.2 (Weak Coreset Approximate Center). Let ε ∈ (0, 1
45), δ ∈ (0, 1

4) . Let A ⊆
Rd and let S be a uniform sample of A of size |S| ≥ max{Ω(ε−2d log d

ε log 1
δ ), 4

δ}. Then with
probability at least 1− δ, every (1 + ε)-approximate median of S, denoted m̂(S), is a (1 + 37ε)-
approximate median of A, i.e.,∑

x∈A
‖x− m̂(S)‖2 ≤ (1 + 37ε)

∑
x∈A
‖x−m(A)‖2 .

10



The proof of this theorem is similar to the proof of Theorem 2.1.1, but requires adjusting the
constants in their technical lemma (see Lemma 6 in [MS18]) and using an additional observation.

Lemma 2.1.3 (Adaptation of Lemma 6 in [MS18]). Let ε ∈ (0, 1
45). Let A ⊂ Rd and S ⊆ A be a

uniform sample of A. Then for every point b with
∑

x∈A ‖x− b‖2 ≥ (1+36ε)
∑

x∈A ‖x−m(A)‖2,

P

[∑
x∈S
‖x− b‖2 <

∑
x∈S
‖x−m(A)‖2 +

9ε|S|
|A|

∑
x∈A
‖x−m(A)‖2

]
≤ exp

(
−ε

2|S|
4

)
.

Proof. The proof is similar to the proof of Lemma 6 in [MS18]. We only need to change the
constants of their defined random variable to the following

X =
∑
x∈S

‖x− b‖ − ‖x−m(A)‖+ ‖m(A)− b‖
2
(
‖m(A)− b‖+ 9ε

|A|
∑

x∈A ‖x−m(A)‖
) .

Rearranging the condition for a point b as follows∑
x∈A

(‖x− b‖ − ‖x−m(A)‖) > 9ε
∑
x∈A
‖x−m(A)‖+ 9ε

(
|A| ‖b−m(A)‖+ 9ε

∑
x∈A
‖x−m(A)‖

)
and using Chernoff bound completes the proof. �

Lemma 2.1.4. For every δ ∈ (0, 1
2),

P
[ 1

|S|
∑
x∈S
‖x−m(A)‖2 ≤

1

δ|A|
∑
x∈A
‖x−m(A)‖2

]
≥ 1− δ.

Proof. Follows by using Markov’s inequality since

E

[
1

|S|
∑
x∈S
‖x−m(A)‖2

]
=

1

|A|
∑
x∈A
‖x−m(A)‖2 .

�

We are now ready to prove the extended theorem (its proof structure is based on [MS18]).

Proof of Theorem 2.1.2. We denote OPT :=
∑

x∈A ‖x−m(A)‖2. By Markov’s inequality and
a union bound over S, all points in S will be contained in the ball B of radius r = |S|

δ′
OPT
n

around m(A) w.p at least 1 − δ′. Let m̂(S) a (1 + ε)-approximate median of S. To show that
m̂(S) is also inside the ball B, we use the fact that it is (1 + ε)-approximation of m(S), triangle
inequality and Lemma 2.1.4, and obtain with probability at least 1− δ′∑

x∈S
[‖m(S)− m̂(S)‖2 − ‖x−m(S)‖2] ≤

∑
x∈S
‖x− m̂(S)‖2 ≤ (1 + ε)

∑
x∈S
‖x−m(S)‖2

⇒ ‖m(S)− m̂(S)‖2 ≤
(2 + ε)

|S|
∑
x∈S
‖x−m(S)‖2 ≤

(2 + ε)

δ′|A|
OPT.

In addition, by Theorem 2.1.1 we have with probability at least 1− δ′, and by using the triangle
inequality,∑

x∈A
‖x−m(S)‖2 ≤ (1 + ε)

∑
x∈A
‖x−m(A)‖2 ⇒ ‖m(S)−m(A)‖2 ≤

2 + ε

|A|
OPT.
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Using triangle inequality and assuming |S| > 1
2δ′ , conclude that m̂(S) is contained in B:

‖m̂(S)−m(A)‖2 ≤ ‖m̂(S)−m(S)‖2 + ‖m(S)−m(A)‖2 ≤
4OPT
δ′|A|

<
8|S|OPT
|A|

.

Let C be an ε′ = εOPT
|A| ball-cover of B (i.e. for every x ∈ B, there exists p ∈ C such that

‖x− p‖2 ≤ ε′. It is known that |C| = O(3/ε)d). Using union bound and setting |S| = c ·
dε−2 log d

ε log 1
δ′ for sufficiently large constant c, Lemma 2.1.3 holds for every point b ∈ C with

probability at least 1 − δ′. Assume this event happens. Let p ∈ C be the closest point in the
ball-cover to m̂(S). We have by Lemma 2.1.4,∑

x∈S
‖x− p‖2 ≤

∑
x∈S

[
‖x− m̂(S)‖2 + ‖m̂(S)− p‖2

]
≤ (1 + ε)

∑
x∈S
‖x−m(S)‖2 + |S|εOPT

|A|

≤
∑
x∈S
‖x−m(A)‖2 + ε

8|S|OPT
|A|

+ |S|εOPT
|A|

=
∑
x∈S
‖x−m(A)‖2 + ε

9|S|
|A|

∑
x∈A
‖x−m(A)‖2 .

Now, by Lemma 2.1.3 we have that
∑

x∈A ‖x− c‖2 ≤ (1 + 36ε)
∑

x∈A ‖x−m(A)‖2. Finally,
using triangle inequality and union bound over all events mentioned above (where δ′ = δ/4),
concludes the proof:∑

x∈A
‖x− m̂(S)‖2 ≤

∑
x∈A
‖x− c‖2 + |A| ‖c− m̂(S)‖2 ≤ (1 + 37ε)

∑
x∈A
‖x−m(A)‖2 .

�

Dimension-Independent Bound
The following theorem is the main result of this section, a weak (ε, 1)-coreset in `2 distance using
only uniform sampling, and of size that is dimension-independent.

Theorem 2.1.5. Let ε ∈ (0, 1
45) and δ ∈ (0, 1

4). Consider the 1-median clustering problem with
input set A ⊂ Rd and a uniform sample S ⊆ A of size

|S| = max

{
Ω

(
ε−4 log2

(
1

εδ

)
log

(
ε−3 log

1

εδ

))
,
8

δ

}
.

Then with probability at least 1− δ, S is a weak (ε, 1)-coreset of A, i.e.,∑
x∈A
‖x−m(S)‖2 ∈ (1± ε)

∑
x∈A
‖x−m(A)‖2 .

Preserving Cost using Johnson-Lindenstrauss Transform. The following is a gen-
eral definition for sub-gaussian dimension reduction, typically referred to as Johnson-Lindenstrauss
(JL) transform.

Definition 2.1.6 (Sub-Gaussian Dimension Reduction [MMR19]). Let ε, δ ∈ (0, 1/2). A family
of random linear maps Ld,t : Rd → Rt is called sub-gaussian dimension reduction if for every
d ≥ 1, and all x ∈ Rd, we have

PL∼Ld,t [‖Lx‖2 ∈ (1± ε) · ‖x‖2] ≥ 1− δ
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where t = O
(

log(1/δ)
ε2

)
. Also, for every unit vector x ∈ Rd and every ∆ ≥ 0, it holds,

PL∼Ld,t [‖Lx‖2 ≥ 1 + ∆] ≤ exp
(
−Ω(∆2t)

)
.

A key step in our proof is a recent result by [MMR19] that shows the above transforms with
target dimension t = Õ(ε−2 log k) preserves the cost of every partition to k subsets within (1+ε)
factor.

Theorem 2.1.7 (Theorem 1.3 of [MMR19]). Let ε, δ ∈ (0, 1/4) and consider any family of
random maps Ld,t : Rd → Rt that satisfy Definition 2.1.6. Then for every d ≥ 1, and integer
k ≥ 1 the following holds. For every finite A ⊂ Rd,

PL∼Ld,t [cost(L(A)) ∈ (1± ε) cost(A) for all partitions A = (A1, A2, . . . , Ak) of A] ≥ 1− δ

where t = O
(

log( k
εδ

)

ε2

)
and cost(A) =

∑k
i=1 minci∈Rd

∑
x∈Ai ‖x− ci‖2.

In [MMR19] it is asserted that the constructions in [JL84, DG03, Ach03] satisfy Definition
2.1.6, and thus apply to the above theorem, making it constructive. An important remark is
that the cost of all possible partitions is preserved, and not the cost for all possible center sets.
Using this theorem, we will mainly need the fact that the optimal clustering cost is preserved.
In particular, for the case of k = 1, we have that the cost of the optimal median is preserved
under these types of JL dimension reduction.

Corollary 2.1.8. For a set A ⊂ Rd, and using a JL transform L satisfying Definition 2.1.6,
with target dimension t = O

(
ε−2 log( 1

εδ )
)
, then with probability at least 1− δ,∑

x∈A
‖L(x)−m(L(A))‖2 ∈ (1± ε)

∑
x∈A
‖x−m(A)‖2 .

A valuable property of Theorem 2.1.7, is that the target dimension t is independent of the
input dimension d and the number of input points n, especially when considering the original
JL lemma [JL84] that require target dimension O(ε−2 log n). Hence, another consequence of
Theorem 2.1.7 is that the sum of distances is preserved after a dimension reduction, while also
saving the factor of log n in the target dimension. Intuitively, we only care to preserve the value
of the entire sum, and not all pairwise distances, which allows preserving the extra log n factor.

Lemma 2.1.9. Let L be a JL transform according to the conditions in Theorem 2.1.7 with target
dimension t = O

(
ε−2 log( 1

εδ )
)
. Then, for every set A ⊂ Rd, with probability at least 1− δ,∑
x∈A
‖L(x)‖2 ∈ (1± ε)

∑
x∈A
‖x‖2 .

Proof. This proof was suggested to us by Lingxiao Huang and is based on a reduction of A
to a symmetric set so we can apply Theorem 2.1.7 with k = 1. Let A ⊂ Rd. Define A′ =
A ∪ {−x | x ∈ A}. Then:∑

x∈A′
‖x‖2 = 2

∑
x∈A
‖x‖2 ,

∑
x∈A′
‖L(x)‖2 = 2

∑
x∈A
‖L(x)‖2

Therefore, it is equivalent to prove

∑
x∈A′
‖L(x)‖2 ∈ (1± ε)

∑
x∈A′
‖x‖2 . (2.1)

For a symmetric multi-set A′, where x ∈ A′ implies −x ∈ A′, the optimal solution is the
origin (the 0 vector) since it is the point that minimizes the distance to all pairs of points
{−x, x}. In our case, m(A′) = 0 ∈ Rd and m(L(A′)) = 0 ∈ Rt, because both A′ and L(A′) are
symmetric. Thus, by Corollary 2.1.8, with probability at least 1− δ, Equation (2.1) holds. �

Remark. A different proof, that might be of independent interest, using sub-gaussian properties
of the JL-transform, is given in Theorem A.3.1. See Appendix A for details and comparison.
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Concluding the Proof of Theorem 2.1.5. The proof uses a dimension reduction L
satisfying Definition 2.1.6. The reduction is used only for the sake of analysis in order to use the
dimension-dependent weak (ε, 1)-coreset guarantee by Theorem 2.1.2 in lower dimension. The
following two additional lemmas that use the results previously mentioned are needed. The first
lemma implies that L(m(A)) is a (1± ε)-approximate for the median of L(A).

Lemma 2.1.10. Consider a JL transform L that satisfies the conditions and result of Theorem
2.1.7. Then ∑

y∈L(A)

‖y − L(m(A))‖2 ∈ (1± 3ε)
∑

y∈L(A)

‖y −m(L(A))‖2 .

Proof. First, by Corollary 2.1.8:∑
y∈L(A)

‖y −m(L(A))‖2 ∈ (1± ε)
∑
x∈A
‖x−m(A)‖2 .

On the other hand, by applying Lemma 2.1.9 on the set A with respect to m(A),∑
x∈A
‖L(x)− L(m(A))‖2 ∈ (1± ε)

∑
x∈A
‖x−m(A)‖2 .

Conclude the lemma by combining both of the above inequalities. �

The second lemma, shows that L(m(S)) is an (1± ε)-approximate for the median of L(A).

Lemma 2.1.11. Consider a JL transform L that satisfies the conditions and result of Theorem
2.1.7. Then: ∑

x∈A
‖L(x)− L(m(S))‖2 ∈ (1±O(ε))

∑
x∈A
‖L(x)−m(L(A))‖2

Proof. By Lemma 2.1.10 we have that L(m(S)) can serve as m̂(L(S)). Then, by applying
Theorem 2.1.2 with respect to the set L(S) ⊆ L(A), we obtain:∑

x∈A
‖L(x)− L(m(S))‖2 ≤ (1 +O(ε))

∑
x∈A
‖L(x)−m(L(A))‖2

�

Proof of Theorem 2.1.5. Let δ′ = δ
2 , pick t = cε−2 log( 1

εδ′ ) for sufficiently large constant c and
draw L ∼ Ld,t satisfying the conditions of Definition 2.1.6. Then, combining all of the above
results and using union bound, we have that Theorem 2.1.2, Theorem 2.1.5 and their corollaries
hold. Thus, taking S of size,

|S| = max

{
Ω

(
ε−2t log

t

ε

)
,
8

δ

}
= max

{
Ω

(
ε−4 log2(

1

εδ
) log(ε−3 log

1

εδ
)

)
,
8

δ

}
that was computed by plugging t into the sample size specified by Theorem 2.1.2, suffices to
obtain a probability of at least 1− δ for the following to hold.∑

x∈A
‖x−m(S)‖2 ≤ (1 + ε)

∑
x∈A
‖L(x)− L(m(S))‖2 Lemma 2.1.9

≤ (1 +O(ε))
∑
x∈A
‖L(x)−m(L(A))‖2 Lemma 2.1.11

≤ (1 +O(ε))
∑
x∈A
‖x−m(A)‖2 . Corollary 2.1.8

�

Remark. We do not know whether the above theorem and proof technique can be extended to
a (1 + ε)-approximation of m(S). Currently, the difficulty lies in using Theorem 2.1.7, which
require an optimal center for every partition.
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2.2 Dimension-Independent Weak (ε, 1)-Coreset in `1

In this section, we obtain a weak (ε, 1)-coreset under the `1 distance using only uniform sam-
pling of size O(ε−2 log ε−1) (Theorem 2.2.9). We emphasize that the size is independent of
the number of points n and the dimension d. To prove it, we begin by showing a dimension-
dependent weak (ε, 1)-coreset and then proceed to perform a finer-grained analysis to obtain a
dimension-independent weak (ε, 1)-coreset. The analysis is based on considering each dimension
independently, and dividing each dimension into geometrically decreasing size intervals. For
each interval, we estimate the probability and approximation factor for the case that the median
of the sample lands in that interval. To have a well-defined unique median, we assume for sim-
plicity that n and s are odd numbers. This leads us to first show the following well known fact,
that one can compute the 1-median under `1 distance efficiently, by considering each coordinate
separately.

Fact 2.2.1. The 1-median of a set of points A ⊂ Rd in `1 is given by the median of the points
in each coordinate separately.

Specifically, throughout this section, given A ⊂ Rd equipped with the `1 distance, when we
need to compute the 1-median of A, denoted bym(A), we assume that in each coordinate i ∈ [d],
denoted by m(A)i, we have median of the multiset Ai = {xi | x ∈ A} ⊂ R where xi is the i’th
entry of the point x, i.e.,

m(A) = (median(A1),median(A2), . . . ,median(Ad)).

The proof works by changing the order of summation, and arguing that the median minimize
the sum of absolute errors on each dimension separately. Additionally, we use the following
definitions for numbers in R.

Definition 2.2.2. The rank of an element y ∈ A ⊂ R is rank(y) = |{x ∈ A : x ≤ y}|.

Definition 2.2.3. An ε-rank-approximate median of a set A ⊂ R is a point y ∈ A s.t.

rank(y) ∈
(
n+ 1

2
± εn

)
.

Dimension-Dependent Bound
As a prerequisite to the main result of this section, we begin by showing a weak (ε, 1)-coreset
in (Rd, `1) metric space, that will be constructed using uniform sampling, and has size which is
dependent of the dimension d.

Theorem 2.2.4. Let A ⊂ Rd and ε ∈
(
0, 1

10

)
. Let S be a sample multi-set of size s =

2ε−2 log(8d) drawn independently and uniformly (with replacement) from A. Then with proba-
bility at least 3

4 , S is a weak (ε, 1)-coreset of A, i.e., for m(S) ∈ Rd the 1-median of S,∑
x∈A
‖x−m(S)‖1 ≤ (1 +O(ε))

∑
x∈A
‖x−m(A)‖1 .

The analysis is based on the following three lemmas, in which we consider each dimension
separately. Thus, we switch our focus to the 1-dimensional case of the real line, and temporarily
use the notation of A ⊂ R and S ⊆ A a uniform sample. The first lemma states the median of
a uniform samples is an ε-rank-approximate.

Lemma 2.2.5. Let A ⊂ R a set of n real distinct numbers and ε ∈
(
0, 1

10

)
. Let S ⊆ A be a

uniform sample multiset of size s = 2ε−2 log 2
δ . Then with probability at least 1− δ, m(S) is an

ε-rank-approximate median of A.
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Proof. The proof is based on [McG18] and is repeated here for completeness. We begin by
partitioning the set A into three disjoint sets using the rank:

AL =

{
x ∈ A : rank(x) ≤ n+ 1

2
− εn

}
AM =

{
x ∈ A : rank(x) ∈

[
n+ 1

2
± εn

]}
AU =

{
x ∈ A : rank(x) ≥ n+ 1

2
+ εn

}
.

Observe that m(S) is an ε-rank-approximate median of A if less than s
2 points are sampled from

both AL and AU , i.e., we require

|AL ∩ S| <
s

2
and |AU ∩ S| <

s

2
.

We show this holds with high probability for AL, and the case for AU follows symmetrically.
Define the random variable X =

∑
x∈S 1[x ∈ AL] as a sum of independent indicators. Notice

that |AL ∩ S| ≥ s
2 if and only if X ≥ s

2 . Also, by linearity of expectation, E[X] = s
(n+1

2
−εn)

n =
s
(

1
2 + 1

2n − ε
)
.

Using Hoeffding’s inequality, and assuming 1
n ≤ ε and s = 2ε−2 log 2

δ we have:

P
[
X ≥ s

2

]
= P

[
X − EX ≥ s · ε− s

2n

]
≤ P

[
X − EX ≥ s · ε

2

]
≤ exp

(
−1

2
ε2s

)
≤ δ

2
. (2.2)

Overall, by union bound, we have that

P
[
|AL ∩ S| <

s

2
∧ |AU ∩ S| <

s

2

]
≥ 1− δ.

�

The second lemma shows that for every point in A, it is possible to upper bound the difference
between the cost of using that point to the cost of using the median, by associating the difference
in ranks and distance between the point and the median.

Lemma 2.2.6. For every point y ∈ A ⊂ R it holds that,∑
x∈A

[
|x− y| − |x−m(A)|

]
≤ 2 |rank(y)− rank(m(A))| · |y −m(A)| .

Proof. The proof is inspired by the proof of Lemma 2.2.5, defining three different sets.
Let y ∈ A. Assume that rank(y) 6= rank(m(A)), (otherwise both sides are equal to zero).
Assume y < m(A), and the other direction follows symmetrically. Define:

AL = {x ∈ A : rank(x) ≤ rank(y)}
AM = {x ∈ A : rank(y) < rank(x) ≤ rank(m(A))}
AU = {x ∈ A : rank(m(A)) < rank(x)}

Clearly, by definition,

|AL| = rank(y) , |AU | = n− rank(m(A)) , |AM | = rank(m(A))− rank(y).

Now, depending on which set x ∈ A is in, we have the following cases:

• If x ∈ AL, then |x− y| − |x−m(A)| = − |y −m(A)|.
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• If x ∈ AU , then |x− y| − |x−m(A)| = |y −m(A)|.

• If x ∈ AM , then by triangle inequality, |x− y| − |x−m(A)| ≤ |y −m(A)|.

Using the first two items and the fact that

|AU | − |AL| = n− rank(m(A))− rank(y) ≤ rank(m(A))− rank(y),

we obtain, ∑
x∈AL∪AU

[|x− y| − |x−m(A)|] = (rank(m(A))− rank(y)) |m(A)− y| .

The last item implies that∑
x∈AM

[|x− y| − |x−m(A)|] ≤ (rank(m(A))− rank(y)) · |y −m(A)| .

Overall, using the symmetric case of y > m(A), we have∑
x∈A

[|x− y| − |x−m(A)|] =
∑

x∈AL∪AU

[|x− y| − |x−m(A)|]

+
∑
x∈AM

[|x− y| − |x−m(A)|]

≤ 2 |rank(y)− rank(m(A))| · |y −m(A)| .

�

Continue to follow notation on the 1-dimensional real line, and denote by OPT1 :=
∑

x∈A |x−m(A)|,
and ALG1 :=

∑
x∈A |x−m(S)|. Now, we relate a difference in the rank to an approximation

factor of the objective cost.

Lemma 2.2.7. Let y ∈ A ⊂ R and 1
n ≤ a < 1

2 s.t. |rank(m(A))− rank(y)| ≤ (n+1
2 − an).

Then, ∑
x∈A
|x− y| ≤

1− a+ 1
2n

a− 1
2n

OPT1.

Proof. Applying Lemma 2.2.6 and triangle inequality, we have,∑
x∈A
|x− y| ≤ 2 |rank(y)− rank(m(A))| · |y −m(A)|+ OPT1

≤ 2(
1

2
+

1

2n
− a)n |y −m(A)|+ OPT1

≤ (1 +
1

n
− 2a)(

∑
x∈A
|x− y|+ OPT1) + OPT1.

Rearranging to obtain, ∑
x∈A
|x− y| ≤

1− a+ 1
2n

a− 1
2n

OPT1.

�

Corollary 2.2.8. If y is an ε-rank-approximate median, for ε ∈
(
0, 1

10

)
, then,∑

x∈A
|x− y| ≤ (1 + 5ε)OPT1.
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Proof. By definition, since y is an ε-rank-approximate median then |rank(y)− rank(m(A))| ≤
εn. To use Lemma 2.2.7, we notice that an = (n+1

2 − εn) and thus a = (1
2 + 1

n − ε). Plugging
in the formula provide the required result. �

To complete the proof, we return to Rd, again writing S ⊆ A ⊂ Rd.

Proof of Theorem 2.2.4. Using Lemma 2.2.1 we know we can find the median of each coordinate
separately. Using Lemma 2.2.5 with δ = 1/4d, we obtain a sample size of s = 2ε−2 log 8d. Then,
using union bound over all d coordinates, we have that with probability at least 3/4, for every
coordinate i ∈ [d], m(S)i is an ε-rank-approximate median of Ai. Then, if we assume this event
happens, we have by Corollary 2.2.8 that all coordinates are (1 + 5ε)-approximation and thus
in total also m(S),∑

x∈A
‖x−m(S)‖1 =

∑
x∈A

d∑
i=1

|xi −m(S)i| =
d∑
i=1

∑
x∈A
|xi −m(S)i|

≤
d∑
i=1

(1 + 5ε)
∑
x∈A
|xi −m(A)i| = (1 + 5ε)

∑
x∈A
‖x−m(A)‖1 .

�

We remark that the above lemmas and approach will also be useful now when we extend to
the dimension-independent case.

Dimension-Independent Bound
Now, the main theorem of this section is a weak (ε, 1)-coreset under the `1 distance, with
dimension-independent size which is obtained using uniform sampling.

Theorem 2.2.9. Let A ⊂ Rd and ε ∈
(
0, 1

10

)
. Let S be a sample multi-set of size s = 18 1

ε2
log 1

ε
points drawn independently and uniformly (with replacements) from A. Then with probability at
least 3

4 , S is a weak (ε, 1)-coreset of A, i.e., for m(S) ∈ Rd the 1-median of S,∑
x∈A
‖x−m(S)‖1 ≤ (1 +O(ε))

∑
x∈A
‖x−m(A)‖1 .

The analysis is again based on proving general results in one dimension, and in the end we
sum over all of the coordinates. Given a uniform sample S ⊆ A ⊂ R, and its median m(S),
we divide the set of possible ranks of m(S) (with respect to A) into geometrically decreasing
size intervals depending on their distance from rank(m(A)). For each interval, we compute the
probability that m(S) lands in the interval, and the approximation factor in such case. These
are quantified in the following lemmas.

Lemma 2.2.10. Let a, b be two real numbers s.t. 1
n ≤ a < b < 1

2 + 1
2n . Let I = [an, bn] be

their corresponding interval (to the left of the rank(m(A))). If a multiset S ⊆ A ⊂ R is drawn
uniformly at random, then,

P [rank(m(S)) ∈ I] ≤ b|S|/22|S| = (4b)
|S|
2 .

Proof. Denote by B ∼ Binom(|S|, b) and use direct computation using the binomial cumulative
distribution function,

P [rank(m(S)) ∈ I] ≤ P [rank(m(S)) ≤ bn] ≤ P
[
B ≥ |S|

2

]

≤
|S|∑

r=
|S|+1

2

(
|S|
r

)
br (1− b)|S|−r ≤ b|S|/2 · 2|S|.
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�

Now, assuming ε ≤ 0.1 < 3
8 + 1

2n , we define the following intervals to cover [1, n].

Definition 2.2.11 (Covering Intervals). Let ε ≤ 0.1. The following intervals are called covering
intervals of [1, n].

1. IM = [n+1
2 − εn,

n+1
2 + εn].

2. IL = [ n
23
, n+1

2 − εn] and IR = [n+1
2 + εn, n− n

23
+ 1].

3. For every integer λ ∈ [3, log n− 1], write

Iλ = ILλ ∪ IRλ = [
n

2λ+1
,
n

2λ
] ∪ [n− n

2λ
+ 1, n− n

2λ+1
+ 1].

Remark. The endpoints of the intervals might not be integral, but it should not matter for the
analysis as long as the union of all intervals cover [1, n].

Again, we denote by OPT1 :=
∑

x∈A |x−m(A)|, and ALG1 :=
∑

x∈A |x−m(S)|. For the
following results, we consider points with rank smaller than n+1

2 . Analogues results can be
proven symmetrically for the rest of the points with rank larger than n+1

2 .

Corollary 2.2.12. For the covering intervals, if rank(m(S)) ∈ ILλ , then ALG1 ≤ 2λ+3OPT1.

Proof. Let λ be an integer in [3, log n− 1]. Notice that if rank(m(S)) ∈ ILλ , then

|rank(m(S))− rank(m(A))| ≤ (
n+ 1

2
− n

2λ+1
).

Thus, taking a = 1
2λ+1 for Lemma 2.2.7 concludes the proof by bounding the approximation

factor as follows,

1− 1
2λ+1 + 1

2n
1

2λ+1 − 1
2n

=
2λ+1 − 1 + 2λ

n

1− 2λ

n

≤
2λ(2 + 1

n)

0.5
≤ 2λ+3.

�

Additionally, we will need the following technical lemma.

Lemma 2.2.13. For |S| ≥ 2 log 1
ε + 18, and λ ≥ 3, it holds, 2λ+3 ·

(
1

2λ−2

)|S|/2 ≤ 1
2λ
ε

Proof. One can write using |S| = 2 log 1
ε + 18,(

1

2λ−2

)|S|/2
=

(
1

2λ−2

)5( 1

2λ−2

)3( 1

2λ−2

)log ε−1

≤ 1

2λ+3
· 1

2λ

(
1

2

)log ε−1

≤ 1

2λ+3
· 1

2λ
· ε

Multiplying by 2λ+3 concludes the proof. �

Lemma 2.2.14. For every multiset S ⊂ A of real numbers, drawn uniformly at random of size
|S| = 18ε−2 log ε−1, it holds,

E [ALG1] ≤ (1 +O(ε))OPT1.
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Proof. Dividing the possible options for rank(m(S)) according to the above covering intervals
and using the law of total expectation with symmetry w.r.t to the median rank n+1

2 , we have,

E [ALG1] ≤ E
[
ALG1 | rank(m(S)) ∈ IM

]
· P
[
rank(m(S)) ∈ IM

]
+

2E
[
ALG1 | rank(m(S)) ∈ IL

]
· P
[
rank(m(S)) ∈ IL

]
+

2

logn−1∑
λ=3

E
[
ALG1 | rank(m(S)) ∈ ILλ

]
· P
[
rank(m(S)) ∈ ILλ

]
.

The first term can be bounded by using Lemma 2.2.7,

E [ALG1| rank(m(S)) ∈ IM ] · P [rank(m(S)) ∈ IM ] ≤ (1 + 5ε)OPT1.

Bounding the second term follows by using Lemma 2.2.7 with a = 1
23

for the expectation term,
and using Equation (2.2) for the probability,

2E [ALG1| rank(m(S)) ∈ IL] · P [rank(m(S)) ∈ IL] ≤ 32OPT1 · ε.

To bound the third term, we use Corollary 2.2.12 and Lemma 2.2.10 with b = 1
2λ
,

2

logn−1∑
λ=3

E
[
ALG1| rank(m(S)) ∈ ILλ

]
· P
[
rank(m(S)) ∈ ILλ

]
≤ 2

logn−1∑
λ=3

2λ+3OPT1 ·
(

1

2λ−2

)|S|/2
.

Since |S| = 18ε−2 log ε−1 > 2 log ε−1 + 18 for small enough ε, then by Lemma 2.2.13 each
summand is at most 1

2λ
εOPT1, and their sum is bounded by 4εOPT1.

Overall,
E [ALG1] ≤ (1 + 5ε)OPT1 + 32εOPT1 + 4εOPT1 ≤ (1 + 41ε)OPT1.

�

Finally, to conclude the proof of the main theorem, we switch back to Rd. The 1-dimensional
values of the i’th coordinate are denoted by ALG(i) :=

∑
x∈Ai |x−m(S)|1 and OPT(i) :=∑

x∈Ai |x−m(A)|1. Hence, we can write the values of the d-dimensional case with OPT :=∑d
i=1 OPT(i), and ALG :=

∑d
i=1 ALG(i).

Proof of Theorem 2.2.9. Let A ⊂ Rd. Using linearity of expectation with Lemma 2.2.14, we
obtain,

E [ALG] =
d∑
i=1

E
[
ALG(i)

]
≤

d∑
i=1

(1 + 41ε︸︷︷︸
=:ε′

)OPT(i) = (1 + ε′)OPT.

Now, given t ≥ 1, we have by Markov inequality,

P[ALG ≥ (1 + tε′)OPT] = P
[
ALG− OPT ≥ tε′OPT

]
≤ E [ALG− OPT]

tε′OPT ≤ ε′OPT
tε′OPT =

1

t
.

Conclude, by choosing t = 4, that with probability at least 3
4 ,∑

x∈A
‖x−m(S)‖1 ≤ (1 + 4ε′)OPT.

�

Remark (Amplification). It is possible to perform a "median-trick" to amplify the constant suc-
cess probability to at least 1−δ probability. It is performed by sampling q = log 1/δ independent
uniform samples S1, . . . , Sq ⊆ A, and then choosing the sample Sj , s.t. cost(A,m(Sj)) is the
median objective score with respect to all other samples.
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2.3 Weak (ε, 2)-Coreset for Separable Instance
This section considers a set A ⊂ Rd of size n under either `2 or `1 distance. The main result of
this section (Theorem 2.3.1) is a weak (ε, k)-coreset for k = 2 with dimension-independent size.
Construction is again performed by using only uniform sampling, and assuming the instance
satisfies the α-center proximity (Definition 1.1.2) and η-balanced (Definition 1.1.3) conditions.
The analysis will use the results from previous sections ( 2.1, 2.2). Denote by s1, s2 the sizes of
a weak (ε, 1)-coreset obtained by uniform sampling in either `1 or `2 respectively (specified by
Theorems 2.1.5 ,2.2.9), when using a failure probability of δ = 1

8k . Specifically, for p ∈ {1, 2},

sp =

{
O
(

1
ε2

log 1
ε log k

)
p = 1

O
(
max

{
ε−4 log2

(
ε−1k

)
log
(
ε−3 log

(
ε−1k

))
, k
})

p = 2
.

The most relevant weak (ε, k)-coreset construction that we are aware of, with a slightly
different definition, is due to [FMS07]. There, the algorithm performs uniform sampling in a
small ring around approximate centers, and importance sampling of points farther away from
the approximate centers. In our approach, we consider inputs that satisfies two additional
intertwined conditions, and each sample is chosen uniformly at random, without the need for
computing approximate centers beforehand.

1. Balanced optimal clusters. The input instance A satisfy the η-balanced optimal property
(Definition 1.1.3). That is, for k = 2, and every optimal clustering A∗1, A∗2, each optimal
cluster has size at least η n2 , for some η ∈ (0, 1].

2. Separable optimal clusters: For k = 2, the input instance satisfy the α-center proximity
property (Definition 1.1.2), for α ≥ 9k

η + 5.

We emphasize that the definitions require that every optimal solution is balanced and sepa-
rable. Additionally, the balanced clusters condition is similar to the assumption used [MOP04].
In short, they showed [MOP04, Section 7] that if we do not have a lower bound on the smallest
optimal cluster, then the probability of uniformly sampling points from the small optimal cluster
is also very small. Thus, the structure of that clusters is not captured, and it might result in
large contribution to the cost if the inter-cluster distance is large.

We are now ready to state the following main result of this section.

Theorem 2.3.1. Let A ⊆ Rd in (Rd, `p) for p ∈ {1, 2}, let k = 2, and let A∗1, A
∗
2 be any two

optimal clusters. Assume A satisfies the η-balanced optimal clusters for η ∈ (0, 1] and α-center
proximity for α ≥ 9k

η + 5. Then, a uniform sample multiset S ⊆ A of size s = 27k log(16k) 1
ηsp

is a weak (ε, 2)-coreset with probability at least 3
4 , i.e., for every optimal 2-median solution

{m∗1(S),m∗2(S)} of S, it holds,

cost(A, {m∗1(S),m∗2(S)}) ≤ (1 + ε)OPT(A, 2).

The analysis is split into two stages. At first, we show that with good probability, every
sampled cluster Si := A∗i ∩ S is large enough and is a weak (ε, 1)-coreset of the corresponding
optimal cluster A∗i . The second stage shows that the set {m(S1),m(S2)} is an optimal 2-median
solution of S. Then by the separability condition, each Si is actually an optimal cluster for
2-median on S. Combining the above two steps, will conclude the proof.

Probability Analysis. Let k ≥ 2 be an integer. The following lemma show that for every
i, j ∈ [k], the two sampled clusters Si, Sj are large enough, i.e., |Si| ≥ sp, and that approximately
the same size, up to some constant, i.e., |Si| ≈ |Sj |.
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Lemma 2.3.2. Let A ⊂ Rd, k a positive integer and p ∈ {1, 2}. Assume that for every i ∈ [k],
the optimal cluster A∗i is of size at least η nk for η ∈ (0, 1]. Then with probability at least 7

8 ,
a uniform sample S ⊆ A of size s = 27k log(16k) 1

ηsp samples at least 2
3η

s
k points from every

optimal cluster A∗i .

Proof. Consider a single optimal cluster A∗i . Define the number of points sampled from the
optimal cluster A∗i by Ni =

∑s
j=1 1 [xj ∈ A∗i ] where xj is the j’th point sampled into S. Every

A∗i is of size at least η nk , thus we sample a point from A∗i with probability at least η
k and we

have that ENi ≥ sηk . Hence, by Chernoff bound with precision parameter of 1
3 ,

P
[
Ni /∈

[
2

3
,
4

3

]
ENi

]
≤ 2 exp

(
−ENi

27

)
≤ 1

8k
.

Now, using union bound, we claim that with probability at least 7
8 , the number of samples in

every optimal cluster fall in the above range, i.e.,

P
[
∀i ∈ [k] , |Si| ∈

[
2

3
,
4

3

]
ENi

]
≥ 7

8

�

Corollary 2.3.3. With probability at least 7
8 , for every i ∈ [k], it holds that |Si| ≥ 2

3 |S|
η
k ≥ sp.

We can now show, that with constant probability, for every i ∈ [k] the sample set Si is a
weak (ε, 1)-coreset of its respective optimal cluster A∗i .

Lemma 2.3.4. Let A ⊂ Rd, k a positive integer and p ∈ {1, 2}. Assume that for every i ∈ [k],
the optimal cluster A∗i is of size at least η nk for η ∈ (0, 1]. Then with probability at least 3

4 , a
uniform sample S ⊆ A of size s = 27k log(16k) 1

ηsp can be partitioned into S = S1∪S2∪· · ·∪Sk,
where for every i ∈ [k], it holds that Si is a weak (ε, 1)-coreset A∗i .

Proof. By Corollary 2.3.3, with probability at least 7
8 , there are at least sp samples from every

optimal cluster A∗i , and thus the weak (ε, 1)-coreset condition is satisfied. Since the failure
probability of δ = 1

8k was chosen for the size of sp, then, using union bound, with probability
at least 7

8 , for every i ∈ [k], the sample set Si is a weak (ε, 1)-coreset of A∗i . Conclude in total,
again by union bound, that with probability at least 3

4 , for every i ∈ [k], the sample set Si is a
1-median weak coreset for the optimal cluster A∗i . �

Remark. The probability analysis was performed for general k, and might be useful assuming
the approximation analysis can be generalized for k > 2.

Approximation Analysis. Let k = 2 and p ∈ {1, 2}. We use the following notation. Let
i ∈ {1, 2}. Then Ri := maxx∈A∗i ‖x−m(A∗i )‖p is the distance of m(A∗i ) to the farthest point in
its cluster, and write R := maxj∈{1,2}Rj . For γ = 3k

η + 1 we define Bi := Ball(m(A∗i ), γR) =

{x ∈ Rd : ‖x−m(A∗i )‖p ≤ γR}. The balls of radius γR around the centers m(A∗i ), will allow
us to argue about ambient space centers (it will soon be clear how to find the constraints on γ
with respect to α and their value). Clearly, by definition, Si ⊆ Ai ⊆ Bi. We assume that R > 0.
Otherwise, for R = 0, the dataset is comprised of two distinct points with multiplicities, and
thus the 2-median is just these two points.

We begin by stating useful properties of the α-center proximity assumption (Definition 1.1.2).
The first one is a lower bound of the distance between any two optimal centers.

Claim 2.3.5. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity property.
Then, (α− 1)R < ‖(m(A∗1)−m(A∗2)‖p.
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Proof. Let i 6= j ∈ [2]. By α-center proximity and triangle inequality, for every x ∈ A∗i ,

α ‖x−m(A∗i )‖p <
∥∥x−m(A∗j )

∥∥
p
≤ ‖x−m(A∗i )‖p +

∥∥m(A∗i )−m(A∗j )
∥∥
p
.

Hence, for every x ∈ A∗i and every center j 6= i, we have,

(α− 1) ‖x−m(A∗i )‖p <
∥∥m(A∗i )−m(A∗j )

∥∥
p
.

Conclude the proof by taking the point x realizing R. �

Using this lower bound, we have that any two points from distinct balls are far away. Then,
conclude that B1, B2 are disjoint for large enough α, i.e., if γ < 1

2(α− 1).

Claim 2.3.6. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity property.
For every y ∈ B1, z ∈ B2, ‖y − z‖p > (α− 1− 2γ)R

Proof. Immediately by triangle inequality and Claim 2.3.5,

‖y − z‖p ≥ ‖m(A∗1)−m(A∗2)‖p − ‖y −m(A∗1)‖p − ‖z −m(A∗2)‖p > (α− 1)R− 2γR.

�

An additional required property, is that using the nearest neighbour rule, with arbitrary tie
breaking, m(S1),m(S2) separates A into A∗1, A∗2, and S into S1, S2.

Lemma 2.3.7. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity property.
Assume γ ≤ α−2

3 . Then every y ∈ B1, z ∈ B2 partition A into A∗1, A
∗
2 and S into S1, S2.

Proof. Without loss of generality, let x ∈ A∗1 (the case of x ∈ A∗2 is symmetric).
First, by triangle inequality and the definition of R and the balls,

‖x− y‖p ≤ ‖x−m(A1)‖p + ‖m(A1)− y‖p ≤ R+ γR ≤ (γ + 1)R.

On the other hand, since x ∈ B1, z ∈ B2, and using Claim 2.3.6, we have

‖x− z‖p > (α− 1− 2γ)R.

Since γ ≤ α−2
3 , it holds that ‖x− z‖p ≥ ‖x− y‖p. Overall, A is partitioned into A∗1 and A∗2,

and similarly S is partitioned into S1 and S2 since for every i ∈ [2], Si ⊆ Ai. �

The following corollary requires an additional bound of the distance between the optimal
and approximate centers. Since Si ⊆ Ai ⊆ Ball(m(A∗i ), Ri), then for γ ≥ 1, and for every
i ∈ [2], and using convexity, m(Si) ∈ Ball(m(A∗i ), Ri) ⊆ Bi. Overall, m(Ai),m(Si) ∈ Bi, and
using Lemma 2.3.7, we obtain the following corollary.

Corollary 2.3.8. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity property.
Assume γ ∈

[
1, α−2

3

]
. Then both sets of 2-centers {m(A∗1),m(A∗2)} and {m(S1),m(S2)} partition

A into A∗1, A
∗
2 and S into S1, S2.

Additional corollary is the following bound for the cost of S using the centers {m(S1),m(S2)}.

Corollary 2.3.9. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity property.
Assume γ ∈

[
1, α−2

3

]
. Then cost of S with centers {m(S1),m(S2)} satisfies

cost(S, {m(S1),m(S2)}) = OPT(S1, 1) + OPT(S2, 1) ≤ 2|S1|R1 + 2|S2|R2 ≤ 2|S|R.
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Now, we turn to the two main lemmas that show that only 2-medians of the form {m(S1),m(S2)}
realize the optimal cost. Hence, the final conclusion is that any {m(S1),m(S2)} induce an opti-
mal partition S∗1 , S∗2 . By Corollary 2.3.8, this partition is S1, S2, and we have that S∗1 = S1 and
S∗2 = S2 (up to permutation).

Lemma 2.3.10. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity and
the η-balanced conditions. Let S ⊆ A be a uniform sample, where m(Si) is the median of
Si = S ∩A∗i . Assume that the event described in Lemma 2.3.2 occur and take γ ∈

[
6
η + 1, α−2

3

]
.

Then m(S1),m(S2) realize the optimal 2-median cost of S.

Proof. The goal of the proof is to show that for every c1, c2 ∈ Rd, it holds that {m(S1),m(S2)}
achieves at least the same cost, i.e., need to show:

∀c1, c2 ∈ Rd , cost(S, {c1, c2}) ≥ cost(S, {m(S1),m(S2)}.

Let c1, c2 ∈ Rd. We divide into two cases, according to the way we choose c1, c2, depending if
they belong to B1, B2.

• Case 1: Each ball has a representative center, i.e. c1 ∈ B1, c2 ∈ B2.
By Lemma 2.3.7, c1, c2 partition S into S1, S2. Thus, we can lower bound the cost using
c1, c2, since m(S1),m(S2) minimize the sum of distances over S1, S2 respectively.

cost(S, {c1, c2}) =
∑
x∈S1

‖x− c1‖+
∑
x∈S2

‖x− c2‖p Lemma 2.3.7

≥
∑
x∈S1

‖x−m(S1)‖p +
∑
x∈S2

‖x−m(S2)‖p Optimality

= cost(S, {m(S1),m(S2)}). Corollary 2.3.9

• Case 2: There is at least one ball without a representative center. Assume without loss of
generality that c1, c2 /∈ B2.
In this case, all points of S2 need to be represented by either c1 or c2. In either case, since
both c1, c2 do not belong in B2, by triangle inequality it holds that for every x ∈ S2 and
every i ∈ {1, 2},

‖x− ci‖p ≥ ‖ci −m(A2)‖p − ‖x−m(A2)‖p > (γ − 1)R.

Summing up to obtain,
cost(S, {c1, c2}) > |S2|(γ − 1)R.

On the other hand, by Corollary 2.3.9,

cost(S, {m(S1),m(S2)}) ≤ 2|S|R.

Finally, for k = 2, and using Corollary 2.3.3 that |S| is at most 3k
2η |S2|, it holds that for

γ ≥ 3k
η + 1, the required inequality 2|S|R ≤ |S2|(γ − 1)R is satisfied.

Overall, the goal is achieved for both cases, hence for every c1, c2 ∈ Rd. �

Now, we need to show that under the separability assumption, every optimal 2-centers of S
for the 2-median objective are actually two 1-medians for S1 and S2 separately.

Lemma 2.3.11. Let A ⊂ Rd be a 2-median instance satisfying the α-center proximity and the η-
balanced conditions. Let S ⊆ A be a uniform sample, where m∗1(S),m∗2(S) are optimal 2-median
for S. Assume that the event described in Lemma 2.3.2 occur and take γ ∈

[
6
η + 1, α−2

3

]
. Then

for every i ∈ [2], one of the optimal 2-centers is a 1-median of Si.
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Proof. By the analysis of Lemma 2.3.10, we claim that m∗1(S),m∗2(S) belong to B1 and B2 since
any two centers c1, c2 such that both do not belong to one of the balls have cost strictly larger
than OPT(S, 2). Assume without loss of generality that m∗1(S) ∈ B1,m

∗
2(S) ∈ B2. Thus, by

Lemma 2.3.7, assuming γ ≤ α−2
3 , m∗1(S),m∗2(S) partitions S into S1, S2 and we have,

OPT(S, 2) = cost(S, {m∗1(S),m∗2(S)}) =
∑
x∈S1

‖x−m∗1(S)‖p +
∑
x∈S2

‖x−m∗2(S)‖p .

If we assume that one of the 2-medians of S isn’t a 1-median of S1 or S2, then the above cost
can be strictly improved, resulting in a contradiction to the optimality of m∗1,m∗2. �

Finally, for k = 2, we choose γ = 3k
η + 1 and α = 9k

η + 5 which satisfies all conditions
encountered above, and we can prove our main theorem.

Proof of Theorem 2.3.1. By Lemmas 2.3.2 and 2.3.4, we have that with probability at least
3
4 , each optimal cluster was sampled at least 2

3η
s
k times, and Si serves as a weak coreset for

A∗i . Assuming this event occurs, and using Lemma 2.3.11, every optimal 2-medians of S can be
viewed as two 1-medians of S1, S2 separately, i.e. OPT(S, 2) = cost(S, {m(S1),m(S2)}). Finally,
by Corollary 2.3.8, we know that m(S1),m(S2) separates A into A∗1, A∗2. Overall,

cost(A, {m∗1(S),m∗2(S)}) = cost(A, {m(S1),m(S2)}) Lemma 2.3.11

=
2∑
i=1

∑
x∈Ai

‖x−m(Si)‖p Corollary 2.3.8

≤
2∑
i=1

(1 + ε)
∑
x∈A∗i

‖x−m(A∗i )‖p weak (ε, 1)-coreset

= (1 + ε) cost(A, {m(A∗1),m(A∗2)}).

�

2.4 Discussion
It is important to extend these results to (1+ε)-approximate medians of S, since the results in this
chapter currently only apply to the optimal medians of the sample S. Furthermore, the inherent
power of uniform sampling is still unresolved. We showed that uniform sampling can produce
weak (ε, 1)-coresets in the metric spaces (Rd, `p) for p ∈ {1, 2}. Thus, it is straightforward to
ask whether this technique also applies to other metric spaces.

The analysis of the weak (ε, k)-coreset result for k = 2 only require that α is large enough,
namely α ≥ 9k

η +5. It is emphasized that both the size of the sample |S|, and the approximation
factor ε are independent of α. Hence, one can ask what happen if we use sample size |S| or
an approximation factor that depends also on the separability parameter. Can we improve the
analysis in such case? Can we decouple the dependency of α in k and η? It is also interesting
to understand whether we can prove a similar result for inputs that only satisfy the η-balanced
property, or at least reduce the dependency in the constants of α?

Finally, an obvious direction for future work is to generalize the current proof of weak
(ε, 2)-coreset for general k > 2. We remark that if the input satisfy an additional structural
property, it is indeed possible. In short, consider a ball of radius γRi around each optimal
median m(A∗i ), and by writing the radii of the optimal clusters of A in decreasing magnitude,
i.e. R1 ≥ R2 ≥ · · · ≥ Rk, and assume that the input satisfies Rk

R1
≥ µ for some constant µ. Then,

it is possible to obtain a weak (ε, k)-coreset, for α ≥ 9k
ηµ + 5 by using only uniform sampling and

with the same size guarantee.
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Chapter 3

From Rank Aggregation
to Clustering Permutations

In this chapter we consider the k-rank-aggregation problem, that is the generalization of the rank-
aggregation to a k-median objective. In Section 3.1 we devise a strong (ε, k)-coreset construction
(Definition 1.0.1) for an input set A ⊆ PN . It uses a known construction of [BJKW21] and an
embedding of the permutations into `22 [JKS16]. This coreset is later used as a component of
a PTAS for the k-rank-aggregation problem for two special cases. The first one, presented in
Section 3.2, is a PTAS for small (e.g. constant) k. This FPT-PTAS in k enumerates over all
possible partitions of a strong (ε, k)-coreset of the input A. If ε is treated as a constant, this
results in running time that is polynomial in both n and N and is exponential in k. The second
case applies for a restricted sets of inputs that satisfy the β-distributed condition (Definition
1.1.6), and is examined in Section 3.3. We propose a variation of an algorithm from [ABS10],
that produces a (1 + ε)-factor approximate solution in time that is polynomial in n,N, k where
ε, β are treated as constants. In contrast to the algorithm of [ABS10], our modification allows
the selection of ambient points as centers and is achieved by using a a strong (ε, 1)-coreset for
each cluster with high cost separately.

Preliminaries. The input permutation set is denoted by A = {σ1, . . . , σn} ⊆ PN , and it
describes a set of n voters, that each ranks N different candidates. We use σ[i] to denote the
location of candidate i in the ranking σ. A naive computation of the Kendall-tau distance
takes O(N2) time, but we will assume access to a distance oracle that computes the Kendall-tau
distance between two permutations in O(N logN) time (for example, by using merge-sort). This
can be further improved to O(N

√
logN) time by [CP10], though not crucial to our application

since it is the same up to poly-logarithmic factors.
Now, we define an embedding of the Kendall-tau distance into (R(N2 ), `22) semi-metric space, and
show this embedding is an isometric embedding.

Definition 3.0.1 (Kemeny Embedding [JKS16]). The Kemeny embedding is a mapping of
permutations over N items into a binary vector of length

(
N
2

)
. It is defined by ψ : PN →

{0, 1}(
N
2 ), where for every σ ∈ PN , and every i < j ∈ [N ], it holds

ψ(σ)[i, j] =

{
0 if σ[i] < σ[j]

1 if σ[j] < σ[i]

Claim 3.0.2 (Kemeny Embedding is Isometric). For every two permutations σ, ρ ∈ PN ,

Kτ (σ, ρ) = ‖ψ(σ)− ψ(ρ)‖22
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Proof. Let σ, ρ ∈ PN . By the definition of Kendall-tau,

Kτ (σ, ρ) =
∑

i<j∈[N ]

1 {i, j in opposite order in σ and ρ} .

If σ and ρ disagree on the order of a pair of items i, j, then ψ(σ)[i, j] 6= ψ(ρ)[i, j]. Hence,

‖ψ(σ)− ψ(ρ)‖22 =
∑

i<j∈[N ]

1 {ψ(σ)[i, j] 6= ψ(ρ)[i, j]}2

Conclude that ψ is an isometric embedding into `22. �

We remark that ψ and its inverse ψ−1 (for every point in ψ(Pn)) are efficiently computable
in O(N2) time. Additionally, this embedding can also be seen as an isometric embedding into
`1, but the `22 point of view will be more useful later for our coreset construction.

Additionally, we assume access to the 1-rank-aggregation PTAS from [KS07, Sch12]. We
denote an invocation of this PTAS on a set A ⊆ PN with precision parameter ε by F (A, ε), and
we additionally use the notation F ((A,W ), ε) in cases where A is a weighted set of permutations.
Whether we use the non-weighted or weighted case should be clear from the context. Extending
the PTAS to weighted instances is important since we will be applyig it on strong coresets,
which are weighted sets. It is performed by adding the weights of the rankings to the edge-
weighted tournament graph that the PTAS uses internally. The only requirement from this
tournament is that the edges weights satisfy that wu,v + wv,u = 1 for every pair u, v ∈ [N ], u 6=
v. Indeed the requirement holds since the weight of each edge (u, v) is defined as wu,v =
1
W

∑
σ∈Awσ1 [σ(u) < σ(v)] where W =

∑
σ∈Awσ. The PTAS running time is according to its

derandomized version (See Corollary 7.3 by [Sch12]), hence, given a set of n rankings, it produces
a (1 + ε)-approximation for their Kemeny-aggregation, in time

Trank(n,N, ε) = O

(
N3 logN

ε

)
+N2Õ(1/ε12) +O(nN2). (3.1)

3.1 Strong Coresets in Permutations Space
This section presents a strong (ε, k)-coreset construction for a set A in the (PN ,Kτ ) metric
space. The main components are the isometric Kemeny embedding ψ (Definition 3.0.1) and
a coreset construction of dimension-independent size introduced by [BJKW21]. Generally, the
algorithm in [BJKW21] computes a coreset for Euclidean (k, z)-clustering whose goal is to find
a center set C of size k that minimizes the objective

∑
x∈AD(x, C)z. For z = 2, the objective

is also known as the k-means problem and their construction only needs to use the distance D
between the points. The coreset size is denoted by s(k, ε) = Õ(ε−4k2 log 1

δ ) where δ is the failure
probability, and the running time is denoted by T (n, k, d, ε) = Õ(nkd) where d is the dimension
of the input. For more details, we refer the reader to Corollary 4.18 in [BJKW21, Section 4.3].

Remark. Coreset for k-means of dimension-independent size was also previously designed by
[BFL16, FSS20]. We use the subsequent work of [BJKW21] to have simple bounds on the
weights of the coreset points as seen in Lemma 3.1.3.

The following algorithm constructs a strong (ε, k)-coreset for a set of permutations A with
respect to the k-rank-aggregation objective. In step 1, it invokes the algorithm from [BJKW21] in
a black-box manner, with z = 2 and the square root of the Kendall-tau distance. This algorithm
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returns a k-means coreset for A with respect to the distance D(σ1, σ2) =
√
Kτ (σ1, σ2) for every

two σ1, σ2 ∈ P(N).

Algorithm 1: Coreset Construction in (PN , Kτ )

Input: A = {σ1, . . . , σn}, k, ε ∈ (0, 1), δ ∈ (0, 1)
1 compute a strong (ε, k)-coreset S ⊆ A with weights w : S → R≥0 with respect to the

k-means objective using and distance D(·, ·) =
√
Kτ (·, ·) as described above ;

2 return (S,w)

Theorem 3.1.1. Let ε, δ ∈ (0, 1), and let A ⊆ PN be a k-rank-aggregation instance. Then,
with probability at least 1 − δ, the above algorithm returns a strong (ε, k)-coreset of A of size
|S| = Õ(ε−4k2 log 1

δ ) and in time Tcoreset(n, k, ε, d) = Õ(nkN).

Proof. Let ε ∈ (0, 1), δ ∈ (0, 1), and an integer k. Let S ⊂ A with weights w : S → R≥0 the
output of the algorithm, and let Π ⊂ PN a set of size k the candidate k-centers rankings.
Consider, for the sake of analysis, the embedding ψ (Definition 3.0.1). In Claim 3.0.2, it is shown
that ψ is an isometric embedding, hence, the distances are equal under this mapping, i.e. for
every two σ1, σ2 ∈ P(N), D(σ1, σ2) =

√
Kτ (σ1, σ2) = ‖ψ(σ1)− ψ(σ2)‖2. Since the algorithm

of [BJKW21] succeeds in finding a coreset for the k-means objective with probability at least
1− δ, Algorithm 1 also succeed with the same probability. Overall,∑

σ∈S
w(σ)Kτ (σ,Π) =

∑
σ∈S

w(σ) ‖ψ(σ)− ψ(Π)‖22 Claim 3.0.2

∈ (1± ε)
∑
σ∈A
‖ψ(σ)− ψ(Π)‖22 coreset S correctness

= (1± ε)
∑
σ∈A

Kτ (σ,Π). Claim 3.0.2

Clearly, the size of S is |S| = s(k, ε) = Õ(ε−4k2 log 1
δ ), and the running time is comprised of

using the coreset construction of [BJKW21], where the distance computation time is O(N logN).
Overall, applying their analysis produce a running time of Õ(nkN). �

For the rest of the thesis, we will use the above algorithm to construct coresets under the
Kendall-tau metric space. We will need an additional property of this coreset, captured by the
following lemma. Proving it requires understanding the inner workings of the coreset construc-
tion introduced by [BJKW21]. We thus briefly state its steps. Their algorithm (algorithm 1
in [BJKW21], denoted by B) performs t = log? n iterations of an importance sampling based
coreset construction (algorithm 2 in [BJKW21], denoted by B′). In every iteration i ∈ [1, log? n],
algorithm B′ is invoked with Si−1 as input (for i = 1, S0 = A), and it outputs a smaller subset
Si that functions as a strong (ε, k)-coreset of the input set A. This technique is called itera-
tive size reduction, and it succeeds with probability at least 1− δ (Theorem 3.1 in [BJKW21]).
The following is an immediate consequence from the proof of Theorem 3.1 by [BJKW21], and
subsequently we state the required lemma.

Corollary 3.1.2. Assuming the whole iterative size reduction described above succeeds, then for
every integer k, at the end of each iteration i ∈ [1, log? n], the set Si is a strong (ε, k)-coreset of
the input set A. Hence, by the strong coreset properties, at the end of each iteration i, the total
weight of Si is bounded by

wSi :=
∑
x∈Si

wSi(x) ∈ (1± ε)n.

Lemma 3.1.3. For k ≥ 1, if Algorithm 1 outputs a strong (ε, k)-coreset S ⊆ A, then the weight
of every x ∈ S is bounded. Specifically, for every x ∈ S, wS(x) ∈

[
c1

1
|S| , c2

|A|
|S|k

]
for some

constants c1, c2.
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Proof. This proof shows general properties of the weights obtained for the points in the coreset
from [BJKW21]. Since our coreset construction is using it in a black-box manner, these proper-
ties apply to our coreset as well. Thus, this proof deals with the actual construction algorithm
from [BJKW21] and leverage its iterative nature.

Consider some step i of algorithm B described above. Denote by Si−1 the input to B′ and
Si its output. We now show that the weights of Si are bounded in

[
c1

1
|Si| , c2

|A|
|Si|k

]
for some

constants c1, c2. In particular, to complete the proof, observe that it is also true for the last
iteration, where Si = S.
The proof will follow by bounding the sensitivities and probabilities of each point and thus
bounding the weights. We analyze the sensitivities, probabilities and the weights of points in
the coreset Si−1 that was output at some step i− 1 ∈ [0, log? n] of B. It is emphasized that Si
was calculated by a single step of the iterative size reduction, which is an invocation of B′.
First, we aim at bounding the sensitivities, and we remember that for every x ∈ Si−1, its
sensitivity is defined by

σx = σapxx := wSi−1(x) ·
(

Kτ (x,Capx)

cost(Si−1, Capx)
+

1

wSi−1(Capx(x))

)
.

Using the same notation as defined by [BJKW21], where Capx is an approximate set of centers
for the k-clusters problem on Si−1. Additionally, denote by Capx(x) the set of all points in Si−1

that are assigned to the same cluster as x, i.e. have the same nearest center as x. Naive bounds
on the above sensitivity produce

σx ∈ wSi−1(x) ·
[

1

wSi−1(Capx(x))
, 1 +

1

wSi−1(Capx(x))

]
.

Using Corollary 3.1.2, we can bound wSi−1(Capx(x)) by

wSi−1(Capx(x)) =
∑

y∈Capx(x)

wSi−1(y) ∈ [wSi−1(x), (1 + ε)n].

Therefore, for ε < 1,

σx ∈ wSi−1(x) ·
[

1

(1 + ε)n
,

(
1 +

1

wSi−1(x))

)]
∈ wSi−1(x) ·

[
1

2n
,O(1)

]
(3.2)

Next, we would like to bound the total sensitivity σSi−1
:=
∑

x∈Si−1
σx. For the upper bound,

we use Lemma 3.4 of [BJKW21], which shows that σSi−1 ≤ 1 + αk for α = O(1). To lower
bound, we use Equation (3.2) for every σx, and Corollary 3.1.2, and we have for ε < 1

2 ,

σSi−1 ≥
∑

x∈Si−1

wSi−1(x) · 1

2n
≥ 1

2n
· (1− ε)n ≥ 1

4
= Ω(1).

Overall, the total sensitivity is bounded in

σSi−1 ∈ [Ω(1), O(k)] . (3.3)

To bound the sampling probability of each point x ∈ Si−1, we use its definition px := σx
σSi−1

. For
every x ∈ Si−1, by Equations (3.2) and (3.3),

px ∈ wSi−1(x) ·
[
Ω

(
1

nk

)
, O(1)

]
. (3.4)

Finally, since wSi(x) :=
wSi−1

(x)

px|S| , we have that the weights are bounded as well. For each x ∈ Si,
it holds,

wSi(x) ∈
[
Ω

(
1

|Si|

)
, O

(
nk

|Si|

)]
.

�
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3.2 FPT-PTAS for k-Rank-Aggregation
In this section, we present an FPT-PTAS in k for k-rank-aggregation. The algorithm has a
similar spirit to the one presented in [BJKW21, Section 5.1]. To achieve this, we combine two
components as follows. Given A, the algorithm computes a strong (ε, k)-coreset S of A by
Algorithm 1, of size ‖S‖0 = Õ(ε−4k2 log 1

δ ) (Theorem 3.1.1). Then, it considers every possible
partition (by exhaustive search) of S, and for each partition it computes a (1 + ε)-approximate
center for every set in the partition using the known PTAS for 1-rank-aggregation (see Pre-
liminaries). This procedure outputs a (1 + ε)-approximate solution for the k-rank-aggregation
problem in time that is polynomial in n and N when ε is treated as a constant, but exponential
in k.
Algorithm 2: FPT-PTAS for k-rank-aggregation
Input : A = {σ1, . . . , σm} ⊆ PN , k, Kτ , F, ε ∈ (0, 1), δ ∈ (0, 1)
Output: Coreset S

1 use Algorithm 1 to compute a strong (0.25ε, k)-coreset S ;
2 for each partition S1, . . . , Sk of S compute a (1 + 0.1ε)-approximate center

π̂i ← F ((Si,Wi), 0.1ε) for each set Si with weights Wi, and save the lowest cost
partition Ŝ1, . . . , Ŝk with Π̂ = {π̂1, . . . , π̂k} ;

3 return the best set of approximate k-centers Π̂ ;

Theorem 3.2.1. Let ε, δ ∈ (0, 1), and let A ⊆ PN be a k-rank-aggregation instance. Then, with
probability at least 1− δ, the above algorithm returns a set of k-centers, denoted by Π̂, s.t.

cost(A, Π̂) ≤ (1 + ε)OPT(A, k),

and runs in time

O

(
kÕ(ε−4k2 log 1

δ
) ·
(
N3 logN

ε
+N2Õ(1/ε12) + nN2

))
.

Proof. Let ε ∈ (0, 1), δ ∈ (0, 1), and a k-rank-aggregation instance A ⊆ PN . Also, write
ε1 = 0.25ε and ε2 = 0.1ε.

First, the algorithm success probability and running time are analyzed. Since we are using
the deterministic version of the 1-rank-aggregation PTAS, the above algorithm success depends
only on the event that the coreset construction succeeds, which happens with probability at least
1− δ. The running time of the algorithm depends on steps 1 and 2. The first is the coreset con-
struction, which takes time Tcoreset(n, k, ε, d) = Õ(nkN2) (Theorem 3.1.1). The second step is an
exhaustive search over all possible partitions of the coreset with k invocations of F ((Si,Wi), ε2)
for each partition (once for every set in the partition). It require O

(
k‖S‖0 · Trank(n,N, ε)

)
time.

Overall, the running time is

O
(
nkN2 + k‖S‖0 · Trank(n,N, ε)

)
.

Using ‖S‖0 = Õ(ε−4k2 log 1
δ ) and Trank(n,N, ε) = O

(
N3 logN

ε

)
+n2Õ(1/ε12)+O(nN2) (Equation

3.1) yields the required running time.
Now, assuming S is indeed a strong (0.25ε, k)-coreset, we can analyze the approximation

factor given by the above algorithm. We will need three different sets of k-centers for the proof,
and for simplicity, we ignore the weights of the different partitions of S. Let Π̂ = {π̂1, . . . , π̂k} ⊂
PN the k candidate centers returned by Algorithm 2, and denote its corresponding partition
of S by Ŝ1, . . . , Ŝk. We also use denote the optimal partition of S by S∗1 , . . . , S

∗
k , and their

optimal k-centers by Π∗ = {π∗1, . . . , π∗k}. Finally, for the intricate part of the proof, denote with
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Π̂∗ = {π̂∗1, . . . , π̂∗k} the approximate centers of each set in the optimal partition. That is, for
every i ∈ [k], π̂∗i is the approximate permutation returned by F (S∗i , ε2). Then,

cost(A, Π̂) ≤ 1

1− ε1
cost(S, Π̂) strong (ε1, k)-coreset

=
1

1− ε1

k∑
i=1

∑
x∈Ŝi

w(x)Kτ (x, π̂i)

≤ 1

1− ε1

k∑
i=1

∑
x∈S∗i

w(x)Kτ (x, π̂∗i ) exhaustive search

≤ 1

1− ε1

k∑
i=1

∑
x∈S∗i

(1 + ε2)w(x)Kτ (x, π∗i ) π̂∗i = F (S∗i , ε2)

=
(1 + ε2)

1− ε1
cost(S,Π∗)

≤ (1 + ε2)

1− ε1
(1 + ε1)cost(A,Π∗) strong (ε1, k)-coreset

≤ (1 + ε)cost(X,Π∗) ε1 = 0.25ε, ε2 = 0.1ε

We remark that the difficult step is the second inequality, that can be justified by remem-
bering that the algorithm is performing an exhaustive search over all k-partitions of the coreset
S. Hence, even the optimal partition S∗1 , . . . , S

∗
k with its approximate centers Π̂∗ have higher

cost then the chosen partition Π̂. �

Remark. This approach should work for any metric space that has an efficient (1+ε)-approximation
for the 1-median problem, even in the presence of a very large or possibly infinite ambient space.

3.3 PTAS for β-Distributed k-Rank-Aggregation
This section presents a (1 + ε)-approximation scheme for the k-rank-aggregation problem with
inputs that satisfy the β-distributed property (Definition 1.1.6). The algorithm and its proof
are adapted from [ABS10], where a PTAS for the β-distributed k-median problem in any finite
metric space is shown. In contrast to [ABS10], where each center must be an input point, we
consider a large metric space (N ! points), where the center points can be taken from the ambient
space. To achieve our result, we again leverage the coreset construction from Section 3.1, this
time only for k = 1, and the PTAS for 1-rank-aggregation. The idea is to perform an exhaustive
search and guess a small coreset (along with a corresponding set of weights) for every large-
cost cluster. Then, for each such coreset, the algorithm finds an approximate center using the
1-rank-aggregation PTAS. The running time of our adapted algorithm is higher by the time it
takes to perform an exhaustive search for strong (ε, 1)-coreset with a correct set of weights for
each large-cost cluster multiplied by the time it takes to find an approximate center of each set.

Definitions and Notation. We denote by C∗ = {C∗1 , . . . , C∗k} a set of optimal clusters,
with optimal centers c∗1, . . . , c∗k. The output of the 1-rank-aggregation PTAS will be denoted by
ĉ. Additionally, we use the following definitions that appeared in [ABS10].

1. A cluster C∗i is called cheap if its optimal cost is bounded, i.e. OPTi ≤ βεOPT
32 , and called

expensive otherwise. Notice that there are at most 32
βε expensive clusters.

2. The inner ring of a cluster C∗i is the set C∗i (core) := {x ∈ C∗i : Kτ (x, c∗i ) ≤
βOPT
8|C∗i |

}.
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Denote by B(x, r) = {y ∈ A : Kτ (x, y) ≤ r} a ball of radius r around a point x. The
algorithm will maintain a list Q of candidate sets for the clusters cores and we denote by
Kτ (x,Q) = minT∈Q;y∈T Kτ (x, y) the distance of a point x from the list. A component T from
the list Q is called good if it contains an inner ring point of some optimal cheap cluster C∗i , and
called bad otherwise.

Algorithm for k-Rank-Aggregation with β-Distributed Inputs
The algorithm pseudo code is now presented, and as in the paper by [ABS10], we assume for
simplicity the algorithm knows the optimal cost, denoted by OPT = OPT(A, k) for clarity.
Otherwise, it can perform a doubling technique starting from a known approximation.

The first procedure, describing the inner loop, is handling only the cheap clusters. It receives
as input the permutations set A = {σ1, . . . σn} ⊆ PN , a set Qinit of approximate centers for
guessed coresets of expensive clusters (will later be chosen by exhaustive search performed by
an external loop), the separability parameter β and the 1-rank-aggregation PTAS function F .
We emphasize that only the centers retrieving stage is changed compared to the algorithm by
[ABS10]. It computes an approximate center in line 13 instead of an exact center.

Algorithm 3: β-Distributed k-Rank-Aggregation - Inner Loop
Input: A, Kτ , k, ε ∈ (0, 1), Qinit, β, F
Initialization Stage:

1 Set Q ← Qinit ;
Population Stage:

2 for s = n, n− 1, n− 2, . . . , 1 do
3 set r = βOPT

4s ;
4 remove any point x s.t. Kτ (x,Q) < 2r ;
5 for every pair of remaining points a, b do
6 if Kτ (a, b) ≤ r ∧ |B(a, r)| > s

2 ∧ |B(b, r)| > s
2 then

7 connect a and b ;

8 for every connected component T of size > s
2 do

9 add T to Q ;
10 define B(T ) = {x : ∃y ∈ T s.t. Kτ (x, y) ≤ 2r} ;
11 remove the points of B(T ) from the instance ;

Centers-Retrieving Stage:
12 for every choice of k components T1, . . . , Tk out of Q do
13 set ĉi = F (Ti ∪B(Ti), ε) for every i ∈ [k] ;
14 partition all n points according to the nearest point among {ĉ1, . . . , ĉk} ;
15 if a clustering of cost at most (1 +O(ε))OPT is found, output these k centers and

halt ;

Now that we know how to handle the case where there are only cheap clusters, we need to
perform an exhaustive search over at most 32

βε possible expensive clusters. The external loop is
the source of the expensive clusters optional centers that are given as input to the inner loop in
the list Qinit. It is infeasible to try all possible points for an expensive cluster. Hence, we need to
shrink the data size, and we thus resort to using strong (ε, 1)-coresets (proved to exist in Section
3.1). We claim that if we try all possible sets of points, and all possible integers that serve as
powers for the rounded weights, then in one of the iterations, the algorithm will obtain a set of
points and a corresponding rounded weights that represent a correct strong (ε, 1)-coreset for an
expensive cluster. The algorithm chooses t = Õ

(
ε−4
)
, which is the size of strong (ε, 1)-coreset,
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chosen by setting k = 1 in the size of the strong (ε, k)-coreset from Theorem 3.1.1.

Algorithm 4: β-Distributed k-Rank-Aggregation - External Loop
Input: A = {σ1, . . . σm} ⊆ PN , k, Kτ , ε ∈ (0, 1), β, F

1 for ` = 0, 1, . . . , 32
βε − 1 do

2 Set t = Õ( 1
ε4

) and I =
[
−1
ε log t

c1
, 1
ε log c2n

t

]
; . coreset size and weights

bounds
3 for every choice of `t points from A and `t integers in I do
4 for every i ∈ [`], j ∈ [t] do
5 denote by p(i, j) ∈ A each guessed point and by q(i, j) ∈ I each guessed

integer ;
6 set weight w(i, j) = (1 + ε)q(i,j) ;

7 for i = 1, 2, .., ` do
8 Set ĉi ← F (({p(i, 1), . . . , p(i, t)}, {w(i, 1), . . . , w(i, t)}), ε) ;

9 Run algorithm 3 with Qinit = {{ĉ1}, {ĉ2}, . . . , {ĉ`}} ;
10 if the algorithm returns a clustering of cost at most (1 +O(ε))OPT then
11 output it and halt ;

The modified algorithm uses ideas from both the k-median and k-means algorithms of
[ABS10] and their analysis, with three main changes. In line 13 of the inner loop, and line
8 of the external loop, we use a PTAS F for finding an approximate center ci (with respect
to the algorithm in [ABS10]) instead of finding an exact center. Also, we increase the size of
the sample t, to use the fact there exists a strong (ε, 1)-coreset for each optimal cluster. The
analysis below is adapting the proof of [ABS10]. We show that the approximation factor is still
(1 + O(ε)), and that the running time is increased, according to the time it takes F to find an
approximate center and the additional time it takes to guess coreset points and approximate
weights.

Analysis
The following theorem applies to the above modified algorithm, and its proof is very similar to
the proof from [ABS10] (Section 4, Theorem 4.6). The changes are due to the use of strong
coresets and (1 + ε)-approximate centers.

Theorem 3.3.1. Let A ⊆ PN be a k-rank-aggregation instance that satisfies the β-distributed
property (Definition 1.1.6). Then, Algorithm 4 outputs k centers whose cost is at most

(1 +O(ε)) OPT(A, k)

in time

O

((n
ε

)O(ε−5β−1)
((

k +
1

εβ

)(
N3 logN

ε
+N2Õ(ε−12) +N2n

)
+ k

O( 1
β

)
nkN2

))
.

For completeness, we cite here three technical lemmas from [ABS10] that are used in the
proof below. They are still true, with unchanged proof, since they refer to the population stage
of Algorithm 3, which is identical to [ABS10].

Lemma 3.3.2 (Claim 4.3 in [ABS10]). Let C∗i be any cluster in the target clustering. By stage
s = |C∗i |, the algorithm adds to Q a component T that contains a point from the inner ring of
C∗i . That is, the algorithm adds a good component with respect to C∗i .

33



Lemma 3.3.3 (Claim 4.4 in [ABS10]). Let T be a good component added to Q, i.e., it contains
an inner ring point from cluster C∗i . Then:

1. ∀x ∈ T , it holds Kτ (x, c∗i ) ≤
βOPT
2|C∗i |

.

2. C∗i (core) ⊆ T ∪B(t) ⊆ C∗i .

3. ∀T ′ ∈ Q s.t. T ′ 6= T , C∗i (core) ∩ T ′ = ∅.

Lemma 3.3.4 (Claim 4.5 in [ABS10]). The list Q contains less than 16
3β bad components at the

end of the population stage.

In addition, we also need the following result regarding the discretization process for the
coresets weights that will be used later in the analysis. Since the weights are taken from a
polynomially-bounded continuous range (Lemma 3.1.3), the algorithm performs discretization of
the range into a logarithmic set of weights and performs an exhaustive search over all possibilities
in polynomial time. The following corollary guarantee that the discretization process only incur
an extra factor of (1 + ε) to the cost.

Corollary 3.3.5. Let S ⊆ A be a strong (ε, 1)-coreset of size s = |S|. Denote its set of weights
by w∗(x1), . . . , w∗(xs). For every x ∈ S, define ŵ(x) = (1 + ε)q(x) where q(x) is the smallest
integer s.t. ŵ(x) ≥ w∗(x). Then, for every point c that serves as center,∑

x∈S
ŵ(xi)Kτ (x, c) ≤ (1 + ε)

∑
x∈S

w∗(x)Kτ (x, c)

Additionally, using Lemma 3.1.3 and the above corollary, we have that the range of powers
used by the algorithm is large enough.

Corollary 3.3.6. Let S ⊆ A be a coreset constructed by Algorithm 1. By Lemma 3.1.3, we know
that every x ∈ S, has bounded weight wS(x) ∈

[
c1

1
|S| , c2

n
|S|k

]
. Thus, considering the discrete set

of weights defined by the discretization process from Corollary 3.3.5, we conclude that there are
O
(

1
ε (log n+ log |S|)

)
possibilities for rounding up each weight of x ∈ S into the nearest power

of (1 + ε). Simply by choosing the power as integer in q(x) ∈
[
−1
ε log |S|c1 ,

1
ε log c2n

|S|

]
for some

constants c1, c2.

Proof of Theorem 3.3.1. First, we deal with the approximation factor of the returned set of
centers. Let ε < 1

2 . Using Lemma 3.3.3 and the fact we are trying all possible coresets for
the expensive clusters, it follows that there exists some choice of k components of Q, s.t. all
components are either an approximate center of a strong coreset of expensive cluster or a good
component of a cheap cluster. Therefore, each component represents a single, unique, cluster of
the optimal clustering C∗. We fix this choice of k components, and show that for the optimal
clustering, replacing the true centers {c∗1, c∗2, . . . , c∗k} with the approximate centers {ĉ1, ĉ2, . . . , ĉk}
that the algorithm outputs, increases the cost by at most (1 + ε′) factor, for ε′ = 12ε. Consider
each optimal cluster separately and fix some optimal cluster C∗i with optimal center c∗i of the
optimal clustering. Denote by OPTi the optimal cost of C∗i using an optimal c∗i .

There are two options. The first one is that C∗i is an expensive cluster. In this case, denote by
Si = {x1, . . . , xt} a correct guess for the set of points of a strong (ε, 1)-coreset of C∗i . Also, denote
a correct set of corresponding weights with W ∗ = {w∗(x1), . . . , w∗(xt)}, with a corresponding
rounded set of weights Ŵi = {ŵ(x1), . . . , ŵ(xt)} (as outlined in the discretization process of
Corollary 3.3.5). Clearly, since Algorithm 4 performs exhaustive search, then at some iteration
it encounters the correct set Si and the correct set of discrete weights Ŵi. We consider now this
iteration of the algorithm, and write by ci the optimal center for (Si, Ŵi), and denote by {ĉi}
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the singleton set that has the (1 + ε)-approximate center computed by F ((Si, Ŵi), ε) that was
given as input from the external loop. Hence,∑
x∈C∗i

Kτ (x, ĉi) ≤
∑
x∈Si

1

1− ε
w∗(x)Kτ (x, ĉi) ε-coreset

≤ 1

1− ε
∑
x∈Si

ŵ(x)Kτ (x, ĉi) rounded up weights

≤ 1 + ε

1− ε
∑
x∈Si

ŵ(x)Kτ (x, ci) ε-approx

≤ (1 + ε)2

1− ε
∑
x∈Si

w∗(x)Kτ (x, c∗i ) optimality & Corollary 3.3.5

≤ (1 + 12ε)
∑
x∈C∗i

Kτ (x, c∗i ) = (1 +O(ε))OPTi. ε-coreset

Note that ci is the optimal center for Si with the weights Ŵ , hence we need to use its optimality
and only then Corollary 3.3.5.

The second option is that C∗i is a cheap cluster. Then, we denote by T the good component
corresponding to it (one such component must exists by Lemma 3.3.2). We break the cost of
C∗i using ĉi, the approximate point picked in step 13 by the Algorithm 3 to serve as center, into
two parts, ∑

x∈C∗i

Kτ (x, ĉi) =
∑

x∈T∪B(T )

Kτ (x, ĉi) +
∑

x∈C∗i \(T∪B(T ))

Kτ (x, ĉi).

Consider each term separately. The first term, is bounded by (1 + ε)
∑

x∈T∪B(T )Kτ (x, c∗i ) since
ĉi is a (1 + ε)-approximate computed on the set T ∪B(T ), and thus is a (1 + ε) "competitive"
against every other center including c∗i . Bounding the second term is the intricate part of the
proof. Consider a point x ∈ C∗i \ (T ∪ B(T )). Since C∗i (core) ⊆ T ∪ B(T ), we know that
x /∈ C∗i (core), and therefore,

d(x, c∗i ) >
βOPT
8|C∗i |

. (3.5)

We show that

d(ĉi, c
∗
i ) ≤

εβOPT
4|C∗i |

. (3.6)

Define the set G = {y ∈ C∗i : Kτ (y, c∗i ) ≤
εβOPT
16|C∗i |

}. Notice that G ⊆ C∗i (core) ⊆ T ∪ B(T ) and

that, using Markov’s inequality, |G| ≥ 1
2 |C

∗
i | (otherwise OPTi ≥ εβOPT

32 which contradicts the
fact that C∗i is cheap). Assume towards contradiction that Kτ (ĉi, c

∗
i ) >

εβOPT
4|C∗i |

. Then,∑
x∈T∪B(T )

Kτ (x, ĉi) ≥
∑

x∈(T∪B(T ))∩G

Kτ (ĉi, c
∗
i )−Kτ (x, c∗i )

>
1

2
|C∗i |

(
εβOPT
4|C∗i |

− εβOPT
16|C∗i |

)
≥ 2

εβOPT
32

≥ 2OPTi.

However, for ε < 1, and since ci is the optimal center of T ∪B(T ), we get a contradiction,∑
x∈T∪B(T )

Kτ (x, ĉi) < 2 ·
∑

x∈T∪B(T )

Kτ (x, ci) ≤ 2 ·
∑

x∈T∪B(T )

Kτ (x, c∗i )

≤ 2 ·
∑
x∈C∗i

Kτ (x, c∗i ) = 2OPTi.
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Conclude, using triangle inequality, and the combination of (3.5) and (3.6) that:∑
x∈C∗i \(T∪B(T ))

Kτ (x, ĉi) ≤
∑

x∈C∗i \(T∪B(T ))

[Kτ (x, c∗i ) +Kτ (ĉi, c
∗
i )]

≤
∑

x∈C∗i \(T∪B(T ))

[Kτ (x, c∗i ) + 2εKτ (x, c∗i )]

≤ (1 + 2ε)
∑

x∈C∗i \(T∪B(T ))

Kτ (x, c∗i ).

Overall, for a cheap cluster C∗i ,∑
x∈C∗i

Kτ (x, ĉi) ≤ (1 + 2ε)
∑
x∈C∗i

Kτ (x, c∗i ) = (1 +O(ε))OPTi.

Finally, summing over all k-centers output by the algorithm produces the required approxima-
tion.

To analyze the running time, we highlight that it is infeasible to find the best center, hence
we find an approximate center in time given by Trank(n,N, ε) as seen in Equation (3.1). Addi-
tionally, one need to take into account the additional running time to guess a correct candidate
coresets along with a correct set of weights. We also remark that computing the distance between
two permutations is naively performed in time in O(N logN) (discussed above). Therefore, we
need at most O(n2N logN) time to compute the distances between all pairs of points beforehand
and store these distances in an O(n2)-size data structure. The reason we do it is to reduce the
computational cost for each distance lookup between two points. From now on, we ignore this
computation, and assume O(1) running time for each distance query. Finally, adding up the
relevant running times for each step in our algorithm as follows.

1. The population stage in Algorithm 3 is unchanged, and thus takes O(n3) time as before.
For every s ∈ [n], and every point x ∈ A, we need to find how many of the remaining
points are in B(x, r).

2. By Lemmas 3.3.3 and 3.3.4, Q contains a single good component for each optimal cluster,
and at most O

(
1
β

)
bad components. Hence, finding a candidate center for all components

in Q takes |Q|Trank(n,N, ε) =
(
k +O

(
1
β

))
Trank(n,N, ε) time. Furthermore, trying

every possible k components in Q in the centers-retrieving stage takes
(k+O( 1

β
)

k

)
≤ k

O( 1
β

)

attempts.

3. Evaluating the cost of a possible clustering takes O(nkN logN) since we need to compute
the distance between all n points and the k possible centers and take the nearest neighbour.
Each such distance computation takes O(N logN) time.

4. The external loop is performing an exhaustive search for strong coresets and their weights
for at most 32

βε possible expensive clusters. Thus, assuming a coreset of size t = Õ
(

1
ε4

)
,

and a set of O
(

1
ε (log n+ log t)

)
possible discrete weights (Corollary 3.3.6), there are∑ 32

βε

`=0

(
n
`t

) (
1
ε (log n+ log t)

)`t executions of the inner loop. This can be bounded by

O

(
1

βε

(
n
t
βε

)
(log n+ log t)

O( t
βε

)

)
.

In addition, for each such coreset, we use the 1-rank-aggregation PTAS to find an approx-
imate center, thus we need to multiply by Trank(t,N, ε).
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Overall, running time of the entire algorithm is at most

O

(
1

βε

(
n
t
βε

)(
1

ε
(log n+ log t)

)O( t
βε

)

·

(
n3 +

(
k +O

(
1

β

))
Trank(n,N, ε) + k

O
(

1
β

)
nkN2 +

Trank(t,N, ε)

βε

))
.

Simplifying using t = ε−4 produces the following expression,

O

 1

βε

(
2

ε
n log n

)O(
1
βε5

)((
k +O

(
1

εβ

))
Trank(n,N, ε) + k

O( 1
β

)
nkN2

) .

Finally,

O

((n
ε

)O(
1
βε5

)((
k +

1

εβ

)
Trank(n,N, ε) + k

O( 1
β

)
nkN2

))
.

Setting Trank(n,N, ε) using Equation (3.1) concludes that the overall time is polynomial in both
n, N and k when treating ε and β as fixed constants.

�

3.4 Discussion
In the beginning of this chapter we showed that there exists a strong (ε, k)-coreset for (PN ,Kτ ).
It is interesting to understand if coresets exists for other ranking distances or partial rankings
as defined for example in [FKS03, FKM+04, FKM+06, Ail10, BBGH15]. If such small strong
coresets exists, then one can use the PTAS for bucketed top-r rankings from [MM20] to obtain a
(1 + ε)-approximation for k-rank-aggregation on bucket lists in a similar manner. Additionally,
we would like to understand if it is possible to obtain a PTAS for k-rank-aggregation without
the β-distributed separability assumption, e.g., by leveraging the structure of the permutation
space (PN ,Kτ ).

We stress that the results shown in this chapter are demonstrated using the metric space of
permutations and Kendall-tau distance, mainly because they fulfill two requirements. First, in
(PN ,Kτ ) there exists a strong (ε, k)-coreset that is independent of both the number of points n
and their "dimension"N . Second, there is a polynomial-time deterministic (1+ε)-approximation
algorithm for the corresponding 1-median problem. Specifically, our proofs did not use any
specific feature of (PN ,Kτ ), hence, to use our framework in a different large, possibly infinite,
metric space, one just needs to show these two requirements hold, and then the results of this
part of the thesis will apply to the new metric space. To conclude, in a metric space satisfying
these two conditions, our algorithm is a PTAS for k-median on inputs satisfying the β-distributed
property.
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Appendix A

Concentration of the JL Sum

A.1 Background
Given a matrix G ∈ Rd×D whose entries are standard normal independently and identically
distributed, N(0, 1), defining L = 1√

d
G creates the standard JL-type dimension reduction

linear transform. In this self-contained appendix, we suggest a new concentration bound for∑n
i=1 ‖Lxi‖

z
2 ∈ (1 ± ε)

∑n
i=1 ‖xi‖

z
2 for z ∈ {1, 2} where the target dimension is d = Õ( 1

ε2
)

(Theorems A.2.1, A.3.1). Theorem A.3.1 also offers an alternative proof for Lemma 2.1.9 with
Gaussian entries JL transform. We emphasize that with an extra factor O(log n) in d, we can
have this concentration bound immediately from the standard JL lemma, since the norm of
every xi is preserved up to a factor of (1± ε). The main idea here, is that if we consider of the
entire sum, then we can conserve on the usual factor of log n for the target dimension.

We heavily rely on the probability book by Roman Vershynin ([Ver18], §2.5-3.1). For com-
pleteness, the relevant results are cited in this section.

Definition A.1.1 (Sub-gaussian random variable, Definition 2.5.6 [Ver18]). A random variable
X that satisfies the following property, for some absolute constant K1, is called sub-gaussian
random variable.

P [|X| ≥ t] ≤ 2 exp
(
−t2/K2

1

)
for all t ≥ 0.

The sub-gaussian norm of X, denoted ‖X‖ψ2
, is defined by

‖X‖ψ2
= inf{t > 0 : E exp(X2/t2) ≤ 2}

The sub-gaussian norm is a useful notion, since it is possible to write the definition, using
some absolute constant c, as follows,

P [|X| ≥ t] ≤ 2 exp
(
−ct2/ ‖X‖2ψ2

)
for all t ≥ 0. (A.1)

Using known properties of normal random variables of we have the following lemma.

Lemma A.1.2 (Gaussian is sub-gaussian, Exercise 2.5.8(a) [Ver18]). X ∼ N(0, σ2) is a sub-
gaussian random variable with ‖X‖ψ2

≤ Cσ where C is an absolute constant.

Definition A.1.3 (Sub-exponential random variable, Definition 2.7.5 [Ver18]). A random vari-
able X that satisfies the following property, for some absolute constant K1, is called sub-
exponential random variable.

P [|X| ≥ t] ≤ 2 exp (−t/K1) for all t ≥ 0.

The sub-exponential norm of X, denoted ‖X‖ψ1
, is defined by

‖X‖ψ1
= inf{t > 0 : E exp(X/t) ≤ 2}
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Remark. Both the sub-gaussian and sub-exponential definition have multiple equivalent defini-
tions. This definition was chosen for readability and concreteness.

The following is a relation between the sub-exponential and sub-gaussian random variables.

Lemma A.1.4 (Sub-exponential is sub-gaussian squared, Lemma 2.7.6 [Ver18]). A random
variable X is sub-gaussian if and only if X2 is sub-exponential. Moreover,

∥∥X2
∥∥
ψ1

= ‖X‖2ψ2
.

Using the above, we immediately obtain the following corollary.

Corollary A.1.5 (Gaussian squared is sub-exponential). If X ∼ N(0, σ2), then X2 is a sub-
exponential random variable where

∥∥X2
∥∥
ψ1

= ‖X‖2ψ2
≤ C2σ2. For example, for U ∼ χ2(1), it

holds that ‖U‖ψ1
≤ C2.

Lastly, we will need the following two concentration bounds for sub-exponential and sub-
gaussian random variables.

Lemma A.1.6 (Bernstein’s inequality, Theorem 2.8.2 [Ver18]). Let X1, X2, . . . , XN be indepen-
dent, mean zero, sub-exponential random variables, and a = (a1, . . . , aN ) ∈ RN . Then, for every
t ≥ 0, and writing K = maxi∈[N ] ‖Xi‖ψ1

, we have

P

[∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−cmin

{
t2

K2 ‖a‖22
,

t

K ‖a‖∞

})
Lemma A.1.7 (Norm concentration with general variance, generalization of Theorem 3.1.1
[Ver18]). Let X = (X1, . . . , Xd) ∈ Rd be a random vector with independent, sub-gaussian coor-
dinates Xi that satisfy EX2

i = σ2. Then∥∥∥‖X‖2 −√dσ∥∥∥
ψ2

≤ cK2

σ

where K = maxi ‖Xi‖ψ2
and c is a constant.

Proof. Let Y = 1
σX ∈ Rd. Then Yi = 1

σXi and E
[
Y 2
i

]
= 1

σ2E
[
X2
i

]
= 1. Hence, we can use

Theorem 3.1.1 from [Ver18] w.r.t to random vector with unit-variance coordinates∥∥∥‖Y ‖2 −√d∥∥∥
ψ2

≤ cK̃2.

Where K̃ = maxi ‖Yi‖ψ2
= 1

σ maxi ‖Xi‖ψ2
= 1

σK.
Finally, after rearranging:∥∥∥∥ 1

σ
‖X‖2 −

√
d

∥∥∥∥
ψ2

≤ cK̃2 ⇒
∥∥∥‖X‖2 − σ√d∥∥∥

ψ2

≤ cK2

σ
.

�

A.2 Concentration Bounds for `22 Sum
We begin with the `22 case.

Theorem A.2.1. Let G ∈ Rd×D be a matrix whose entries are independent standard normal
N(0, 1), and define L = 1√

d
G. Then, for sufficiently large d = O( 1

ε2
log 1

δ ), for every x1, . . . , xn ∈
RD, with probability at least 1− δ,

n∑
`=1

‖Lx`‖22 ∈ (1± ε)
n∑
`=1

‖x`‖22 .
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Proof. First, we consider a single row of G, denoted g ∼ N(0, I) s.t. g ∈ RD. Then ∀` ∈ [n] we
have 〈g, x`〉 =

∑D
j=1 gjx`,j . Then, summing over all x ∈ A:

Q(g) :=

n∑
`=1

〈g, x`〉2 =

n∑
`=1

gTx`x
T
` g = gT

(
n∑
`=1

x`x
T
`

)
g.

Writing A :=
∑n

`=1 x`x
T
` , we have the following quadratic forms

Q(g) = gTAg =
D∑
j=1

D∑
k=1

aj,kgjgk.

Observe that

E [Q(g)] =

D∑
j=1

D∑
k=1

aj,kE[gjgk] =

D∑
j=1

aj,j = Tr(A) =

n∑
`=1

‖x`‖22 . (A.2)

As shown in [MP92, Chapter 3], we can decompose the quadratic form of Q(g) using a spectral
decomposition of A, denoted by A = P TΛP , to obtain a sum of independent chi-square with
1-degree of freedom random variables as follows,

Q(g) =

D∑
j=1

λjU
2
j

where U = Pg ∈ RD, thus U2
j ∼ χ2(1) for any j ∈ [D]. Now, using Corollary A.1.5, we can

deduce that
∥∥∥U2

j

∥∥∥
ψ1

≤ C2 and since Q(g) is a sum of independent chi-square random variables,

‖Q(g)‖2ψ1
≤ O

 D∑
j=1

∥∥λjU2
j

∥∥2

ψ1

 ≤ O
 D∑
j=1

λ2
j

 = O
(
Tr(A2)

)
.

Now, we are ready to consider G ∈ Rd×D where each row acts as g from above, i.e., we have d
independent copies of g, resulting with

n∑
`=1

‖Gx`‖22 =

n∑
`=1

d∑
i=1

〈gi, x`〉2 =

d∑
i=1

Q(gi). (A.3)

By centering the R.Vs and using Bernstein’s inequality A.1.6 with d independent R.Vs:

P

[∣∣∣∣∣
d∑
i=1

Q(gi)− dE[Q(gi)]

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−O

(
min

{
t2∑d

i=1 ‖Q(gi)‖2ψ1

,
t

maxi ‖Q(gi)‖ψ1

}))

≤ 2 exp

(
−O

(
min

{
t2

dTr(A2)
,

t√
Tr(A2)

}))
.

Choosing t = εd · Tr(A) = εd
∑n

`=1 ‖x`‖
2
2 and using L = 1√

d
G and Equations (A.2), (A.3) we

obtain,

P

[∣∣∣∣∣
n∑
`=1

‖Lx`‖22 −
n∑
`=1

‖x`‖22

∣∣∣∣∣ ≥ ε
n∑
`=1

‖x`‖22

]
≤ 2 exp

(
−O

(
min

{
ε2d2 Tr(A)2

dTr(A2)
,
εdTr(A)√

Tr(A2)

}))
≤ 2 exp

(
−O

(
min

{
dε2, dε

}))
.
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The last inequality is obtained by observing thatA is a positive semi-definite matrix and therefore
Tr(A) ≥

√
Tr(A2) and Tr(A)2 ≥ Tr(A2). Finally, choosing d = O( 1

ε2
log 1

δ ) for large enough
constant concludes that with probability at at least 1− δ,

n∑
`=1

‖Lx`‖22 ∈ (1± ε)
n∑
`=1

‖x`‖22 .

�

A.3 Concentration Bounds for `2 Sum
Here, we provide an additional proof for Lemma 2.1.9, using sub-gaussian properties of the
JL transform L. It is emphasized that the proof require entries that are normally distributed.
However, it should be possible to extend it to every sub-gaussian entries and thus to any JL
transform. Additionally, the target dimension here conserve on the additional factor of log 1

ε
that appears in Lemma 2.1.9.

Theorem A.3.1. Let G ∈ Rd×D be a matrix whose entries are independent standard normal
N(0, 1), and define L = 1√

d
G. Then, for sufficiently large d = O( 1

ε2
log 1

δ ), for every x1, . . . , xn ∈
RD, with probability at least 1− δ,∑

x∈A
‖Lx‖2 ∈ (1± ε)

∑
x∈A
‖x‖2 .

Proof. Let G ∈ Rd×D a random matrix where each entry is independently drawn according
to the standard normal distribution Gi,j ∼ N(0, 1). Hence, by Lemma A.1.2, ‖Gi,j‖ψ2

≤ C.
Next, we want to understand how does a single summand ‖Gx‖2 behaves. Notice that (Gx)i =∑D

j=1Gi,jxj is a just a linear combination of independent gaussians, thus (Gx)i ∼ N(0, ‖x‖22),
i.e. E

[
(Gx)2

i

]
= ‖x‖22, which implies again by Lemma A.1.2 that ‖(Gx)i‖ψ2

≤ C ‖x‖2. Overall,
the entries of Gx are independent sub-gaussian entries with constant (assuming data is fixed)
second moment σ2 := ‖x‖22 and we can use Lemma A.1.7 for isotropic, non-unit variance. The
lemma implies that each summand of ‖Gx‖2 −

√
d ‖x‖2 is a sub-gaussian random variable with

the sub-gaussian norm, ∥∥∥‖Gx‖2 −√d ‖x‖2∥∥∥
ψ2

≤ O(1)K2

‖x‖2
= O(1) · ‖x‖2

since K = maxi ‖(Gx)i‖ψ2
= C ‖x‖2. Now, summing over n dependent sub-gaussians and using

triangle inequality,

σ :=

∥∥∥∥∥∑
x∈A

[
‖Gx‖2 −

√
d ‖x‖2

]∥∥∥∥∥
2

ψ2

≤

(∑
x∈A

∥∥∥‖Gx‖2 −√d ‖x‖2∥∥∥
ψ2

)2

≤ O

(∑
x∈A
‖x‖2

)2

.

To claim that the sum is also a sub-gaussian random variable, we can use Equation (A.1), to
obtain,

P

[∣∣∣∣∣∑
x∈A

[
‖Gx‖2 −

√
d ‖x‖2

]∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−O(1) · t

2

σ

)
.

Taking t = ε
√
d
∑

x∈A ‖x‖2 concludes,

P

[∑
x∈A
‖Gx‖2 /∈ (1± ε)

√
d
∑
x∈A
‖x‖2

]
≤ 2 exp

(
−O(1) ·

ε2d
(∑

x∈A ‖x‖2
)2(∑

x∈A ‖x‖2
)2

)
= 2 exp

(
−O(1) · ε2d

)
.

Overall, choosing d = O(ε−2 log(2
δ )) for large enough constant yields that required result. �
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