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Abstract

Metric embedding is a powerful tool used extensively in mathematics and computer science.
We devise a new method of using metric embeddings recursively, which turns out to be particularly
effective in ¢, spaces, p > 2, yielding state-of-the-art results for Lipschitz decomposition, for
Nearest Neighbor Search, and for embedding into ¢;. In a nutshell, our method composes
metric embeddings by viewing them as reductions between problems, and thereby obtains a
new reduction that is substantially more effective than the known reduction that employs a
single embedding. We in fact apply this method recursively, oftentimes using double recursion,
which further amplifies the gap from a single embedding
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1 Introduction!

Metric embeddings represent points in one metric space using another metric space, often one
that is simpler or easier, while preserving pairwise distances within some distortion bounds. This
mathematical tool is very powerful at transferring properties between the two metric spaces, and is
thus used extensively in many areas of mathematics and computer science. Its huge impact over the
past decades is easily demonstrated by fundamental results, such as John’s ellipsoid theorem [Joh48],
the Johnson-Lindenstrauss (JL) Lemma [JL84|, Bourgain’s embedding [Bou85|, and probabilistic
tree embedding [Bar96|.

We devise a new method of using metric embeddings recursively, in a manner that is particularly
effective for ¢, spaces, p > 2. Our method is based on the well-known approach of embedding ¢,
into f5 (via the so-called Mazur map), but leverages a new form of recursion that goes through
intermediate spaces, to beat a direct embedding from ¢, into /5.

Our method is inspired by the concept of reduction between (computational) problems, which
is fundamental in computer science and has been used extensively to design algorithms and/or to
prove conditional hardness. Many known reductions use metric embeddings in a straightforward
manner, without harnessing the full power of reductions, which allow further manipulation, like
employing multiple embeddings and taking the majority (or best) solution.? To see this gap
between embeddings and reductions, consider a composition of multiple embeddings, which yields
overall an embedding from the first metric space to the last one. While going through intermediate
metric spaces may simplify the exposition, it can only restrict the overall embedding. In contrast,
composing metric embeddings by way of reductions, can create new reductions that are substantially
richer than any single direct embedding. Our method actually composes reductions recursively,
which makes this gap even more pronounced. We emphasize that the application of this method is
problem-specific, unlike a metric embedding which is very general and thus applies to many problems
at once. On the flip side, tailoring our recursive method to a specific problem opens the door to
embeddings that are non-oblivious to the problem/data, which is reminiscent of data-dependent
space partitioning used in recent nearest neighbor search (NNS) algorithms [ANNT18a, ANNT18b,
KNT21]. To the best of our knowledge, this recursive method is new, i.e., related to but different
from variants that have been used in prior work.

Our method yields several state-of-the-art results: (i) Lipschitz decomposition for finite subsets
of £, spaces, p > 2; (ii) consequently, also Lipschitz decomposition for £4_; and (iii) algorithms for
NNS in ¢, spaces, p > 2. After obtaining these results, we noticed the online posting of parallel
work [NR25|, and realized that our method can also (iv) improve some of its results about embedding
into £s.

1.1 Lipschitz Decomposition

A standard approach in many metric embeddings and algorithms is to partition a metric space
into low-diameter (so-called) clusters, and the following probabilistic variant is commonly used and
highly studied (sometimes called a separating decomposition).

!The main body of this thesis is identical to a paper that was accepted for publication at FOCS 2025 [KPS25]
and is a joint work with Shay Sapir. These results improve upon earlier work that was also carried out during these
MSc studies and was published at SoCG 2025 [KP25]. Appendix A contains yet unpublished results that resolve one
of the questions posed in this thesis.

2This is perhaps analogous to the difference between Cook reductions and Karp reductions. The former allows the
use of a subroutine that solves the said problem, while the latter applies only a single transformation on the input,
and is thereby restricted to a single subroutine call.



Definition 1.1 (Lipschitz decomposition [Bar96]). Let (M, daq) be a metric space. A distribution
D over partitions of M is called a (8, A)-Lipschitz decomposition if

e for every partition P € supp(D), all clusters C' € P satisfy diam(C) < A; and
e for every z,y € M,

~

Pr[P(x) # P(y)] < plasen),
where P(z) denotes the cluster of P containing z € M and diam(C) = sup, e dm(7,y).

Our first use of recursive embedding yields the following theorem, whose proof appears in
Section 3.

Theorem 1.2. Let p > 2 and d > 1. Then for every n-point metric C C Zg and A > 0, there exists
an (O(p*y/min{logn, d}), A)-Lipschitz decomposition.

Typically, A is not known in advance or one needs multiple values of A (e.g., every power of 2).
We naturally seek the smallest possible J in this setting, and thus define the (optimal) decomposition
parameter of a metric space (M, p) as

B*(M) = ér;t; {B : VA > 0, every finite M’ C M admits a (3, A)-Lipschitz decomposition},

and further define 8} (M) = sup {#*(M’) : M’ C M,|M'| < n}. The following two corollaries of
Theorem 1.2 bound these quantities and delineate the asymptotic dependence on n and on d.

Corollary 1.3. For every p € [2,00) and n > 1, we have 3;;(£,) = O(p*\/logn).

Proof. It follows directly from Theorem 1.2 and the result from [Bal90]|, that every finite set X C £,
embeds isometrically into Eg for some d. O

This result significantly improves the previous bound £ (£,) = O(log!~'/P n) from [KP25|, and
fully resolves [Naol7, Question 1| (see also [Nao24, Question 83|), which asked for an O,(y/logn)
bound. (Throughout, the notation O,(-) hides a factor that depends only on «.) In parallel
to our work, a slightly weaker bound S} (¢,) < O(2P\/logn) was obtained in [NR25|. Both our
improvement and that of [NR25] rely on the technique developed in [KP25|, and essentially apply
it iteratively /recursively instead of once, and ours actually applies double recursion.

Corollary 1.4. For every p € [2,00] and d > 1, we have 3*(¢4) = O((min{p,logd})* - Vd).

Proof. For p < logd, it follows from Theorem 1.2. For larger p, use Holder’s inequality to reduce

the problem from Kg to ﬁﬁ)g 4 With O(1) distortion.? O

Theorem 1.4 is slightly weaker than Naor’s main result in [Naol7|, which was later slightly
improved in [Nao24]. Naor showed that g*(¢4) = O(v/-d) for all p € [2,00], matching the lower
bound that follows from [CCG198]. Our proof is fundamentally different from, and arguably simpler
than, Naor’s proof, which relies on a deep understanding of the geometry of Eg spaces. One may
hope that our proof could be enhanced to match the exact asymptotics of 3*(¢2), perhaps by simply
optimizing the constants in our recursion that yield the p* factor in Theorem 1.2. Unfortunately,
this approach has a serious barrier. For lio5,, we have §)(liogn) = (logn), since every n-point
metric embeds into fig, with O(1) distortion by [Mat97|, and there is an £2(logn) lower bound for
Lipschitz decomposition of general n-point metrics [Bar96]. Improving the p* factor in our analysis
to o(/p) would imply that 3 (fiogrn) = o(logn), contradicting the known lower bound.

3 A metric space (M, da) embeds into a metric space (N, dy’) with distortion D > 1 iff there exists s > 0 and a
function f : M — A such that for all z,y € M, & - dm(z,y) < dnv(f(z), f(y)) < s-dm(z,y).



Remark 1.5. Naor [Naol7] shows that his upper bound on 3*(¢% ) has an important application to
the Lipschitz extension problem. More precisely, he proves an infinitary variant of his upper bound,
and that it implies a similar bound on e(¢%), which is the Lipschitz extension modulus of ¢% . He
thus concludes that e(¢4) < O(y/dlogd), which almost matches (up to lower order factors), the
lower bound e(¢%) > Q(+v/d) that follows from [BB05, BB06]. We have not attempted to extend
Theorem 1.4 to the infinitary variant, as Naor notes that it is required only for extension theorems
into certain exotic Banach spaces [Naol7, Appendix A, Remark 4].

Remark 1.6. The result of Theorem 1.2 extends to a related notion of decomposition, that was
introduced in [FN22| and immediately implies geometric spanners. This yields spanners for ¢, spaces,
p > 2, whose stretch-size tradeoff is comparable to that known for 5. Previously, weaker bounds
for such decompositions, and consequently also weaker spanners for ¢,, were proved in [KP25]. The
details, which are similar to Theorem 1.2, are omitted.

1.2 Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem is to design a data structure that preprocesses an
n-point dataset V residing in a metric M, so that given a query point ¢ € M, the data structure
reports a point in V' that is closest to ¢ (and approximately closest to ¢ in approximate NNS).
The main measures for efficiency are the data structure’s space complexity and the time it takes
to answer a query; a secondary measure is the preprocessing time, which is often proportional to
the space. The problem has a wide range of applications in machine learning, computer vision and
other fields, and has thus been studied extensively, including from theoretical perspective, see e.g.
the survey [AI17]. It is well known that approximate NNS reduces to solving polylog(n) instances
of the approximate near neighbor problem [IM98], hence we consider the latter.

Definition 1.7 (Approximate Near Neighbor). The Approximate Near Neighbor problem for a
metric space (M,dp) and parameters ¢ > 1, r > 0, abbreviated (c,r)-ANN, is the following.
Design a data structure that preprocesses an n-point subset V' C M, so that given a query ¢ € M
with da(q, V) < r,% it reports x € V such that

dam(q,x) < cr.
In a randomized data structure, the reported x satisfies this with probability at least 2/3.

We prove the following theorem, whose proof appears in Section 4 and is similar in spirit to
that of Theorem 1.2. It applies our method of recursive embedding, using Mazur maps for n-point
subsets of Eg.

Theorem 1.8. Let p >2,d>1 and 0 < e < 1. Then for c = O(p't™4%¢) and every r > 0, there
is a randomized data structure for (c,r)-ANN in Eg, that has query time poly(¢'dlogn), and has

space and preprocessing time poly(dnf1 logpy,

1
logp

Most prior work on ANN in ¢, spaces studies the case 1 < p < 2, where (O(1),r)-ANN can
be solved using query time poly(dlogn) and space poly(n) [KOR00, IM98, HIM12|. For p > 2,
such a bound is not known, and we list in Table 1 all the known results (ours and previous ones),
which are often incomparable. The results of [And09, AIK09] and of [ANRW21] are based on
Indyk’s [Ind01] result for /o, and are most suitable for large values of p; note though that the

Remark. Picking ¢ = is sufficient to get approximation O(p!*m4) < O(p?387).

*If dam(g, V) > r, it may report anything, where as usual, da(g, V) == ming=cv dam(z*, q).



Approximation Query time  Space Reference

O(e7'loglog d) ns" nite [ATK09, And09]

O.(logp - (logd)*/?) nf nlte [ANRW21]

20(») (dlogn)°M)  nOM) [BG19]

pOM) (dlogn)PM)  pOUogp) Thm 1.8

O(p/e) ne nlte [ANNT18a, ANNT18b, KNT21|
c ne nO®/c)log(l/e)  IBBM+24]

Table 1: Known data structures for ANN in ¢,, p > 2. For brevity, we omit here poly(dlogn)
factors when the complexity is polynomial in n. The top-listed two results are particularly suited
for large values of p, and the others are suited for small values of p.

preprocessing time of [ANRW21] is exponential in d. The other results are more suited for small
values of p > 2, and they all have different downsides: one result [BG19] has a large approximation
20(); another one [ANNT18a, ANN*18b, KNT21] has a large query time n® - poly(dlogn), which

can be mitigated by picking ¢ = at the cost of increasing the approximation to O(plogn); ours

1
logn’
(Theorem 1.8) has a large space n©1°8P); and lastly, [BBM*24] and [ATK09, And09] can achieve
O(1)-approximation but this requires an even larger space d- n27® 10g(1/¢) apd nOos ) respectively.
The bottom line is that the regime of p > 2 is notoriously difficult. It remains open to bridge the
gap between small p and large p, and specifically to obtain O(p)-approximation using poly(dlogn)
query time and poly(n) space.

Our result for ANN provides yet another illustration for the power of recursive embedding.
Bartal and Gottlieb [BG19] mentioned that Assaf Naor noted, in personal communication regarding
improving their 20(®)-approximation, that all uniform embeddings of ¢, to ly (like Mazur maps)
have distortion exponential in p [Naol4, Lemma 5.2|. Our use of recursive embeddings breaks this
barrier, and essentially provides a black-box reduction from ¢, to /2, that still uses Mazur maps
but achieves poly(p)-approximation. We note that the improved approximation of [ANNT18a,
ANNT'18b, KNT21] uses embedding into f5 with small average distortion, however this approach
is not known to provide a black-box reduction for ANN, and its specialized solution increases the
query time.

1.3 Low-Distortion Embeddings

After we obtained our aforementioned results for Lipschitz decomposition and NNS, we noticed the
online posting of [NR25] on the distortion required for embedding ¢, space (p > 2) into Euclidean
space, and used our technique to extend their result. The study of the distortion required for
embedding metrics into Euclidean space has a decades-long history for general metrics [Joh48,
Bou85, LLR95| and for ¢, space [Lee05, CGR05, ALNO8, CNR24, BG14, NR25|. For an infinite
metric space (M, dn), define ch(M) = supecag, (c|<n €2(C), Where c2(C) denotes the minimal
distortion needed to embed C into ¢5. We prove the following in Section 5.

Theorem 1.9. If3 < p < 3y/e, then for every fivred 0 < e <1,

(ly) < O(logztmE+e ).
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Figure 1: The distortion of embedding from ¢,, p > 3 into 2 shown by depicting the exponent of
logn in [NR25, Theorem 1] (blue) compared with our bound in Theorem 1.9 (red).

Previously, for p > 2, non-trivial distortion was only known in the range 2 < p < 4 [BG14, NR25],
where non-trivial means distortion asymptotically smaller than O(logn), which holds for every n-
point metric space [Bou85]. Bartal and Gottlieb [BG14] established that ¢3(£,) = O(logP/*n) for
every p € (2,4), and Naor and Ren [NR25| proved a better bound ¢4 (¢,) = O(y/logn - loglogn) for
p € (2,3] and (¢,) = O(log’/?>"tn - loglogn) for p € (3,4). Theorem 1.9 improves these bounds
further in the range 3 < p < 3y/e. Since it may not be immediate that Theorem 1.9 indeed improves
the bounds on ¢§(¢,) for all 3 < p < 3y/e, we plot the corresponding exponents of the logn factor
in Figure 1.

Remark 1.10. Every finite metric embeds isometrically in /s, and thus ¢§(¢) = O(logn) by
[Bou85] and [LLR95]. For £, p € (2,00), a lower bound of

c(ty) > Qlog!*~/Pn)
follows from |[LN13, Theorem 1.3].

2 Preliminaries

The main tool we use for recursive embeddings between £, spaces is a classical embedding, commonly
known as the Mazur map. For every p, ¢ € [1,00), the Mazur map M, : £yt — £g" is computed by
raising the absolute value of each coordinate to the power p/q while preserving the original signs.
The following key property of this map is central to all our results.

Theorem 2.1 ([BL98, BG19]). Let 1 < ¢ < p < 0o and Cy > 0, and let M be the Mazur map M, ,
scaled down by factor %Cop/q_l. Then for all x,y € €, such that ||z||p, ||y||, < Co,

2(2C0)! P/ |z —yI /7 < ||M (2) = M)y < [l — yllp-

3 Lipschitz Decomposition of ¢, Metrics

In this section, we prove Theorem 1.2. We first outline the proof. Our approach uses a double
recursion, where each recursion is an instance of recursive embedding. The first recursion takes a



Lipschitz decomposition of a finite subset M C Eg with decomposition parameter 8 and produces a
Lipschitz decomposition with (ideally smaller) decomposition parameter [3,,¢,,. Each iteration in this
recursion is as follows. We first use the given decomposition to decompose M into bounded-diameter
subsets, embed each subset into ¢, for ¢ < p using Mazur maps, employ Lipschitz decomposition
for ¢4, and pull back the solution (clusters) we found. It is natural to choose here ¢ = 2, because
the known Lipschitz decompositions for /o are tight. However, this choice leads to a decomposition
parameter with an exp(p) factor, and we overcome this by picking ¢ = p/2. We only then apply a
second recursion, which goes from ¢, to {2 gradually, via intermediate values 2 < ¢ < p.

Lemma 3.1. Let 2 < ¢ < p < oo and let M C ¥, be an n-point metric. Suppose that for every
A" > 0, there exists a (8, A’)-Lipschitz decomposition of M. Then, for every A > 0, there exists a
(Brew, A)-Lipschitz decomposition of M, with

Brew = 4(2%)61/1) [5;(€q)]q/p 517q/p-

Theorem 3.1 provides the recursion step for the first recursion from the outline above, and we
use it with ¢ = p/2. For the natural choice of ¢ = 2, the expression in Theorem 3.1 equals SByey =
4(p/4)%/P [B%(£2)]2/P B'—2/P hence iterative applications converge to the fixpoint 3 = B2P . B (L),
which is easily found by setting 8 = Bpew. In contrast, for ¢ = p/2, the expression simplifies to

Brew = 44/ B (Ly/2) - B, the fixpoint is now 3 = 1603 (¢,/2), and recursion on p introduces only a
poly(p) factor.

Proof. Let A > 0,p € (2,00), and let M C ¢, be an n-point metric space. Set a = %(%)q/z)

and b = W, chosen to satisfy

B — B;‘qu) and §(2a)p/q_1b =1. (1)

S]

Construct a partition of M in the following steps:

1. Draw a partition Pt = {K71,..., K} from a (8, aA)-Lipschitz decomposition of M.

2. Embed each cluster K; C /¢, into ¢, using the embedding f%i provided by Theorem 2.1 for
Co = aA.

3. For each embedded cluster f%i(K;), draw a partition P; = {K}, ..., szl} from a (B} (¢4), bA)-
Lipschitz decomposition of f%i(K;).

4. Obtain a final partition P,y by taking the preimage of every cluster of every P;.

It is easy to see that P,y is indeed a partition of M, consisting of 22:1 k; clusters. Next,
consider z,y € M and let us bound Pr[Pou(x) # Pout(y)]. Observe that a pair of points can be
separated only in steps 1 or 3. Therefore,

Pr | Pout(x) # Poutly)|
< Pr | Pua(e) # Bun(y)]| + Pr [P (@)) # PP W) | P (@) = P (v) = K|

15 (@) = f5 W)l
bA

IN

r—=Y *
|| - Hp +Bn(£q)

A
BE(Ly) |z — pr
T ) A

IA
2w

(



where the last inequality is because by Theorem 2.1, each f%i is a non-expanding map from K; C 4y
to £y Using (1), we obtain Bpew = 25 = 4(£)7/P[B5(6,)]9/P 31 ~9/7.

It remains to show that the final clusters all have diameter at most A. Let z,y € M be
in the same final cluster, i.e., Pout(2) = Pout(y). Then Pi(z) = Pui(y) = K; and P(f%i(z)) =
P;(f%i(y)). Combining the distortion guarantees of f% from Theorem 2.1 with the diameter bound
of P;, we get

1-p/q ) )
L (201 |z — y[[2/4 < || f5i(z) — £ (y)]lq < BA.
p

Rearranging this and using (1), we obtain ||z — yHg/q < %(2a)p/q*1bAp/q = AP/4_ which completes
the proof. O

We are now ready to prove the main theorem.

Proof of Theorem 1.2. Let p € (2,00), and let M C £, be an n-point metric space. For ease of
presentation, we assume for now that p is a power of 2, and resolve this assumption at the end.
Denote By(M) = O(min{d,logn}), given by [Bar96] and [CCGT98]. We now iteratively apply
Theorem 3.1 with ¢ = p/2, and obtain after k iterations,

BrM) = 44/B5 (o) - Brr(M)
= 4\//8;‘1(%/2) : 4\/5?%(%/2) * Br—2(M)

_ 4(1+1/2+...+1/2’€*1) [ﬂ;(fp/z)](1/2+1/4+'"+1/2k) ﬁo(M)l/Qk
<168, (6y2) - Bo (M) (2)

Picking k := [log(log p - log By(M))] = O(log(log p - log min{d,logn})) yields Bo(M)1/2" < 21/logp
and we obtain 8*(M) < fp(M) < 24+1/logp.. Bh(£y/2). Now recursion on p implies

BH(M) < 20" - B3 (6a).

Finally, by [CCGT98] and the JL Lemma [JL84] we know that 3% (¢4) < O(min{v/d, v/Togn}), which
concludes the proof when p is a power of 2.

Resolving the case when p is not a power of 2 is straightforward. Let g be the largest power
of 2 that is smaller than p, hence 1/2 < ¢/p < 1. It suffices to show that 3 (¢,) = O(5;;(¢,)), as
then we can apply the previous argument since ¢ is a power of 2. Now apply Theorem 3.1 for k
iterations, analogously to (2). We may assume that 3 (¢,) < B;(M) for all i < k, as otherwise

we can simply abort after the i-th iteration, hence By(M) = 4(£ )q/p (B (£)] VP By (M)1—U/P <
44/B5(lg) Br—1(M). Now similarly to (2) we get 85 () = O(B%({y)), and the theorem follows. [J

n

Remark 3.2. We suspect that the factor 16 in the recursion (2) is an artifact of the analysis. First,
by balancing the separation probabilities over all k iterations, one can perhaps eliminate the factor
2 increase in the probabilities, and thus improve the factor in the recursion to roughly 4. Second,
the Mazur maps require sets of bounded radius, while the construction guarantees sets of bounded
diameter. Our proof uses the trivial bound radius < diam, which holds for every metric space, and
subsets of £, may admit a tighter bound. Denote by J, € [%, 1] the minimum number such that
radius(M) < J,diam(M) for all M C £,. It is known that J = 1/2 and by Jung’s Theorem,

Jo = L. Then, the factor above improves to roughly (2J,)?. Keeping in mind the discussion

V2
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Figure 2: An illustration of Theorem 4.1. For the purpose of this illustration, the ¢, and ¢; balls are
depicted using a Euclidean circle, and « is assumed to lie at the origin of £,. Given a query point g,
an approximated solution x is found in ¢, using Apgse. The Mazur map M?® is then applied, after
which a solution M?(z) is found in ¢; using A,. Finally, the inverse map is applied to obtain an
improved solution z in £,.

following Theorem 1.4, and aiming for a clear presentation of the main ideas in the solution, we
have omitted the above optimizations.

4 Nearest Neighbor Search

In this section, we design a data structure for approximate NNS in Eg for p > 2, proving Theorem 1.8.
Previously, Bartal and Gottlieb [BG19] devised a data structure that is based on embedding ¢,, into
0y, for which good data structures are known (e.g., LSH), and they furthermore employ recursion to
improve the approximation factor, from a large trivial factor down to exp(p). We observe that their
embedding and recursion approach is actually analogous to Section 3, but using only the special
case ¢ = 2. We thus use our double recursion approach that goes through intermediate ¢, spaces,
and obtain an improved approximation factor poly(p). In the rest of this section, we reserve the
letter ¢ for the query point (which is standard in the NNS literature) and denote the intermediate
spaces by /;.

Proof of Theorem 1.8. First, we show an analogous claim to Theorem 3.1 but for the (¢,r7)-ANN
problem. We take two NNS data structures, one for fg with approximation ¢, and one for (¢ (where
t < p) with approximation ¢;, and construct a new data structure for ﬁg with approximation e
(ideally smaller than c,).

Given an n-point dataset V C Eg, construct a (cp, 7)-ANN Apgse for V; and additionally, for
every point € V, apply a Mazur map M7 scaled down by % - (27“019)7"/“1 from EZ to ¢ on
By(0,2rc,)N(V —z), where By(z,7) = {y : ||x—yl|l, < r}, and construct a (¢, 7)-ANN data structure
A, for the image points. Amplify their success probabilities to 5/6 by standard amplification. Given
a query ¢, with the guarantee that there exists 2* € V with ||z* — ¢, < r, query Apgse With ¢ and
obtain a point € V. Then query A, with M*(q — x), obtain a point M*(z —x) € M*(V —z) and
output z accordingly.

Claim 4.1. With probability 2/3, we have ||z — q|lp < cpewr, where cpew = (2)H/P ci/p (4cp)t—t/r.

Proof. With probability at least %, Apgse outputs a point x with || — ¢, < re,. By triangle
inequality, ||z* — x|, < ||z* —qllp + |l¢ — z|lp < 2r¢p, hence | M*(2*) — M*(g)||s < r. Thus, with



probability at least 2, A, outputs a point M?(z) with ||M?(z) — M*(g)||¢ < rcq. By a union bound,
both events hold with probability 2/3. Assume they hold. By Theorem 2.1,

3 -
o (drep)' Pz — gllp/* < | M*(2) = M*(@)le < 7+ e,

rearranging this we obtain ||z — |, < r(2)/P ci/p (4ep) P =1 - e O

Remark 4.2. Plugging t = 2 into Theorem 4.1 and solving the recursion, we obtain a variation of
[BG19, Lemma 11].

Now, as in the proof of Theorem 1.2, we apply the additional recursive embedding reduction
that goes through intermediate ¢, spaces. To improve readability, we first provide a simpler proof
with O(p?)-approximation, and then explain the improvement to O(p't"(*)+¢)-approximation. We
assume without loss of generality that p < logd by Hoélder’s inequality.

Assume for now that p is a power of 2. Consider the data structure for £4 given by [Cha98|, with
approximation ¢ = poly(d), space and processing time O(n -poly(d)) and query time poly(dlogn).
By Hoélder’s inequality, the same data structure yields poly(d) approximation also for Kg.

Now, we recursively apply Theorem 4.1 with ¢t = p/2, as follows. Denote by k the number of
recursive steps to be determined later, and by ¢; the approximation guarantee in ¢, after the i-th
recursive step. Initially, ¢y = poly(d), by using the data structure of [Cha98|. For every i € [k],
we maintain data structures {A%},cy, where the Mazur map is scaled according to the current
approximation guarantee (i.e., scaled down by 2 - (2ré;_1)P/*=1). Moreover, we amplify the success
probabilities to 1 — % by O(logk) independent repetitions. Thus, if the (i — 1)-th iteration is
successful, i.e., it returns a point x solving (¢;—1,7)-ANN, then the Mazur maps in the i-th iteration
are scaled correctly. Hence, by querying A%, we get the approximation given by Theorem 4.1. By
the law of total probability, with probability 2/3, all the k recursive steps return a correct estimate.
Therefore,

ék(V) < \/SCP/Q . ékfl(V)

< \/SCp/Q 7/ 8¢p2 * Ck—2(V)
< (8cp/2)(1/2+1/4+“'+1/2k) éO(V)2_k
< 8eyn - Eo(V) (3)

Picking k := [log(logp - log éo(V))] = O(loglog d) yields éO(V)Tk < 21/108P and we obtain a data
structure with approximation at most é(V) < 23+1/18p. ¢ /2-

Before applying a second recursion on p, we amplify the success probabilities to 1 — @
by O(loglogp) = O(logloglogd) independent repetitions. Now a second recursion on p implies
éx(V) < 2p3 - co with probability at least 2/3. Finally, we bound c similarly to [BG19], namely,
using the JL-lemma to reduce the dimension to O(logn) together with a (2,7)-ANN data structure
of [KOR00, HIM12] in Eg(log n), which has query time 75> = polylogn, and space and preprocessing
time Sy = Zo = n®M). Plugging this as the base case of the second recursion, and we get the
desired approximation é, (V) = O(p?®). Each level of the second recursion increases the space and
preprocessing time by factor n, resulting in a total of nOUogp) . G, — plogp+01) . gOM) gpace and
preprocessing time. Answering a query goes through both recursions, but the first recursion only



requires O(klogk) = O(loglogd) calls to an ANN data structure for ¢, hence the overall running
time is (loglogd)©(ogP) . Ty = poly(dlogn). Resolving the case when p is not a power of 2 is
straightforward and performed exactly as in the proof of Theorem 1.2, and thus omitted.

To improve the approximation, let € > 0, and pick ¢t = (1 —€)p instead of t = p/2. We now have
that
A e(1—¢”) A
a(V) < (£)' &7 (e (V) <. < ((2) 4 T (@(V).
[

For sufficiently large k = O(log(¢~*) log(log p - log d)), we get é,(V) < 11412 ¢;. Now, a recursion

Q>

on p forlog 1 p=O(c'logp) levels implies

1
1—¢

1+In(4)+0(e)

ek(V) <p-exp(In(4) (1% -log_1 p))ea <p c2,

1

1—¢

where the last step uses the inequalities 1—; > 1+¢and In(1 +¢) > 5. The rest of the proof is
. . . -1 .

the same, and the space and preprocessing time increase to poly(dn®  1°8P). Rescaling e concludes

the proof. O

5 Embedding Finite ¢, Metrics into ¢,

In this section, we prove Theorem 1.9 by providing embeddings of finite £, metrics into f3, for
3 < p < 3y/e. We will need the following setup from [NR25].

Definition 5.1 (Definition 4 in [NR25]). Given K,D > 1, we say that a metric space (M, dp)
admits a K -localized weakly bi-Lipschitz embedding into a metric space (N, dys) with distortion D if
for every A > 0 and every subset C C M of diameter diama(C) < KA, there exists a non-constant
Lipschitz function fg : C — N satistying the following. For every z,y € C, if dpq(z,y) > A, then

Clly
dy (J&(@), () > ”fﬂ”pA,

where || - ||Lip is the Lipschitz constant.

We provide the following simple observation, that composing a localized weakly bi-Lipschitz
embedding with a low-distortion embedding yields a localized weakly bi-Lipschitz embedding, as
follows.

Observation 5.2. Let (M,dpn), (N, dy), (Z,dz) be metric spaces, such that (M,dx) admits a
K -localized weakly bi-Lipschitz embedding into (N, dyr) with distortion D1 and (N, dy) admits an
embedding into (Z,dz) with distortion Dy. Then (M, dam) admits a K -localized weakly bi-Lipschitz
embedding into (Z,dz) with distortion Dy - Ds.

Proof. Let A > 0 and C C M of diameter diamp(C) < KA. Let f§ : C — N be the function
promised by Theorem 5.1, and g : (V,dx’) — (Z,dz) be an embedding with distortion D. Consider
fg i=go fg. Recall that since g has distortion at most Dy, there exists s > 0 such that for every
u,v € N, we have Dy 'fiN(u, v) <dz(g(u),g(v)) <s-dy(u,v). Since fg is non-constant and g has
bounded contraction, fg is non-constant. Let x,y € C such that da(x,y) > A. Hence,

o e
az (@), W) > D% cdy (fE(@), S () > WA’

10



where the last inequality follows since fg is a K-localized weakly bi-Lipschitz embedding with
distortion D;. Since g expands distances by at most a factor s, we have || f§||Lip < s || /K| Lips

concluding the proof. O

Lemma 5.3 (Generalization of Lemma 5 in [NR25]). For every K > 1, if p > q > 1, then £, admits
a K -localized weakly bi-Lipschitz embedding into £y with distortion O, (K p/a=1),

Proof. Fixing K,A > 0 and a subset C C ¢, whose ¢,, diameter is at most KA, pick an arbitrary
point z € C, and consider the Mazur map M), , scaled down by (KAY/4=1 on C — z. The lemma
follows immediately by Theorem 2.1. O

Definition 5.4. The Lipschitz extension modulus e(M, N) of a pair of metric spaces M, N is the
infimum over all L € [1, 00) such that for every subset C C M, every 1-Lipschitz function f : C — N
can be extended to an L-Lipschitz function F' : M — N.

Theorem 5.5 (Theorem 6 in [NR25|). There is a universal constant k > 1 with the following
property. Fix 0 > 0, an integer n > 3, and o > 1. Let (M,dpaq) be an n-point metric space such
that every subset C C M with |C| > 3 admits a k(log |C|)-localized weakly bi-Lipschitz embedding
into o with distortion a(log |C|)?. Then

co(M) < a-e(M; L) - (log n)max{e’%} -log log n.

Next, we show a reduction that takes embeddings of finite ¢, metrics into ¢, and constructs an
embedding of finite £, metric into /2, for p > ¢q. The proof constructs a localized weakly bi-Lipschitz
embedding of ¢, into £, and composes it with the given embedding from ¢, into ¢>. By Theorem 5.2,
this yields a localized weakly bi-Lipschitz embedding from ¢, into f3, and by Theorem 5.5, we get
a low-distortion embedding into #5.

For every ¢ € [1, 00], define

&q —égg{ﬁ v >0,Vn > 2, cg(ﬂq)gy-logen},

where £, <1 for all ¢ € [1, 00| by Bourgain’s embedding [Bou85].

Lemma 5.6. For every 2 < q < p,

& <max{1, &} + E—1.

Proof. Let § > 0 and let M C ¢, be an n-point metric. If n < 2, then clearly c¢§(¢,) = 1.
Otherwise, let C € M with |C| > 3. We now construct a weakly bi-Lipschitz embedding of C into
f5. By Theorems 5.2 and 5.3, we have that for every K > 1, C admits a K-localized weakly bi-
Lipschitz embedding into £y with distortion O(K?/a-1. c‘ch(éq)). Setting K = k(log|C|), where & is
the universal constant from Theorem 5.5, and using 0‘26‘ (£,) < Os(log%*?|C|), we obtain a x(log |C|)-
localized weakly bi-Lipschitz embedding of C into f3 with distortion O, 5(logq LHEq+o IC]).
By Theorem 5.5,

) < Op5<e Lp; l2)(logn) max{?’ ~l+&a 4} log log n)

<o, ( log n) {34 1t} 150160 n) e(£y, 02) < O(y/p) by [NPSS06]
<0, ( (logn) maX{T&"Hp 1+9 loglogn> since g —14+6>0

O ( logn max{2,£q}+ 1+25>.
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Since § is arbitrary, the lemma follows.
O

The reduction given in the lemma above is a single iteration of recursive embedding, and we
repeat it recursively to prove Theorem 1.9.

Proof of Theorem 1.9. Let 3 < p < 3y/e and ¢ > 0. Consider a sequence q, ..., qx, where qo = p

and qiqil = (%)1/’“ for all ¢ € [0,k — 1]. Therefore, g, = 3. By Theorem 5.6 we have,

&p §max{%,§ql}+qﬂl -1
<max{y, &} + F -1+ 2 1

<max{d &+ (2 -1+ L — 1+ + %1 _1)

By [NR25, Theorem 1], we have ¢§(¢3) < O(y/logn - loglogn), and thus &3 < % Therefore,

k—1
1 qi
=3-k+) gk
i=0
=1 —k—f-k‘(%)l/k =1—k+k-exp(3Ink).
For a suitable choice of k = O(¢71), and using the useful inequality e* < 1+ x + 2% for < 1.79,

<s—k+k(1+1lnZ+(3In2)?)
<s+hlhk+e

The theorem follows from the definition of &,. O

6 Future Directions

Problems in /,, p < 2. Our results for £, spaces are all for p > 2. For the other case, p < 2, there
are natural candidates for intermediate spaces, namely, ¢, for p < ¢ < 2. Can recursive embedding
be used in such settings?

Problems in /. Many problems in /¢ can be reduced to ¢ using John’s theorem [Joh4§|,
which incurs O(\/ﬁ) multiplicative distortion and is known to be tight. Our method bypasses this
limitation and reduces the Lipschitz decomposition problem from ¢4, to ¢4 at the cost of only a
polylogarithmic (in d) factor. Indeed, the reduction in Theorem 1.2 actually proves (although not
stated explicitly) that

B (%) < polylog(d) - 5*(£5). (4)
Can other problems in ¢4 be resolved similarly, i.e., through a recursive embedding to K% that
bypasses the O(v/d) factor of a direct embedding?

Lower Bounds. Our approach of reducing from ¢¢ to Eg can also establish lower bounds for
problems in £%, which essentially amounts to “pulling” hard instances, from ¢%  into £4. For 5*(¢2),
a tight bound is already known [CCGT98|, and thus (4) cannot yield a new lower bound for it.
However, for the extension modulus of ¢4, the known bounds are not tight, namely, Q(dl/ 4 <
e(£d) < O(V/d) [LN05, MN13], and it is conjectured that e(£g) = ©(v/d) [Naol7]. Can the known
lower bound e(¢2% ) > Q(v/d) be pulled to ¢4, analogously to (4)?

12



Nearest Neighbor Search. The space and preprocessing time of our data structure in Theorem 1.8
are not polynomial in n and d whenever p is non-constant. This increase in preprocessing time and
space was somewhat mitigated in [BG19] in the special case of doubling metrics. Can this issue be
avoided also in the general case?’

Low-Distortion Embeddings. There remains a gap in our understanding of the distortion
required to embed finite ¢, metrics into ¢5 for every p € (2,00). For the special case of doubling

metrics, we know from [BG14, Theorem 5.5] that c2(C) < O <\/ddim(C)P/2—1log n) for every
p € (2,00) and every n-point metric C C £, where ddim(C) denotes its doubling dimension. This

upper bound above does not match the Q(logl/ 2-1/p n) lower bound in Theorem 1.10, which actually
holds for doubling metrics. We thus ask whether the distortion bound in the doubling case can be
improved.
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A Fast Nearest Neighbor Search for ¢, Metrics

A.1 Introduction

The Nearest Neighbor Search (NNS) problem asks to design a data structure (also called a scheme)
that preprocesses an n-point dataset X lying in a metric space M, so that given a query point ¢ € M,
one can quickly return a point of X minimizing the distance to g (or approximately minimizing it
in the approximate version). The efficiency of such a data structure is evaluated primarily by the
amount of space it uses and the time required to answer a query. The preprocessing time is a
secondary measure and is usually comparable to the space usage. Because of its central role in areas
such as machine learning, data analysis, and information retrieval, NNS has been the subject of
extensive research, both practical and theoretical (see, e.g., the surveys [AI17, AIR19]).

It is well known that approximate NNS can be reduced to solving polylog(n) instances of the
approximate near neighbor problem [HIM12]. For this reason, we restrict attention to the latter.

Definition A.1. The Approximate Near Neighbor problem for a metric space (M, d() and parameters
¢ > 1, r > 0, abbreviated (c,r)-ANN, is the following. Design a data structure that preprocesses
an n-point subset X C M, so that given a query ¢ € M with dx(q, X) < r,% it reports x € X such
that

dm(gq,z) < ecr.

In a randomized data structure, the reported x € X satisfies this with probability at least 2/3.

We focus on the fast query-time regime, which is crucial for modern large-scale applications
where datasets are massive and queries must be processed online, and is often modeled by query
time poly(dlogn). In ¢, spaces, ANN in this regime is well understood for 1 < p < 2 [IM98, KORO0O0,
HIM12| and for p = oo [Ind01, ACP08, KP12|. For 2 < p < oo, the situation is less clear: there
exists a handful of data structures, each suitable for a different range of p, as detailed in Table 2.
We present a new scheme for ANN in ¢,, p > 2, with fast query time, that offers an improved
tradeoff between approximation and space, as follows.

Tf da(g, X) > r, it may report anything, where as usual, da(g, X) = ming«ex dam(z*, q).
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Approximation Space Reference

O(logl/p nloglogd) poly(nd) [ATK09, And09]
20((logd)*/*(loglog )'/%) 1,1y () [ANN+18b]
20(p) poly(nd) [BG19]

pOn) nOogp) [KPS25]

c nOp/c)loglogn BB\ +24]

p0(1)+10g logp poly(nd) Theorem A.2

Table 2: Known data structures for ANN in £, p > 2, in the fast query time regime.

Theorem A.2. Letp > 2, d > 1. Then for every r > 0, there is a randomized data structure for
(¢,r)-ANN in Eg, where ¢ = p@DH1glo8r 4hat has query time poly(dlogn) and preprocessing (both
space and time) poly(dn).

Studying ANN in £, p > 2, is important both practically and theoretically. Real-world data and
applications may motivate norms that emphasize outliers, e.g., for anomaly detection, or alter the
presence of “hubs”, e.g., to affect classification; such data structures were indeed used for time-series
classification [YYW11], see [BG19] for additional references. From a theoretical perspective, the
geometry of £, spaces undermines existing algorithmic techniques and requires developing new ones.
A key challenge is to bridge between p = 2 and p = co. In the fast query-time regime, this means
interpolating between the classical (O(1),7)-ANN in ¢ [HIM12| and the (O(loglogd),r)-ANN in
l~ [Ind01], which both use only poly(dn) space. It natural to conjecture that 2 < p < oo exhibits
an interpolation between these two guarantees, and since Kgo is O(1)-equivalent to E{log 4 by Holder’s
inequality, this interpolated data structure is conjectured to achieve O(logp) approximation using
poly(nd) space. The first step towards this conjecture, in [AIK09, And09], devised a reduction from
¢y to {, and obtained a data structure with O(logl/ Pnloglog d)-approximation, which is mainly
suited for large values of p. A nontrivial reduction, devised in [BG19], reduced ¢, to 5 and obtains
20()_approximation, which is a major improvement for small values of p, although it is doubly-
exponentially worse than the conjecture. A more sophisticated reduction, that was devised recently
in [KPS25]|, achieves approximation poly(p), which is an exponential improvement. However, it
goes through multiple intermediate ¢; spaces (2 < t < p) via a recursive argument that increases
the space to n®U°eP) much higher than conjectured. Our Theorem A.2 essentially completes the
improvement of [KPS25|, by decreasing the space complexity back to the conjectured poly(dn),
albeit slightly increasing the approximation to p'°81°8P. In particular, it resolves a question posed
in [KPS25], of whether the recursion can avoid this higher space complexity.

The proof of Theorem A.2 is based on a simple yet powerful enhancement of the known NNS
schemes from [BG19, KPS25|, which utilizes classical results from [AP90, ABCP98] about sparse
covers. We provide an overview of the algorithms of [BG19, KPS25| in Section A.4, along with an
intuitive explanation of our approach at the beginning of Section A.7.

A.2 Related Work

Many of the existing results on approximate nearest neighbor search in /¢, spaces focus on the
case 1 < p < 2 [KORO00, IM98, HIM12, DIIM04, AI06, And09, Ngul3|. In this setting, O(1)-
approximation can be achieved with poly(dn) preprocessing (space and time), and query time
polynomial in dlogn [KOR00, HIM12].
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In recent years, significant progress has been made for the case p € (2,00), and current results
can be broadly divided into three regimes. The first regime consists of data structures that achieve
moderate approximation and query time using near-linear space [And09, ANNT18a, ANNT18b,
ANRW21, KNT21, AN25|. The second regime has small approximation factor, say O(1) or even
1 + €, in which case both the query time and the preprocessing requirements (space and time)
are typically very large [BG19, BBM*24|. The third regime, which is the focus of our work,
has fast query time, namely, poly(dlogn), and existing results either achieve 20(P)_approximation
with poly(dn) space [BG19|, or better approximation o(2P) at the cost of a much bigger n®()
space [BBM ™24, KPS25]. Our result is the first to obtain both o(2P) approximation and poly(dn)
space.

We point out that the techniques used here have been applied successfully also to other problems
involving ¢, spaces, such as the construction of Lipschitz decompositions [KP25, KPS25, NR25],
geometric spanners [KP25, KPS25], and low-distortion embeddings [KPS25, NR25].

A.3 Preliminaries

Given a metric space M = (X, dpy), we denote by By, (z,7) = {y € X : dpm(x,y) < r} the ball of
radius r > 0 centered at a point z € M.

For every p, ¢ € [1,00), the Mazur map M, : EZ — ﬁg is computed by taking, in each coordinate,
the absolute value raised to power p/q, but keeping the original sign. Our algorithm crucially relies
on the following property of this map.

Theorem A.3 (|[BL98, BG19]). Let 1 < ¢ < p < 0o and Cy > 0, and let M be the Mazur map M, ,
scaled down by factor %)Cop/qfl. Then for all x,y € fg such that z,y € By, (0, Cp),

2(2C0)! /4|l — yI B/ < ||M (2) = M)y < llz = yllp-

A.4 Overview of Algorithms from [BG19, KPS25]|

In this section, we review the algorithms of [BG19| and [KPS25] for ANN in ¢, p > 2. For the rest
of the section, fix a dataset X C Eg with | X| = n for some p > 2.

A.5  (2°0) r)-ANN with poly(dn) Space [BG19]

In the preprocessing stage, consider a set of & = & - O(loglogd) possible approximation factors
¢ = {é&;}k ), where poly(d) = ¢ > & > -+ > ¢, = 20(®) " First, compute for X an initial NNS
data structure Ajni¢ using [Cha98], which provides approximation é = poly(d) using query time
poly(dlogn) and space poly(d)O(n).” Then, for every data point 2 € X and every approximation
¢ € C, compute a (scaled) Mazur map M, s : 4 — ¢4 for the points set By, (0,ér) N (X —x). Finally,
compute for the image points in £ the (2,7)-ANN data structure A, s from [HIM12], which uses
poly(dlogn) query time and poly(dn) space. We have this data structure for each point € X and
each approximation factor ¢ € C, and clearly | By, (z,¢r)| < n, hence the total space requirement is
O(p - loglog d)n - poly(dn) = poly(dn).

At query time, given a query point ¢ € Kg, find a ép-approximate solution zg using Ainit. The
crucial observation is that since the Mazur map ensures a distortion that depends on the diameter of
the point set (Theorem A.3), the answer from Az, ,, is a ¢i-approximate solution x1. Applying this

procedure iteratively, the approximation factor decreases even faster than geometrically, roughly as

"Throughout, the notation O(f) hides factors that are logarithmic in f.
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¢ = 611:12 /P, Hence, after £ = O(ploglogcy) iterations we obtain an approximate solution zj with
¢ = 290) where the approximation factor does not improve further.

A.6 (poly(p),r)-ANN with poly(d)n®(°¢?) Space [KPS25]

In [KPS25|, the image space of the Mazur map is changed from ¢3 to ¢; for general 1 < ¢ < p.
Generalizing the results from [BG19], a (c;,7)-ANN data structure in £§ with query time Q(n)
and space S(n) is used to construct a (29®/Y) . ¢; r)-ANN data structure for Eg with query time
O(d) + 2O(loglog d)Q(n) and space O(loglogd)n - S(n). Using the above result with ¢ = p/2,
and applying it recursively to decrease p to 2 (which is actually a double recursion, because we also
iterate over the ¢;’s), yields a (poly(p),r)-ANN data structure with query time poly(dlogn). The
caveat is that every application of the recursive step multiplies the space of the data structure by
factor n, which yields a data structure with space poly(d)no(logp).

A.7  (200eep) 1) _ANN with poly(dn) Space

In this section, we give the proof of Theorem A.2. We first explain the intuition, and for simplicity we
restrict this discussion to reducing the space requirement of [BG19]; reducing the space requirements
of [KPS25] is similar in spirit, although more technical.

Revisiting Section A.5, the final solution zj is obtained by finding iteratively a sequence of
intermediate solutions xg, x1,...,Tr_1. Each iteration ¢ < k makes progress by finding a point x;
and restricting the search region to By, (x;, ¢;r), which has bounded diameter, and thus applying
a Mazur map on this region has distortion guarantees. It follows that querying the data structure
Az, ¢ (computed over By, (z;,¢r)NX) finds a point ;11 and we can restrict the search region even
further, to diameter ¢; 7.

The preprocessing phase prepares for the possibility that each point z € X will serve (at query
time) the ¢;-approximate solution, i.e., the search region will be restricted to By, (x,¢r). To make
progress and restrict the search region even further, a data structure A, ¢, is constructed for (the
points in) this region. Our key idea in Theorem A.2 is that, rather than preparing a separate data
structure for each search region, the algorithm constructs one global collection of data structures
that together cover all the possible search regions. For every ¢;, the algorithm constructs a set of
ANN data structures computed on a collection of subsets S C 2%, such that for every point z € X
there is some S € S that contains the search region By, (z,¢&r) N X. In addition, every S € S has
diameter at most ¢;r for some 8 > 1. We also want the total number of points in S (counting
repetitions) to be small. The preprocessing algorithm simply stores for every x € X a reference to
aset S; € S with By, (z,¢;7) N X C S;, and at query time, if x serves as a ¢;-approximate solution,
the algorithm queries the ANN data structure constructed for S,. Since S, has a diameter at most
Bé;r, this will still cause the search region’s diameter to shrink in the next iteration (although by a
slightly smaller factor). Since the total number of points in § is small, the total memory used by
all the ANN data structures will be small too.

It remains to show that the preprocessing phase can indeed find efficiently a collection of subsets
of X with the above properties. Fortunately, this was shown to be possible in [AP90, ABCP98|, and
has become a fundamental algorithmic tool with numerous applications in distributed computing,
network design, routing, graph algorithms, and metric embeddings.

Definition A.4 (Sparse Neighborhood Cover [AP90, ABCP98|). A (8, r)-sparse cover of a metric
space M = (X,dy,) is a collection of subsets (called clusters) S C 2%, each of diameter at most
Br, such that for every x € X there exists S € S with By, (x,7) € S. The total number of points
> ses |S] is called the sparsity of S.
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Theorem A.5 ([ABCP9S8|). There is an algorithm that, given a metric space M and parameters
B> 1 andr >0, outputs a (B,r)-sparse cover of M of sparsity O(n**/#), and runs in O(n>+2/#)
time.

We are now ready to prove Theorem A.2, largely following the proof structure of [KPS25,
Theorem 1.8].

Proof of Theorem A.2. Let X C Eg be an n-point dataset for some p € (2,00). For clarity of
exposition, we assume that p is a power of 2, which can be easily resolved, see [KPS25, Theorem
1.2]. Also, by an application of Holder’s inequality, we may assume that p < logd.

We construct the ANN scheme using a doubly-recursive procedure. The first recursion assumes
access to an ANN scheme for Zg that achieves approximation factor cpaee, and provides a new
ANN scheme for Eg that achieves improved (smaller) approximation cyeyw. This step crucially relies
on access to yet another ANN data structure, for ¢, for t = p/2, that is actually constructed
by the same method. This leads to a second recursion, of constructing ANN data structures for
intermediate spaces Eg, fg 21 .04, where the space £4 is known to have ANN data structures with
O(1) approximation.

We next describe the first recursion, i.e., how to construct an improved (cpew,”)-ANN scheme
for ¢4 given a (Cpase,7)-ANN scheme for ¢4 and a (c;,r)-ANN scheme for £f, where t < p. In
the preprocessing phase, use Theorem A.5 to construct for X a (f3,2¢paser)-cover S with sparsity
O(an/ B for B = logp. During the construction of S, store for every z € X a reference to a set
Sy € S that “covers” it, i.e., By, (,2¢paser) N X C S, which is guaranteed to exist in a sparse
cover. In addition, for every S € S designate (arbitrarily) a center point y € S, apply a Mazur map
MY : Eg — (¢ scaled down by factor 2 - (2Bc,r)P/t=1 on By, (0,28cpaser) N (X —y), and construct for
these image points a (¢, 7)-ANN scheme Ag. Finally, construct a (cphase, 7)-ANN scheme Ap,ge for
X, and amplify the success probabilities of both data structures to 5/6 by the standard method of
independent repetitions. Given a query ¢ that is guaranteed to have z* € X with [|z* — ¢, < 7,
query Apase for the point ¢ and obtain an answer p,se € X. Then find its cluster S, . and
this cluster’s designated center y, query Awaase for the point MY(q — y) € £¢, and use its answer
MY(zouy —y) € MY(X — y) to output the corresponding zoy; € X.

The next claim is analogous to [KPS25, Claim 4.1], and the main difference is using the sparse
cover.

Claim A.6. With probability 2/3, we have ||zow—4lp < Cnewr, where Cpew = (%)t/p ci/p (4Bcbase)1_t/p.
Proof. With probability at least %, the data structure Ap,se outputs a point Zhase With ||Zphase —¢||p <

Chase”- Let Sz, .. be the set in the cover referenced by Zpase, and let y € S, be its designated
center point. Since

base

l|z* — xbase”p <|lz* - QH;D +llg— xbaser < 2CpaseT,

we get that 2% € By, (Tbase; 2Chase”) N X C Sy, Observe that by Theorem A.3, ||MY(z*) —
M¥(q)|ls < r, and thus with probability at least 2, querying Ag, finds a point M¥(z) with || MY(z) —
MY(q)||+ < ¢r. Applying a union bound, we see that with probability at least 2/3, both events
hold. In this case, we have by Theorem A.3, that

t -
P (4Bcbaser) P/ - [lzou = qllE/" < | MY (zow) — MY(q)le < eur,

and by rearranging, we obtain ||z — ¢||p < (%)t/f’ ci/p (450base)1_t/p7“ = CpewT- 0l
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Denote by ¢; the approximation of the ANN scheme obtained by ¢ applications of Theorem A.6,
where the initial ANN scheme is the one from [Cha98|, with approximation ¢y = poly(d). We also
denote by ¢; the approximation of an ANN scheme for #;, that is constructed by the same method
(i.e., recursively), except that for £4 we use a (2,7)-ANN scheme from [HIM12] with poly(dlogn)
query time and poly(dn) space and preprocessing time. Using Theorem A.6 with ¢ = p/2, and
furthermore applying this recursively k = [log(log éy)] = O(loglogd) times, we obtain

k
Cr < \/8Bcpjatk—1 < \/850p/2\/850p/2ék—2 < ... < 8Bcyp- 5(1]/2 < 16f8¢y 2,

i.e., this scheme has approximation ¢, = ¢, < 168¢,/;. We can amplify the success probability of

this scheme to 1 — @. by the standard method of O(loglogp) = O(logloglogd) independent
repetitions. Now by recursion over p for logp levels, we get that

cp < (168)1°87 = (16log p)'°8P = ptloglosp,

and the overall success probability is at least % by a union bound.

We are left to analyze the query time of the algorithm, and its space and preprocessing time.
Each level of the second recursion makes a total of k - O(loglogp) = O(loglogd) calls to an ANN
scheme for ¢, for different intermediate values of ¢. Since the (2,7)-ANN for ¢y from [HIM12| has
query time poly(dlogn), and recalling that p < logd, the overall query time is O(loglogd)°&? .
poly(dlogn) = poly(dlogn).

To analyze the space and preprocessing time, we prove the following claim.

Claim A.7. There exists an absolute constant D > 1 such that when the data structure for fg,
p = 2¢, is computed on m points, it uses total space O((log log d)z) ~poly(d)mD(1+1/1°gp)z+l, and
preprocessing time O((loglogd)® +d - i) - poly (d)m2P(+1/logp)™ !

Proof. We only analyze the space usage of the data structure; the analysis of the preprocessing
time follows similarly, as it takes O(d) time to compute a Mazur map and O(m2(1+1/108P)) time to
compute a sparse cover.

The proof proceeds by induction on ¢ > 0. For i = 0, the claim follows because the (2,r)-
ANN from [HIM12|, when computed on m points, uses at most poly(d)mP space for some absolute
constant D > 1. Now, assume the claim holds for i — 1 > 0. The ANN scheme at level ¢ of the
recursion consists of two types of ANN schemes. The first type is an ANN scheme from [Cha98|
computed on all m points, which uses poly(d)é(m) < poly(d)m? (1+1/logp) space. The second type
are multiple ANN schemes at level i — 1 that are computed on different subsets of the m points. For
every 0 < j < k = O(loglogd), let S7 be the (log p, 2¢;r)-cover of sparsity O(m!+1/196P) computed
for the points at the j-th level of the first recursion. For every level j of the first recursion and
cluster S € &7, the algorithm computes a data structure of level 4 — 1 on S. By the induction
hypothesis, the space of this data structure is O((log log d)i_l) poly(d)|S|P(1+1/1egp)’ - Observe that
the function f : x — P0+1/108P)" gatisfies that f(a) + f(b) < f(a + b) for all a,b > 0. Thus, the
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total memory of the recursive data structure is at most

loglogd) '
poly(d)m 1+1/logp 1. Z Z loglogd )poly(d)’S|D(1+1/10gp)l
j=0  Se&J
O(loglog d)
< poly(d)O((loglog d)'™ ") - Z [f(m) + Z f(|5|)]
J=0 Se87
O(loglog d)
< poly(@)O((loglogd)' ™) - 3= f(m+ Y |8)
Jj=0 SeSi

< poly(d)O((loglog d)?) - O(m)P(+1/loen)™

and the bound O(1)P(1+1/10sp)™ < (1)2¢P < O(1) completes the proof. O

Finally, we use Theorem A.7 for m = n and i = logp, and obtain that the space usage of the
data structure is bounded by

O(log log d)'°8? poly(d) - nP1+1/198P)**” < poly(d) - nP¢ = poly(dn),
which completes the proof of Theorem A.2. O

Remark A.8. Modifying the parameter [ of the sparse cover in the proof of Theorem A.2 from
logp to 10§p for 0 < § < 1 yields a data structure with a slightly larger approximation factor
pOM+log(1/0)+logp 1t with a space requirement that matches that of [HIM12] up to subpolynomial
factors in d and an additional n©©® term.

Remark A.9. The same technique used in the proof of Theorem A.2, namely applying Theorem A.5
to construct covers in the preprocessing phase, can also be used to improve the space requirements
of the ANN for general normed spaces from [ANNT18b, Theorem 3]. More specifically, for every
0 < § < 1, one can shave an Q(n1*5) factor from the space of the data structure, at the cost of an
additional O(§~1) factor in the approximation.
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