

Thesis for the degree

Master of Science

By

Nir Petruschka

Advisor:

Prof. Robert Krauthgamer

October 2025

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

 ℓ𝑝 עבור מטריקות ייםרקורסיב ניםהכוח של שיכו

The Power of Recursive Embeddings for ℓ𝑝 Metrics

 עבודת גמר)תזה(לתואר

 מוסמך למדעים

 מאת

פטרושקה ניר

והתשפ" תשרי

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

:המנח
 פרופ' רוברט קראוטגמר

Abstract

Metric embedding is a powerful tool used extensively in mathematics and computer science.
We devise a new method of using metric embeddings recursively, which turns out to be particularly
effective in ℓp spaces, p > 2, yielding state-of-the-art results for Lipschitz decomposition, for
Nearest Neighbor Search, and for embedding into ℓ2. In a nutshell, our method composes
metric embeddings by viewing them as reductions between problems, and thereby obtains a
new reduction that is substantially more effective than the known reduction that employs a
single embedding. We in fact apply this method recursively, oftentimes using double recursion,
which further amplifies the gap from a single embedding

2

Acknowledgements

I want to thank my advisor, Prof. Robert Krauthgamer, for his exceptional guidance and support
throughout this journey. I especially appreciate the way he always listened attentively to my ideas,
many of which were admittedly quite bad, and, without ever making me feel discouraged, helped
guide the path through which some good ideas eventually emerged.

I am deeply grateful to my family, who have always been there for me, supporting me through
every step along the way. I am especially thankful to my partner, Daniel, whose unwavering belief in
me gave me the confidence to keep going, even in the most challenging moments. Finally, a special
thank you goes to my brother Asaf, who, whenever he’s approached for assistance, starts with “I’m
not sure I can help you with this”, followed by the best advice one could receive.

1 Introduction1

Metric embeddings represent points in one metric space using another metric space, often one
that is simpler or easier, while preserving pairwise distances within some distortion bounds. This
mathematical tool is very powerful at transferring properties between the two metric spaces, and is
thus used extensively in many areas of mathematics and computer science. Its huge impact over the
past decades is easily demonstrated by fundamental results, such as John’s ellipsoid theorem [Joh48],
the Johnson-Lindenstrauss (JL) Lemma [JL84], Bourgain’s embedding [Bou85], and probabilistic
tree embedding [Bar96].

We devise a new method of using metric embeddings recursively, in a manner that is particularly
effective for ℓp spaces, p > 2. Our method is based on the well-known approach of embedding ℓp
into ℓ2 (via the so-called Mazur map), but leverages a new form of recursion that goes through
intermediate spaces, to beat a direct embedding from ℓp into ℓ2.

Our method is inspired by the concept of reduction between (computational) problems, which
is fundamental in computer science and has been used extensively to design algorithms and/or to
prove conditional hardness. Many known reductions use metric embeddings in a straightforward
manner, without harnessing the full power of reductions, which allow further manipulation, like
employing multiple embeddings and taking the majority (or best) solution.2 To see this gap
between embeddings and reductions, consider a composition of multiple embeddings, which yields
overall an embedding from the first metric space to the last one. While going through intermediate
metric spaces may simplify the exposition, it can only restrict the overall embedding. In contrast,
composing metric embeddings by way of reductions, can create new reductions that are substantially
richer than any single direct embedding. Our method actually composes reductions recursively,
which makes this gap even more pronounced. We emphasize that the application of this method is
problem-specific, unlike a metric embedding which is very general and thus applies to many problems
at once. On the flip side, tailoring our recursive method to a specific problem opens the door to
embeddings that are non-oblivious to the problem/data, which is reminiscent of data-dependent
space partitioning used in recent nearest neighbor search (NNS) algorithms [ANN+18a, ANN+18b,
KNT21]. To the best of our knowledge, this recursive method is new, i.e., related to but different
from variants that have been used in prior work.

Our method yields several state-of-the-art results: (i) Lipschitz decomposition for finite subsets
of ℓp spaces, p > 2; (ii) consequently, also Lipschitz decomposition for ℓd∞; and (iii) algorithms for
NNS in ℓp spaces, p > 2. After obtaining these results, we noticed the online posting of parallel
work [NR25], and realized that our method can also (iv) improve some of its results about embedding
into ℓ2.

1.1 Lipschitz Decomposition

A standard approach in many metric embeddings and algorithms is to partition a metric space
into low-diameter (so-called) clusters, and the following probabilistic variant is commonly used and
highly studied (sometimes called a separating decomposition).

1The main body of this thesis is identical to a paper that was accepted for publication at FOCS 2025 [KPS25]
and is a joint work with Shay Sapir. These results improve upon earlier work that was also carried out during these
MSc studies and was published at SoCG 2025 [KP25]. Appendix A contains yet unpublished results that resolve one
of the questions posed in this thesis.

2This is perhaps analogous to the difference between Cook reductions and Karp reductions. The former allows the
use of a subroutine that solves the said problem, while the latter applies only a single transformation on the input,
and is thereby restricted to a single subroutine call.

1

Definition 1.1 (Lipschitz decomposition [Bar96]). Let (M, dM) be a metric space. A distribution
D over partitions of M is called a (β,∆)-Lipschitz decomposition if

• for every partition P ∈ supp(D), all clusters C ∈ P satisfy diam(C) ≤ ∆; and

• for every x, y ∈ M,
Pr

P∼D
[P (x) ̸= P (y)] ≤ β dM(x,y)

∆ ,

where P (z) denotes the cluster of P containing z ∈ M and diam(C) := supx,y∈C dM(x, y).

Our first use of recursive embedding yields the following theorem, whose proof appears in
Section 3.

Theorem 1.2. Let p ≥ 2 and d ≥ 1. Then for every n-point metric C ⊂ ℓdp and ∆ > 0, there exists
an (O(p4

√
min{logn, d}),∆)-Lipschitz decomposition.

Typically, ∆ is not known in advance or one needs multiple values of ∆ (e.g., every power of 2).
We naturally seek the smallest possible β in this setting, and thus define the (optimal) decomposition
parameter of a metric space (M, ρ) as

β∗(M) := inf
β≥1

{
β : ∀∆ > 0, every finite M′ ⊆ M admits a (β,∆)-Lipschitz decomposition

}
,

and further define β∗
n(M) := sup

{
β∗(M′) : M′ ⊆ M, |M′| ≤ n

}
. The following two corollaries of

Theorem 1.2 bound these quantities and delineate the asymptotic dependence on n and on d.

Corollary 1.3. For every p ∈ [2,∞) and n ≥ 1, we have β∗
n(ℓp) = O(p4

√
log n).

Proof. It follows directly from Theorem 1.2 and the result from [Bal90], that every finite set X ⊂ ℓp
embeds isometrically into ℓdp for some d.

This result significantly improves the previous bound β∗
n(ℓp) = O(log1−1/p n) from [KP25], and

fully resolves [Nao17, Question 1] (see also [Nao24, Question 83]), which asked for an Op(
√
log n)

bound. (Throughout, the notation Oα(·) hides a factor that depends only on α.) In parallel
to our work, a slightly weaker bound β∗

n(ℓp) ≤ O(2p
√
log n) was obtained in [NR25]. Both our

improvement and that of [NR25] rely on the technique developed in [KP25], and essentially apply
it iteratively/recursively instead of once, and ours actually applies double recursion.

Corollary 1.4. For every p ∈ [2,∞] and d ≥ 1, we have β∗(ℓdp) = O((min{p, log d})4 ·
√
d).

Proof. For p ≤ log d, it follows from Theorem 1.2. For larger p, use Hölder’s inequality to reduce
the problem from ℓdp to ℓdlog d with O(1) distortion.3

Theorem 1.4 is slightly weaker than Naor’s main result in [Nao17], which was later slightly
improved in [Nao24]. Naor showed that β∗(ℓdp) = Θ(

√
·d) for all p ∈ [2,∞], matching the lower

bound that follows from [CCG+98]. Our proof is fundamentally different from, and arguably simpler
than, Naor’s proof, which relies on a deep understanding of the geometry of ℓdp spaces. One may
hope that our proof could be enhanced to match the exact asymptotics of β∗(ℓd∞), perhaps by simply
optimizing the constants in our recursion that yield the p4 factor in Theorem 1.2. Unfortunately,
this approach has a serious barrier. For ℓlogn, we have β∗

n(ℓlogn) = Ω(logn), since every n-point
metric embeds into ℓlogn with O(1) distortion by [Mat97], and there is an Ω(log n) lower bound for
Lipschitz decomposition of general n-point metrics [Bar96]. Improving the p4 factor in our analysis
to o(

√
p) would imply that β∗

n(ℓlogn) = o(log n), contradicting the known lower bound.
3A metric space (M, dM) embeds into a metric space (N , dN) with distortion D ≥ 1 iff there exists s > 0 and a

function f : M → N such that for all x, y ∈ M, s
D

· dM(x, y) ≤ dN (f(x), f(y)) ≤ s · dM(x, y).

2

Remark 1.5. Naor [Nao17] shows that his upper bound on β∗(ℓd∞) has an important application to
the Lipschitz extension problem. More precisely, he proves an infinitary variant of his upper bound,
and that it implies a similar bound on e(ℓd∞), which is the Lipschitz extension modulus of ℓd∞. He
thus concludes that e(ℓd∞) ≤ O(

√
d log d), which almost matches (up to lower order factors), the

lower bound e(ℓd∞) ≥ Ω(
√
d) that follows from [BB05, BB06]. We have not attempted to extend

Theorem 1.4 to the infinitary variant, as Naor notes that it is required only for extension theorems
into certain exotic Banach spaces [Nao17, Appendix A, Remark 4].

Remark 1.6. The result of Theorem 1.2 extends to a related notion of decomposition, that was
introduced in [FN22] and immediately implies geometric spanners. This yields spanners for ℓp spaces,
p > 2, whose stretch-size tradeoff is comparable to that known for ℓ2. Previously, weaker bounds
for such decompositions, and consequently also weaker spanners for ℓp, were proved in [KP25]. The
details, which are similar to Theorem 1.2, are omitted.

1.2 Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem is to design a data structure that preprocesses an
n-point dataset V residing in a metric M, so that given a query point q ∈ M, the data structure
reports a point in V that is closest to q (and approximately closest to q in approximate NNS).
The main measures for efficiency are the data structure’s space complexity and the time it takes
to answer a query; a secondary measure is the preprocessing time, which is often proportional to
the space. The problem has a wide range of applications in machine learning, computer vision and
other fields, and has thus been studied extensively, including from theoretical perspective, see e.g.
the survey [AI17]. It is well known that approximate NNS reduces to solving polylog(n) instances
of the approximate near neighbor problem [IM98], hence we consider the latter.

Definition 1.7 (Approximate Near Neighbor). The Approximate Near Neighbor problem for a
metric space (M, dM) and parameters c ≥ 1, r > 0, abbreviated (c, r)-ANN, is the following.
Design a data structure that preprocesses an n-point subset V ⊆ M, so that given a query q ∈ M
with dM(q, V) ≤ r,4 it reports x ∈ V such that

dM(q, x) ≤ cr.

In a randomized data structure, the reported x satisfies this with probability at least 2/3.

We prove the following theorem, whose proof appears in Section 4 and is similar in spirit to
that of Theorem 1.2. It applies our method of recursive embedding, using Mazur maps for n-point
subsets of ℓdp.

Theorem 1.8. Let p > 2, d ≥ 1 and 0 < ε < 1. Then for c = O(p1+ln 4+ε) and every r > 0, there
is a randomized data structure for (c, r)-ANN in ℓdp, that has query time poly(ε−1d logn), and has
space and preprocessing time poly(dnε−1 log p).

Remark. Picking ε = 1
log p is sufficient to get approximation O(p1+ln 4) ≤ O(p2.387).

Most prior work on ANN in ℓp spaces studies the case 1 ≤ p ≤ 2, where (O(1), r)-ANN can
be solved using query time poly(d logn) and space poly(n) [KOR00, IM98, HIM12]. For p > 2,
such a bound is not known, and we list in Table 1 all the known results (ours and previous ones),
which are often incomparable. The results of [And09, AIK09] and of [ANRW21] are based on
Indyk’s [Ind01] result for ℓ∞, and are most suitable for large values of p; note though that the

4If dM(q, V) > r, it may report anything, where as usual, dM(q, V) := minx∗∈V dM(x∗, q).

3

Approximation Query time Space Reference

O(ε−1 log log d) nεp n1+ε [AIK09, And09]
Oε(log p · (log d)2/p) nε n1+ε [ANRW21]

2O(p) (d logn)O(1) nO(1) [BG19]
pO(1) (d logn)O(1) nO(log p) Thm 1.8
O(p/ε) nε n1+ε [ANN+18a, ANN+18b, KNT21]
c nε nO(p/c)·log(1/ε) [BBM+24]

Table 1: Known data structures for ANN in ℓp, p > 2. For brevity, we omit here poly(d logn)
factors when the complexity is polynomial in n. The top-listed two results are particularly suited
for large values of p, and the others are suited for small values of p.

preprocessing time of [ANRW21] is exponential in d. The other results are more suited for small
values of p > 2, and they all have different downsides: one result [BG19] has a large approximation
2O(p); another one [ANN+18a, ANN+18b, KNT21] has a large query time nε · poly(d logn), which
can be mitigated by picking ε = 1

logn , at the cost of increasing the approximation to O(p logn); ours
(Theorem 1.8) has a large space nO(log p); and lastly, [BBM+24] and [AIK09, And09] can achieve
O(1)-approximation but this requires an even larger space d ·n2O(p) log(1/ε) and nO(log d), respectively.
The bottom line is that the regime of p > 2 is notoriously difficult. It remains open to bridge the
gap between small p and large p, and specifically to obtain O(p)-approximation using poly(d log n)
query time and poly(n) space.

Our result for ANN provides yet another illustration for the power of recursive embedding.
Bartal and Gottlieb [BG19] mentioned that Assaf Naor noted, in personal communication regarding
improving their 2O(p)-approximation, that all uniform embeddings of ℓp to ℓ2 (like Mazur maps)
have distortion exponential in p [Nao14, Lemma 5.2]. Our use of recursive embeddings breaks this
barrier, and essentially provides a black-box reduction from ℓp to ℓ2, that still uses Mazur maps
but achieves poly(p)-approximation. We note that the improved approximation of [ANN+18a,
ANN+18b, KNT21] uses embedding into ℓ2 with small average distortion, however this approach
is not known to provide a black-box reduction for ANN, and its specialized solution increases the
query time.

1.3 Low-Distortion Embeddings

After we obtained our aforementioned results for Lipschitz decomposition and NNS, we noticed the
online posting of [NR25] on the distortion required for embedding ℓp space (p > 2) into Euclidean
space, and used our technique to extend their result. The study of the distortion required for
embedding metrics into Euclidean space has a decades-long history for general metrics [Joh48,
Bou85, LLR95] and for ℓp space [Lee05, CGR05, ALN08, CNR24, BG14, NR25]. For an infinite
metric space (M, dM), define cn2 (M) := supC⊆M, |C|≤n c2(C), where c2(C) denotes the minimal
distortion needed to embed C into ℓ2. We prove the following in Section 5.

Theorem 1.9. If 3 < p < 3
√
e, then for every fixed 0 < ε ≤ 1,

cn2 (ℓp) ≤ O(log
1
2
+ln p

3
+ε n).

4

Figure 1: The distortion of embedding from ℓp, p > 3 into ℓ2 shown by depicting the exponent of
log n in [NR25, Theorem 1] (blue) compared with our bound in Theorem 1.9 (red).

Previously, for p > 2, non-trivial distortion was only known in the range 2 < p < 4 [BG14, NR25],
where non-trivial means distortion asymptotically smaller than O(log n), which holds for every n-
point metric space [Bou85]. Bartal and Gottlieb [BG14] established that cn2 (ℓp) = O(logp/4 n) for
every p ∈ (2, 4), and Naor and Ren [NR25] proved a better bound cn2 (ℓp) = O(

√
log n · log logn) for

p ∈ (2, 3] and cn2 (ℓp) = O(logp/2−1 n · log logn) for p ∈ (3, 4). Theorem 1.9 improves these bounds
further in the range 3 < p < 3

√
e. Since it may not be immediate that Theorem 1.9 indeed improves

the bounds on cn2 (ℓp) for all 3 < p < 3
√
e, we plot the corresponding exponents of the log n factor

in Figure 1.
Remark 1.10. Every finite metric embeds isometrically in ℓ∞, and thus cn2 (ℓ∞) = Θ(log n) by
[Bou85] and [LLR95]. For ℓp, p ∈ (2,∞), a lower bound of

cn2 (ℓp) ≥ Ω(log1/2−1/p n)

follows from [LN13, Theorem 1.3].

2 Preliminaries

The main tool we use for recursive embeddings between ℓp spaces is a classical embedding, commonly
known as the Mazur map. For every p, q ∈ [1,∞), the Mazur map Mp,q : ℓ

m
p → ℓmq is computed by

raising the absolute value of each coordinate to the power p/q while preserving the original signs.
The following key property of this map is central to all our results.

Theorem 2.1 ([BL98, BG19]). Let 1 ≤ q < p < ∞ and C0 > 0, and let M be the Mazur map Mp,q

scaled down by factor p
qC0

p/q−1. Then for all x, y ∈ ℓp such that ||x||p, ||y||p ≤ C0,

q
p(2C0)

1−p/q||x− y||p/qp ≤ ||M(x)−M(y)||q ≤ ||x− y||p.

3 Lipschitz Decomposition of ℓp Metrics

In this section, we prove Theorem 1.2. We first outline the proof. Our approach uses a double
recursion, where each recursion is an instance of recursive embedding. The first recursion takes a

5

Lipschitz decomposition of a finite subset M ⊂ ℓdp with decomposition parameter β and produces a
Lipschitz decomposition with (ideally smaller) decomposition parameter βnew. Each iteration in this
recursion is as follows. We first use the given decomposition to decompose M into bounded-diameter
subsets, embed each subset into ℓq for q < p using Mazur maps, employ Lipschitz decomposition
for ℓq, and pull back the solution (clusters) we found. It is natural to choose here q = 2, because
the known Lipschitz decompositions for ℓ2 are tight. However, this choice leads to a decomposition
parameter with an exp(p) factor, and we overcome this by picking q = p/2. We only then apply a
second recursion, which goes from ℓp to ℓ2 gradually, via intermediate values 2 < q < p.

Lemma 3.1. Let 2 ≤ q < p < ∞ and let M ⊂ ℓp be an n-point metric. Suppose that for every
∆′ > 0, there exists a (β,∆′)-Lipschitz decomposition of M. Then, for every ∆ > 0, there exists a
(βnew,∆)-Lipschitz decomposition of M, with

βnew = 4(p
2q)

q/p [β∗
n(ℓq)]

q/p β1−q/p.

Theorem 3.1 provides the recursion step for the first recursion from the outline above, and we
use it with q = p/2. For the natural choice of q = 2, the expression in Theorem 3.1 equals βnew =
4(p/4)2/p [β∗

n(ℓ2)]
2/p β1−2/p, hence iterative applications converge to the fixpoint β = p

42
p · β∗

n(ℓ2),
which is easily found by setting β = βnew. In contrast, for q = p/2, the expression simplifies to
βnew = 4

√
β∗
n(ℓp/2) · β, the fixpoint is now β = 16β∗

n(ℓp/2), and recursion on p introduces only a
poly(p) factor.

Proof. Let ∆ > 0, p ∈ (2,∞), and let M ⊂ ℓp be an n-point metric space. Set a := 1
2

(2qβ
pβ∗

n(ℓq)

)q/p
and b :=

β∗
n(ℓq)a
β , chosen to satisfy

β
a =

β∗
n(ℓq)
b and p

q (2a)
p/q−1b = 1. (1)

Construct a partition of M in the following steps:

1. Draw a partition Pinit = {K1, . . . ,Kt} from a (β, a∆)-Lipschitz decomposition of M.

2. Embed each cluster Ki ⊂ ℓp into ℓq using the embedding fKi provided by Theorem 2.1 for
C0 := a∆.

3. For each embedded cluster fKi(Ki), draw a partition Pi = {K1
i , . . . ,K

ki
i } from a (β∗

n(ℓq), b∆)-
Lipschitz decomposition of fKi(Ki).

4. Obtain a final partition Pout by taking the preimage of every cluster of every Pi.

It is easy to see that Pout is indeed a partition of M, consisting of
∑t

i=1 ki clusters. Next,
consider x, y ∈ M and let us bound Pr[Pout(x) ̸= Pout(y)]. Observe that a pair of points can be
separated only in steps 1 or 3. Therefore,

Pr
[
Pout(x) ̸= Pout(y)

]
≤ Pr

[
Pinit(x) ̸= Pinit(y)

]
+ Pr

[
Pi(f

Ki(x)) ̸= Pi(f
Ki(y)) | Pinit(x) = Pinit(y) = Ki

]
≤ β

∥x− y∥p
a∆

+ β∗
n(ℓq)

∥fKi(x)− fKi(y)∥q
b∆

≤
(
β
a +

β∗
n(ℓq)
b

)∥x− y∥p
∆

,

6

where the last inequality is because by Theorem 2.1, each fKi is a non-expanding map from Ki ⊂ ℓp
to ℓq. Using (1), we obtain βnew = 2β

a = 4(p
2q)

q/p[β∗
n(ℓq)]

q/pβ1−q/p.
It remains to show that the final clusters all have diameter at most ∆. Let x, y ∈ M be

in the same final cluster, i.e., Pout(x) = Pout(y). Then Pinit(x) = Pinit(y) = Ki and Pi(f
Ki(x)) =

Pi(f
Ki(y)). Combining the distortion guarantees of fKi from Theorem 2.1 with the diameter bound

of Pi, we get
q

p

(
2a∆

)1−p/q
∥x− y∥p/qp ≤ ∥fKi(x)− fKi(y)∥q ≤ b∆.

Rearranging this and using (1), we obtain ∥x − y∥p/qp ≤ p
q (2a)

p/q−1b∆p/q = ∆p/q, which completes
the proof.

We are now ready to prove the main theorem.

Proof of Theorem 1.2. Let p ∈ (2,∞), and let M ⊂ ℓp be an n-point metric space. For ease of
presentation, we assume for now that p is a power of 2, and resolve this assumption at the end.
Denote β0(M) = O(min{d, logn}), given by [Bar96] and [CCG+98]. We now iteratively apply
Theorem 3.1 with q = p/2, and obtain after k iterations,

βk(M) = 4
√
β∗
n(ℓp/2) · βk−1(M)

= 4

√
β∗
n(ℓp/2) · 4

√
β∗
n(ℓp/2) · βk−2(M)

= · · ·

= 4(1+1/2+...+1/2k−1) [β∗
n(ℓp/2)]

(1/2+1/4+...+1/2k) β0(M)1/2
k

≤ 16β∗
n(ℓp/2) · β0(M)1/2

k
. (2)

Picking k := ⌈log(log p · log β0(M))⌉ = O(log(log p · logmin{d, log n})) yields β0(M)1/2
k ≤ 21/ log p,

and we obtain β∗(M) ≤ βk(M) ≤ 24+1/ log p · β∗
n(ℓp/2). Now recursion on p implies

β∗(M) ≤ 2p4 · β∗
n(ℓ2).

Finally, by [CCG+98] and the JL Lemma [JL84] we know that β∗
n(ℓ

d
2) ≤ O(min{

√
d,
√
log n}), which

concludes the proof when p is a power of 2.
Resolving the case when p is not a power of 2 is straightforward. Let q be the largest power

of 2 that is smaller than p, hence 1/2 < q/p < 1. It suffices to show that β∗
n(ℓp) = O(β∗

n(ℓq)), as
then we can apply the previous argument since q is a power of 2. Now apply Theorem 3.1 for k
iterations, analogously to (2). We may assume that β∗

n(ℓq) ≤ βi(M) for all i ≤ k, as otherwise
we can simply abort after the i-th iteration, hence βk(M) = 4(p

2q)
q/p [β∗

n(ℓq)]
q/p βk−1(M)1−q/p ≤

4
√

β∗
n(ℓq) βk−1(M). Now similarly to (2) we get β∗

n(ℓp) = O(β∗
n(ℓq)), and the theorem follows.

Remark 3.2. We suspect that the factor 16 in the recursion (2) is an artifact of the analysis. First,
by balancing the separation probabilities over all k iterations, one can perhaps eliminate the factor
2 increase in the probabilities, and thus improve the factor in the recursion to roughly 4. Second,
the Mazur maps require sets of bounded radius, while the construction guarantees sets of bounded
diameter. Our proof uses the trivial bound radius ≤ diam, which holds for every metric space, and
subsets of ℓp may admit a tighter bound. Denote by Jp ∈ [12 , 1] the minimum number such that
radius(M) ≤ Jp diam(M) for all M ⊂ ℓp. It is known that J∞ = 1/2 and by Jung’s Theorem,
J2 = 1√

2
. Then, the factor above improves to roughly (2Jp)

2. Keeping in mind the discussion

7

x xMx(x)

q Mx(q)

Mx(z)

q

z

Mx
(Mx)−1`p `t `p

Figure 2: An illustration of Theorem 4.1. For the purpose of this illustration, the ℓp and ℓt balls are
depicted using a Euclidean circle, and x is assumed to lie at the origin of ℓp. Given a query point q,
an approximated solution x is found in ℓp using Abase. The Mazur map Mx is then applied, after
which a solution Mx(z) is found in ℓt using Ax. Finally, the inverse map is applied to obtain an
improved solution z in ℓp.

following Theorem 1.4, and aiming for a clear presentation of the main ideas in the solution, we
have omitted the above optimizations.

4 Nearest Neighbor Search

In this section, we design a data structure for approximate NNS in ℓdp for p > 2, proving Theorem 1.8.
Previously, Bartal and Gottlieb [BG19] devised a data structure that is based on embedding ℓp into
ℓ2, for which good data structures are known (e.g., LSH), and they furthermore employ recursion to
improve the approximation factor, from a large trivial factor down to exp(p). We observe that their
embedding and recursion approach is actually analogous to Section 3, but using only the special
case q = 2. We thus use our double recursion approach that goes through intermediate ℓq spaces,
and obtain an improved approximation factor poly(p). In the rest of this section, we reserve the
letter q for the query point (which is standard in the NNS literature) and denote the intermediate
spaces by ℓt.

Proof of Theorem 1.8. First, we show an analogous claim to Theorem 3.1 but for the (c, r)-ANN
problem. We take two NNS data structures, one for ℓdp with approximation cp and one for ℓdt (where
t < p) with approximation ct, and construct a new data structure for ℓdp with approximation cnew
(ideally smaller than cp).

Given an n-point dataset V ⊂ ℓdp, construct a (cp, r)-ANN Abase for V ; and additionally, for
every point x ∈ V , apply a Mazur map Mx scaled down by p

t · (2rcp)p/t−1 from ℓdp to ℓdt on
Bp(0, 2rcp)∩(V−x), where Bp(x, r) := {y : ∥x−y∥p ≤ r}, and construct a (ct, r)-ANN data structure
Ax for the image points. Amplify their success probabilities to 5/6 by standard amplification. Given
a query q, with the guarantee that there exists x∗ ∈ V with ∥x∗ − q∥p ≤ r, query Abase with q and
obtain a point x ∈ V . Then query Ax with Mx(q− x), obtain a point Mx(z− x) ∈ Mx(V − x) and
output z accordingly.

Claim 4.1. With probability 2/3, we have ∥z − q∥p ≤ cnewr, where cnew = (pt)
t/p c

t/p
t (4cp)

1−t/p.

Proof. With probability at least 5
6 , Abase outputs a point x with ∥x − q∥p ≤ rcp. By triangle

inequality, ∥x∗ − x∥p ≤ ∥x∗ − q∥p + ∥q − x∥p ≤ 2rcp, hence ∥Mx(x∗) −Mx(q)∥t ≤ r. Thus, with

8

probability at least 5
6 , Ax outputs a point Mx(z) with ∥Mx(z)−Mx(q)∥t ≤ rct. By a union bound,

both events hold with probability 2/3. Assume they hold. By Theorem 2.1,

t

p
· (4rcp)1−p/t∥z − q∥p/tp ≤ ∥Mx(z)−Mx(q)∥t ≤ r · ct,

rearranging this we obtain ∥z − q∥p ≤ r(pt)
t/p c

t/p
t (4cp)

1−t/p ≡ r · cnew.

Remark 4.2. Plugging t = 2 into Theorem 4.1 and solving the recursion, we obtain a variation of
[BG19, Lemma 11].

Now, as in the proof of Theorem 1.2, we apply the additional recursive embedding reduction
that goes through intermediate ℓt spaces. To improve readability, we first provide a simpler proof
with O(p3)-approximation, and then explain the improvement to O(p1+ln(4)+ε)-approximation. We
assume without loss of generality that p ≤ log d by Hölder’s inequality.

Assume for now that p is a power of 2. Consider the data structure for ℓd2 given by [Cha98], with
approximation c = poly(d), space and processing time Õ(n · poly(d)) and query time poly(d logn).
By Hölder’s inequality, the same data structure yields poly(d) approximation also for ℓdp.

Now, we recursively apply Theorem 4.1 with t = p/2, as follows. Denote by k the number of
recursive steps to be determined later, and by ĉi the approximation guarantee in ℓp after the i-th
recursive step. Initially, ĉ0 = poly(d), by using the data structure of [Cha98]. For every i ∈ [k],
we maintain data structures {Ai

x}x∈V , where the Mazur map is scaled according to the current
approximation guarantee (i.e., scaled down by p

t · (2rĉi−1)
p/t−1). Moreover, we amplify the success

probabilities to 1 − 2
3k by O(log k) independent repetitions. Thus, if the (i − 1)-th iteration is

successful, i.e., it returns a point x solving (ĉi−1, r)-ANN, then the Mazur maps in the i-th iteration
are scaled correctly. Hence, by querying Ai

x, we get the approximation given by Theorem 4.1. By
the law of total probability, with probability 2/3, all the k recursive steps return a correct estimate.
Therefore,

ĉk(V) ≤
√
8cp/2 · ĉk−1(V)

≤
√

8cp/2 ·
√

8cp/2 · ĉk−2(V)

≤ · · ·

≤ (8cp/2)
(1/2+1/4+...+1/2k) ĉ0(V)2

−k

≤ 8cp/2 · ĉ0(V)2
−k
. (3)

Picking k := ⌈log(log p · log ĉ0(V))⌉ = O(log log d) yields ĉ0(V)2
−k ≤ 21/ log p, and we obtain a data

structure with approximation at most ĉk(V) ≤ 23+1/ log p · cp/2.
Before applying a second recursion on p, we amplify the success probabilities to 1 − 2

3 log p
by O(log log p) = O(log log log d) independent repetitions. Now a second recursion on p implies
ĉk(V) ≤ 2p3 · c2 with probability at least 2/3. Finally, we bound c2 similarly to [BG19], namely,
using the JL-lemma to reduce the dimension to O(logn) together with a (2, r)-ANN data structure
of [KOR00, HIM12] in ℓ

O(logn)
2 , which has query time T2 = polylog n, and space and preprocessing

time S2 = Z2 = nO(1). Plugging this as the base case of the second recursion, and we get the
desired approximation ĉk(V) = O(p3). Each level of the second recursion increases the space and
preprocessing time by factor n, resulting in a total of nO(log p) · S2 = nlog p+O(1) · dO(1) space and
preprocessing time. Answering a query goes through both recursions, but the first recursion only

9

requires O(k log k) = Õ(log log d) calls to an ANN data structure for ℓt, hence the overall running
time is (log log d)O(log p) · T2 = poly(d log n). Resolving the case when p is not a power of 2 is
straightforward and performed exactly as in the proof of Theorem 1.2, and thus omitted.

To improve the approximation, let ε > 0, and pick t = (1− ε)p instead of t = p/2. We now have
that

ĉk(V) ≤ (1
1−ε)

1−ε c1−ε
t (4ĉk−1(V))ε ≤ . . . ≤ (ct

1−ε)
1−εk4

ε(1−εk)
1−ε (ĉ0(V))ε

k
.

For sufficiently large k = O(log(ε−1) log(log p · log d)), we get ĉk(V) ≤ 1
1−ε4

ε
1−ε ct. Now, a recursion

on p for log 1
1−ε

p = O(ε−1 log p) levels implies

ĉk(V) ≤ p · exp
(
ln(4)(ε

1−ε · log 1
1−ε

p)
)
c2 ≤ p1+ln(4)+O(ε)c2,

where the last step uses the inequalities 1
1−ε ≥ 1 + ε and ln(1 + ε) ≥ ε

1+ε . The rest of the proof is
the same, and the space and preprocessing time increase to poly(dnε−1 log p). Rescaling ε concludes
the proof.

5 Embedding Finite ℓp Metrics into ℓ2

In this section, we prove Theorem 1.9 by providing embeddings of finite ℓp metrics into ℓ2, for
3 < p < 3

√
e. We will need the following setup from [NR25].

Definition 5.1 (Definition 4 in [NR25]). Given K,D > 1, we say that a metric space (M, dM)
admits a K-localized weakly bi-Lipschitz embedding into a metric space (N , dN) with distortion D if
for every ∆ > 0 and every subset C ⊆ M of diameter diamM(C) ≤ K∆, there exists a non-constant
Lipschitz function fC

∆ : C → N satisfying the following. For every x, y ∈ C, if dM(x, y) > ∆, then

dN
(
fC
∆(x), f

C
∆(y)

)
>

∥fC
∆∥Lip

D
∆,

where ∥ · ∥Lip is the Lipschitz constant.

We provide the following simple observation, that composing a localized weakly bi-Lipschitz
embedding with a low-distortion embedding yields a localized weakly bi-Lipschitz embedding, as
follows.

Observation 5.2. Let (M, dM), (N , dN), (Z, dZ) be metric spaces, such that (M, dM) admits a
K-localized weakly bi-Lipschitz embedding into (N , dN) with distortion D1 and (N , dN) admits an
embedding into (Z, dZ) with distortion D2. Then (M, dM) admits a K-localized weakly bi-Lipschitz
embedding into (Z, dZ) with distortion D1 ·D2.

Proof. Let ∆ > 0 and C ⊆ M of diameter diamM(C) ≤ K∆. Let fC
∆ : C → N be the function

promised by Theorem 5.1, and g : (N , dN) → (Z, dZ) be an embedding with distortion D2. Consider
f̃C
∆ := g ◦ fC

∆. Recall that since g has distortion at most D2, there exists s > 0 such that for every
u, v ∈ N , we have s

D2
· dN (u, v) ≤ dZ(g(u), g(v)) ≤ s · dN (u, v). Since fC

∆ is non-constant and g has
bounded contraction, f̃C

∆ is non-constant. Let x, y ∈ C such that dM(x, y) > ∆. Hence,

dZ

(
f̃C
∆(x), f̃

C
∆(y)

)
≥ s

D2
· dN

(
fC
∆(x), f

C
∆(y)

)
>

s · ∥fC
∆∥Lip

D1 ·D2
∆,

10

where the last inequality follows since fC
∆ is a K-localized weakly bi-Lipschitz embedding with

distortion D1. Since g expands distances by at most a factor s, we have ∥f̃C
∆∥Lip ≤ s · ∥fC

∆∥Lip,
concluding the proof.

Lemma 5.3 (Generalization of Lemma 5 in [NR25]). For every K > 1, if p > q ≥ 1, then ℓp admits
a K-localized weakly bi-Lipschitz embedding into ℓq with distortion Op/q(K

p/q−1).

Proof. Fixing K,∆ > 0 and a subset C ⊂ ℓp whose ℓp diameter is at most K∆, pick an arbitrary
point z ∈ C, and consider the Mazur map Mp,q scaled down by (K∆)p/q−1 on C − z. The lemma
follows immediately by Theorem 2.1.

Definition 5.4. The Lipschitz extension modulus e(M,N) of a pair of metric spaces M,N is the
infimum over all L ∈ [1,∞) such that for every subset C ⊆ M, every 1-Lipschitz function f : C → N
can be extended to an L-Lipschitz function F : M → N .

Theorem 5.5 (Theorem 6 in [NR25]). There is a universal constant κ > 1 with the following
property. Fix θ > 0, an integer n ≥ 3, and α > 1. Let (M, dM) be an n-point metric space such
that every subset C ⊆ M with |C| ≥ 3 admits a κ(log |C|)-localized weakly bi-Lipschitz embedding
into ℓ2 with distortion α(log |C|)θ. Then

c2(M) ≤ α · e(M; ℓ2) · (log n)max{θ, 12} · log logn.

Next, we show a reduction that takes embeddings of finite ℓq metrics into ℓ2, and constructs an
embedding of finite ℓp metric into ℓ2, for p > q. The proof constructs a localized weakly bi-Lipschitz
embedding of ℓp into ℓq and composes it with the given embedding from ℓq into ℓ2. By Theorem 5.2,
this yields a localized weakly bi-Lipschitz embedding from ℓp into ℓ2, and by Theorem 5.5, we get
a low-distortion embedding into ℓ2.

For every q ∈ [1,∞], define

ξq := inf
θ≥0

{
θ : ∃ν > 0, ∀n ≥ 2, cn2 (ℓq) ≤ ν · logθ n

}
,

where ξq ≤ 1 for all q ∈ [1,∞] by Bourgain’s embedding [Bou85].

Lemma 5.6. For every 2 ≤ q < p,

ξp ≤ max{1
2 , ξq}+

p
q − 1.

Proof. Let δ > 0 and let M ⊂ ℓp be an n-point metric. If n ≤ 2, then clearly cn2 (ℓp) = 1.
Otherwise, let C ⊆ M with |C| ≥ 3. We now construct a weakly bi-Lipschitz embedding of C into
ℓ2. By Theorems 5.2 and 5.3, we have that for every K ≥ 1, C admits a K-localized weakly bi-
Lipschitz embedding into ℓ2 with distortion O(Kp/q−1 · c|C|2 (ℓq)). Setting K = κ(log |C|), where κ is
the universal constant from Theorem 5.5, and using c

|C|
2 (ℓq) ≤ Oδ(log

ξq+δ |C|), we obtain a κ(log |C|)-
localized weakly bi-Lipschitz embedding of C into ℓ2 with distortion Op,δ(log

p
q
−1+ξq+δ |C|).

By Theorem 5.5,

c2(ℓp) ≤ Op,δ

(
e(ℓp; ℓ2)(logn)

max{ 1
2
, p
q
−1+ξq+δ}

log logn
)

≤ Op,δ

(
(log n)

max{ 1
2
, p
q
−1+ξq+δ}

log logn
)

e(ℓp, ℓ2) ≤ O(
√
p) by [NPSS06]

≤ Op,δ

(
(log n)

max{ 1
2
,ξq}+ p

q
−1+δ

log logn
)

since
p

q
− 1 + δ > 0

≤ Op,δ

(
(log n)

max{ 1
2
,ξq}+ p

q
−1+2δ

)
.

11

Since δ is arbitrary, the lemma follows.

The reduction given in the lemma above is a single iteration of recursive embedding, and we
repeat it recursively to prove Theorem 1.9.

Proof of Theorem 1.9. Let 3 < p < 3
√
e and ε > 0. Consider a sequence q0, . . . , qk, where q0 = p

and qi
qi+1

= (p3)
1/k for all i ∈ [0, k − 1]. Therefore, qk = 3. By Theorem 5.6 we have,

ξp ≤ max{1
2 , ξq1}+

p
q1

− 1

≤ max{1
2 , ξq2}+

p
q1

− 1 + q1
q2

− 1

. . .

≤ max{1
2 , ξ3}+ (p

q1
− 1 + q1

q2
− 1 + . . .+

qk−1

qk
− 1).

By [NR25, Theorem 1], we have cn2 (ℓ3) ≤ O(
√
log n · log logn), and thus ξ3 ≤ 1

2 . Therefore,

= 1
2 − k +

k−1∑
i=0

qi
qi+1

= 1
2 − k + k(p3)

1/k = 1
2 − k + k · exp(1k ln

p
3).

For a suitable choice of k = O(ε−1), and using the useful inequality ex ≤ 1 + x+ x2 for x < 1.79,

≤ 1
2 − k + k

(
1 + 1

k ln
p
3 + (1k ln

p
3)

2
)

< 1
2 + ln p

3 + ε.

The theorem follows from the definition of ξp.

6 Future Directions

Problems in ℓp, p < 2. Our results for ℓp spaces are all for p > 2. For the other case, p < 2, there
are natural candidates for intermediate spaces, namely, ℓq for p < q < 2. Can recursive embedding
be used in such settings?

Problems in ℓ∞. Many problems in ℓd∞ can be reduced to ℓd2 using John’s theorem [Joh48],
which incurs O(

√
d) multiplicative distortion and is known to be tight. Our method bypasses this

limitation and reduces the Lipschitz decomposition problem from ℓd∞ to ℓd2 at the cost of only a
polylogarithmic (in d) factor. Indeed, the reduction in Theorem 1.2 actually proves (although not
stated explicitly) that

β∗(ℓd∞) ≤ polylog(d) · β∗(ℓd2). (4)

Can other problems in ℓd∞ be resolved similarly, i.e., through a recursive embedding to ℓd2 that
bypasses the O(

√
d) factor of a direct embedding?

Lower Bounds. Our approach of reducing from ℓd∞ to ℓd2 can also establish lower bounds for
problems in ℓd2, which essentially amounts to “pulling” hard instances, from ℓd∞ into ℓd2. For β∗(ℓd2),
a tight bound is already known [CCG+98], and thus (4) cannot yield a new lower bound for it.
However, for the extension modulus of ℓd2, the known bounds are not tight, namely, Ω(d1/4) ≤
e(ℓd2) ≤ O(

√
d) [LN05, MN13], and it is conjectured that e(ℓd2) = Θ(

√
d) [Nao17]. Can the known

lower bound e(ℓd∞) ≥ Ω(
√
d) be pulled to ℓd2, analogously to (4)?

12

Nearest Neighbor Search. The space and preprocessing time of our data structure in Theorem 1.8
are not polynomial in n and d whenever p is non-constant. This increase in preprocessing time and
space was somewhat mitigated in [BG19] in the special case of doubling metrics. Can this issue be
avoided also in the general case?5

Low-Distortion Embeddings. There remains a gap in our understanding of the distortion
required to embed finite ℓp metrics into ℓ2 for every p ∈ (2,∞). For the special case of doubling
metrics, we know from [BG14, Theorem 5.5] that c2(C) ≤ O

(√
ddim(C)p/2−1 logn

)
for every

p ∈ (2,∞) and every n-point metric C ⊂ ℓp, where ddim(C) denotes its doubling dimension. This
upper bound above does not match the Ω(log1/2−1/p n) lower bound in Theorem 1.10, which actually
holds for doubling metrics. We thus ask whether the distortion bound in the doubling case can be
improved.

References
[ABCP98] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time

construction of sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–277, 1998.
doi:10.1137/S0097539794271898.

[ACP08] Alexandr Andoni, Dorian Croitoru, and Mihai Pătraşcu. Hardness of nearest neighbor under
l-infinity. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
pages 424–433. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.89.

[AI06] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer Science, pages
459–468. IEEE, 2006. doi:10.1109/FOCS.2006.49.

[AI17] A. Andoni and P. Indyk. Nearest neighbors in high-dimensional spaces. In Handbook of Discrete
and Computational Geometry, chapter 43, pages 1135–1150. CRC Press, 3rd edition, 2017.
doi:10.1201/9781315119601.

[AIK09] A. Andoni, P. Indyk, and R. Krauthgamer. Overcoming the l1 non-embeddability barrier:
algorithms for product metrics. In 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 865–874. SIAM, 2009.

[AIR19] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in
high dimensions. In Proceedings of the International Congress of Mathematicians (ICM 2018),
pages 3287–3318, 2019. doi:10.1142/9789813272880_0182.

[ALN08] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. J. Amer. Math.
Soc., 21(1):1–21, 2008.

[AN25] Alexandr Andoni and Negev Shekel Nosatzki. Embeddings into similarity measures for nearest
neighbor search, 2025. Accepted to FOCS 2025.

[And09] Alexandr Andoni. NN search : the old, the new, and the impossible. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2009. URL: https://hdl.handle.net/1721.
1/55090.

[ANN+18a] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten.
Data-dependent hashing via nonlinear spectral gaps. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 787–800. ACM, 2018. doi:
10.1145/3188745.3188846.

5See Appendix A for a positive resolution of this question.

13

https://doi.org/10.1137/S0097539794271898
https://doi.org/10.1109/FOCS.2008.89
https://doi.org/10.1109/FOCS.2006.49
https://doi.org/10.1201/9781315119601
https://doi.org/10.1142/9789813272880_0182
https://hdl.handle.net/1721.1/55090
https://hdl.handle.net/1721.1/55090
https://doi.org/10.1145/3188745.3188846
https://doi.org/10.1145/3188745.3188846

[ANN+18b] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten.
Hölder homeomorphisms and approximate nearest neighbors. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, pages 159–169. IEEE Computer Society,
2018. doi:10.1109/FOCS.2018.00024.

[ANRW21] Alexandr Andoni, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Approximate
nearest neighbors beyond space partitions. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 1171–1190. SIAM, 2021. doi:10.1137/1.
9781611976465.72.

[AP90] B. Awerbuch and D. Peleg. Sparse partitions. In 31st Annual IEEE Symposium on Foundations
of Computer Science, pages 503–513, 1990.

[Bal90] K. Ball. Isometric embedding in lp-spaces. European J. Combin., 11(4):305–311, 1990.

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
37th Annual Symposium on Foundations of Computer Science, pages 184–193. IEEE, 1996.

[BB05] A. Brudnyi and Yu. Brudnyi. Simultaneous extensions of Lipschitz functions. Uspekhi
Matematicheskikh Nauk, 60(6):53–72, 2005. translation in Russian Math. Surveys 60 (2005),
no. 6, 1057–1076. doi:10.1070/RM2005v060n06ABEH004281.

[BB06] Alexander Brudnyi and Yuri Brudnyi. Extension of Lipschitz functions defined on metric
subspaces of homogeneous type. Revista Matemática Complutense, 19(2):347—-359, 2006.
doi:10.5209/rev_REMA.2006.v19.n2.16596.

[BBM+24] Yiqiao Bao, Anubhav Baweja, Nicolas Menand, Erik Waingarten, Nathan White, and Tian
Zhang. Average-distortion sketching, 2024. arXiv preprint. arXiv:2411.05156.

[BG14] Yair Bartal and Lee-Ad Gottlieb. Dimension reduction techniques for ℓp, 1 ≤ p < ∞, with
applications, 2014. arXiv preprint, see version v2. arXiv:1408.1789v2.

[BG19] Yair Bartal and Lee-Ad Gottlieb. Approximate nearest neighbor search for ℓp-spaces (2 < p <
∞) via embeddings. Theoretical Computer Science, 757:27–35, 2019. doi:10.1016/j.tcs.
2018.07.011.

[BL98] Yoav Benyamini and Joram Lindenstrauss. Geometric nonlinear functional analysis, volume 48.
American Mathematical Soc., 1998.

[Bou85] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math.,
52(1-2):46–52, 1985. doi:10.1007/BF02776078.

[CCG+98] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite metric by a
small number of tree metrics. In 39th Annual Symposium on Foundations of Computer Science,
pages 379–388, 1998. doi:10.1109/SFCS.1998.743488.

[CGR05] S. Chawla, A. Gupta, and H. Räcke. Improved approximations to sparsest cut. In 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 102–111, 2005.

[Cha98] Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom.,
20(3):359–373, 1998. doi:10.1007/PL00009390.

[CNR24] Alan Chang, Assaf Naor, and Kevin Ren. Random zero sets with local growth guarantees, 2024.
arXiv preprint. arXiv:2410.21931.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In 20th annual symposium on Computational geometry, pages 253–262.
ACM, 2004. doi:10.1145/997817.997857.

[FN22] Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic
decompositions. Algorithmica, 84(10):2987–3007, 2022. doi:10.1007/s00453-022-00994-0.

14

https://doi.org/10.1109/FOCS.2018.00024
https://doi.org/10.1137/1.9781611976465.72
https://doi.org/10.1137/1.9781611976465.72
https://doi.org/10.1070/RM2005v060n06ABEH004281
https://doi.org/10.5209/rev_REMA.2006.v19.n2.16596
https://arxiv.org/abs/2411.05156
https://arxiv.org/abs/1408.1789v2
https://doi.org/10.1016/j.tcs.2018.07.011
https://doi.org/10.1016/j.tcs.2018.07.011
https://doi.org/10.1007/BF02776078
https://doi.org/10.1109/SFCS.1998.743488
https://doi.org/10.1007/PL00009390
https://arxiv.org/abs/2410.21931
https://doi.org/10.1145/997817.997857
https://doi.org/10.1007/s00453-022-00994-0

[HIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory Comput., 8(1):321–350, 2012. doi:10.4086/TOC.
2012.V008A014.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In 30th Annual ACM Symposium on Theory of Computing, pages 604–613,
1998. doi:10.1145/276698.276876.

[Ind01] Piotr Indyk. On approximate nearest neighbors under ℓ∞ norm. J. Comput. Syst. Sci.,
63(4):627–638, 2001. doi:10.1006/JCSS.2001.1781.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
In Conference in modern analysis and probability (New Haven, Conn., 1982), pages 189–206.
Amer. Math. Soc., Providence, RI, 1984.

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions. In Studies and
Essays Presented to R. Courant on his 60th Birthday. Interscience Publishers, 1948. doi:
10.1007/978-3-0348-0439-4_9.

[KNT21] Deepanshu Kush, Aleksandar Nikolov, and Haohua Tang. Near neighbor search via efficient
average distortion embeddings. In 37th International Symposium on Computational Geometry,
SoCG 2021, volume 189 of LIPIcs, pages 50:1–50:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.SOCG.2021.50.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000. doi:10.1137/
S0097539798347177.

[KP12] Michael Kapralov and Rina Panigrahy. NNS lower bounds via metric expansion for ℓ∞ and
EMD. In 39th International Colloquium on Automata, Languages and Programming, ICALP
2012, volume 7391 of Lecture Notes in Computer Science, pages 545–556. Springer, 2012. doi:
10.1007/978-3-642-31594-7_46.

[KP25] Robert Krauthgamer and Nir Petruschka. Lipschitz Decompositions of Finite ℓp Metrics. In
41st International Symposium on Computational Geometry (SoCG 2025), volume 332 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 66:1–66:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2025. doi:10.4230/LIPIcs.SoCG.2025.66.

[KPS25] Robert Krauthgamer, Nir Petruschka, and Shay Sapir. The power of recursive embeddings for
ℓp metrics, 2025. Accepted to FOCS 2025. doi:10.48550/arXiv.2503.18508.

[Lee05] James R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In 16th
annual ACM-SIAM symposium on Discrete algorithms, pages 92–101. SIAM, 2005.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995. doi:10.1007/BF01200757.

[LN05] James R. Lee and Assaf Naor. Extending Lipschitz functions via random metric partitions.
Inventiones Mathematicae, 160(1):59–95, 2005. doi:10.1007/s00222-004-0400-5.

[LN13] Vincent Lafforgue and Assaf Naor. A doubling subset of lp for p > 2 that is inherently infinite
dimensional. Geometriae Dedicata, 172, 2013. doi:10.1007/s10711-013-9924-4.

[Mat97] Jiří Matoušek. On embedding expanders into lp spaces. Israel J. Math., 102:189–197, 1997.
doi:10.1007/BF02773799.

[MN13] Manor Mendel and Assaf Naor. Spectral calculus and Lipschitz extension for barycentric
metric spaces. Analysis and Geometry in Metric Spaces, 1(2013):163–199, 2013. doi:
10.2478/agms-2013-0003.

[Nao14] Assaf Naor. Comparison of metric spectral gaps. Analysis and Geometry in Metric Spaces,
2(1):1–52, 2014. doi:10.2478/agms-2014-0001.

15

https://doi.org/10.4086/TOC.2012.V008A014
https://doi.org/10.4086/TOC.2012.V008A014
https://doi.org/10.1145/276698.276876
https://doi.org/10.1006/JCSS.2001.1781
https://doi.org/10.1007/978-3-0348-0439-4_9
https://doi.org/10.1007/978-3-0348-0439-4_9
https://doi.org/10.4230/LIPICS.SOCG.2021.50
https://doi.org/10.1137/S0097539798347177
https://doi.org/10.1137/S0097539798347177
https://doi.org/10.1007/978-3-642-31594-7_46
https://doi.org/10.1007/978-3-642-31594-7_46
https://doi.org/10.4230/LIPIcs.SoCG.2025.66
https://doi.org/10.48550/arXiv.2503.18508
https://doi.org/10.1007/BF01200757
https://doi.org/10.1007/s00222-004-0400-5
https://doi.org/10.1007/s10711-013-9924-4
https://doi.org/10.1007/BF02773799
https://doi.org/10.2478/agms-2013-0003
https://doi.org/10.2478/agms-2013-0003
https://doi.org/10.2478/agms-2014-0001

[Nao17] Assaf Naor. Probabilistic clustering of high dimensional norms. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 690–709.
SIAM, 2017. doi:10.1137/1.9781611974782.44.

[Nao24] Assaf Naor. Extension, separation and isomorphic reverse isoperimetry, volume 11 of Memoirs
of the European Mathematical Society. EMS, 2024. doi:10.4171/MEMS/11.

[Ngu13] Huy L. Nguyen. Approximate nearest neighbor search in ℓp. CoRR, abs/1306.3601, 2013. URL:
http://arxiv.org/abs/1306.3601.

[NPSS06] Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield. Markov chains in smooth Banach
spaces and Gromov-hyperbolic metric spaces. Duke Math. J., 134(1):165–197, 2006. doi:
10.1215/S0012-7094-06-13415-4.

[NR25] Assaf Naor and Kevin Ren. ℓp has nontrivial Euclidean distortion growth when 2 < p < 4,
2025. arXiv preprint. arXiv:2502.10543.

[YYW11] Daren Yu, Xiao Yu, and Anqi Wu. Making the nearest neighbor meaningful for time series
classification. Proceedings of the 4th International Congress on Image and Signal Processing,
CISP 2011, 5:2481–2485, 10 2011. doi:10.1109/CISP.2011.6100672.

A Fast Nearest Neighbor Search for ℓp Metrics

A.1 Introduction

The Nearest Neighbor Search (NNS) problem asks to design a data structure (also called a scheme)
that preprocesses an n-point dataset X lying in a metric space M, so that given a query point q ∈ M,
one can quickly return a point of X minimizing the distance to q (or approximately minimizing it
in the approximate version). The efficiency of such a data structure is evaluated primarily by the
amount of space it uses and the time required to answer a query. The preprocessing time is a
secondary measure and is usually comparable to the space usage. Because of its central role in areas
such as machine learning, data analysis, and information retrieval, NNS has been the subject of
extensive research, both practical and theoretical (see, e.g., the surveys [AI17, AIR19]).

It is well known that approximate NNS can be reduced to solving polylog(n) instances of the
approximate near neighbor problem [HIM12]. For this reason, we restrict attention to the latter.

Definition A.1. The Approximate Near Neighbor problem for a metric space (M, dM) and parameters
c ≥ 1, r > 0, abbreviated (c, r)-ANN, is the following. Design a data structure that preprocesses
an n-point subset X ⊆ M, so that given a query q ∈ M with dM(q,X) ≤ r,6 it reports x ∈ X such
that

dM(q, x) ≤ cr.

In a randomized data structure, the reported x ∈ X satisfies this with probability at least 2/3.

We focus on the fast query-time regime, which is crucial for modern large-scale applications
where datasets are massive and queries must be processed online, and is often modeled by query
time poly(d log n). In ℓp spaces, ANN in this regime is well understood for 1 ≤ p ≤ 2 [IM98, KOR00,
HIM12] and for p = ∞ [Ind01, ACP08, KP12]. For 2 < p < ∞, the situation is less clear: there
exists a handful of data structures, each suitable for a different range of p, as detailed in Table 2.
We present a new scheme for ANN in ℓp, p > 2, with fast query time, that offers an improved
tradeoff between approximation and space, as follows.

6If dM(q,X) > r, it may report anything, where as usual, dM(q,X) := minx∗∈X dM(x∗, q).

16

https://doi.org/10.1137/1.9781611974782.44
https://doi.org/10.4171/MEMS/11
http://arxiv.org/abs/1306.3601
https://doi.org/10.1215/S0012-7094-06-13415-4
https://doi.org/10.1215/S0012-7094-06-13415-4
https://arxiv.org/abs/2502.10543
https://doi.org/10.1109/CISP.2011.6100672

Approximation Space Reference

O(log1/p n log log d) poly(nd) [AIK09, And09]
2O((log d)2/3(log log d)1/3) poly(nd) [ANN+18b]
2O(p) poly(nd) [BG19]
pO(1) nO(log p) [KPS25]
c nO(p/c)·log logn [BBM+24]
pO(1)+log log p poly(nd) Theorem A.2

Table 2: Known data structures for ANN in ℓp, p > 2, in the fast query time regime.

Theorem A.2. Let p > 2, d ≥ 1. Then for every r > 0, there is a randomized data structure for
(c, r)-ANN in ℓdp, where c = pO(1)+log log p, that has query time poly(d log n) and preprocessing (both
space and time) poly(dn).

Studying ANN in ℓp, p > 2, is important both practically and theoretically. Real-world data and
applications may motivate norms that emphasize outliers, e.g., for anomaly detection, or alter the
presence of “hubs”, e.g., to affect classification; such data structures were indeed used for time-series
classification [YYW11], see [BG19] for additional references. From a theoretical perspective, the
geometry of ℓp spaces undermines existing algorithmic techniques and requires developing new ones.
A key challenge is to bridge between p = 2 and p = ∞. In the fast query-time regime, this means
interpolating between the classical (O(1), r)-ANN in ℓ2 [HIM12] and the (O(log log d), r)-ANN in
ℓ∞ [Ind01], which both use only poly(dn) space. It natural to conjecture that 2 < p < ∞ exhibits
an interpolation between these two guarantees, and since ℓd∞ is O(1)-equivalent to ℓdlog d by Hölder’s
inequality, this interpolated data structure is conjectured to achieve O(log p) approximation using
poly(nd) space. The first step towards this conjecture, in [AIK09, And09], devised a reduction from
ℓp to ℓ∞, and obtained a data structure with O(log1/p n log log d)-approximation, which is mainly
suited for large values of p. A nontrivial reduction, devised in [BG19], reduced ℓp to ℓ2 and obtains
2O(p)-approximation, which is a major improvement for small values of p, although it is doubly-
exponentially worse than the conjecture. A more sophisticated reduction, that was devised recently
in [KPS25], achieves approximation poly(p), which is an exponential improvement. However, it
goes through multiple intermediate ℓt spaces (2 ≤ t < p) via a recursive argument that increases
the space to nO(log p), much higher than conjectured. Our Theorem A.2 essentially completes the
improvement of [KPS25], by decreasing the space complexity back to the conjectured poly(dn),
albeit slightly increasing the approximation to plog log p. In particular, it resolves a question posed
in [KPS25], of whether the recursion can avoid this higher space complexity.

The proof of Theorem A.2 is based on a simple yet powerful enhancement of the known NNS
schemes from [BG19, KPS25], which utilizes classical results from [AP90, ABCP98] about sparse
covers. We provide an overview of the algorithms of [BG19, KPS25] in Section A.4, along with an
intuitive explanation of our approach at the beginning of Section A.7.

A.2 Related Work

Many of the existing results on approximate nearest neighbor search in ℓp spaces focus on the
case 1 ≤ p ≤ 2 [KOR00, IM98, HIM12, DIIM04, AI06, And09, Ngu13]. In this setting, O(1)-
approximation can be achieved with poly(dn) preprocessing (space and time), and query time
polynomial in d logn [KOR00, HIM12].

17

In recent years, significant progress has been made for the case p ∈ (2,∞), and current results
can be broadly divided into three regimes. The first regime consists of data structures that achieve
moderate approximation and query time using near-linear space [And09, ANN+18a, ANN+18b,
ANRW21, KNT21, AN25]. The second regime has small approximation factor, say O(1) or even
1 + ε, in which case both the query time and the preprocessing requirements (space and time)
are typically very large [BG19, BBM+24]. The third regime, which is the focus of our work,
has fast query time, namely, poly(d log n), and existing results either achieve 2O(p)-approximation
with poly(dn) space [BG19], or better approximation o(2p) at the cost of a much bigger nω(1)

space [BBM+24, KPS25]. Our result is the first to obtain both o(2p) approximation and poly(dn)
space.

We point out that the techniques used here have been applied successfully also to other problems
involving ℓp spaces, such as the construction of Lipschitz decompositions [KP25, KPS25, NR25],
geometric spanners [KP25, KPS25], and low-distortion embeddings [KPS25, NR25].

A.3 Preliminaries

Given a metric space M = (X, dM), we denote by BdM(x, r) := {y ∈ X : dM(x, y) ≤ r} the ball of
radius r > 0 centered at a point x ∈ M.

For every p, q ∈ [1,∞), the Mazur map Mp,q : ℓ
d
p → ℓdq is computed by taking, in each coordinate,

the absolute value raised to power p/q, but keeping the original sign. Our algorithm crucially relies
on the following property of this map.

Theorem A.3 ([BL98, BG19]). Let 1 ≤ q < p < ∞ and C0 > 0, and let M be the Mazur map Mp,q

scaled down by factor p
qC0

p/q−1. Then for all x, y ∈ ℓdp such that x, y ∈ Bℓp(0, C0),

q
p(2C0)

1−p/q||x− y||p/qp ≤ ||M(x)−M(y)||q ≤ ||x− y||p.

A.4 Overview of Algorithms from [BG19, KPS25]

In this section, we review the algorithms of [BG19] and [KPS25] for ANN in ℓp, p > 2. For the rest
of the section, fix a dataset X ⊂ ℓdp with |X| = n for some p > 2.

A.5 (2O(p), r)-ANN with poly(dn) Space [BG19]

In the preprocessing stage, consider a set of k = p
2 · O(log log d) possible approximation factors

Ĉ = {ĉi}ki=0, where poly(d) = ĉ0 ≥ ĉ1 ≥ · · · ≥ ĉk = 2O(p). First, compute for X an initial NNS
data structure Ainit using [Cha98], which provides approximation ĉ0 = poly(d) using query time
poly(d log n) and space poly(d)Õ(n).7 Then, for every data point x ∈ X and every approximation
ĉ ∈ Ĉ, compute a (scaled) Mazur map Mx,ĉ : ℓ

d
p → ℓd2 for the points set Bℓp(0, ĉr)∩ (X−x). Finally,

compute for the image points in ℓd2 the (2, r)-ANN data structure Ax,ĉ from [HIM12], which uses
poly(d log n) query time and poly(dn) space. We have this data structure for each point x ∈ X and
each approximation factor ĉ ∈ Ĉ, and clearly |Bℓp(x, ĉr)| ≤ n, hence the total space requirement is
O(p · log log d)n · poly(dn) = poly(dn).

At query time, given a query point q ∈ ℓdp, find a ĉ0-approximate solution x0 using Ainit. The
crucial observation is that since the Mazur map ensures a distortion that depends on the diameter of
the point set (Theorem A.3), the answer from Aĉ0,x0 is a ĉ1-approximate solution x1. Applying this
procedure iteratively, the approximation factor decreases even faster than geometrically, roughly as

7Throughout, the notation Õ(f) hides factors that are logarithmic in f .

18

ĉi = ĉ
1−2/p
i−1 . Hence, after k = O(p log log c0) iterations we obtain an approximate solution xk with

ĉk = 2O(p), where the approximation factor does not improve further.

A.6 (poly(p), r)-ANN with poly(d)nO(log p) Space [KPS25]

In [KPS25], the image space of the Mazur map is changed from ℓ2 to ℓt for general 1 ≤ t < p.
Generalizing the results from [BG19], a (ct, r)-ANN data structure in ℓdt with query time Q(n)
and space S(n) is used to construct a (2O(p/t) · ct, r)-ANN data structure for ℓdp with query time
O(d) + p

tO(log log d)Q(n) and space p
tO(log log d)n · S(n). Using the above result with t = p/2,

and applying it recursively to decrease p to 2 (which is actually a double recursion, because we also
iterate over the ĉi’s), yields a (poly(p), r)-ANN data structure with query time poly(d logn). The
caveat is that every application of the recursive step multiplies the space of the data structure by
factor n, which yields a data structure with space poly(d)nO(log p).

A.7 (2Õ(log p), r)-ANN with poly(dn) Space

In this section, we give the proof of Theorem A.2. We first explain the intuition, and for simplicity we
restrict this discussion to reducing the space requirement of [BG19]; reducing the space requirements
of [KPS25] is similar in spirit, although more technical.

Revisiting Section A.5, the final solution xk is obtained by finding iteratively a sequence of
intermediate solutions x0, x1, . . . , xk−1. Each iteration i < k makes progress by finding a point xi
and restricting the search region to Bℓp(xi, ĉir), which has bounded diameter, and thus applying
a Mazur map on this region has distortion guarantees. It follows that querying the data structure
Axi,ĉi (computed over Bℓp(xi, ĉir)∩X) finds a point xi+1 and we can restrict the search region even
further, to diameter ĉi+1r.

The preprocessing phase prepares for the possibility that each point x ∈ X will serve (at query
time) the ĉi-approximate solution, i.e., the search region will be restricted to Bℓp(x, ĉir). To make
progress and restrict the search region even further, a data structure Ax,ĉi is constructed for (the
points in) this region. Our key idea in Theorem A.2 is that, rather than preparing a separate data
structure for each search region, the algorithm constructs one global collection of data structures
that together cover all the possible search regions. For every ĉi, the algorithm constructs a set of
ANN data structures computed on a collection of subsets S ⊆ 2X , such that for every point x ∈ X
there is some S ∈ S that contains the search region Bℓp(x, ĉir) ∩X. In addition, every S ∈ S has
diameter at most βĉir for some β > 1. We also want the total number of points in S (counting
repetitions) to be small. The preprocessing algorithm simply stores for every x ∈ X a reference to
a set Sx ∈ S with Bℓp(x, ĉir)∩X ⊆ Sx, and at query time, if x serves as a ĉi-approximate solution,
the algorithm queries the ANN data structure constructed for Sx. Since Sx has a diameter at most
βĉir, this will still cause the search region’s diameter to shrink in the next iteration (although by a
slightly smaller factor). Since the total number of points in S is small, the total memory used by
all the ANN data structures will be small too.

It remains to show that the preprocessing phase can indeed find efficiently a collection of subsets
of X with the above properties. Fortunately, this was shown to be possible in [AP90, ABCP98], and
has become a fundamental algorithmic tool with numerous applications in distributed computing,
network design, routing, graph algorithms, and metric embeddings.

Definition A.4 (Sparse Neighborhood Cover [AP90, ABCP98]). A (β, r)-sparse cover of a metric
space M = (X, dM) is a collection of subsets (called clusters) S ⊆ 2X , each of diameter at most
βr, such that for every x ∈ X there exists S ∈ S with BdM(x, r) ⊆ S. The total number of points∑

S∈S |S| is called the sparsity of S.

19

Theorem A.5 ([ABCP98]). There is an algorithm that, given a metric space M and parameters
β > 1 and r > 0, outputs a (β, r)-sparse cover of M of sparsity O(n1+1/β), and runs in O(n2+2/β)
time.

We are now ready to prove Theorem A.2, largely following the proof structure of [KPS25,
Theorem 1.8].

Proof of Theorem A.2. Let X ⊂ ℓdp be an n-point dataset for some p ∈ (2,∞). For clarity of
exposition, we assume that p is a power of 2, which can be easily resolved, see [KPS25, Theorem
1.2]. Also, by an application of Hölder’s inequality, we may assume that p ≤ log d.

We construct the ANN scheme using a doubly-recursive procedure. The first recursion assumes
access to an ANN scheme for ℓdp that achieves approximation factor cbase, and provides a new
ANN scheme for ℓdp that achieves improved (smaller) approximation cnew. This step crucially relies
on access to yet another ANN data structure, for ℓdt , for t = p/2, that is actually constructed
by the same method. This leads to a second recursion, of constructing ANN data structures for
intermediate spaces ℓdp, ℓ

d
p/2, . . . , ℓ

d
2, where the space ℓd2 is known to have ANN data structures with

O(1) approximation.
We next describe the first recursion, i.e., how to construct an improved (cnew, r)-ANN scheme

for ℓdp given a (cbase, r)-ANN scheme for ℓdp and a (ct, r)-ANN scheme for ℓdt , where t < p. In
the preprocessing phase, use Theorem A.5 to construct for X a (β, 2cbaser)-cover S with sparsity
Õ(n1+1/β) for β = log p. During the construction of S, store for every x ∈ X a reference to a set
Sx ∈ S that “covers” it, i.e., Bℓp(x, 2cbaser) ∩ X ⊆ Sx, which is guaranteed to exist in a sparse
cover. In addition, for every S ∈ S designate (arbitrarily) a center point y ∈ S, apply a Mazur map
My : ℓdp → ℓdt scaled down by factor p

t · (2βcpr)
p/t−1 on Bℓp(0, 2βcbaser)∩ (X − y), and construct for

these image points a (ct, r)-ANN scheme AS . Finally, construct a (cbase, r)-ANN scheme Abase for
X, and amplify the success probabilities of both data structures to 5/6 by the standard method of
independent repetitions. Given a query q that is guaranteed to have x∗ ∈ X with ∥x∗ − q∥p ≤ r,
query Abase for the point q and obtain an answer xbase ∈ X. Then find its cluster Sxbase and
this cluster’s designated center y, query ASxbase

for the point My(q − y) ∈ ℓdt , and use its answer
My(zout − y) ∈ My(X − y) to output the corresponding zout ∈ X.

The next claim is analogous to [KPS25, Claim 4.1], and the main difference is using the sparse
cover.

Claim A.6. With probability 2/3, we have ∥zout−q∥p ≤ cnewr, where cnew = (pt)
t/p c

t/p
t (4βcbase)

1−t/p.

Proof. With probability at least 5
6 , the data structure Abase outputs a point xbase with ∥xbase−q∥p ≤

cbaser. Let Sxbase be the set in the cover referenced by xbase, and let y ∈ Sxbase be its designated
center point. Since

∥x∗ − xbase∥p ≤ ∥x∗ − q∥p + ∥q − xbase∥p ≤ 2cbaser,

we get that x∗ ∈ Bℓp(xbase, 2cbaser) ∩ X ⊆ Sxbase . Observe that by Theorem A.3, ∥My(x∗) −
My(q)∥t ≤ r, and thus with probability at least 5

6 , querying ASy finds a point My(z) with ∥My(z)−
My(q)∥t ≤ ctr. Applying a union bound, we see that with probability at least 2/3, both events
hold. In this case, we have by Theorem A.3, that

t

p
· (4βcbaser)

1−p/t · ∥zout − q∥p/tp ≤ ∥My(zout)−My(q)∥t ≤ ctr,

and by rearranging, we obtain ∥zout − q∥p ≤ (pt)
t/p c

t/p
t (4βcbase)

1−t/pr = cnewr.

20

Denote by ĉi the approximation of the ANN scheme obtained by i applications of Theorem A.6,
where the initial ANN scheme is the one from [Cha98], with approximation ĉ0 = poly(d). We also
denote by ct the approximation of an ANN scheme for ℓt, that is constructed by the same method
(i.e., recursively), except that for ℓd2 we use a (2, r)-ANN scheme from [HIM12] with poly(d log n)
query time and poly(dn) space and preprocessing time. Using Theorem A.6 with t = p/2, and
furthermore applying this recursively k = ⌈log(log ĉ0)⌉ = O(log log d) times, we obtain

ĉk ≤
√
8βcp/2ĉk−1 ≤

√
8βcp/2

√
8βcp/2ĉk−2 ≤ . . . ≤ 8βcp/2 · ĉ

1/2k

0 ≤ 16βcp/2,

i.e., this scheme has approximation cp = ĉk ≤ 16βcp/2. We can amplify the success probability of
this scheme to 1 − 1

3 log p . by the standard method of O(log log p) = O(log log log d) independent
repetitions. Now by recursion over p for log p levels, we get that

cp ≤ (16β)log p = (16 log p)log p = p4+log log p,

and the overall success probability is at least 2
3 by a union bound.

We are left to analyze the query time of the algorithm, and its space and preprocessing time.
Each level of the second recursion makes a total of k · O(log log p) = Õ(log log d) calls to an ANN
scheme for ℓt, for different intermediate values of t. Since the (2, r)-ANN for ℓ2 from [HIM12] has
query time poly(d log n), and recalling that p ≤ log d, the overall query time is Õ(log log d)log p ·
poly(d log n) = poly(d logn).

To analyze the space and preprocessing time, we prove the following claim.

Claim A.7. There exists an absolute constant D > 1 such that when the data structure for ℓdp,
p = 2i, is computed on m points, it uses total space Õ

(
(log log d)i

)
· poly(d)mD(1+1/ log p)i+1, and

preprocessing time Õ
(
(log log d)i + d · i

)
· poly(d)m2D(1+1/ log p)i+1 .

Proof. We only analyze the space usage of the data structure; the analysis of the preprocessing
time follows similarly, as it takes O(d) time to compute a Mazur map and O(m2(1+1/ log p)) time to
compute a sparse cover.

The proof proceeds by induction on i ≥ 0. For i = 0, the claim follows because the (2, r)-
ANN from [HIM12], when computed on m points, uses at most poly(d)mD space for some absolute
constant D > 1. Now, assume the claim holds for i − 1 ≥ 0. The ANN scheme at level i of the
recursion consists of two types of ANN schemes. The first type is an ANN scheme from [Cha98]
computed on all m points, which uses poly(d)Õ(m) ≤ poly(d)mD(1+1/ log p) space. The second type
are multiple ANN schemes at level i−1 that are computed on different subsets of the m points. For
every 0 ≤ j ≤ k = Õ(log log d), let Sj be the (log p, 2cjr)-cover of sparsity O(m1+1/ log p) computed
for the points at the j-th level of the first recursion. For every level j of the first recursion and
cluster S ∈ Sj , the algorithm computes a data structure of level i − 1 on S. By the induction
hypothesis, the space of this data structure is Õ

(
(log log d)i−1

)
poly(d)|S|D(1+1/ log p)i . Observe that

the function f : x 7→ xD(1+1/ log p)i satisfies that f(a) + f(b) ≤ f(a + b) for all a, b ≥ 0. Thus, the

21

total memory of the recursive data structure is at most

poly(d)m1+1/ log p +

Õ(log log d)∑
j=0

∑
S∈Sj

Õ
(
(log log d)i−1

)
poly(d)|S|D(1+1/ log p)i

≤ poly(d)Õ
(
(log log d)i−1

)
·
Õ(log log d)∑

j=0

[
f(m) +

∑
S∈Sj

f(|S|)
]

≤ poly(d)Õ
(
(log log d)i−1

)
·
Õ(log log d)∑

j=0

f
(
m+

∑
S∈Sj

|S|
)

≤ poly(d)Õ
(
(log log d)i

)
·O(m)D(1+1/ log p)i+1

,

and the bound O(1)D(1+1/ log p)i+1 ≤ O(1)2eD ≤ O(1) completes the proof.

Finally, we use Theorem A.7 for m = n and i = log p, and obtain that the space usage of the
data structure is bounded by

O(log log d)log p poly(d) · nD(1+1/ log p)log p ≤ poly(d) · nDe = poly(dn),

which completes the proof of Theorem A.2.

Remark A.8. Modifying the parameter β of the sparse cover in the proof of Theorem A.2 from
log p to log p

δ for 0 < δ < 1 yields a data structure with a slightly larger approximation factor
pO(1)+log(1/δ)+log p, but with a space requirement that matches that of [HIM12] up to subpolynomial
factors in d and an additional nO(δ) term.

Remark A.9. The same technique used in the proof of Theorem A.2, namely applying Theorem A.5
to construct covers in the preprocessing phase, can also be used to improve the space requirements
of the ANN for general normed spaces from [ANN+18b, Theorem 3]. More specifically, for every
0 < δ < 1, one can shave an Ω(n1−δ) factor from the space of the data structure, at the cost of an
additional O(δ−1) factor in the approximation.

22

	IntroductionThe main body of this thesis is identical to a paper that was accepted for publication at FOCS 2025 KPS25 and is a joint work with Shay Sapir. These results improve upon earlier work that was also carried out during these MSc studies and was published at SoCG 2025 KP25. Appendix A contains yet unpublished results that resolve one of the questions posed in this thesis.
	Lipschitz Decomposition
	Nearest Neighbor Search
	Low-Distortion Embeddings

	Preliminaries
	Lipschitz Decomposition of p Metrics
	Nearest Neighbor Search
	Embedding Finite p Metrics into 2
	Future Directions
	Fast Nearest Neighbor Search for p Metrics
	Introduction
	Related Work
	Preliminaries
	Overview of Algorithms from BG19, KPS25
	(2O(p), r)-ANN with `3́9`42`"̇613A``45`47`"603Apoly(dn) Space BG19
	(`3́9`42`"̇613A``45`47`"603Apoly(p), r)-ANN with `3́9`42`"̇613A``45`47`"603Apoly(d)nO(p) Space KPS25
	(2(p), r)-ANN with `3́9`42`"̇613A``45`47`"603Apoly(dn) Space

