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Vertex Cover Approximation in Data Streams

Abstract

We study the well known vertex cover problem in various data streaming set-
tings. Our first result considers a special family of graphs, the Vertex-Disjoint
Paths (V DP ) family. We say that a graph G is in the V DP family if the edges of
G are a union of vertex disjoint paths. For a V DP graph with n vertices given in
a dynamic stream, in which both insertions and deletions are allowed, we provide
a randomized algorithm for estimating the size of an optimal vertex cover within
(54 + ε) factor, using Õ(ε−1

√
n) bits of space. Our space bound is near-optimal

because a result by Esfandiari et al. [EHL+15] implies that even when the input is
limited to graphs in the V DP family, a weaker (32−ε)-estimation algorithm already
requires Ω(

√
n) space, for every constant ε > 0.

We continue by exploring general graphs in two other streaming models and
develop algorithms for vertex cover approximation in these models. For the dynamic
multi-pass model, in which both insertions and deletions are permitted and few
passes over the stream are allowed, we provide a randomized p-pass algorithm that
uses Õ(n1+1/p) space and returns a feasible vertex cover at most twice the size of
an optimal one. For the sliding window model, in which our interest is only in
the last w elements in the stream, we provide a deterministic algorithm that uses
O(1εn lg n) bits of space and returns a vertex cover at most (8 + ε) times the size
of an optimal one.
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1 Introduction

As the size of datasets and databases increase, computation over data streams is becoming
increasingly essential in data processing. In the data stream model the goal is to find a
solution while scanning the input in one sequential pass and using storage (space) which is
sub-linear in the input size. Some questions can be easily answered in the data streaming
model, such as counting the number of elements in a stream. Others cannot be answered
exactly using sub-linear space [AMS96], in which case approximation and randomization
play a major role in computing a solution.

We consider graph problems in the following streaming setting: the input is a graph
G = (V,E), where the set of vertices V is known in advance, and the edges E are revealed
in a streaming manner, i.e. at time t some edge et ∈ E is revealed in arbitrary order. This
model is referred to as the insertion-only model. We also consider some variations of the
streaming model, such as the dynamic model in which edge insertions and deletions are
allowed (though an edge may be deleted only if it was previously inserted), the sliding
window model in which we are only interested in a window of the last w edges that have
arrived, and the multi-pass model where a small number of passes is allowed.

A vertex cover of a graph G is a subset of vertices C ⊆ V such that each edge in E is
incident to at least one vertex in C. A minimum vertex cover is an optimization problem
where the goal is to find a vertex cover with minimum cardinality. For any optimization
problem, one can relax the requirements by considering two variants: the approximation
variant in which the goal is to report a feasible solution with near-optimal objective
value, and the estimation variant in which the goal is to merely report a value close to
the optimum, and there is no need to explicitly report a feasible solution. For example,
in the approximation variant of vertex cover, the goal is to report a set of vertices C ′ ⊆ V
that is incident to all edges in E, and its size is close to the size of an optimal vertex
cover. The goal in the estimation variant of vertex cover is to report a number s ∈ N
close to the cardinality of a minimum vertex cover.

Evidently the approximation variant of a problem is harder than its estimation variant,
because given a solution to the optimization variant, it is trivial to compute the value,
i.e. the estimation variant. However, a solution to the estimation variant might not
provide a solution to the approximation variant. In fact for the set cover problem with
n elements and m sets, for any α ≥ 1, computing the approximation variant within an
α multiplicative factor requires Θ̃(mn/α) space, and computing the estimation variant
within an α multiplicative factor can be done in only Θ̃(mn/α2) space[AKL16].

By convention, a randomized algorithm can toss coins and report a correct output
with probability at least 3/4. Amplifying the success probability to high probability
can easily be done using an extra lg n factor of space by standard repetitions. For

maximum problems, we say ÔPT α-approximates OPT if 1
α
OPT ≤ ÔPT ≤ OPT .

For minimization problems we say that ÔPT α-approximates OPT if OPT ≤ ÔPT ≤
α ·OPT . Notice that in both cases α ≥ 1.

1.1 Our contribution

The vertex cover problem in the standard computational model is NP-hard to solve
exactly [Kar72]. However the greedy algorithm is a linear (in the number of edges) time
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2-approximation algorithm. The greedy algorithm scans the edges and for each uncovered
edge (u, v) encountered it adds both u and v to the cover. In the insertion-only streaming
model, the greedy algorithm can easily be implemented using O(n) bit of space, one bit
for each vertex to mark if it is in the cover, where throughout n = |V |. It is therefore
natural to use 2-approximation and linear space as a baseline for the vertex cover problem,
and to explore the trade-off between approximation and space compared to this baseline.

We explore the approximation-space trade-off, starting with algorithms that use space
sub-linear in n. It seems unlikely that a constant factor approximation algorithm exists
that uses sub-linear space since it would not even have space to store the solution. There-
fore we relax the requirement and consider the estimation variant. Vertex cover estimation
algorithms for bounded-arboricity graphs were studied extensively (see Section 1.2), yet
no sub-linear space algorithm is known to produce an estimation factor better than 2,
even for graphs with arboricity 1, i.e. trees. To obtain an approximation factor better
than 2, we therefore consider the following more restricted family of graphs. We say a
graph G = (V,E) is in the vertex disjoint paths family (V DP for short) if G is a union of
vertex disjoint paths. The following theorem is a result of joint work with Rajesh Chitnis.

Theorem 1.1. For every ε > 0, there exists a randomized (5
4

+ ε)-estimation algorithm

for minimum vertex cover of an input graph in V DP that uses Õ(1
ε

√
n) space, even in

the dynamic streaming model.

Our space bound is near-optimal because a result by Esfandiari et al. [EHL+15] for
maximum matching implies that even for the V DP family, a weaker (3

2
− ε)-estimation

algorithm for minimum vertex cover already requires Ω(
√
n) space, for every constant

ε > 0. Furthermore, Theorem 1.1 implies that improving over the space lower bounds
of Esfandiari et al. requires using a different family of graphs. Our proof of Theorem
1.1 shows that estimating the number of length 2 paths, and the number of vertices with
degree 1 and 2, suffices to obtain a 5/4 + ε estimation for vertex cover.

We continue by exploring two other variants of the streaming model for general graphs
(not only V DP graphs). For the dynamic model, we provide a 2-approximation multi-
pass algorithm for vertex cover.

Theorem 1.2. There exists a randomized algorithm for vertex cover in the dynamic
streaming model that achieves 2-approximation, performs p passes, and uses O(n1+1/p log5 n)
bits of space.

The algorithm is similar in spirit to an algorithm presented by Demaine, Indyk, Ma-
habadi and Vakilian [DIMV14] for the streaming set cover problem with m sets and
n elements. They present a O(41/δ)-algorithm for the set cover problem that performs

O(41/δ) passes and uses Õ(m · nδ) bits of space.
For the sliding window model we show the following.

Theorem 1.3. For every ε > 0, there exists a single pass (8 + ε)-approximation de-
terministic algorithm for vertex cover in the sliding window streaming model that uses
O(1

ε
n lg n) bits of space.

This algorithm is based on a binning technique introduced by Crouch, McGregor
and Stubbs [CMS13] for maximum matching in the sliding window model. Note that
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model approximation space reference

insertion 5c+ 9 Õ(cn2/3) [EHL+15]

insertion c+ 2 Õ(cn2/3) [MV16b]

insertion (2c+ 1)(2c+ 2) Õ(c2.5
√
n) [CJMM16]

insertion (22.5c+ 6)(1 + ε) Õ(ε−2c log2 n) [CJMM16]
insetion (c+ 2)(1 + ε) O(ε−2 lg n) [MV16a]
insertion 3/2− ε Ω(

√
n) [EHL+15]

dynamic O(c) Õ(cn4/5) [BS15, CCE+16]

dynamic (2c+ 1)(2c+ 2) Õ(c10/3n2/3) [CJMM16]

Table 1: Known results for estimating Maximum Matching in graphs with arboricity at
most c.

for estimation problems, an algorithm for α-estimating maximum matching implies an
algorithm for 2α-estimating minimum vertex cover, because a minimum vertex cover is
at least the size of a maximum matching, and at most twice its size. In bipartite graphs,
by König’s Theorem the size of the maximum matching and minimum vertex cover are
equal. However an approximation algorithm for maximum matching is not directly useful
for an approximation algorithm for minimum vertex cover.

1.2 Related work

We continue two related but different lines of work. The first line of work is maximum
matching estimation for graphs with arboricity at most c. For the insertion-only model,
after some work (see Table 1), a remarkable logarithmic space algorithm was presented
that achieves a (22.5c+6)(1+ε)-estimation [CJMM16]. Recently, this result was improved
to a (c + 2)(1 + ε)-estimation still using logarithmic space [MV16a]. For the dynamic
model, there is no sub-polynomial space algorithm known, and the best algorithm known
achieves (2c+1)(2c+2)-estimation using Õ(c10/3n2/3) space [CJMM16]. For more results,
see Table 1.

The second line of work is about different streaming models, such as the dynamic
model and sliding window model. For maximum matching approximation in the dynamic
model, Assadi et al. [AKLY16] present an nε-approximation algorithm using Õ(n2−3ε)
space, and prove matching lower bounds (up to log factors). For maximum matching
approximation in the sliding window model, Crouch, McGregor and Stubbs [CMS13]
provide a (3 + ε)-approximation algorithm using O(ε−1n lg2 n) bits of space.

1.3 Preliminaries

We extensively use the following version of Hoeffding’s bound.

Theorem 1.4. (Hoeffding) Given k independent random variables Xi ∈ [0, 1], and X =∑k
i=1Xi, then Pr[|X − E[X]| ≥ εk] ≤ 2e−2ε

2k.

`0-sampling is defined as follows. Consider an input vector x ∈ Rn given in a streaming
manner, where at each time step an update (increment or decrement) to coordinate xi is
given. The goal is to sample a coordinate i of x, namely, return i and the coordinate xi
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(at the end of the stream), with uniform probability over all non-zero coordinates xi 6= 0.
We refer to such an algorithm as an `0-sampler.

Lemma 1.5 (`0-sampler [CF14, Corollary 1] ). There is an `0-sampler that uses O(log4 n)
bits, succeeds with probability at least 1 − n−c and, conditioned on a successful recovery,
outputs a coordinate i with non-zero xi with probability 1

‖x‖0 ± n−c for arbitrarily large
constant c.

The above Lemma can be easily adapted to sampling an edge in a dynamic graph, by

representing the edges in the graph as a binary vector x ∈ {0, 1}(
n
2) . Each time an edge

is added (or deleted) add (or subtract) 1 from the respective coordinate xi. By using
multiple `0 samplers, one can recover all edges in the final graph (at the end of a dynamic
stream).

Lemma 1.6. There is a randomized algorithm that recovers all edges in the final graph
(at the end of a dynamic graph stream), using O(m lg5 n) bits of space, where m is the
number of edges in the final graph.

Proof. Consider the algorithm that throughout the stream maintains 10m lg n indepen-
dent `0-samplers. At the end of the stream the algorithm extracts an edge from each
sampler, and returns the union (removing duplicates) of all extracted edges.

Now consider an edge e and a sampler l, the probability that l was successful and
that e was extracted from l is by a union bound at least 1

m
− 2n−c ≥ 1

2m
, for large

enough constant c. Thus the probability it was not extracted from 10m lg n independent
`0-samplers is (1 − 1

2m
)10m lgn ≤ n−5. By a union bound on all m ≤ n2 edges in the

stream, the probability that some edge was not recovered is ≤ n−3. In other words, the
probability that all edges in the stream were recovered is at least 1− 1/n3.

2 Estimating Vertex Cover in Paths

In this section we explore the approximation-space trade-off for minimum vertex cover
by considering algorithms using sub-linear space. It seems unlikely that a constant ap-
proximation sub-linear (in n) space algorithm exists, since it would not even have enough
space to store the entire solution. Therefore we relax the requirement and consider the
estimation variant. Even for bounded arboricity graphs, no sub-linear space algorithm
is known to produce an estimation factor better than 2. (See section 1.2.) Therefore
we consider a more restricted family of graphs, the vertex disjoint paths family, denoted
V DP .

By König’s Theorem, in every bipartite graph, the size of the maximum matching is
equal the size of the minimum vertex cover [BM76, Chapter 5]. Since the V DP family is
bipartite, for graphs in this family every result for maximum matching estimation is true
also for minimum vertex cover estimation. Esfandiari et al. [EHL+15] proved a lower
bound that any streaming algorithm, even for V DP graphs, estimating the maximum
matching (and therefore also minimum vertex cover) within 3

2
− ε factor, requires at least

Ω(
√
n) space, even in the insertion only model, for every constant ε > 0. We restate

the theorem from the Introduction that provides an algorithm that uses nearly matching
space.
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Theorem 1.1. For every ε > 0, there exists a randomized (5
4

+ ε)-estimation algorithm

for minimum vertex cover of an input graph in V DP that uses Õ(1
ε

√
n) space, even in

the dynamic streaming model.

The rest of this section is dedicated to proving Theorem 1.1. Since the results are
the same for maximum matching and minimum vertex cover, the analysis is done via
maximum matching. We start by showing that with a couple of simple and ”local”
counters one can estimate the maximum matching. Later we show how to estimate these
counters in the dynamic streaming model.

2.1 Graph properties

Let pi be the number of paths of length i, i.e. containing i edges, and let di be the number
of vertices of degree i. Counting the number of matched edges in each path, it is easy to
verify that for each path of length 1 or 2 an optimal matching has one matched edge, for
each path of length 3 or 4 it has 2 matched edges, and so on. In general the size of an
optimal solution is

OPT = p1 + p2 + 2p3 + 2p4 + ...+

⌈
n− 1

2

⌉
pn−1 =

n−1∑
i=1

⌈
i

2

⌉
pi. (1)

We can express the number of degree 2 vertices, denoted d2, as a function of the
number of paths. Notice that in a path of length 1, there are no vertices of degree 2, in
a path of length 2 there is one vertex of degree 2, in a path of length 3 there are 2, and
so on. In general,

d2 = p2 + 2p3 + 3p4 + ...+ (n− 2)pn−1 =
n−1∑
i=1

(i− 1)pi.

Consider the following estimator for OPT using only d1, d2 and p2

ÕPT =
2

5
d1 +

2

5
d2 −

1

5
p2

=
1

5

(
2
n−1∑
i=1

2pi + 2
n−1∑
i=1

(i− 1)pi − p2

)

=
2

5

n−1∑
i=1

(i+ 1)pi −
1

5
p2. (2)

Let αi = di/2e be the coefficient of pi in OPT according to Equation (1), and let α̃i be

the coefficient of pi in ÕPT as in Equation (2). Then the (deterministic) error of the
estimator is

OPT − ÕPT =
n−1∑
i=1

(αi − α̃i)pi.

For i = 1 the error is bounded by α1 − α̃1 ≤ 1
5
α1, for i = 2 the error is α2 − α̃2 = 0, and

for i ≥ 3 there are two cases: even i and odd i. For even i ≥ 4, the error is bounded by

αi − α̃i =
1

2
i− 2

5
(i+ 1) =

1

10
i− 2

5
≤ 1

5
· 1

2
i ≤ 1

5

⌈
i

2

⌉
=

1

5
αi.
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For odd i ≥ 3, the error is bounded by

αi − α̃i =
i+ 1

2
− 2

5
(i+ 1) =

1

10
(i+ 1) =

1

5

⌈
i

2

⌉
=

1

5
αi.

Thus αi − α̃i ≤ 1
5
αi for all i, therefore

OPT − ÕPT =
n−1∑
i=1

(αi − α̃i)pi ≤
1

5

n−1∑
i=1

αipi =
1

5
OPT.

We continue by showing that 0 ≤ OPT − ÕPT . For i ∈ {1, 2, 3} it can be verified
manually that 0 ≤ αi − α̃i, and for i ≥ 4 it holds that

0 ≤
⌈
i

2

⌉
− 2

5
(i+ 1) = αi − α̃i

and therefore

0 ≤
n−1∑
i=1

(αi − α̃i)pi = OPT − ÕPT .

Altogether, 4
5
OPT ≤ ÕPT ≤ OPT , concluding that ÕPT is a 5/4-estimator for OPT .

2.2 Streaming Algorithm

We are now ready to present our algorithm for estimating ÕPT in the dynamic streaming

model. Throughout we assume that ε = Ω
(

1
n1/2 logO(1)(n)

)
, since otherwise Õ(ε−1

√
n)

suffices to store all the edges of G. If there are at most 10ε−1
√
n lg n non-deleted edges

remaining at the end of the stream, then by Lemma 1.6 we can recover all the edges
with high probability using Õ(ε−1

√
n) bits of storage. Therefore we assume throughout

that the number of edges is greater than 10ε−1
√
n lg n. The input to the algorithm is a

set of vertices V , an error parameter ε, and an estimated number of edges t (it’s enough
that |E| ≤ t ≤ 2|E|). Let k = 101

ε

√
n lg n. Before the stream starts, sample each vertex

in V with probability k/t, and denote the set of sampled vertices by VR. For each edge
(u, v) inserted to (deleted from) the stream, if u or v are in VR, add the edge (u, v) to ER
(remove it for deletion). Let d̂1 be the number of vertices in VR of degree 1 in the graph
(V,ER), and similarly let d̂2 be the number of vertices in VR of degree 2 in the graph
(V,ER). Finally, let p̂2 be the number of length 2 paths in (V,ER) where both endpoints

of the path are in VR. Return the estimate ÔPT = 2
5
t
k
d̂1+ 2

5
t
k
d̂2− 1

5
t2

k2
p̂2. For more details

see Algorithm 1.
The correctness of the algorithm is derived by showing that d1, d2 and p2 are estimated

well by appropriately scaling of d̂1, d̂2 and p̂2. For every sampled vertex v ∈ VR the
algorithm stores all its incident edges, therefore the degree of v in the original graph G
is equal to its degree in the sampled graph (V,ER), and therefore degG(v) = deg(V,ER)(v)
for every vertex v ∈ VR. (Note that this is not true for vertices in V \ VR.)

Lemma 2.1. Pr[ t
k
d̂i ∈ (di ± εt)] ≥ 1− 1/n, for i ∈ {1, 2}.
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Algorithm 1 Estimating ÕPT

1: procedure EstOPT(V , ε, t)
2: n = |V |, k = 101

ε

√
n lg n

3: Let VR be obtained by sampling each vertex in V with probability k/t.
4: ER = φ
5: for e = {u, v} inserted to (deleted from) stream do
6: if v ∈ VR or u ∈ VR then ER = ER ∪ {e} (ER = ER \ {e} for deletion)

7: Let d̂1 be the number of vertices in VR of degree 1 in (V,ER).
8: Let d̂2 be the number of vertices in VR of degree 2 in (V,ER).
9: Let p̂2 be the number of ordered pairs (u,w) such that:

a: u,w ∈ VR
b: there exists v ∈ V such that {u, v}, {v, w} ∈ ER
c: deg(V,ER)(u) = deg(V,ER)(v) = 1, i.e. u and v are endpoints of a path

d: u < w in some fixed ordering.

10: ÔPT = 2
5
t
k
d̂1 + 2

5
t
k
d̂2 − 1

5
t2

k2
p̂2

11: return ÔPT

Proof. Fix i ∈ {1, 2}. To simplify notation, suppose {v ∈ V : degG(v) = i} = {v1, ..., vdi}.
For j ∈ [di], define Xj = 1 if vj ∈ VR and Xj = 0 otherwise, and define X =

∑di
j=1Xj.

Each vertex is sampled independently with probability k/t, therefore Pr[Xj = 1] = k/t,
and from linearity of expectation

E[X] = E

[
di∑
j=1

Xj

]
= dik/t.

Since the Xjs are sampled independently and bounded, using Hoeffding’s inequality we
obtain that

Pr

[∣∣∣∣ tk d̂i − di
∣∣∣∣ ≥ εt

]
= Pr [|X − E[X]| ≥ εk] ≤ 2e

−2( ε
di
k)2di = 2e

−2 ε2

di
k2 ≤ 1

n
,

where the last inequality is because di ≤ n and k2 = 100 1
ε2
n lg2 n .

Lemma 2.2. Pr[(t/k)2p̂2 ∈ (p2 ± εt)] ≥ 0.99.

Proof. Let P2 ⊆ V × V be the set of endpoints, restricted to u < w for every (u,w) ∈
V × V , of maximal length 2 paths in G, i.e. not including sub-paths of a longer path.
For every u,w ∈ V , let Yu,w be an indicator random variable, such that Yu,w = 1 if
(u,w) ∈ P2 and u,w ∈ VR, i.e. u and w are endpoints of a path of length 2 and
sampled by the algorithm, and Yu,w = 0 otherwise. Let Y =

∑
u<w Yu,w =

∑
u,w∈P2

Yu,w
be a random variable counting the number of length 2 paths in the sample with both
endpoints in VR. If (u,w) ∈ P2 then Pr[Yu,w = 1] = (k/t)2. Note that if (u,w) /∈ P2

then Pr[Yu,w = 1] = 0. There are only p2 = |P2| such paths, therefore from linearity of
expectation E[Y ] = (k/t)2p2. Observe that the random variable Y represents exactly p̂2
from step 9 in the algorithm.

7



It is left to bound the probability that Y is far from its expectation. We do this
by bounding the variance, and then applying Chebyshev’s inequality. Since the random
variables are independent, the variance is bounded by

Var[Y ] = Var[
∑

(u,w)∈P2

Yu,w] =
∑

(u,w)∈P2

Var[Yu,w] ≤
∑

(u,w)∈P2

Pr[Yu,w = 1] =

(
k

t

)2

p2.

Applying Chebyshev’s inequality we obtain that

Pr

[∣∣∣∣∣
(
t

k

)2

p̂2 − p2

∣∣∣∣∣ ≥ εt

]
= Pr

[
|Y − E[Y ]| ≥ ε

k2

t

]
≤
p2
(
k
t

)2(
εk

2

t

)2 =
p2
ε2k2

≤ 1

100

where the last inequality is because p2 ≤ n and k2 = 100ε−2n lg2 n.

Lemma 2.3. Pr[ÔPT ∈ (1± 4ε)ÕPT ] > 0.9, assuming |E| ≤ t ≤ 2|E|.

Proof. By Lemma 2.1 with high probability t
k
d̂i ∈ (di ± εt), and by Lemma 2.2 with

probability at least 0.99, k2

t2
p̂2 ∈ (p2± εt). By a union bound on the failure probabilities,

Pr

[
ÔPT =

2

5

t

k
d̂1 +

2

5

t

k
d̂2 −

1

5

t2

k2
p̂2 ∈

(
ÕPT ±

(
2

5
+

2

5
+

1

5

)
εt

)]
≥ 0.9.

Assuming |E| ≤ t ≤ 2|E|, and since ÕPT ≥ |E|/2, therefore ÕPT ≥ t/4, and

ÕPT (1− 4ε) ≤ ÔPT ± εt ≤ ÕPT (1 + 4ε),

concluding that

Pr[ÔPT ∈ ÕPT (1± 4ε)] ≥ 0.9

and Lemma 2.3 follows.

Space There are at most t edges in G. If there are 10ε−1
√
n lg n or less edges remain-

ing at the end of the stream, all edges are extracted and the space used is Õ(ε−1
√
n).

Otherwise, the Estimating ÕPT algorithm is used. To sample an edge, at least one of its
vertices must be sampled, and the probability to sample a vertex is k/t, therefore each
edge is sampled with probability at most 2k/t. Thus the expected number of edges in

ER is Õ(t · k
t
) = Õ(k) = Õ(1

ε

√
n). By Markov’s inequality with probability at least 0.99

the space will not exceed its expectation by more than 100 times.

Putting it all together and scaling ÔPT and ε appropriately, implies Theorem 1.1.

Optimality ÔPT is optimal in the sense that any estimator using only the counters
d1, d2, p1 and p2, cannot yield a better approximation. This is because these counters
have the same value for a graph G1 consisting of two paths of length 4 and a graph G2

consisting of one path of length 3 and one path of length 5. But in G1 the maximum
matching is of size 4 and in G2 it is 5. Consequently, any algorithm using only these
counters, cannot do better than a (5/4)-approximation1.

1 To find the optimal coefficient for d1, d2, p1 and p2 we set up and solved a linear program.
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Estimating the number of edges Since |E| ≤ t ≤ |E|, we can run lg n copies of the
algorithm, where the ith copy will use parameter t = 2i. Using O(lg n) bits, the algorithm
can count the number of edges in the stream by incrementing and decrementing a counter
for each insertion and deletion, respectively. Finally, return the vertex cover obtained
from the copy with 1 ≤ t

|E| < 2. Running lg n copies and a counter, only increases the
space by a multiplicative lg n factor.

3 Multi-Pass Algorithm in the Dynamic Model

In this section we explore vertex cover approximation for dynamic streams. At the time
of writing, the author is not aware of any sub-linear (in the number of edges) space
one-pass algorithm for vertex cover approximation in the dynamic model, therefore we
relax the requirements to allow multiple passes. We prove Theorem 1.2 by presenting a
randomized algorithm that performs p passes on the data stream, uses Õ(n1+1/p) space,
and returns a 2-approximation.

Before presenting the algorithm, we present some definitions and known results, which
are used as building blocks for our algorithm. The greedy algorithm iterates over the edges
(in an arbitrary order), and for each edge (u, v) visited, the algorithm adds both u and
v to the cover if the edge is not covered yet. It is known that the greedy algorithm is a
2-approximation algorithm for vertex cover. We say that a subset of the vertices is an
ε-cover, if it covers at least a (1− ε) fraction of the edges. Given a partial cover P ⊆ V
it is useful to extend P by adding more vertices. Let EP = E \ (P × V ) be the set of
edges not covered by P . We say that a subset of vertices is an ε-cover of EP if it covers
(1 − ε)|EP | edges of EP . In the special case when P is the empty set, an ε-cover of EP
is equivalent to an ε-cover.

We only consider the case when the number of passes permited is small, i.e. p < n,
because when the number of passes is large, i.e. p ≥ n, the following simple randomized
algorithm will return a 2-approximation vertex cover. In each pass, the algorithm samples
an uncovered edge using an `0-sampler, and adds both its endpoints to the current cover.
The algorithm stops when all edges in the stream are covered, i.e. when the `0-sampler
fails. The algorithm performs at most n passes, because at each pass it adds two new
vertices to the cover, and if it would perform more than n passes, it would have a vertex
cover of size 2n when there are only n vertices in the graph. This algorithm is equivalent
to the greedy algorithm when the order of edges depends on the samplers, and therefore
is a 2-approximation. The algorithm uses O(n) bits to keep track of the vertex cover,
and an additional O(lg4 n) bits for the `0-sampler (by Lemma 1.5), which can be reused
over passes. Thus the algorithm uses O(n) bits of space.

We start by introducing an algorithm for an ε-cover of EP , which will later be used
to construct an algorithm for obtaining a (full) vertex cover. The following randomized
Partial-Cover algorithm returns an ε-cover of EP while performing a single pass over the
data stream. The input to the algorithm is: the set of vertices V , a partial cover P , and
a number s of `0-samplers. While reading the sequence of edge updates in a streaming
manner, the algorithm maintains s independent copies of an `0-sampler for the edges in
EP , by ignoring edges already covered by P . At the end of the stream, the algorithm
extracts s edges from the `0-samplers, and denotes them e1, ..., es. It then runs the greedy
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algorithm on the graph (V, {e1, ..., es}), and returns the resulting vertex cover denoted P̃ .
For details see Algorithm 2. The correctness of the algorithm is asserted by the following
Lemma.

Algorithm 2 Partial-Cover

1: procedure PartialCover(V, P, s)
2: for i ∈ [s] do
3: L[i] = initialize independent copy of `0-sampler

4: for addition/deletion of (u, v) in stream do
5: if u /∈ P and v /∈ P then
6: for i ∈ [s] do add/delete (u, v) from L[i]

7: for i ∈ [s] do extract an edge ei from L[i]

8: P̃ = Greedy-Algorithm(V, {e1, ..., es})
9: return P̃

Lemma 3.1. Let s = 4n/ε. Then algorithm Partial-Cover performs a single pass over
the stream, and with probability ≥ 1/2 returns an ε-cover of EP .

Proof. Assume to the contrary, that with probability ≥ 1/2 Partial-Cover does not return
an ε-cover of EP , i.e. after the algorithm terminates there are at least ε fraction of EP
edges not covered by P̃ . Denote by Z the event that the algorithm does not return an
ε-cover of |EP |, thus Pr[Z] ≥ 1/2. Let Xi be the indicator random variable that when the
greedy algorithm inspects the random edge ei ∈ EP it is not covered yet by the greedy
algorithm, and therefore the greedy algorithm will add both its endpoints to P̃ . Finally
denote X =

∑s
i=1Xi.

For each uncovered edge encountered by the greedy algorithm, it adds 2 vertices to
the cover, therefore 2X = |P̃ | ≤ n (with probability 1), and therefore E[X] ≤ n/2. By
conditional probability, the expectation of X is

E[X] = Pr[Z] · E[X|Z] + Pr[Z̄] · E[X|Z̄]

≥ Pr[Z] · E[X|Z]

≥ 1

2
·

s∑
i=1

Pr[Xi = 1]

=
1

2
· s · ε

≥ 2n.

Thus 2n ≤ E[X] ≤ n/2, which is a contradiction.

By increasing s we could significantly boost the probability. This is formalized in the
following lemma.

Lemma 3.2. For every ε > 0, let s = 16
ε
n lg n. Then with probability at least 1 − 1/n4,

the algorithm Partial-Cover returns an ε-cover of EP .
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Proof. Partial-Cover samples edges and runs the greedy algorithm on them. Lemma 3.1
implies that running the greedy algorithm on a sample of 4n/ε edges, will return an
ε-cover of EP with probability at least 1/2.

Partition the sampled edges e1, ..., es to 4 lg n sets of size 4n/ε each. It is enough to
successfully run the greedy algorithm on one of these sets, because that will ensure an
ε-cover of Ep. Thus the algorithm fails only when it fails on all sets. Because the samples
are independent, the probability to fail on all sets is at most (1/2)4 lgn = 1/n4.

We are now ready to present the Full-Cover algorithm, a p-pass randomized algorithm
that covers all edges in E. The algorithm gets as input the set of vertices V , and the
number of passes p. Let ε = n−1/p. The idea is to construct a feasible vertex cover by
iteratively covering more edges in each pass. During the kth pass, the algorithm uses
Partial-Cover to obtain an ε-cover of the edges not covered by the previous partial cover
P̂k−1, and sets P̂k to be the union of the vertex set obtained by Partial-Cover and P̂k−1.
Finally it returns P̂p. For details see Algorithm 3.

Algorithm 3 Full-Cover

1: procedure FullCover(V, p)

2: Let ε = n−
1
p .

3: P̂0 = φ
4: for k ∈ [p] passes do

5: P̂k = P̂k−1∪ Partial-Cover(V, P̂k,
16
ε
n lg n)

6: return P̂p

Lemma 3.3. With high probability, Full-Cover returns a vertex cover.

Proof. We say a pass k is successful if Partial-Cover successfully returns an ε-cover of
EP̂k−1

. In each successful pass the number of uncovered edges is reduced by a fraction

of ε. The number of edges is at most n2, and after p − 1 successful passes at most

εp−1n2 = n2− p−1
p = n1+ 1

p edges remain uncovered. At the last pass, by Lemma 1.6 with
probability at least 1− 1

n4 all uncovered edges are sampled by Partial-Cover, therefore it
will cover all remaining uncovered edges. By a union bound on the failure probability, the
probability of all passes succeeding is at least 1− (p− 1) 1

n4 − 1
n4 > 1− 1

n3 , for p < n.

Since at pass k we only use the information from pass k − 1, the space could be
reused over passes. The space used is O(n) bits to store the information for P̂k and P̂k−1
(one bit for each vertex), and an additional O(1

ε
n1+1/p lg5 n) bits to store O(1

ε
n1+1/p lg n)

`0-samplers, each using O(lg4 n) bits (by Lemma 1.5). Therefore the total space used is
O(1

ε
n1+1/p log5 n) bits.

Since each time the greedy algorithm adds a pair of vertices u and v, it is because
it visited an uncovered edge (u, v), therefore either u or v must be in an optimal cover.
Therefore the algorithm returns a vertex cover of size at most twice an optimal solution,
thus it is a 2-approximation. (A similar argument is used to prove that the greedy
algorithm is a 2-approximation.) This completes the proof of the following Theorem.
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Theorem 1.2. There exists a randomized algorithm for vertex cover in the dynamic
streaming model that achieves 2-approximation, performs p passes, and uses O(n1+1/p log5 n)
bits of space.

4 Sliding Window Model

In this section we explore another streaming model, the sliding window model. In this
model the goal is to compute the vertex cover of the graph that has arrived in the last
time window. We refer to et−(w−1), et−(w−2),...,et as the active window where w is the length
of the active window. Specifically, given a stream of edges e1, e2, ..., at time t we need
to return a vertex cover for edges et−(w−1), et−(w−2),...,et , where t is not known in advance.
The motivation is that by ignoring data prior to the active window, we focus on the
”freshest” data and can therefore detect anomalies and trends more quickly.

We prove Theorem 1.3 by showing a single pass deterministic (8 + ε)-approximation
algorithm for vertex cover in the sliding window model, using O(1

ε
n lg n) space. If the

window is small, i.e. w ≤ 1
ε
n lg n, a trivial solution is to store the entire window, therefore

we consider the case where w > 1
ε
n lg n. Some graph problems were already studied in

the semi-streaming sliding window model, especially a (3 + ε)-approximation algorithm
was presented by Crouch, McGregor and Stubbs [CMS13] for maximum matching. We
use some of their ideas for our vertex cover algorithm.

We begin with some notation. For graph G = (V,E), we say a subset of edges A ⊆ E

is a segment, if the edges of A appear sequentially in the stream. Let VC∗(A) and ṼC(A)
be the size of an optimal and greedy solutions on segment A, respectively. Denote the
concatenation of disjoint segments A and B by AB. Intuitively, if the greedy algorithm
of a smaller input segment B has similar cardinality as on a larger inputs segment AB,
then for any successive segment C the greedy algorithm on the shorter input segment
BC has similar cardinality as on the larger input segment ABC. This idea is formalized
in the following Lemma.

Lemma 4.1. For disjoint segments of the stream A,B and C and for every ε ∈ (0, 1/2),

if ṼC(B) ≥ (1− ε)ṼC(AB) then ṼC(BC) ≥ 1
4
(1− ε)ṼC(ABC).

Proof. We use some properties of the greedy vertex cover algorithm and an optimal vertex
cover, to show the following.

2ṼC(BC) ≥ ṼC(B) + ṼC(BC)

≥ (1− ε)ṼC(AB) + ṼC(BC) (assumption)

≥ (1− ε) VC∗(AB) + (1− ε) VC∗(BC)

≥ (1− ε) VC∗(ABC)

≥ 1

2
(1− ε)ṼC(ABC)

We continue by showing that under some condition the greedy solution for ABC is a
good approximation to an optimal solution on BC. The following lemma formalizes this
idea.
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Lemma 4.2. For every ε ∈ (0, 1/2) and disjoint segments A,B and C, if ṼC(B) ≥
(1− ε)ṼC(AB) then

VC∗(BC) ≤ ṼC(ABC) ≤ (8 +O(ε)) VC∗(BC).

Proof. We use Lemma 4.1 and the fact that greedy vertex cover is a 2-approximation,
therefore

ṼC(ABC) ≤ 4

1− ε
ṼC(BC) (Lemma 4.1)

≤ 8

1− ε
VC∗(BC).

On the other hand
VC∗(BC) ≤ VC∗(ABC) ≤ ṼC(ABC).

The Lemma follows from the fact that 1
1−ε = 1 +O(ε), for ε ∈ (0, 1/2).

We are now ready to present the algorithm. The main idea is to have multiple buckets
representing the stream. A new bucket is created each time a new edge is revealed, and
it represents the segment starting at the time the bucket was created until the end of the
stream. Some buckets may be deleted throughout the execution of the algorithm. After
buckets are deleted, the remaining buckets are renumbered such that their order is kept,
and their indices are successive. See Algorithm 4 for details.

Algorithm 4 Sliding Window

1: procedure SlidingWindow
2: for (u, v) revealed in stream do
3: k = current number of buckets
4: Create a new empty bucket Bk+1

5: for i ∈ [k + 1] do
6: if (u, v) is not covered in bucket Bi then
7: Add u and v to vertex cover of Bi
8: Let i = 1
9: while i < k do

10: if exists j > i such that ṼC(Bj) ≥ (1− ε)ṼC(Bi) then

11: Set j∗ to be the largest j such that ṼC(Bj) ≥ (1− ε)ṼC(Bi)
12: for r ∈ [i+ 1, j∗ − 1] do Delete Br
13: Let i = j∗

14: else
15: Let i = i+ 1

16: Renumber the buckets as B1,B2, ...
17: if B2 contains the entire active window then
18: Delete B1
19: Renumber the buckets as B1,B2, ...
20: return The vertex cover of B1

13



Figure 1: The edges in B(t∗)
1 , i.e. bucket B1 at time t∗ are partitioned into segments A,B

and C.

Lemma 4.3. Algorithm Sliding Window returns an (8+O(ε))-approximation vertex cover
for the active window, for every ε ∈ (0, 1/2).

Proof. Let W be the set of edges in the active window. At any time during the stream

B2 ⊂ W ⊆ B1, (3)

because at the beginning of the stream when the first edge of W arrives, some bucket
contains that single edge. Later, that bucket is deleted only if it become B1 and W ⊆ B2,
and then B2 is renumbered to B1, thus B1 always contains the active window. If B2
would contain the active window, B1 would be deleted, and B2 would be renumbered,
thus B2 ⊂ W .

Since the bucket numbering changes throughout the algorithm, let B(t)
i be the bucket

that had index i at time t, and let t∗ be the time at the end of the stream. If throughout
the stream no buckets were deleted between B(t∗)

1 and B(t∗)
2 (i.e. at time t when B(t∗)

2 was

created, we had B(t∗)
1 = B(t)

k and B(t∗)
2 = B(t)

k+1) then W = B(t∗)
1 . This is because there is

a difference of only one edge between B(t∗)
1 and B(t∗)

2 , and B(t∗)
2 ⊂ W ⊆ B(t∗)

1 by Equation

3. Therefore ṼC(B(t∗)
1 ) = ṼC(W ), and the algorithm returns a 2-approximation.

Otherwise at some point during the stream there were buckets deleted between B(t∗)
1

and B(t∗)
2 . Denote by A the segment between the time B(t∗)

1 was created up to the time

B(t∗)
2 was created (not including), denote by B the segment starting at the end of A until

the first time B(t∗)
1 and B(t∗)

2 had successive indices (not including), i.e. the earliest time

t for which there exists an i such that B(t∗)
1 = B(t)

i and B(t∗)
2 = B(t)

i+1. Finally denote by C
the segment starting at the end of B until the end of the stream. See Figure 1.

Since buckets were deleted between B(t∗)
1 and B(t∗)

2 at the end of segment AB, therefore

ṼC(B) ≥ (1 − ε)ṼC(AB) (lines 10 to 12 in Algorithm 4), and Lemma 4.2 applies.

The segment ABC is from the creation of B(t∗)
1 to the end of the stream, therefore

B(t∗)
1 = ABC. Similarly, the segment BC is from the creation of B(t∗)

2 to the end of the

stream, therefore B(t∗)
2 = BC. Substituting the values in Equation 3 we get that

B(t∗)
2 = BC ⊂ W ⊆ ABC = B(t∗)

1 .

We finish the proof by applying Lemma 4.2, and obtaining that

VC∗(W ) ≤ ṼC(B(t∗)
1 ) = ṼC(ABC) ≤ (8 +O(ε)) VC∗(W ).
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Space usage At every point during the execution, ṼC(Bi) ≥ (1−ε)ṼC(Bi+1) for every
i ∈ [k − 1], and the size of a vertex cover is at most n, therefore at most

O(lg 1
1−ε

n) = O(lg1+O(ε) n) = O
(

1

ε
lg n

)
buckets are used. Each bucket contains a greedy vertex cover, therefore at most n bits
are required per bucket, totaling O(1

ε
n lg n) bits of space.

Scaling ε appropriately completes the proof of Theorem 1.3 which we restate bellow.

Theorem 1.3. For every ε > 0, there exists a single pass (8 + ε)-approximation de-
terministic algorithm for vertex cover in the sliding window streaming model that uses
O(1

ε
n lg n) bits of space.
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