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Abstract

The spectrum of a matrix contains important structural information about the underlying
data, and hence there is considerable interest in computing various functions of the matrix
spectrum. A fundamental example for such functions is the lp-norm of the spectrum, called the
Schatten p-norm of the matrix.

These large matrices are usually accessed sequentially, and thus the streaming model is
a computational paradigm commonly used to represent this access pattern. In this setting,
the matrix entries are presented to the algorithm as a stream, and since space (memory) is a
limited resource, the algorithm must “compress” the data on the fly. Often the matrices can be
accessed in a structured fashion such as row-order, where the entry updates arrive in a natural
lexicographic order.

Computing spectral functions in general, and Schatten norms in particular, is an expen-
sive task. Despite attracting considerable interest, all known algorithms require space that is
polynomial in the dimension of the matrix, even for row-order streams and sparse matrices
(most entries are zeros). As matrices representing real-world data are often sparse or doubly
sparse, i.e., sparse in both rows and columns, it is highly desirable to design algorithms requiring
significantly smaller space.

We answer this challenge by providing the first algorithm that uses space independent of
the matrix dimension to compute the Schatten p-norm of a doubly-sparse matrix presented in
row-order data stream for any even integer p. Instead, our algorithm uses space polynomial in
the sparsity parameter k and makes O(p) passes over the data stream. The algorithm leverages
the multipass regime by an adaptive-sampling approach that can be interpreted as a random
walk.

We further show that multiple passes are unavoidable in this setting by proving that every
one-pass algorithm must use space bound that depends on the matrix dimension. In addition,
we present several extensions of our primary algorithmic technique, including stronger upper
bounds for special matrix families, algorithms for the more difficult turnstile model, and a
trade-off between space requirements and number of passes.
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1 Introduction

In recent years, technology advances have enabled a rapid growth in data gathering, as part of
what is commonly known as the Big Data era. Due to the incredible size of these data sets, sourced
from numerous devices including internet sites, social networks, mobile devices and cameras, the
transfer of data between sites/cores, or from disk to local memory, has become a major bottleneck.
As a result, many traditional algorithms have become irrelevant, raising the need for algorithms
capable of processing huge data sets, and applicable to new models of computation.

One of the most commonly used models is the streaming model (see e.g. [BBD+02, Mut05,
Agg07, Agg10, Gam10]), popularized by a seminal paper of Alon et. al. [AMS96]. In the basic
version of this model, the input is a long (possibly infinite) sequence of elements S = (s1, . . . , sl),
referred to as a data stream. A streaming algorithm A processes the stream S sequentially, i.e.,
“earlier” portions become inaccessible, and outputs (an approximation to) some function f(S). If
the input size is unknown in advance or if it is infinite, then the algorithm is expected to be able
to evaluate f at any time t on the prefix St = (s1, . . . , st). The main measure of efficiency in this
model is space complexity, and thus streaming algorithms must “compress” the data on the fly,
so that the algorithm’s memory utilization will be much smaller than the input. In addition, as
computing the exact value of f(S) is often computationally expensive, typically the algorithms’
outputs are only approximate solutions.

Frequency Vectors. A famous setting is vector streaming: a vector x ∈ Rn undergoes a sequence
of additive updates to its coordinates. The input is a sequence of items of the form (i, δ) ∈
[n]×{−t, ..., t}, representing additive updates xi ← xi+δ, where generally δ could also be negative.
A fundamental family of problems studied in this model are the lp-norm of x for different p values.
As x ∈ Rn can be interpreted as a counter of the occurrences of different items i ∈ [n], these
lp-norms, raised to the pth power, are often called frequency moments. They include the special
cases of p = 0, interpreted as the number of distinct elements, and p =∞, being the most frequent
item. There is a large body of work on bounding the memory required to (ε)-approximate the
frequency moments, and nearly tight results are known for all p values (see e.g. [Woo18]). There
are algorithms that do one pass over the data and use O( logn

ε2
) and O( logn

ε2
n1−2/p) words of memory

for p ≤ 2 and p > 2 respectively, and almost matching lower bounds of Ω( 1
ε2

) and Ω(n1−2/p) bits
of space.

A related family of problems are point queries, in which the goal is to estimate a coordinate of
the frequency vector with small additive error, namely, given a query i ∈ [n], report x̃i such that
with high probability x̃i ∈ xi ± ε‖x‖p. Algorithms for this problem have very useful applications,
such as heavy-hitters, in which the goal is to return the set of the frequent coordinates, and sparse
recovery, in which the goal is to report a sparse vector that is close to the original vector. For
further reading about these applications, see [Ind08, CH09, GI10].

Matrix Streams. While the vector model has been widely studied, many questions are still open
for the matrix-stream model, where the input is a matrix A ∈ Rm×n given to the algorithm as a
sequence of additive updates to the matrix entries, a setting that is applicable for various application
domains such as database queries, data mining, network transactions and sensor networks (see
[Lib13, HK15, WLL+16] for recent examples of matrix streams). There are three common variants
of the matrix-stream model, namely, turnstile model, entry-wise model and row-order model. In
the turnstile model, each entry of the matrix can be updated at any time and order, thus an update
has the form (i, j, δ) ∈ [m] × [n] × R and represents Aij ← Aij + δ (A is initialized to 0m×n). In
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the entry-wise (or insertion-only) model the updates, arriving in arbitrary order, are of the form(
i, j, Ãij

)
∈ [m]×[n]×R, providing the value of one entry, i.e. Aij ← Ãij (the unspecified entries are

set to 0). The updates in the row-order model are of the same form, but are received in the natural
order (lexicographically, where i is the primary key), and thus it is the most restricted model.
Without loss of generality, we will consider square matrices for which m = n (i.e., A ∈ Rn×n).

All three models represent sparse matrices quite efficiently, as zero entries are implicit, and
they differ in the access pattern they capture. Specifically, row-order is a common access pattern
for external memory algorithms. These algorithms are suitable for modern computer systems,
that usually consist a hierarchy of memory levels, with a small amount of fast memory at higher
levels and a large amount of slower memory at lower levels. Since the data is stored in external
memory, it can be accessed multiple times and in a structured fashion, and hence it is reasonable
to assume that the algorithms work in row-order and can make multiple, albeit few, passes over
the input data. Applications and examples of such data access patterns and settings can be found
in [GM99, Vit01, Lib13].

1.1 Matrices and Schatten Norms

Large matrices are often used to represent real-world data sets like text documents, images and
social networks, however analyzing these matrices is increasingly challenging, as their sheer size
renders many algorithms impractical, even in suitable settings. Fortunately, in some application
domains, input matrices are often very sparse, meaning that only a small fraction of their entries are
non-zero. In fact, in several applications related to natural language processing, image recognition,
medical imaging and computer vision, the matrices are often doubly sparse, i.e., sparse in both
rows and columns. One such example arises from change detection in images, where background
subtraction, a technique used to identify pixels of interest, leaves most of the frame (represented
by a matrix) with zero pixels, see e.g. [GJP+12, LZYQ15]. In another example, from natural
language and speech processing, the rows and columns index words (or phrases), and a matrix
entry is non-zero if the two words appear in the text within some fixed distance from each other,
see e.g. [GvDCB13]. Throughout, we call such matrices k-sparse, meaning that every row and every
column has at most k non-zero entries.

One of the most useful tools regarding matrices is the Singular Value Decomposition (SVD):
writing A = UΣV > where U, V are unitary matrices and Σ is a diagonal matrix whose diagonal
entries are called the singular values, denoted by σ1 ≥ σ2 ≥ · · · ≥ σn. The singular values are
closely related to many important properties of the matrix. For example, the number of non-zero
singular values is the rank of the matrix, determining the degrees of freedom of a corresponding
linear system; the maximum and minimum singular values of a matrix determine its condition
number, which can affect the difficulty of many problems, such as optimization problems; the
leading singular values of a matrix determine how well a matrix can be represented by its principal
components; and so forth. A fundamental function family involving these singular values is the
Schatten p-norms, defined as follows.

Definition 1.1. The Schatten p-norm of a matrix A ∈ Rm×n,m ≥ n with singular values σ1 ≥
· · · ≥ σn ≥ 0 is defined for every p ≥ 1 as

‖A‖Sp
:=

(
n∑
i=1

σpi

)1/p

.

This definition extends also to 0 < p < 1, in which case it is not a norm, and also to p = 0,∞
by taking the limit. Frequently used cases include p = 0, representing the number of non-zero
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singular values, and p = 1, 2,∞, commonly known as the trace/nuclear norm, Frobenius norm, and
spectral/operator norm, respectively. The Schatten norms have different applications, including
non-convex optimization [CR12, DTV11], image processing [DHJZ15, XGL+16], chemistry [Gut01]
and differential privacy [HLM12, LM13]. In addition, since it is generally hard to compute the
spectrum in the streaming model, the Schatten norms are often used as surrogates for the spectrum
as explained in [ZWJ15, KV16, NPS16, KO19]. For further reading we refer the reader to [XGL+16,
MNS+18].

Designing small-space algorithms for estimating Schatten norms of an input matrix in the
data-stream model is important for theoreticians and practitioners alike. Recently, several pa-
pers addressed this problem for various classes of matrices and in various types of data streams
[CW09, AN13, Woo14, LNW14, LW16a, LW16b, LW17, BCK+18]. Among the more relevant re-
sults are [LNW14] which studies the problem of sketching the Schatten norms of general matrices;
[LW16a] that investigates O(1)-sparse matrices; and [BCK+18] that focuses on row-order streams
for O(1)-sparse matrices, and on turnstile streams of positive semidefinite (PSD) matrices, including
multipass algorithms. More detailed information is presented in Section 1.4.

Despite considerable interest in this problem, all known results for estimating Schatten norms
in data streams require space that is polynomial in n, the matrix dimension, even if the matrix is
highly sparse and the stream type is favorable, say row-order. A natural question then is:

Does any streaming model admit algorithms for computing Schatten norms of a matrix
given in a stream with space that is independent of the matrix dimension?

We answer this question in the affirmative for k-sparse matrices presented in row-order and all even
integers p. Our algorithms actually extend to all integers p ≥ 1 if the input matrix is promised to
be PSD. One could hope to obtain such results by applying the many powerful techniques known
for sparse vectors. For instance, methods like sparse recovery and heavy-hitters can be easily used
to approximate `p norms of a k-sparse vector given as a stream using O(k log n) space [GI10].
However, these methods appear to be ineffective for approximating Schatten norms of k-sparse
matrices using space polynomial in k/ε because such a matrix can have Ω(nk) non-zeros, hence
the intended space bound would be too small to recover all the non-zero locations, let alone their
values. In addition, dimension reduction techniques for dense matrices (such as bi-linear sketches)
do not seem to exploit sparsity in the input.

The following results have been obtained together with Professor Vladimir Braverman and
Aditya Krishnan (see https://arxiv.org/abs/1907.05457).

1.2 Our Results

We write Õ(f) as a shorthand for O(f · logO(1) n) where n is the dimension of the matrix and write
Od(f) when the hidden constant might depend on the parameter d. Often we count space in words,
each having O(log n) bits, and in addition, we assume that the entries of the matrix are integers
bounded by poly(n). We denote by dpe4 the smallest multiple of 4 that is greater than or equal to
p, and similarly by bpc4 the largest multiple of 4 that is smaller than or equal to p.

Upper and Lower Bounds for Row-Order Streams. Our main result is a new algorithm
for approximating the Schatten p-norm (for even p) of a k-sparse matrix streamed in row-order,
using O(p) passes and poly(kp/ε) space. This is stated in the next theorem, whose proof appears
in Section 4.1.
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Which p Space Bound Ref. Comments

p > 4

Õp,ε(k
O(p)n1−4/dpe4) [BCK+18] one-pass

Op,ε(k
3p/2−3) Thm. 1.2 bp/4c+ 1 passes

Op,ε(k
2psn1−1/s) Thm. 5.3 b p

2(s+1)c+ 1 passes

Ω(n1−4/bpc4) Thm. 1.3 one-pass

Ωt(k
p/2−2) [BCK+18] t passes, k ≤ n2/p

p = 4
Õp,ε(k) [BCK+18] one-pass
Op(ε

−2) Thm. 7.2 one-pass, for all k ≤ n

Table 1: Bounds for Schatten norms (for even p) of k-sparse matrices in row-order streams. Upper
bound space is counted in words.

Theorem 1.2. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0 and a k-sparse matrix
A ∈ Rn×n streamed in row-order, makes bp/4c + 1 passes over the stream using Op(ε

−2k3p/2−3)
words of space, and outputs Ȳ (A) that (1± ε)-approximates ‖A‖pSp

with probability at least 2/3.

Theorem 1.2 provides a multi-pass algorithm whose space complexity depends only on the
sparsity of the input matrix. A natural question is whether one can achieve a similar dependence also
for one-pass algorithms in the row-order model. Our next theorem (proved in Section 6) shows that
any one-pass algorithm for approximating the Schatten p-norm of O(1)-sparse matrices presented
in row-order streams requires Ω((n1−4/bpc4) bits of space.It follows that multiple passes over the
data are necessary for an algorithm for sparse matrices to have space complexity independent of
the matrix dimensions.

Theorem 1.3. For every p ∈ 2Z≥2 there exists a constant ε(p) > 0 such that any algorithm that,
given an Op(1)-sparse matrix A ∈ Rn×n streamed in row-order, makes one pass and outputs a
(1±ε(p))-approximation to ‖A‖pSp

with probability at least 2/3, must use Ω(n1−4/bpc4) bits of space.

We can further extend our primary algorithmic technique (from Theorem 1.2) in several different
ways, and obtain improved algorithms for special families of matrices, algorithms in the more
general turnstile model, and algorithms with a trade-off between the number of passes and the
space requirement. Table 1 summarizes our results for row-order streams, and compares them to
bounds derived from previous work (when applicable).

Extension I: Fewer Passes. We show in Section 5 how to generalize our algorithmic technique
to use fewer passes over the stream, albeit requiring more space. Our method attains the following
pass-space trade-off. For any integer s ≥ 2, our algorithm in Theorem 5.3 makes t(s) = b p

2(s+1)c+1

passes over the stream using Op
(
ε−3k2psn1−1/s

)
words of space, and outputs a (1±ε)-approximation

to ‖A‖pSp
for p ∈ 2Z≥2.

Extension II: Turnstile Streams We design in Section 4.2 an algorithm for turnstile streams
with an additional Õ(ε−O(p)k3p/2−3n1−2/p) factor in their space complexity compared to our al-
gorithm for row-order streams. An additional O(n1−2/p) factor is to be expected since the space

complexity for estimating `p norms of vectors in turnstile streams is Ω(n
1−2/p

t ) if the algorithm is
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allowed to make t passes over the data. Our algorithm for turnstile streams makes p + 1 passes
over the stream. The algorithm of [LW16a] for O(1)-sparse matrices in the turnstile model can
obviously be extended to k-sparse matrices. Its space requirement is kO(p), and we believe that a
straightforward extension of their analysis yields an exponent greater than 4.75p

Extension III: Special Matrix Families. We give in Section 4.1 improved bounds for special
families of k-sparse matrices that may be of potential interest. We show that for Laplacians of
undirected graphs with degree at most k ∈ N, one can (1 ± ε)-approximate the Schatten p-norm
with space Op(ε

−2kp/2−1) by making p/2 passes over a row-order stream. Additionally, for matrices
whose non-zero entries lie in an interval [α, β] for α, β ∈ R+, we can get nearly-tight upper bounds –
our algorithm uses space Op(ε

−2kp/2−1(β/α)p/2−2), which is nearly tight compared to the Ω(kp/2−2)
multi-pass lower bound given in [BCK+18] where α = β = 1.

Schatten 4-norm. We show in Section 7 a simple one-pass algorithm for (1± ε)-approximating
the Schatten 4-norm of any matrix (not necessarily sparse) given in a row-order stream, using only
Õp(ε

−2) words of space. This improves a previous Õp(ε
−2k) bound from [BCK+18].

Applications for Approximating Schatten Norms. We show in Section 8 two settings where,
under certain simplifying conditions, our algorithms can be used to approximate other functions
of the spectrum, and even weakly recover the entire spectrum. The basic idea is that it suffices to
compute only a few Schatten norms, in which case our algorithms for k-sparse matrices in row-order
streams can be used, and the overall algorithm will require only small space (depending on k).

Our first setting considers approximating log det(A) for a positive definite matrix A. We use an
idea from [BDK+17] to show that for a positive definite matrix A ∈ Rn×n whose eigenvalues lie in
an interval [θ, 1], one can (1± ε)-approximate log det(A) using the first 1

θ log
(

1
ε

)
Schatten norms.

Our second setting considers recovering the spectrum of a PSD matrix using a few Schatten
norms of the matrix. We use an idea from [KV16] to show that one can approximate the spectrum
of a PSD matrix, whose eigenvalues lie in the interval [0, 1], up to L1-distance εn using the first
O(1/ε) Schatten norms.

1.3 Technical Overview

Upper Bounds. We design an estimator that is inspired by the importance sampling framework
and uses multiple passes over the data to implement the estimator. To the best of the our knowledge,
this is the first algorithm for computing the Schatten p-norm in data streams that uses an adaptive
sampling approach, i.e. the probability space of the algorithm’s sampling in a given pass of the
data is affected by the algorithm’s decisions in the previous pass.

For an integer p ∈ 2Z≥1 and q := p/2, the Schatten p-norm for a matrix A ∈ Rn×n, denoted by
‖A‖pSp

, can be expressed as

‖A‖pSp
= Tr((AA>)q) =

∑
i1,...,iq∈[n]

〈ai1 , ai2〉〈ai2 , ai3〉 . . . 〈aiq , ai1〉 (1.1)

where ai is the ith row of matrix A.
The Schatten p-norm can be interpreted using (1.1) as a sum over cycles of q inner-products

(which we refer to informally as cycles) between rows of A. We assign each cycle in the above
expression to one of the rows participating in that cycle. Hence, the Schatten p-norm can be
expressed as a sum

∑n
i=1 zi where zi is the cumulative weight of all the cycles assigned to row i.
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Our algorithm starts by sampling a row i ∈ [n] with probability proportional to the heaviest
cycle assigned to row i (i.e., largest contribution to zi). In the following p/4 stages, it samples one
cycle assigned to i with probability proportional to the weight of the cycle. Since the rows and
columns are sparse, each row cannot participate in “too many” cycles (because it is orthogonal
to any row with a disjoint support). Specifically, we show that the number of cycles assigned to
each row i is only a function of k and p. It follows that sampling the first row with probability
proportional to the heaviest contributing cycle is a good approximation (up to a factor depending
only on k and p) to zi, the actual contribution of row i to

∑
i∈[n] zi = ‖A‖pSp

.
The space complexity of sampling a row with probability proportional to its heaviest contribut-

ing cycle depends on the assigning process. A natural assigning is to assign every cycle to the row
with largest l2-norm participating in that cycle (breaking ties arbitrarily). Notice then that, by the
Cauchy-Schwarz inequality, the heaviest contributing cycle to row i is simply ‖ai‖p2.

This estimator can be implemented in the row-order model easily by using weighted reservoir
sampling [Vit85, BOV15], as shown in Section 4.1. However, implementing it in turnstile streams
is more challenging (see Section 4.2). Using approximate Lp-samplers presented in [MW10], we
build an approximate cascaded Lp,2-norm1 sampler, to sample rows i with probability proportional
to ‖ai‖p2. Additionally, we use the Count-Sketch data structure to recover rows and sample cycles
once we have sampled the first, “seed” row. This allows us to implement the estimator in turnstile
data streams with an additional Õ(ε−O(p)n1−2/p) factor in the space complexity attributed to
the approximate cascaded Lp,2-norm sampler and an additional Op(k

3p/2−3) factor that comes
from approximating the sampling probabilities (compared to the row-order in which the sampling
probabilities can be recovered exactly).

In Section 5 we generalize the design of the importance sampling estimator. Instead of assigning
every cycle to a single row that appears in it, every cycle is mapped to s rows that participate in
it, for parameter s ∈ N. These s rows split the cycle into roughly q

s segments such that each of
these s rows participates in a segment where it is the heaviest’ row (by l2-norm). The algorithm
samples s “seed” rows and then computes all the cycles (or alternatively samples one cycle) that
are assigned to these s rows. Since the length of each of the segments reduces linearly with s, one
can compute these cycles with fewer passes. However, the algorithm needs to sample more indices
in order to ensure that each cycle has a sufficiently large probability of being “hit”. This tension
leads to a trade-off between passes and space.

Lower Bounds. We obtain an Ω(n1−4/bpc4) bits lower bound for any algorithm that estimates
the Schatten p-norm in one-pass of the stream for even p values. Our proof analyzes for even
p values a construction presented in [LW16a], which is based on a reduction from the Boolean
Hidden Hypermatching problem. This lower bound holds even if the input matrix is promised to
be O(1)-sparse.

1.4 Previous and Related Work

The bilinear sketching algorithm in [LNW14] was the first non-trivial algorithm for Schatten p-norm
estimation in turnstile streams. It requires only one-pass over the data and uses O(ε−2n2−4/p) words
of space.2 Their algorithm uses O(ε−2) independent G1AG

>
2 sketches, where G1, G2 ∈ Rt×n are

matrices with i.i.d. Gaussian entries and t = O(n1−2/p).

1The Lp,2-norm of a matrix A ∈ Rn×m for p ≥ 0 is
(∑n

i=1 ‖ai‖p2
)1/p

2They also showed a lower bound of Ω(n2−4/p) for the dimension of bilinear sketching for approximating ‖A‖pSp

for all p ≥ 2.
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Inspired by this sketch, [BCK+18] gave an almost quadratic improvement in the space com-
plexity if the algorithm is allowed to make multiple passes over the data. Their estimator uses
matrices G2, . . . , Gp ∈ Rt×n with i.i.d. Gaussian entries and Gaussian vector g1 ∈ Rn to output
g>1 AG

>
2 G2A . . .GpAg1. This estimate can be constructed in p/2 passes of the data and requires

O(ε−2) independent copies each using only t = O(n
1− 1

p−1 ) space.
Restricting the input matrix to be O(1)-sparse allows for quadratic improvement in the space

complexity of one-pass algorithms as shown in [LW16a]. They show that sampling O(n1−2/p)
rows and storing them approximately using small space (since each row is sparse) is sufficient to
(1 + ε)-approximate the Schatten p-norm by exploiting the fact that rows cannot “interact” with
one another “too much” because of the sparsity restriction.

If we restrict the data stream to be row-order, then we can reduce the dependence on p in all
the above algorithms by a factor of 2. As noted in [BCK+18], since A>A =

∑
i aia

>
i (where ai is

the ith row of A) one can apply the above algorithms to A>A instead of A by updating it with the

outer product of every row with itself. Since ‖A>A‖p/2Sp/2
= ‖A‖pSp

(for even p values), the output is

as desired and the dependence on p reduces by a factor of 2.

Lower Bounds. Every t-pass algorithm designed for turnstile streams requires Ω(n1−2/p/t) bits,
which follows by injecting the Fp-moment problem (see [Gro09, Jay09]) into the diagonal elements.
Li and Woodruff [LW16a] showed that restricting the algorithm to a single pass over the turnstile
stream, leads to a lower bound Ω(n1−ε) bits for every fixed ε > 0 and p /∈ 2Z≥2, even if the input
matrix is O(1)-sparse.3 Later [BCK+18] proved that Ω(n1−ε) bits are required for p /∈ 2Z≥2 even in
row-order streams. In addition, they showed (Theorem 5.4 in Arxiv version) that t passes over row-
order streams require space Ω(n1−4/p/t) bits, however these matrices are actually Ω(n2/p)-sparse
(and not O(1)-sparse as may be understood from Table 2 therein). A simple adaptation of that
result yields an Ω(kp/2−2/t) space lower bound for k-sparse input matrices (k ≤ n2/p).

2 Notation and Preliminaries

The following useful fact comparing the lengths of the rows of A and its Schatten p-norm is proved
in Appendix 9.1.

Fact 2.1. Let matrix A ∈ Rn×n have rows {ai}i∈[n] and let t ≥ 1. Then
∑

i∈[n] ‖ai‖2t2 ≤ ‖A‖2tS2t
.

Importance Sampling. Our main algorithmic technique is inspired by the importance sampling
framework, as formulated by the following theorem, proved in Appendix 9.2.

Theorem 2.2 (Importance Sampling). Let z =
∑

i∈[n] zi ≥ 0 be a sum of n reals. Let the random

variable Ẑ be an estimator computed by sampling a single index i ∈ [n] according to the probability

distribution given by {τi}ni=1 and setting Ẑ ← zi
τi

. If for some parameter λ ≥ 1, each τi ≥ |zi|λ·z , then

E
[
Ẑ
]

= z and Var(Ẑ) ≤ (λz)2.

3 They also showed that for p ∈ 2Z≥2, single-pass algorithms require Ω(n1−2/p) bits even if all non-zeros in the
input matrix are constants.
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Families of Matrices. We define two families of matrices that are of special interest.

• Let Ln ⊆ Zn×n be the family of Laplacian matrices of undirected graphs G([n], E) with
positive edge-weights {wuv > 0 : uv ∈ E}.

• Given positive constants α ≤ β, let Cm×nα,β ⊆ Rm×n be the family of matrices C such that
every entry Ci,j is either zero or in the range [α, β]. For the vector case (i.e. n = 1) we may
write Cmα,β.

3 An Estimator for Schatten p-Norm for p ∈ 2Z≥2

This section introduces our importance sampling estimator for Schatten p-norms. We begin in Sec-
tion 3.1 with manipulating expression (1.1) for the Schatten p-norm by assigning every summand,
i.e. a cycle of p/2 inner products, to its heaviest participating row, see (3.3). We then use this new
expression in Section 3.2 to give an importance sampling estimator. In Section 3.3 we prove several
lemmas, referred to as projection lemmas, which are key to our analysis in section 3.4.

3.1 Preliminaries

Fix a matrix A ∈ Rn×n and p ∈ 2Z≥2. For a row ai, we define the set of its neighboring rows
N(i) := {l ∈ [n] : supp(ai) ∩ supp(al) 6= ∅}. In addition, we denote the set of neighboring rows of
aj that have smaller length than row ai

N i
S(j) := {l ∈ N(j) : ‖al‖2 ≤ ‖ai‖2}.

Building on this, we intorduce notation for certain “paths” of rows. Fixing some row indices
i, i1 ∈ [n] and an integer t ≥ 2, we then define

Γ(i1, t) := {(i1, . . . , it) : i2 ∈ N(i1), . . . , it ∈ N(it−1)} ,
ΓiS(i1, t) :=

{
(i1, . . . , it) : i2 ∈ N i

S(i1), . . . , it ∈ N i
S(it−1)

}
.

We further define the weights of “paths” of inner products: given an integer t ≥ 2 and indices
i1, . . . , it ∈ [n], let

σ(i1, . . . , it) := 〈ai1 , ai2〉〈ai2 , ai3〉 . . . 〈ait−1 , ait〉.

Recall from (1.1) that the Schatten p-norm of A ∈ Rn×n can be expressed in terms of the
product of inner products of the rows of A. Using the above notation we manipulate it as follows.

‖A‖pSp
= Tr

(
(AA>)q

)
=

∑
i1,...,iq∈[n]

σ(i1, . . . , iq, i1) (3.1)

=
∑
i1

∑
(i1,...,iq−1)
∈Γ(i1,q−1)

∑
iq∈N(i1)

σ(i1, . . . , iq, i1) (3.2)

=
∑
i1

∑
(i1,...,iq−1)

∈Γ
i1
S (i1,q−1)

∑
iq∈N

i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq, i1) (3.3)

where 1 ≤ c(i1, . . . , iq) ≤ q is the number of times the sequence (i1, . . . , iq, i1) or a cyclic shift
of the sequence appears in Equation (3.2).
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3.2 The Estimator

Our estimator is an importance sampling estimator for the quantity in (3.3). To define it, we need
the following quantities:

S :=
⋃
i∈[n]

ΓiS(i, q − 1)

z(i1,...,iq−1) :=
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq)〈aiq , ai1〉 ∀(i1, . . . , iq−1) ∈ S

z :=
∑

(i1,...,iq−1)∈S

z(i1,...,iq−1) = ‖A‖pSp
by Equation (3.3).

Our importance sampling estimator, for the sum z, samples quantities z(i1,...,iq−1) indexed by

(i1, . . . , iq−1) ∈ S in q − 1 steps. In the first step, it samples row i1 ∈ [n] with probability
‖ai1‖

p
2∑

j ‖aj‖
p
2
.

In each step 2 ≤ t ≤ q− 1, conditioned on sampling it−1 in step t− 1 it samples row it ∈ N i1
S (it−1)

with probability

pi1it−1
(it) :=

|〈ait−1 , ait〉|∑
l∈N i1

S (it−1)
|〈ait−1 , al〉|

.

Overall, a sequence (i1, . . . , iq−1) ∈ S is sampled with probability

τ(i1,...,iq−1) =
‖ai1‖

p
2∑

j ‖aj‖
p
2

q−1∏
t=2

pi1it−1
(it),

and the output estimator is

Y (A) :=
1

τ(i1,...,iq−1)
· z(i1,...,iq−1).

3.3 Projection Lemmas

To analyze the estimator Y (A), we need a few lemmas, which we call projection lemmas, for
sparse matrices. We start with two lemmas for sparse matrices, followed by two lemmas for more
specialized cases.

Lemma 3.1. For every k-sparse matrix B ∈ Rn×k with rows b1, . . . , bn and vector x ∈ Rk such
that ‖x‖2 ≥ ‖bi‖2 for all i ∈ [n], we have that

‖Bx‖1
‖x‖22

=

n∑
i=1

|〈x, bi〉|
‖x‖22

≤ k
√
k.

Proof. For a vector y ∈ Rk and S ⊆ [k], let y|S to be the restriction of y onto its indices corre-
sponding to set S.

For all i ∈ [n], by the Cauchy-Schwarz inequality, 〈x, bi〉 = 〈x| supp(bi), bi〉 ≤ ‖x| supp(bi)‖2‖bi‖2.
Hence,

n∑
i=1

|〈x, bi〉|
‖x‖22

≤
n∑
i=1

‖x| supp(bi)‖2‖bi‖2
‖x‖22

≤
n∑
i=1

‖x| supp(bi)‖2
‖x‖2

≤
n∑
i=1

‖x| supp(bi)‖1
‖x‖2

≤ k‖x‖1
‖x‖2

,

where the last inequality follows from the sparsity of B (every column index is in supp(bi) for at
most k of the rows bi). The lemma now follows by a simple application of the Cauchy-Schwarz
inequality.
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We need another, similar, lemma in order to bound the variance.

Lemma 3.2. For every k-sparse matrix B ∈ Rn×k with rows b1, . . . , bn and a vector x ∈ Rk such
that ‖x‖2 ≥ ‖bi‖2 for all i ∈ [n], we have that

‖Bx‖22
‖x‖42

=
n∑
i=1

〈x, bi〉2

‖x‖42
≤ k.

Proof. Following similar steps as that of Lemma 3.1,

n∑
i=1

〈x, bi〉2

‖x‖42
≤

n∑
i=1

‖x| supp(bi)‖22
‖x‖22

≤ k,

where again the last inequality follows from the sparsity of B.

The next two lemmas present bounds that improve over Lemma 3.1 in two special cases, when
the k-sparse matrix is a graph Laplacian, and when all its non-zero entries come from a bounded
range.

Lemma 3.3. Let G = ([n], E) be an undirected graph with positive edge weights {wuv}uv∈E. Let k
be its maximum degree, and let L(G) ∈ Rn×n be its Laplacian matrix with rows l1, . . . , ln. Given
u ∈ [n], let the matrix Bu consist of all the rows lv where ‖lu‖2 ≥ ‖lv‖2, and interpret Bu also as
a set of rows. Then,

‖Bulu‖1
‖lu‖22

=
∑
lv∈Bu

|〈lu, lv〉|
‖lu‖22

≤ 2k.

(Trivially, we can also omit from Bu rows where 〈lu, lv〉 = 0.)

Proof. The main idea is that the additional matrix structure implies ‖lu‖1 ≤ 2‖lu‖2, which is

better than what follows from the Cauchy-Schwarz inequality. Indeed, ‖lu‖22 =
(
−
∑

t∈N(u)wut
)2

+∑
t∈N(u)w

2
ut ≥

(∑
t∈N(u)wut

)2
=
(

1
2‖lu‖1

)2
. Now using this inequality in the proof of Lemma 3.1,

we have
‖Bulu‖1
‖lu‖22

≤ k‖lu‖1
‖lu‖2

≤ 2k.

Lemma 3.4. For positive constants α ≤ β and a k-sparse matrix B ∈ Cn×kα,β with rows b1, . . . , bn

and a vector x ∈ Ckα,β such that ‖x‖2 ≥ ‖bi‖2 for all i ∈ [n], we have that

‖Bx‖1
‖x‖22

=

n∑
i=1

|〈x, bi〉|
‖x‖22

≤ kβ
α
.

Proof. By a direct calculation using the sparsity of B,

n∑
i=1

|〈x, bi〉|
‖x‖22

≤
k∑
j=1

|xj | · βk
α‖x‖1

= k
β

α
.
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3.4 Analyzing the Estimator

We now prove that the importance sampling estimator Y (A) given in Section 3.2 is an unbiased
estimator with a small variance. In addition to analyzing the estimator for all k-sparse matrices, we
provide in Theorem 3.6 improved bounds for two special families of k-sparse matrices: (i) Laplacians
of undirected graphs and (ii) matrices whose non-zero entries lie in an interval [α, β] for parameters
0 < α ≤ β.

Theorem 3.5. For every p ∈ 2Z≥2 and a k-sparse matrix A ∈ Rn×n, the estimator Y (A) given in

Section 3.2 satisfies E [Y (A)] = ‖A‖pSp
and Var(Y (A)) ≤ Op(k

3p
2
−4)‖A‖2pSp

.

Proof. We will use the importance sampling framework of Theorem 2.2. In order to do so we must
first argue that the values τ(i1,...,iq−1) for (i1, . . . , iq−1) ∈ S indeed form a probability distribution. It
is easy to see that the probabilities of sampling the first row form a distribution over [n]. Similarly,
for every 2 ≤ t ≤ q − 1, the values pi1it−1

(·) indeed form a probability distribution over the rows in

N i1
S (it−1). The argument for τ(i1,...,iq−1) follows by the law of total probability.

Per Theorem 2.2, it is sufficient to prove that for all (i1, . . . , iq−1) ∈ S,

1

τ(i1,...,iq−1)
·
∣∣z(i1,...,iq−1)

∣∣ ≤ Op(k 3
4
p−2)z (3.4)

Fix a sequence of indices (i1, . . . , iq−1) ∈ S. Inequality (3.4) can be shown as follows,

∣∣z(i1,...,iq−1)

∣∣
τ(i1,...,iq−1)

=

∑
j ‖aj‖

p
2

‖ai1‖
p
2

q−1∏
t=2

1

pi1it−1
(it)

∣∣∣∣∣∣∣
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq)〈aiq , ai1〉

∣∣∣∣∣∣∣
≤
∑

j ‖aj‖
p
2

‖ai1‖
p
2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|〈ait−1 , al〉|

|σ(i1, . . . , iq−1)|
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)
∣∣σ(i1, . . . , iq)〈aiq , ai1〉

∣∣

=

∑
j ‖aj‖

p
2

‖ai1‖
p
2

q−1∏
t=2

∑
l∈N i1

S (it−1)

|〈ait−1 , al〉|

 ∑
iq∈N

i1
S (i1)

c(i1, . . . , iq)
∣∣〈aiq−1 , aiq〉〈aiq , ai1〉

∣∣
By Young’s Inequality for products of numbers and the bound on c(i1, . . . , iq),

≤ q

2

∑
j ‖aj‖

p
2

‖ai1‖
p
2

q−1∏
t=2

∑
l∈N i1

S (it−1)

|〈ait−1 , al〉|


 ∑
iq∈N

i1
S (i1)

〈aiq−1 , aiq〉2 + 〈aiq , ai1〉2


=
q

2

∑
j

‖aj‖p2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|〈ait−1 , al〉|

‖ai1‖
p−4
2


 ∑
iq∈N

i1
S (i1)

〈aiq−1 , aiq〉2 + 〈aiq , ai1〉2

‖ai1‖42


By applying Lemma 3.2 to the two inner-most summations and the fact that ‖aiq−1‖2 ≤ ‖ai1‖2,

≤ qk ·
∑
j

‖aj‖p2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|〈ait−1 , al〉|

‖ai1‖
p−4
2


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By applying Lemma 3.1 and the fact that ‖ait−1‖2 ≤ ‖ai1‖2 for any 2 ≤ t ≤ q − 1,

≤ qk
∑
j

‖aj‖p2

(
q−1∏
t=2

k
√
k

)
= qk

3p
4
−2
∑
i

‖ai‖p2 ≤
pk

3p
4
−2

2
‖A‖pSp

where the last inequality follows from Fact 2.1.

Theorem 3.6. For every p ∈ 2Z≥2 and a k-sparse Laplacian matrix A ∈ Ln, the estimator Y (A)
given in Section 3.2 satisfies Var(Y (A)) ≤ Op(k

p/2−1)‖A‖2pSp
. If instead the k-sparse matrix is

A ∈ Cn×nα,β for some 0 < α ≤ β, then Var(Y (A)) ≤ Op(kp/2−2 (β/α)p/2−2)‖A‖2pSp
.

Proof. The bound for Ln (Laplacians) follows the above proof of Theorem 3.5 but bounding the
summations using Lemma 3.3 instead of Lemma 3.1.

The bound for Cn×nα,β uses a special case of the importance sampling lemma. Using the notation

from Theorem 2.2, if zi > 0 for all i ∈ [n] then one can bound the variance by λ(z)2. Using this,
the proof follows the same argument as that of Theorem 3.5 but using Lemma 3.4 to bound the
summations bounded by Lemmas 3.2 and 3.1.

4 Implementing the Estimator: Row-Order and Turnstile Streams

In this section we show how to implement the importance sampling estimator defined in Section
3.2 in two different streaming models, row-order and turnstile streams. We start by stating two
theorems that bound the space complexity of implementing the estimator in row-order streams.
The first one is our main result from the Introduction, and applies to all k-sparse matrices. The
second theorem considers special families of k-sparse matrices.

Theorem 1.2. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0 and a k-sparse matrix
A ∈ Rn×n streamed in row-order, makes bp/4c + 1 passes over the stream using Op(ε

−2k3p/2−3)
words of space, and outputs Ȳ (A) that (1± ε)-approximates ‖A‖pSp

with probability at least 2/3.

Theorem 4.1. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0, and a k-sparse matrix
A ∈ Ln streamed in row-order, makes bp/4c+ 1 passes over the stream using Op(ε

−2kp/2) words of
space, and outputs Ȳ (A) that (1±ε)-approximates ‖A‖pSp

with probability at least 2/3. If instead the

k-sparse matrix A is from Cn×nα,β for 0 < α ≤ β, then the space bound is Op(ε
−2kp/2−1 (β/α)p/2−2)

words.

We also show that the estimator defined in Section 3.2 can be implemented in turnstile streams
in p/2 + 3 passes over the stream.

Theorem 4.2. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0 and a k-sparse matrix
A ∈ Rn×n streamed in a turnstile fashion, makes p/2 + 3 passes over the stream using

Op(k
3p−6n

1− 2
p (ε−1 log n)O(p)) words of space, and outputs Ȳ (A) that (1 ± ε)-approximates ‖A‖pSp

with probability at least 2/3.
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Outline. At a high level, the algorithms in all three theorems are similar, and compute multiple
copies of the estimator defined in Section 3.2 in parallel and output their average (to reduce the
variance). The algorithms differ in the number of copies, derived from Theorems 3.5 and 3.6. Here,
and in Sections 4.1 and 4.2, we describe how to implement each estimator in p/2 stages, and in
Section 4.3 we show how to reduce the number of stages to bp/4c + 1. The first stage samples
and stores a “seed” row which we will denote by ai1 . Each subsequent stage 1 < t < q stores two
values: a row index it (and row ait itself) and an interim estimate Yt := σ(i1, . . . , it). The final
stage q computes and outputs

∑
iq∈N

i1
S (i1)

Yq−1 · 〈aiq , ai1〉c(i1, . . . , iq), where 1 ≤ c(i1, . . . , iq) ≤ q is

as defined in (3.3).
The estimator is relatively easy to implement in row-order streams using p/2 passes and

Op(ε
−2k3p/2−3) words of space as shown in section 4.1. In turnstile streams however, the esti-

mator is more difficult to implement. The technical roadblock is sampling the first, “seed” row

i1 ∈ [n] with probability proportional to
‖ai1‖

p
2∑

j ‖aj‖
p
2
. We use approximate samplers for turnstile

streams to get around this roadblock. For a vector x ∈ Rn updated in a turnstile fashion, one can
sample an index i with probability approximately xti/‖x‖tt for various t ∈ [0,∞). Such algorithms
are called Lt-samplers and have been studied thoroughly, see e.g. [CJ19]. Approximate samplers
introduce a multiplicative (relative) error and an additive error in the sampling probability, which
need to be accounted for when analyzing the algorithm that uses the sampler.

Thus, in order to sample rows proportional to the quantities we want, we build two subroutines
in the turnstile model:

1. Cascaded Lp,2-norm sampler for A, used to sample the seed row i1 with probability approxi-
mately ‖ai1‖

p
2. It runs in 2-passes, has relative error O(ε) and uses space Õp(ε

−2n1−2/p).

2. Compute inner products between a given row and its neighbors in space Õ(k2).

Using the two subroutines we can implement the estimator in Section 3.2 in p + 1 passes of the
stream in space Op(k

3p−6n1−2/p(ε−1 log n)O(p)). The additional Õ(n1−2/p) space complexity factor
is introduced by the approximate Lp,2-sampler. We remark that this factor is actually unavoidable
for algorithms that compute ‖A‖pSp

in the turnstile model, since there is an Ω(n1−2/p) lower bound

for computing the lp-norm of vectors in Rn (in turnstile streams), even if the algorithm is allowed
multiple passes. The additional O(k3p/2−3) factor in the space complexity for turnstile streams
compared to row-order streams is due to the bias introduced in estimating the sampling probability
of the first, “seed” row.

As mentioned earlier, a slightly improved version runs in bp/4c+ 1 and p/2 + 3 passes for row-
order and turnstile streams respectively, with the same space complexities (up to constant factors).
The idea is to build two parallel paths from the same seed row and eventually “stitch” the two into
one cycle.

4.1 Row-Order Streams

In this section we show how to easily implement the estimator defined in Section 3.2 in q = p/2
passes over a row-order stream, i.e. a sligthly weaker version of Theorem 1.2. As mentioned, in
Section 4.3 we explain how to reduce the number of passes to bp/4c+ 1 using a small adjustment
to the algorithm. Algorithm 1, computes multiple copies of the estimator in parallel using space
O(k) for each copy.
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Algorithm 1 Algorithm for Schatten p-Norm of k-Sparse Matrices for p ∈ 2Z≥2 in Row-Order
Streams

Input: A ∈ Rn×n streamed in row-order, p ∈ 2Z≥2, ε > 0, m ∈ Z+.

1: In parallel m times do
2: i1, . . . , iq ← 0, Y1, . . . , Yq ← 0
3: In pass 1 do

4: sample one row i1 ∈ [n] with probability
‖ai1‖

p
2∑

j ‖aj‖
p
2

. Using Reservoir Sampling

5: Y1 ←
∑

j ‖aj‖
p
2

‖ai‖p2
6: In pass 2 ≤ t ≤ q − 1 do
7: sample one row it ∈ [n] with probability pi1it−1

(i) . As defined in Section 3.2

8: Yt ← Yt−1 ·
〈ait−1

,ait 〉

p
i1
it−1

(i)

9: In pass q do
10: compute Yq ← Yq−1

∑
iq∈N

i1
S (i1)

〈aiq−1 , aiq〉〈aiq , ai1〉c(i1, . . . , iq)

11: return average of the m copies of Yq

Proof of Theorem 1.2 (version with p/2 passes). Algorithm 1 computes the estimator defined in
Section 3.2 m times in parallel and outputs the average which we will denote by Ȳ (A). Since the

variance of the estimator is at most Cpk
3p
2
−4 as per Theorem 3.5, by setting m = Ck

3p
2 −4

ε2
and the

constant C appropriately, the guarantee on the estimate follows by an application of Chebyshev’s
Inequality to Ȳ (A).

In pass t, each instance of the m parallel instances store the row ait along with other estimates
that can be stored in Op(1) words of space. Thus the total space complexity of the algorithm is

mk = Op(ε
−2k

3p
2
−3) words.

The proof of Theorem 4.1 (version with p/2 passes) follows the above by adjusting m according
to Theorem 3.6.

4.2 Turnstile Streams

4.2.1 Preliminaries for Approximate Sampling

We define approximate samplers which we will use in turnstile streams to implement our estimator.
Approximate Lp samplers have been studied extensively, see e.g. [CJ19].

Definition 4.3 (Approximate Lt Sampler). Let x ∈ Rn be a vector and t ≥ 0. An approximate Lt
sampler with relative error ε, additive error ∆, and success probability 1− δ is an algorithm that
outputs each index i ∈ [n] with probability

pi ∈ (1± ε) |xi|
t

‖x‖tt
±∆,

and with probability δ the sampler is allowed to output FAIL.

If an approximate sampler has no relative error and its additive error is less than n−C , for
arbitrarily large constant C > 0, then it is referred to as an exact Lp-sampler.

Generalizing Lp-samplers, we define approximate Lp,q-samplers for matrices.
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Definition 4.4 (Weak Approximate Lt,q Sampler). Let t, q ≥ 0 be constants and A ∈ Rn×m be a
matrix with rows a1, . . . , an. An approximate Lt,q sampler with relative error ε, additive error ∆,
and success probability 1− δ is an algorithm that, conditioned on succeeding, outputs each index
i ∈ [n] with probability

pi ∈ (1± ε)
‖ai‖tq∑

j∈[n] ‖aj‖tq
±∆,

and on failing, which occurs with probability δ, outputs any index.

We draw the attention of the reader to the success condition of the Lp,q sampler; unlike for Lp
samplers, the above definition is a weaker guarantee but is sufficient for our purpose since we can
absorb the probability of failure for the sampler into the failure probability of the Schatten p-norm
algorithm.

We recall some properties of higher powers of Gaussian distributions which we will use later
in the analysis of sampling subroutines that we build. First, we give the higher moments of mean
zero Gaussian random variables.

Fact 4.5. For t ≥ 0, r ∈ 2Z≥1 and a random variable X ∼ N (0, t2), we have

E [|X|r] = tr(r − 1)!!.

We state a concentration property for polynomial functions of independent Gaussian/Rademacher
random variables called Hypercontractivity Inequalities. For an introduction to the theory of hy-
percontractivity, see e.g. Chapter 9 of [O’D14].

Proposition 4.6 (Hypercontractivity Concentration Inequality, Theorem 1.9 [SS12]). Consider a
degree d polynomial f(Y ) = f(Y1, . . . , Yn) of independent centered Gaussian or Rademacher random
variables Y1, . . . , Yn. Denote the variance σ2 = Var (f(Y )), then,

∀λ ≥ 0, P [|f(Y )− E [f(Y )]| ≥ λ] ≤ e2 exp

(
−
(

λ2

R · σ2

) 1
d

)

where R = R(d) > 0 depends only on d.

4.2.2 Weak Sampler for Cascaded Norm Lp,2

Before giving our construction for approximate Lp,2 samplers in the turnstile model (Theorem 4.8),
we recall some core results for Lp samplers that will be the algorithmic workhorse of our subroutine
for Lp,2 sampling.

One can construct algorithms for approximate Lp samplers in various computational models.
We look specifically at Lp samplers in the turnstile streaming model. The following algorithmic
guarantees exist for approximate Lp samplers of vectors in turnstile streams.

Theorem 4.7 (Theorem 1.2 in [MW10]). For δ > 0 and p ∈ 2Z+, there exists an 0-relative-error
Lp-sampler in turnstile streams, in 2-passes, with probability of outputting FAIL at most n−C where

C > 0 is an arbitrarily large constant. The algorithm uses Op(n
1−2/p logO(p) n) space. 4

4The original theorem statement in the paper is for p ∈ [0, 2] but it is well-known among experts that the result
extends to p > 2.
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For a given vector x ∈ Rn whose entries are streamed in a turnstile fashion, we will denote
Lp-Sampler(x, δ) to be the output of the algorithm in Theorem 4.7 with failure probability at
most δ. We will use this algorithm in turnstile streams for p ≥ 2 to give an O(ε) relative error Lp,2
sampler and failure probability at most δ for any given δ > 0. The algorithm is fairly simple and
is described in Algorithm 2.

Algorithm 2 Approximate Lp,2 Sampling Algorithm in Turnstile Streams

INPUT: A ∈ Rn×n as a turnstile stream, p ∈ Z≥2, δ̂ ∈ (0, 1), ε > 0.

1: Set Ĉp > 0, m← Ĉplogp n
ε2

. Ĉp depends only on p
2: construct G ∈ Rn×m, with i.i.d standard Gaussian entries . drawn pseudorandomly
3: compute matrix X ← 1

(p−1)!! ·AG
4: (i, j)← Lp-Sampler(x, δ̂) . where x ∈ Rn2

is the “flattened” version of X
5: return i if Lp-sampler didn’t output FAIL otherwise return any index

The matrix X, defined on line 3 in the above algorithm, can be computed “on the fly” given
updates to A in the stream.

We then give the following theorem for approximate Lp,2 sampling in turnstile streams by argu-
ing for the vector x defined in Algorithm 2, the average of the pth power of the entries corresponding
to row i is tightly concentrated around ‖ai‖p2.

Theorem 4.8. For every ε, C > 0, δ ∈ (0, 1) and p ∈ 2Z≥2, Algorithm 2 is an O(ε) relative error
and O(n−C) additive error Lp,2 weak sampler in turnstile streams with failure probability at most

δ. The algorithm uses Op(n
1−2/pε−2 log(1

δ ) logO(p)(n)) words of space.

Proof. For a fixed i ∈ [n], notice that xi,1, . . . , xi,m are independent and identically distributed as

N
(

0,
‖ai‖22

((p−1)!!)2

)
. Using Fact 4.5, E

[
xpi,j

]
= ‖ai‖p2 for all j ∈ [m] since p is even.

Let i∗ be the output of Algorithm 2. From the guarantee for Lp-samplers by Theorem 4.7,
conditioning on the Lp sampler succeeding, and setting the additive error sufficiently low, the
probability that i∗ = i is

P [i∗ = i] =
m∑
j=1

xpi,j
‖x‖pp

±O
(
n−C

)
.

We will first show that, for a fixed i ∈ [n], the quantity
∑m

j=1 x
p
i,j is tightly concentrated around

m‖ai‖p2 with high probability over the randomness of the Gaussian sketch.
Set the polynomial f : Rm → R on the random variables {xi,j}mj=1 to be f(xi,1, . . . , xi,m) =∑m
j=1 x

m
i,j . Since the random variables {xi,j}mj=1 are independent,

Var(f(xi,1, . . . , xi,m)) = mVar(xpi,∗) = m‖ai‖2p2
(2p− 1)!!− ((p− 1)!!)2

((p− 1)!!)2

for even p > 2. Using this to apply the Hypercontractivity Concentration Inequality for Gaussian
random variables given in Proposition 4.6 gives us,

P

∣∣∣∣∣∣
m∑
j=1

xpi,j −m‖ai‖
p
2

∣∣∣∣∣∣ ≥ εm‖ai‖p2
 ≤ e2 exp

(
−
(
ε2m

Cp

) 1
p

)

where Cp is a constant only dependent on p.
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By setting Ĉp in Algorithm 2 appropriately, we can apply the the union bound over all i ∈ [n]
to obtain,

P [i∗ = i] =
(1±O(ε))‖ai‖p2

(1±O(ε))
∑n

l=1 ‖al‖
p
2

±O(n−C) for all i ∈ [n]

with probability at least 1 − δ̂ − n−ĉ (where ĉ is dependent on Ĉp). Setting δ̂ appropriately in
Algorithm 2 gives us the theorem.

4.2.3 Recovering Rows and Their Neighbors

We also give some subroutines to recover rows and their neighbors so that we can compute inner-
products between rows, sample neighbors and compute the probabilities for the estimator. The
algorithmic core for these subroutines will be sparse-recovery algorithms which can be implemented
using the Count-Sketch data structure described below.

Theorem 4.9 (Count-Sketch [CCF04]). For all w, n ∈ Z+ and δ ∈ (0, 1), there is a randomized
linear function M : Rn ← Rs with S = O(w log(n/δ)) and a recovery algorithm A satisfying the
following. For input x ∈ Rn, algorithm A reads Mx and outputs a vector x̃ ∈ Rn such that

∀x ∈ Rn, P
[
‖x− x̃‖∞ ≤

1√
w

min
x′:‖x′‖0=w

‖x− x′‖2
]
≥ 1− δ.

Denote the output of a Count-Sketch algorithm on vector x ∈ Rn with parameter w ∈ Z+ and
failure probability δ ≥ 0 to be Count-Sketchw(x, δ). Notice that if it is guaranteed that x is
k-sparse, i.e. ‖x‖0 ≤ k, then the output Count-Sketchk(x, δ) recovers the vector x exactly with
probability at least 1− δ because minx̃:‖x̃‖0=k ‖x− x̃‖2 = 0 for every k-sparse vector x.

Reverting to our setting of k-sparse matrices in turnstile streams, given a target index i ∈ [n],
it is clear how to recover row ai using Õ(k) space using the Count-Sketch algorithm stated. Given
a row ai, we can recover the neighboring rows {aj : j ∈ N(i)} by running Count-Sketchk(A∗,j , δ̃)
for each j ∈ supp(ai) (where A∗,j corresponds to the jth column of A). Since each column and
row is k-sparse, with Õ(k2) space, we can recover the neighbors of row ai given access to ai. In
addition, by setting the failure probability to δ

k+1 in the above calls to Count-Sketchk, our
recovery subroutine will succeed with probability at least 1− δ.

4.2.4 Algorithm for Turnstile Streams

We are now ready to present the algorithm implementing the estimator stated in Section 3.2 for
turnstile streams. We note that unlike in row-order streams, we cannot recover the probability of
sampling the first row exactly in turnstile streams. Since the output probability of the samplers is
approximate, it introduces some bias in the estimator which we will have to bound. Therefore, the
proof of correctness for this algorithm slightly deviates from that given in Theorem 2.2 but uses
the same underlying ideas.

Let us introduce notation for the subroutines we will need. Denote by Lp,2-Sampler(A, ε, δ)
the output of the approximate Lp,2 sampler defined in Algorithm 2 with relative error ε, and failure
probability δ. Additionally, we will need to estimate the cascaded norm Lp,2 of A in order to bias the
quantity we sample in our importance sampling estimator. Denote by Lp,2-NormEstimator(A, ε, δ)
the output of an algorithm for estimating the Lp,2-norm of A with relative error ε and failure prob-
ability δ, such as in Section 4 of [JW09].

We describe our algorithm for turnstile streams in Algorithm 3, which runs p + 1 passes over
the data, i.e. a sligthly weaker version of Theorem 4.2. As mentioned, the number of passes can
be reduced to bp/2c+ 3 using the extra insight of Section 4.3.
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Algorithm 3 Algorithm for Schatten p-norm of k-Sparse Matrices for p ∈ 2Z≥2 in Turnstile
Streams

Input: A ∈ Rn×n in a stream with turnstile updates, p ∈ 2Z≥2, ε > 0, m ∈ Z+.

1: In parallel m times do
2: i1, . . . , iq ← 0, Y1, . . . , Yq ← 0
3: In stage 1 do . takes 3 passes
4: i1 ← Lp,2-Sampler(A, ε

k3p/4−2 ,
1

100)

5: ãi1 ← Count-Sketchk(ai1 ,
1

100)
6: D1 ← Lp,2-NormEstimator(A, ε, 1

100)

7: Y1 ← D1

‖ãi1‖
p
2

8: In stage 2 ≤ t ≤ q − 1 do . each stage takes 2 passes
9: C̃t−1 ← {Count-Sketchk(A∗,j ,

1
100kq ) : j ∈ supp(ãit−1)}

10: reconstruct rows R̃t−1 ← {rj : row j has support in C̃t−1 and has l2-norm less than ãi1}.
11: Dt ←

∑
j∈R̃t−1

〈ãit−1 , rj〉

12: sample row index it ∈ supp(R̃t−1) with probability
〈ãit−1

,rit 〉
Dt

13: ãit ← Count-Sketchk(ait ,
1

100q )

14: Yt ← Yt−1 · Dt
〈ãit−1

,ãit 〉
· 〈ãit−1 , ãit〉

15: In stage q do
16: C̃q−1 ← {Count-Sketchk(A∗,j ,

1
100k ) : j ∈ supp(ãiq−1)}

17: reconstruct rows R̃q−1 ← {rj : row j has support in C̃q−1 and has l2-norm less than ãi1}.
18: compute

Yq ← Yq−1

∑
rj∈R̃q−1

〈ãiq−1 , rj〉〈rj , ãi1〉c(i1, . . . , iq−1, j)

19: return average of the m copies of Yq

Proof of Theorem 4.2 (version with p+ 1 passes). Recall from Section 4.2.3 that Count-Sketchk
will recover all the entries of a k-sparse vector exactly with high probability. By setting the failure
probability of each call to Count-Sketchk to be sufficiently low, we can apply a union bound
over all executions and assume that the algorithm recovers all the rows denoted by ã and r.

Let us assume that the Lp-sampler and Count-Sketch routines succeed and argue that taking
the expectation over the randomness of the Gaussian sketch in the Lp,2-Sampler algorithm, the
Lp,2-NormEstimator and the importance sampling estimator gives us that |E

[
Ȳ (A)

]
−‖A‖pSp

| ≤
Op(ε)‖A‖pSp

.

Recall that the algorithm invokes an O
(

ε
k3p/4−2

)
relative error Lp,2-sampler in line 4. Since

the additive error is less than n−C for arbitrary C ≥ 0, we can simply absorb it in the failure
probability of the algorithm. We thus get,

E
[
Ȳ (A)

]
=

∑
(i1,...,iq−1)
∈S

(
1± O(ε)

k3p/4−2

)
‖ai1‖

p
2∑

j ‖aj‖
p
2

E [D1]

‖ai1‖
p
2

∑
iq∈N

i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq)
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Since Lp,2-NormEstimator is an unbiased estimator for the Lp,2-norm, i.e. E [D1] =
∑

j ‖aj‖
p
2,

we get

∣∣∣E [Ȳ (A)
]
− ‖A‖pSp

∣∣∣ ≤ ∑
(i1,...,iq−1)
∈S

O(ε)

k3p/4−2

∣∣∣∣∣∣∣
∑

iq∈N
i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq)

∣∣∣∣∣∣∣
We can upper bound the second term as we did in bounding the variance of the estimator in

Theorem 2.2 to get
∣∣∣E [Ȳ (A)

]
− ‖A‖pSp

∣∣∣ ≤ Op(ε)‖A‖pSp

It is left to bound the variance of Ȳ (A). Again, we assume that the Lp-Sampler and Count-
Sketch routines succeed and recall that that for a sequence (i1, . . . , iq−1) ∈ S, we define z(i1,...,iq−1) =∑

iq∈N
i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq). Given the guarantee of Lp,2 sampling in Theorem 4.8, the

variance of the estimate Ȳ (A) is

Var (Ȳ (A)) ≤ 1

m

∑
(i1,...,iq−1)
∈S

(1± O(ε)

k3p/4−2
)

1∑
j ‖aj‖

p
2

E
[
D2

1

]
‖ai1‖

p
2

q−1∏
t=2

1

pi1it−1
(it)

(
z(i1,...,iq−1)

)2
By the accuracy guarantee of Lp,2-NormEstimator and Fact 2.1,

≤ 1

m

∑
(i1,...,iq−1)
∈S

(1±O(ε))
‖A‖pSp

‖ai1‖
p
2

q−1∏
t=2

1

pi1it−1
(it)

(
z(i1,...,iq−1)

)2

Bounding this identically as we did in Theorem 2.2 and setting m = Ck3p/2−4

ε2
give us Var(Ȳ (A)) ≤

Cpε‖A‖2pSp
where Cp is a constant dependent only on p.

The Lp,2-Sampler with O
(

ε
k3p/4−2

)
relative error takes space Õp(k

3p
2
−4n

1− 2
p (ε−1 log n)O(p))

and the Lp,2-NormEstimator takes space Õp(n
1− 2

p (ε−1 log n)O(p)). In addition, storing the rows
recovered from Count-Sketch requires Õ(k2) space. Thus, the space complexity of repeating the

estimator m = Ck3p/2−4

ε2
times is Õp(k

3p−6n
1− 2

p (ε−1 log n)O(p)). We note that in stage 1, the sam-
pler takes two passes, followed by another pass for Count-Sketch and the norm estimator. The
subsequent stages requires two passes each giving a total of 3 + 2(q − 1) = p+ 1 passes.

4.3 Fewer Passes

As mentioned earlier, we can slightly modify the way we implement the estimator from Section 3.2
to reduce the number of passes that Algorithm 1 and Algorithm 3 make to bp4c + 1 and p

2 + 3,
respectively. This is explained below and completes the proofs of Theorems 1.2, 4.1 and 4.2.

The idea is to sample each sequence (i1, . . . , iq) ∈ S in a different way albeit with the same
probability. Assume for simplicity that p ≡ 0 (mod 4). After sampling the first row i1 ∈ [n], we
sample independently two “paths” of length p/4−1, each starting at i1, with probabilities identical
to the ones in the estimator. We then sum over the common neighbors of the endpoints of the two
paths, using each of them to complete a cycle of length p/2. Formally, sample independently two
sequences of rows (i1, l1, . . . , lq/2−1), (i1, j1, . . . , jq/2−1) ∈ Γi1S (i1, q/2− 1). Denote by r the sequence
of rows (lq/2−1, . . . , l1, i1, j1, . . . , jq/2−1) then the following estimator is equivalent to the estimator
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described in Section 3.2 (slightly abusing the notation therein for concatenating two sequences of
rows):

Y :=
1

τr

∑
m∈N i1

S (lq/2−1)

∩N i1
S (jq/2−1)

c(r, iq)σ(r)〈alq/2−1
, am〉〈ajq/2−1

, am〉.

It is easy to verify that this estimator is unbiased, and that its variance can be bounded using
the proof steps of Section 3.2. This estimator can be implemented algorithmically similarly to
the description in Sections 4.1 and 4.2 using less passes over the stream. Specifically, the above
approach decreases the number of “path” stages (i.e. all but the “seed” sampling stage) by a factor
of (roughly) 2, and the space complexity remains the same up to constant factors. Therefore, we
reduce the number of passes over the streams of Algorithm 1 and Algorithm 3 to bp4c+ 1 and p

2 + 3,
respectively. This concludes the proofs of Theorems 1.2, 4.1 and 4.2.

5 Pass-Space Trade-off

Very often streaming problems have a sharp transition in space complexity when comparing a
single pass to multiple passes over the data. However, it turns out that for the Schatten p-norm of
sparse matrices, the space dependence on the number of passes is smooth, allowing one to pick the
desired pass-space trade-off. Specifically, for any parameter s ≥ 2, one can (1± ε)-approximate the

Schatten p-norm in b p
2(s+1)c+ 1 passes using Op,s(ε

−3k2psn1− 1
s ) words of space.

Recall the Schatten p-norm formulation of (3.3). This in can be interpreted as partitioning the
(contributing) length-q cycles according to their heaviest row, denoted here by i1. Analogously, for
any parameter s ∈ [2, p − 1], we split the cycle into s + 1 segments of hop-distance roughly q

s+1 ,
and further partition the cycles according to the heaviest row in each such segment. The idea is
to “cover” a cycle by sampling s rows, where each sampled row is the heaviest among its segment.
More precisely, each sample “covers” its segment, except for the heaviest row in the entire cycle
that will “cover” two segments. Then, to evaluate the entire cycle we need b q

s+1c+ 1 passes. The

total space needed by the algorithm is Op,s(ε
−3k2psn1−1/s) words of space, mostly as it computes

multiple copies of the estimator (to reduce the variance), similarly to Section 4.
In the first subsection we focus on the case s = 2 and present a BFS-based algorithm, followed

by a brief explanation how to improve the dependence on k by replacing the BFS with adaptive
sampling as in the previous sections. In the second subsection we generalize the result to any s ≥ 2.

5.1 The Basic Case s = 2 (bp
6
c+ 1 Passes)

As mentioned, (3.3) can be interpreted as considering only cycles that “start” from the heaviest
row of the cycle (by “rotating” the cycle). We suggest a variation on this idea. Given a q-cycle
“starting” at the heaviest row i, we identify the row j that is the heaviest among the rows at least
q/3 cycle-hops away from i. In other words, if the cycle is (i = i1, . . . , iq), then j is the heaviest
among (roughly) iq/3, . . . , i2q/3. Therefore, our aim is to sample rows i and j and then to connect
four paths: two starting from i and two starting from j, each of hop-distance at most q/3. As we
don’t know in advance the hop-distance to row j, we store all possible options and only later decide
which paths to stich together into a cycle.

Formally, we augment the notation of paths presented in Section 3. For indices i, j, i1 ∈ [n] and
integers t′ ≤ t′′ ≤ t, define

Γ
(i,j;t′,t′′)
S (i1, t) :=
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{
(i1, . . . , iq) : (i1, . . . , it′) ∈ ΓiS(i1, t

′), (it′ , . . . , it′′) ∈ ΓjS(it′ , t
′′ − t′ + 1), (it′′ , . . . , it) ∈ ΓiS(i′′t , t− t′′ + 1)

}
.

As we are actually interested in the special case where t′ = b q3c+ 1 and t′′ = q−b q3c, we shall omit
t′, t′′ from the superscript in this special case.

Recall that we focus on cycles in which i1 = i, i.e. the heaviest row is the starting of the cycle.
Furthermore, we want j = il for some l ∈ {b q3c+ 2, . . . , q − b q3c}, i.e. j is part of the cycle, and is
at least b q3c cycle-hops away from i. Accordingly, we can rewrite the Schatten p-norm as

‖A‖pSp
=
∑
i,j

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i). (5.1)

We are now ready to present our estimator and an algorithm implementing it. In the algorithm,
instead of summing over all i, j ∈ [n], we sample two multisets I, J and do a BFS of depth bq/3c
from each i ∈ I and j ∈ J , and eventually enumerate over all cycles involving these i, j as in (5.1).

Algorithm 4 Two-Set based Algorithm for Schatten p-Norm of k-Sparse Matrices for p ∈ 2Z≥2 in
Row-Order Stream

Input: A ∈ Rn×n streamed in row-order, p ∈ 2Z≥2, ε > 0.

1: r ← O(ε−3q5/2k3p−6√n), Y ← 0.
2: In parallel 2r times do
3: In pass 1 do

4: sample a row i ∈ [n] with probability τi =
‖ai‖q2∑
m ‖am‖

q
2

. Using Reservoir Sampling

5: In pass 2 ≤ t ≤ bq/3c+ 1 do
6: store all rows of hop-distance at most t− 1 from i that have l2-norm smaller than row i

7: let multisets I and J contain the first and last r samples (from line 4), respectively

8: for each (i, j) ∈ I × J such that
(

ε
qk2dq/2e

)3/p
‖ai‖2 ≤ ‖aj‖2 ≤ ‖ai‖2 do

Y +=
1

τi · τj

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i)

9: return Ȳ = 1
r2
Y

Theorem 5.1. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0 and a k-sparse matrix
A ∈ Rn×n that is streamed in row-order, makes bp6c + 1 passes over the stream using at most
Op(ε

−3k4p√n) words of space, and then outputs Ȳ (A) that (1± 2ε)-approximates ‖A‖pSp
with prob-

ability at least 2/3.

Before the proof, we state the following theorem, which can be viewed as a variant of the
Importance Sampling lemma (Theorem 2.2).

Lemma 5.2 (Two-Set Sampling). Let z =
∑

i,j∈[n] zi,j > 0 for n ≥ 1, and suppose the matrix

defined by {zi,j} is ∆-sparse.5 Let I, J ∈ [n] be two random multisets of size r, where each of their

5∆ can be viewed as an upper bound on the in-degrees and out-degrees of the directed graph defined by edge
weights zij on vertex set [n].
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2r elements is chosen independently with replacement according to the distribution (τl : l ∈ [n]).
Consider the estimator

Y =
1

r2

∑
i∈I,j∈J

zi,j
τi · τj

.

If λ > 0 satisfies that for all i, j ∈ [n] both τi, τj ≥ 1
λ

√
|zi,j |
z , then

E [Y ] = z and Var(Y ) ≤
(
λ2

r2
+

2λ∆

r

)
z
∑
i,j∈[n]

|zi,j |. (5.2)

The proof of Lemma 5.2 is given in Appendix 9.3. We now proceed to the proof of Theorem 5.1,
remarking that kO(p) factor can be improved by using the Projection Lemmas, but for simplicity
we use more straightforward arguments.

Proof of Theorem 5.1. First we remark that indeed in bq/3c + 1 passes all the needed rows of a
cycle are kept. For any cycle, row i needs to “cover” bq/3c + 1 + (q − (q − bq/3c)) = 2bq/3c + 1
rows (including itself), which indeed happens as we do a BFS of size bq/3c. Row j must cover at
most q−bq/3c− (bq/3c+ 2) = q− 2bq/3c− 2 rows, including itself. As bq/3c+ 1 ≥ q− 2bq/3c− 2,
we indeed again cover all possibly needed rows in the bq/3c+ 1 passes. We now go on to prove the

approximation bounds. Let β :=
(

ε
qkp−2

)3/p
and define for all i, j ∈ [n]

zi,j :=


∑
b q
3
c+2≤l≤q−b q

3
c
∑

(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i) if ‖aj‖2 ≤ ‖ai‖2;

0 otherwise.

Then, by Equation (5.1), z′ :=
∑

i,j zi,j = ‖A‖pSp
. Since line 8 in the algorithm considers only pairs

(i, j) where
‖aj‖2
‖ai‖2 ∈ [β, 1], we further define

z :=
∑

i,j:
‖aj‖2
‖ai‖2

∈[β,1]

zi,j .

Let us show that the omitted terms do not contribute much to z′ = ‖A‖pSp
, and thus the error

introduced by omitting them is small. For simplicity assume q/3 ∈ N, then∣∣z′ − z∣∣ ≤∑
i

∑
j:
‖aj‖2
‖ai‖2

≤β

|zi,j |

≤
∑
i

∑
j:
‖aj‖2
‖ai‖2

≤β

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

c(i, i2, . . . , iq) |σ(i, i2, . . . , iq, i)|

As c(i, i2, . . . , iq) ≤ q, and using the conditions on i and j we get

≤ q
∑
i

∑
j:
‖aj‖2
‖ai‖2

≤β

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

‖ai‖2p/32 ‖aj‖p/32
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As each row has at most k2 “neighboring” rows,

≤ k2(q−1)qβp/3
∑
i

‖ai‖p2 = ε
∑
i

‖ai‖p2.

Therefore, using Fact 2.1, we conclude

|z − ‖A‖pSp
| ≤ ε‖A‖pSp

. (5.3)

We proceed to show that the standard deviation of our estimator is bounded by εz, meaning
that w.h.p Ȳ ∈ (1 ± ε)z, and together with (5.3) this yields Ȳ ∈ (1 ± 2ε)‖A‖pSp

. To this end, we
want to use Lemma 5.2 and thus wish to show that∑

i,j

|zi,j | ≤ 2qk2dq/2ez (5.4)

and that λ :=
√

2qkp−4 n
β2p/3 =

√
2q3/2k3p/2−4

√
n
ε satisfies

|zi,j |
z
≤ λ2τ2

j ∀i, j ∈ [n]. (5.5)

meaning that . We remark that (5.5) is indeed sufficient, as τj ≤ τi, as otherwise zi,j = 0 and the
inequality trivially holds.

To prove (5.4), we use similar arguments as above, together with (5.3),∑
i,j

|zi,j | ≤ q ·
∑

i,j:
‖aj‖2
‖ai‖2

∈[β,1]

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

‖ai‖p2

≤ qkp−2
∑
i

‖ai‖p2

≤ 2qkp−2z.

To prove (5.5), fix i, j such that
‖aj‖
‖ai‖ ∈ [β, 1], then by similar arguments, together with (5.3)

and Fact 2.1,

|zi,j |
z
≤ 1

z

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

c(i, i2, . . . , iq)|σ(i, i2, . . . , iq, i)|

≤ 1

z

∑
b q
3
c+2≤l≤q−b q

3
c

∑
(i,i2,...,iq)

∈Γ
(i,j)
S (i): il=j

q‖ai‖2p/32 ‖aj‖p/32

≤ qkp−4 ‖aj‖
p
2

β2p/3z

≤ 2qkp−4 ‖aj‖p2
β2p/3‖A‖pSp

≤ 2qkp−4 ‖aj‖p2
β2p/3

∑
m ‖am‖

p
2
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using norm properties (basically applying ‖v‖q ≤ n1/q−1/p‖v‖p to the vector v = (‖a1‖2, . . . , ‖an‖2)),

≤ qkp−4 ‖aj‖p2
β2p/3(

∑
m ‖am‖

q
2)2/n

≤ 2qkp−4 n

β2p/3
· τ2
j .

We further note that for zi,j to be non-zero, row j must be at distance at most dq/2e from row
i, and thus each row can participate in at most k2dq/2e different non-zero zi,j , i.e., ∆ ≤ kp/2−2.
Combining all the above, we conclude that setting r = O(ε−2λ∆) · 2qkp−2 = O(ε−3q5/2k3p−6√n)
will give w.h.p a (1± 2ε)-approximation to the Schatten p-norm by Chebyshev’s inequality.

As for each row in I ∪ J the algorithm stores neighborhoods of size O
(
(k2)q/3

)
, and storing

each row in the neighborhood takes O(k) words, there is an extra factor of kp/3+1. Thus the total
space is O(ε−3q5/2k10p/3−5√n) words.

Remark. As mentioned earlier, the BFS approach can be replaced with the adaptive sampling
approach from previous sections. For the first r samples (in I), the algorithm adaptively samples
two paths of hop-distance (roughly) q/3, similarly to Section 4.3. For each of the last r samples
(in J), the algorithm chooses ρ ∈ [q/3] uniformly at random (and independently of all other steps),
and adaptively samples a path of hop-distance ρ and a path of hop-distance (roughly) q

3 − ρ. It
then tries to “stitch” these paths to create q-cycles. The bound on λ (i.e. (5.5)) increases by a
factor of q/3 due to ρ (this can be viewed as replacing the BFS with multiple random paths), but
as the algorithm does not keep the entire neighborhoods, a kp/3 factor is shaved from the space
complexity. This, together with a tighter analysis, can improve the dependence on k in Theorem
5.1 to k19p/8+O(1).

5.2 General s (using b p
2(s+1)

c+ 1 Passes)

We generalize the algorithm from the previous subsection, such that given some integer s ∈ [2, p−1],
the algorithm samples in parallel in the first pass r · s rows for r = Op,ε,s(k

4pn1−1/s), where each

“seed” row i is sampled with probability τi =
‖ai‖

p/s
2∑

m ‖am‖
p/s
2

. In the following passes it runs a BFS

of depth (roughly) q
s+1 , keeping all the shorter rows (in l2-norm) in the neighborhood of each

seed. The first r samples are denoted as multiset I, and the other samples are split into s − 1
multisets of size r denoted as J1, . . . , Js−1. The algorithm then considers s-tuples (i, j1, . . . , js−1)
where i ∈ I and every row ju ∈ Ju has l2-norm in the range (β′, 1) relative to that of row i, for

β′ ≈
(

ε
sqkp

)(s+1)/p
. The estimator is formed by looking at the eligible s-tuples, and for each such

tuple adding the contributions of all the q-cycles obtained by “stitching” paths of hop-distance
(roughly) q

s+1 passing through these seeds, as follows:

Y +=
1

τiτj1 · · · τjs−1

∑
q

s+1
≤l1≤ 2q

s+1

· · ·
∑

(s−1)q
s+1

≤ls−1≤ s·q
s+1

∑
(i,i2,...,iq)

∈Γ
(i,j1,...,js−1)

S (i):
il1=j1,...,ils−1

=js−1

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i).

The algorithm’s final output is Ȳ = 1
rsY .

Theorem 5.3. There exists an algorithm that, given p ∈ 2Z≥2, ε > 0, an integer s ∈ [2, p − 1]
and a k-sparse matrix A ∈ Rn×n streamed in row-order, makes b p

2(s+1)c+ 1 passes over the stream
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using Op

(
ε−3k2psn1− 1

s

)
words of space, and outputs Ȳ (A) that (1± 2ε)-approximates ‖A‖pSp

with

probability at least 2/3.

Proof Sketch. The proof follows similar steps as the proof for s = 2. First, the error introduced by
taking only certain cycles changes, as now we miss cycles in which at least one of the sampled ju
is smaller than β′. However their total contribution can be bounded by (s− 1)(β′)p/(s+1)qkp−2 < ε
relative to ‖A‖pSp

. Next, an s-Set Sampling Lemma is proved using the same arguments as the
Two-Set Sampling Lemma. It asserts that the estimator

Y =
1

rs

∑
i∈I,j1∈J1,...,js−1∈Js−1

zi,j1,...,js−1

τiτj1 · · · τjs−1

is unbiased, and that if λ > 0 satisfies that for every i, j1, . . . , js−1 ∈ [n], all τi, τj1 , . . . , τjs−1 ≥
1
λ

( |zi,j1,...,js−1
|

z

)1/s

, then

Var(Y ) ≤ O
((

∆ +
λ

r

)s
−∆s

)
z

∑
i,j1,...,js−1∈[n]

|zi,j1,...,js−1 |.

The proof for the inequality analogous to (5.4), which bounds the ratio between the absolute
sum of zi,j1,...,js−1 and z, is the same. To prove the bound λ (i.e. analogous to (5.5)), we need to
bound the shortest ju among rows (j1, . . . , js−1). To do so we first bound all “seeds” except ju

using row i, and then use the same arguments that result in λ =
(
Cεqk

p ns−1

(β′)2p/(s+1)

)1/s
for a suitable

constant C dependent on ε. Finally, now each i can have (s− 1)k2dq/2e different (j1, . . . , js−1), i.e.
∆ ≤ (s− 1)kq+2. Picking r = O

(
ε−3s∆s−1λ

)
results in the desired approximation.

The space complexity analysis is as in the proof of Theorem 5.1, resulting in

O
(
ε−3(s− 1)s · q2+1/s · kp(s/2+11/6+1/s)+2s−O(1) · n1−1/s

)
words of space.

6 One-Pass Lower Bound for Row-Order Model

We show a space lower bound of Ω(n1−4/bpc4) bits for one-pass algorithms and even p values in the
row-order model. Our main technical contribution is the analysis of even p values in a reduction
presented in [LW16a], based on the Boolean Hidden Hypermatching [VY11, BS15]. Although this
is not mentioned in [LW16a], it can easily be verified from the proof of [LW16a, Theorem 3] (stated
below as Theorem 6.1) that this reduction applies also to the row-order model.6 Our bound is
closely related to the Ω(n1−1/ε) bits lower bound for p /∈ 2Z, proved in [BCK+18], and is also
nearly tight with the upper bound from the same paper (see discussion at the end of this section).

We first recall the definitions presented in [LW16a]. Let Dm,l (for 0 ≤ l ≤ m) be an m × m
diagonal matrix with the first l diagonal elements equal to 1 and the remaining diagonal entries
equal to 0, and let 1m be an m-dimensional vector full of 1s, thus 1m1>m is the m × m all-ones
matrix. Define

Mm,l(γ) =

(
1m1>m 0√
γDm,l 0

)
,

6In fact, also Theorem 4 in [LW16a] applies to row-order streams, providing a different proof for the Ω(n1−ε) lower
bound for p /∈ 2Z proved in [BCK+18].
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where γ > 0 is a constant (which may depend on m).
Let m ≥ 2 be an even integer, and let pm(l) :=

(
m
l

)
/2m−1 for 0 ≤ l ≤ m. Let E(m) be the

probability distribution defined on even integers {0, 2, . . . ,m} with probability density function
pm(l). Similarly, let O(m) be the distribution on odd integers {1, 3, . . . ,m − 1} with density
function pm(l). We say that a function f on square matrices is diagonally block-additive if f(X) =
f(X1) + . . .+ f(Xs) for any block diagonal matrix X with square blocks X1, . . . , Xs. As noted in
[LW16a], f(X) = ‖X‖pSp

is diagonally block-additive.

We observe that the reduction presented in [LW16a] is applicable also to row-order streams,
and thus state below a slightly stronger version of Theorem 3 from that paper.

Theorem 6.1 (Theorem 3 in [LW16a]). Let t be an even integer and let f be a function of square
matrices that is diagonally block-additive. If there exists m = m(t) and γ = γ(m) > 0, such that
the following “gap condition” holds:

El∼E(t) [f (Mm,l(γ))]− El∼O(t) [f (Mm,l(γ))] 6= 0, (6.1)

then there exists a constant ε = ε(t) > 0 such that every row-order streaming algorithm that,
given X ∈ RN×N (for sufficiently large N), approximates f(X) within factor 1 ± ε with constant
error probability, must use Ωt(N

1−1/t) bits of space.

We can now present our analysis for even p values.

Lemma 6.2. Let f(X) = ‖X‖pSp
, for p ∈ 4Z≥1. Then the gap condition (6.1) is satisfied, under

the choice m = t and γ = 1, if and only if t ≤ p/4.

Proof. As shown in the proof of Theorem 4 in [LW16a], for m = t and γ = 1, the non-zero singular
values of a block Mt,l(1) are as follows. For l = 0, the only non-zero singular value is t. For 0 < l < t,

the non-zero singular values are r1(l) =

√
(t2+1)+

√
(t2−1)2+4lt

2 , r2(l) =

√
(t2+1)−

√
(t2−1)2+4lt

2 and 1

with multiplicity l−1. And for l = t, the non-zero singular values are r1(t) =

√
(t2+1)+

√
(t2−1)2+4t2

2
and 1 with multiplicity t − 1. Further note that that r2(t) = 0. Using this, and recalling the
distribution of the blocks, the left-hand side of the gap condition (6.1) is

1

2t−1

[
tp +

∑
even l

(
t

l

)
((l − 1) + rp1(l) + rp2(l))−

∑
odd l

(
t

l

)
((l − 1) + rp1(l) + rp2(l))

]
(6.2)

and we can rewrite this as

1

2t−1

tp +
∑

0<l≤t

(
t

l

)
(−1)l(l − 1) +

∑
0<l≤t

(
t

l

)
(−1)l (rp1(l) + rp2(l))

 .
For the first sum, by Corollary 2 in [Rui96], we know that

t∑
l=0

(−1)l
(
t

l

)
(l − 1) = 0

meaning that ∑
0<l≤t

(
t

l

)
(−1)l(l − 1) = 1.
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Let q = p/2. It holds that

rp1(l) + rp2(l) =

(
(t2 + 1) +

√
(t2 − 1)2 + 4lt

2

)q
+

(
(t2 + 1)−

√
(t2 − 1)2 + 4lt

2

)q
and using the binomial theorem,

=
1

2q

[
q∑
i=0

(
t2 + 1

)q−i (√
(t2 − 1)2 + 4lt

)i
+

q∑
i=0

(−1)i
(
t2 + 1

)q−i (√
(t2 − 1)2 + 4lt

)i]
.

We note that the alternating sum double the even values the zero out the odd values, thus the
above can be rewritten as

=
1

2q−1

∑
even i

(
q

i

)(
t2 + 1

)i (
(t2 − 1)2 − 4lt

) q−i
2 .

and by applying it again, on the second multiplicative term,

=
1

2q−1

∑
even i

(
q

i

)(
t2 + 1

)i q−i
2∑
j=0

( q−i
2

j

)(
t2 − 1

)2j · (4t) q−i
2
−j · l

q−i
2
−j .

Combining the two insights results in

(6.2) =
1

2t−1

tp + 1 +
t∑
l=1

(−1)l

 1

2q−1

∑
even i

(
q

i

)
(t2 + 1)i

q−i
2∑
j=0

( q−i
2

j

)
(t2 − 1)2j (4tl)

q−i
2
−j l

q−i
2
−j


 .

We further note that for l = 0, the term in the inner parentheses is non-zero only when q−i
2 = j.

In this case we get, using the binomial theorem once more,

1

2q−1

∑
even i

(
q

i

)
(t2 + 1)i(t2 − 1)q−i =

(
t2 + 1 + t2 − 1

2

)q
+

(
t2 + 1− t2 + 1

2

)q
= 1 + tp.

Therefore, we can rewrite (6.2) as

(6.2) =
1

2t−1

 t∑
l=0

(−1)l
1

2q−1

∑
even i

(
q

i

)
(t+ 1)i

q−i
2∑
j=0

( q−i
2

j

)
(t− 1)2j4

q−i
2
−jl

q−i
2
−j


and using [LW16a] observation,

=
1

2t−1
(−1)tt!

∑
even i

(
q

i

)
(t+ 1)i

q−i
2∑
j=0

( q−i
2

j

)
(t− 1)2j4

q−i
2
−j
{ q−i

2

t

}

where
{ q−i

2
t

}
are Stirling numbers of the second kind. As for a fixed t all terms are of the same

sign, the sum vanishes only when
{ q−i

2
t

}
= 0 ∀i, which happens when t > q/2 = p/4.
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We remark that Lemma 6.2 extends to p ≡ 2 (mod 4) when t ≤ (p− 2)/4, by replacing in the
proof q = p/2 with q̃ = (p− 2)/2. The next theorem follows easily by combining Theorem 6.1 and
Lemma 6.2.

Theorem 1.3. For every p ∈ 2Z≥2 there exists a constant ε(p) > 0 such that any algorithm that,
given an Op(1)-sparse matrix A ∈ Rn×n streamed in row-order, makes one pass and outputs a
(1±ε(p))-approximation to ‖A‖pSp

with probability at least 2/3, must use Ω(n1−4/bpc4) bits of space.

Proof. Let us first assume that p ≡ 0 (mod 4). As shown in Lemma 6.2, the gap condition (6.1)
holds for f(X) = ‖X‖pSp

and t = p/4, thus by Theorem 6.1 the space complexity is Ω(n1−1/t) =

Ω(n1−4/p) bits. For p ≡ 2 (mod 4) the claim holds for t = (p− 2)/4, yielding an Ω(n1−4/(p−2)) bits
lower bound.

We note that for p ≡ 0 (mod 4) the above matches up to logarithmic factors the upper bound
for the row-order algorithm presented in [BCK+18], i.e. tight for matrices in which every row and
column has O(1) non-zero elements. For p ≡ 2 (mod 4), there is a small gap: the lower bound is
Ω(n1−4/(p−2)) while the upper bound obtained in [BCK+18] is Õk(n

1−4/(p+2)).

7 Oε(1)-Space Algorithm for Schatten 4-Norm of General Matrices

We present an O(1/ε2)-space algorithm for (1 + ε)-approximation of the Schatten 4-norm in the
row-order model. As this result does not depend on the sparsity and is applicable to any matrix, it
significantly improves the previously known row-order algorithm, presented in [BCK+18] that uses
space Õp,ε(k), and is also better than the result of Section 4.1.

The algorithm exploits the fact that A>A =
∑

i a
>
i ai (i.e. summing over the outer product

of every row with itself), to sketch the Frobenius norm
∑

j1,j2
((A>A)j1,j2)2 = ‖A>A‖2F = ‖A‖4S4

.
To do so, it uses two random 4-wise independent vectors, following an idea presented in [IM08]
(extending the classic [AMS99] result), as follows.

Lemma 7.1 (Lemma 3.1 in [IM08]). Consider random h, g ∈ {−1, 1}n where each vector is 4-wise
independent (and independent of the other one). Let v ∈ Rn2

and zj = hj1gj2 for j ∈ [n]2, and
define Υ = (

∑
j∈[n]2 zjvj)

2. Then

E [Υ] =
∑
j∈[n]2

v2
j , and Var(Υ) ≤ 3(E [Υ])2.

Algorithm 5 Algorithm for Schatten 4-Norm of General Matrices in Row-Order Streams

Input: A ∈ Rn×n streamed in row-order, ε > 0.

1: In parallel m = Õ(1/ε2) times do
2: init: Y ← 0 and choose two random 4-wise independent vectors h, g ∈ {−1, 1}n
3: upon receiving row ai, update: Y += 〈h, ai〉〈g, ai〉
4: let Υ← Y 2

5: return average of the m copies of Υ

Theorem 7.2. Suppose that A ∈ Rn×n is a matrix given in one-pass row-order model. Algorithm
5 uses space O(1/ε2) and outputs a (1 + ε)-approximation to ‖A‖4S4

with probability at least 2/3.
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Proof. Consider one copy of the independent sketches. Using simple manipulations, we can write:

Y =
∑
i

∑
j1

hj1Ai,j1

∑
j2

gj2Ai,j2

 =
∑
j1,j2

hj1gj2(A>A)j1,j2

By looking at A>A as vector of dimension n2, it easily follows from 7.1 that E [Υ] = ‖A>A‖2F =
‖A‖4S4

and Var(Υ) ≤ 3‖A‖8S4
. Repeating the sketch O(1/ε2) times independently, decreases the

variance and gives the desired result (by Chebyshev’s inequality).

8 Applications

Often it is possible to obtain good approximations for complex functions using polynomials, such
as Taylor expansions and Chebyshev polynomials, which are accurate over specific intervals. In this
section we present two applications where space-efficient algorithms for Schatten p-norms lead to
algorithms for other functions of the spectrum. While approximating polynomials of the spectrum in
order to approximate other functions is a promising direction, the prohibiting step in this approach
is often computing the largest singular value in a space-efficient way. Since often these polynomial
approximations are over small interval near the origin, one needs to condition the spectrum by
dividing the matrix by its largest singular value (which is commonly difficult to esitmate).

8.1 Approximating the Log-Determinant of a Positive Definite Matrix

We present an application of our Schatten norm estimator to approximating the log-determinant of
sparse positive definite matrices in data streams. Throughout, log x denotes the natural logarithm
of x.

Definition 8.1 (LogDet Problem). Given a Positive Definite (PD) matrix A ∈ Rn×n, compute
log det(A).

Boutsidis et. al. [BDK+17] presented a time-efficient approximation algorithm for PD matrices
using a Taylor expansion of the matrix logarithm. As this Taylor expansion only converges when
all eigenvalues lie in the interval (−1, 1), they suggested two settings: one in which all the matrix
eigenvalues lie in the interval (θ, 1) for some 0 < θ < 1, and another for general PD matrices. Using
their ideas together with our Schatten norm estimator, we obtain the following theorem for the
first setting.

Theorem 8.2. There is an algorithm that, given ε, θ ∈ (0, 1) and a k-sparse PD matrix A ∈ Rn×n
that is presented as a row-order stream, and all of whose eigenvalues lie in the interval (θ, 1),
the algorithm makes m/2 passes over the stream using Om(k3m/2−3ε−2) words of space, for m =
d1
θ · log 1

εe, and then outputs an estimate ρ(A) such that

Pr
[
ρ(A) ∈ (1± 2ε) log det(A)

]
≥ 2/3.

To prove this theorem, we need the following lemma, to express log-determinant using the
traces of matrix powers. In [BDK+17] these traces are approximated by iteratively multiplying the
matrix using Gaussian vectors. While this is a time-efficient method, it is not space-efficient when
the input matrix is sparse, and therefore replacing it with our streaming algorithm would improve
the space complexity.
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Lemma 8.3 (Lemmas 5 and 7 in [BDK+17]). Let A ∈ Rn×n be a PD matrix with largest eigenvalue
λ1. Then

∀α > λ1, log det(A) = n logα−
∞∑
p=1

Tr((In −A/α)p)

p
.

Furthermore, if all the eigenvalues lie in the interval (0, 1), then

log det(A) = −
∞∑
p=1

Tr((In −A)p)

p
.

We now sketch the proof of Theorem 8.2.

Proof Sketch. Lemma 8 in [BDK+17] shows that it suffices to (1±ε)-approximate the first m = d1
θ ·

log 1
εe terms of the Taylor expansion

∑m
p=1−

Tr((In−A)p)
p in order to obtain a (1±2ε)-approximation

of log det(A). Recall that if A is PD then Tr(Ap) =
∑
λpi = ‖A‖pSp

, where λ1, . . . , λn > 0 are its
eigenvalues. Furthermore, for such matrices our algorithm works for every integer p ≥ 2, while for
p = 1 one can compute ‖A‖1S1

= Tr(A) by directly summing the main diagonal entries. Therefore,
we can compute all these m terms in parallel using Algorithm 1, where each instance takes at most
m/2 passes and Om(k3m/2−3ε−2) words of space.

In the general case, as mentioned, an approximation α to the largest eigenvalue is required.
Thus, if no extra information regarding the matrices is provided, then a dependence on the matrix
dimensions could be unavoidable. However, if for example the eigenvector corresponding to the
largest eigenvalue is k′-sparse (or approximately sparse, i.e., there exists a k′-sparse vector close to
the eigenvector in the l2 sense), then it is possible to use the Truncated Power Method [YZ13] to
obtain an approximation to λ1 using O(k · k′) space.

8.2 Approximating the Spectrum of PSD matrices

We present an application of our algorithm to (weakly) estimate the spectrum of a matrix, with
eigenvalues bounded in [0, 1] using approximations of a “few” Schatten norms of the matrix. This
is based on the work of Cohen-Steiner et. al [CKSV18] on approximating the spectrum of a graph
which is in turn based on insightful work by Wong and Valiant [KV16] on approximately recovering
a distribution from its moments using the Moment Inverse method.

Fix a PSD matrix A ∈ Rn×n with eigenvalues 1 ≥ λ1 ≥ . . . ≥ λn and define the l-th moment
of the spectrum to be 1

n‖A‖
l
Sl

= 1
n

∑
i∈[n] λ

l
i. Cohen-Steiner et. al. show that estimating O(1/ε)

moments of A up to multiplicative error O(ε) is sufficient to estimate the spectrum of A within
earth-mover distance O(ε). It is well-known that the the L1 distance between two sorted vectors
of length n is exactly n times the earth-mover distance between the corresponding point-mass
distributions (uniform probability on each of the n indices). Hence, the recovery scheme of Cohen-
Steiner et. al. allows us to recover the spectrum within L1 distance O(εn) by estimating only O

(
1
ε

)
moments of the matrix A. Specifically, we get the following result,

Theorem 8.4 (Theorem 7 in [CKSV18]). Given a constant ε > 0, there exists a parameter s = C
ε

(where C > 0 is an absolute constant) and an algorithm R such that, for a PSD matrix A ∈
Rn×n with eigenvalues λ = (λ1, . . . , λn) ∈ [0, 1]n and a vector y ∈ Rs with the property that
yi = ‖λ‖ii ± exp(−C ′ε) for all i ∈ [s] and absolute constant C ′ > 0, R reads y and outputs a vector
λ̂ such that ‖λ− λ̂‖1 ≤ εn.
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For an error parameter ε > 0 and parameter s = C
ε (where C > 0 is an absolute constant) as

defined in the above theorem, given a k-sparse PSD matrix A ∈ Rn×n that is streamed in row-order
and whose eigenvalues are in the range [0, 1], one can use Algorithm 1 to compute the vector y ∈ Rs
with the desired guarantee using space O(k3s/2−3 exp(−C ′ε)) for some absolute constant C ′ > 0
and using s

2 passes over the stream.
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9 Appendix

9.1 Proof of Fact 2.1

Let M = AA> be a PSD matrix, with eigenvalues λ1 ≥ . . . ≥ λn ≥ 0. Let ~m,~λ ∈ Rn be the vectors
corresponding to the diagonal entries of M and the eigenvalues of M respectively, both in non-
increasing order. Then, by Schur-Horn theorem (Theorem 4.3.26 in [HJ85]), ~λ weakly majorizes
~m, i.e.

∑r
i=1 λi ≥

∑r
i=1mi for all r ∈ [n].

Since f(y) =
∑n

i=1 y
t
i is a Schur-convex function for y ∈ Rn and t ≥ 1, we have that

∑n
i=1 λ

t
i ≥∑n

i=1m
t
i. The statement follows from the fact that

∑n
i=1 λ

t
i = ‖AA>‖tSt

= ‖A‖2tS2t
and mi = ‖ai‖22

for all i ∈ [n].
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9.2 Proof of Theorem 2.2

It is easy to see that the estimator is unbiased; E
[
Ẑ
]

=
∑

i∈[n]
zi
τi
· τi = z. Bounding the variance

can be done as follows,

Var(Ẑ) ≤ E
[
(Ẑ)2

]
=
∑
i∈[n]

(
zi
τi

)2

τi =
∑
i∈[n]

(
|zi|
τi

)2

τi.

Since for each i ∈ [n] we have τi ≥ |zi|λz , we can bound Var(Ẑ) ≤
∑

i∈[n](λz)
2τi = (λz)2.

9.3 Proof of Lemma 5.2

The expectation is straight forward. First assume r = 1:

E [Y ] = E
[
zi,j
τiτj

]
=

∑
l∈[n],m∈[n]

zl,m
τlτm

τlτm = z

and then using the linearity of expectation,

E [Y ] =
1

r2

∑
u∈[r],v∈[r]

E
[
ziu,jv
τiuτjv

]
=

1

r2

∑
u∈[r],v∈[r]

z = z.

For the variance,

EY 2 =
1

r4

∑
u,v

E

∑
u′ 6=u
v′ 6=v

ziu,jv
τiuτjv

·
ziu′ ,jv′
τiu′ τjv′

+ E

[(
ziu,jv
τiuτjv

)2
]

+ E

∑
u6=u′

ziu,jv
τiuτjv

·
ziu′ ,jv
τiu′ τjv

+ E

∑
v 6=v′

ziu,jv
τiuτjv

·
ziu,jv′
τiuτjv′




As iu and iu′ are independent for u 6= u′, and similarly for jv and jv′ for v 6= v′, we get

=
1

r4

r2(r − 1)2z2 + r2
∑
l,m

zl,m
τl
·
zl,m
τm

+ r2(r − 1)
∑
l,m,m′

zl,m′

τl
· zl,m + r2(r − 1)

∑
l,l′,m

zl′,m
τm
· zl,m


≤ z2 +

1

r2

∑
l,m

|zl,m|
τlτm

· |zl,m|+
1

r

∑
l,m,m′

|zl,m′ |
τl
· |zl,m|+

1

r

∑
l,l′,m

|zl′,m|
τm

· |zl,m|.

As the first term is just (E [Y ])2, it holds that

Var(Y ) ≤ 1

r2

∑
l,m∈N(l)

|zl,m|
τlτm

· |zl,m|+
1

r

∑
l,m,m′∈N(l)

|zl,m′ |
τl
· |zl,m|+

1

r

∑
m,l∈N(m),l′∈N(m)

|zl′,m|
τm

· |zl,m|.

Recalling that zl,m = 0 for all (l,m) /∈ E, we can rewrite the above as

=
1

r2

∑
l,m∈N(l)

|zl,m|
τlτm

· |zl,m|+
1

r

∑
l,m∈N(l),m′∈N(l)

|zl,m′ |
τl
· |zl,m|+

1

r

∑
m,l∈N(m),l′∈N(m)

|zl′,m|
τm

· |zl,m|

and using the bound on the probability,

≤ λ2z

r2

∑
l,m∈N(l)

|zl,m|+
λz

r

∑
l,m∈N(l),m′∈N(l)

|zl,m|+
λz

r

∑
m,l∈N(m),l′∈N(m)

|zl,m|.

Finally, using the bounds on maximum degrees, we get

≤
(
λ2

r2
+

2λ∆

r

)
z
∑
i,j∈[n]

|zi,j |.
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