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Ron Mosenzon
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Abstract

Given a large edge-capacitated network G and a subset of k vertices called ter-
minals, an (exact) flow sparsifier is a small network G′ that preserves (exactly) all
multicommodity flows that can be routed between the terminals. Flow sparsifiers were
introduced by Leighton and Moitra [STOC 2010], and have been studied and used in
many algorithmic contexts.

A fundamental question that remained open for over a decade, asks whether every
k-terminal network admits an exact flow sparsifier whose size is bounded by some
function f(k) (regardless of the size of G or its capacities). We resolve this question in
the negative by proving that there exist 6-terminal networks G whose flow sparsifiers
G′ must have arbitrarily large size. This unboundedness is perhaps surprising, since
the analogous sparsification that preserves all terminal cuts (called exact cut sparsifier
or mimicking network) admits sparsifiers of size f0(k) ≤ 22

k [Hagerup, Katajainen,
Nishimura, and Ragde, JCSS 1998].

We prove our results by analyzing the set of all feasible demands in the network,
known as the demand polytope. We identify an invariant of this polytope, essentially
the slope of certain facets, that can be made arbitrarily large even for k = 6, and implies
an explicit lower bound on the size of the network. We further use this technique to
answer, again in the negative, an open question of Seymour [JCTB 2015] regarding
flow-sparsification that uses only contractions and preserves the infeasibility of one
demand vector.
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1 Introduction
Graph compression is a powerful paradigm in the design of graph algorithms. Where one
reduces the size of the graph before performing heavy computation on it, while preserving
properties of the graph that are needed for downstream computation. This paradigm is
known to be extremely useful for faster computation, smaller memory requirement, as well
as better accuracy when using approximation algorithms.

We study a form of graph compression known as vertex sparsification, where one is given
an undirected network G = (V,E, c) with edge capacities c : E → R≥0, and a small set T ⊆ V
of vertices from G called terminals. The goal is to create a small network G′ = (V ′, E ′, c′)
called a vertex sparsifier, which may have different vertices, edges, and capacities than G,
but includes the same set of terminals T ⊆ V ′, and preserves some desired relationship
between the terminals. We study flow sparsifiers, where the relationship of interest is the
set of feasible multicommodity flows, as introduced by Leighton and Moitra [LM10].

Let us recall the relevant definitions. Given G and T as above, a pair of terminals i ∈
(
T
2

)
is referred to as a commodity, and the two terminals of each commodity are arbitrarily
assigned to be the source and sink of that commodity. A demand vector d ∈ R(

T
2
)

≥0 assigns
a non-negative value di to each commodity i ∈

(
T
2

)
. A multicommodity flow f that realizes

d is a collection of
(|T |

2

)
flow functions, namely, fi : E → R for each commodity i ∈

(
T
2

)
,

such that fi ships di units of flow from the source to the sink of commodity i (satisfying
flow conservation at every other vertex), and together these flows satisfy the the following
capacity constraint

∀e ∈ E,
∑
i∈(T

2
)

|fi(e)| ≤ c(e).

Throughout, one fixes an arbitrary orientation of the edges of G, so that the sign of the flow
fi(e) determines its direction. A demand vector d is called feasible in G if there exists a
multicommodity flow in G that realizes it. The set of all feasible demands in G, called the
demand polytope (or throughput polytope, see e.g. [RBC07]) is defined as

D(G)
def
= {d ∈ R(

T
2
)

≥0 : d is feasible in G}.

It is not hard to see that D(G) is indeed a polytope.

Definition 1.1 (Exact Flow Sparsifier). A network G′ = (V ′, E ′, c′) is called an exact flow
sparsifier (or a flow sparsifier of quality 1) of a network G = (V,E, c) if they share the same
terminal set T and

D(G′) = D(G).

1.1 Results
We answer the following problem, that is open since [LM10] and is well-known to experts:
Does every k-terminal network G have an exact flow sparsifier of size bounded by some
function f(k)? Interestingly, this question is open even if the sparsifier is allowed O(1)-
approximation, stated explicitly in [Moi11, Section 7] and [Chu12, Section 1]. Our main
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result resolves this question in the negative (for exact sparsifiers) by showing that even
6-terminal networks can require arbitrarily large sparsifiers.

Theorem 1.2. For every k ≥ 6, there exists an infinite family {Gl}l∈N of k-terminal net-
works, such that every exact flow sparsifier of every Gl must have at least l vertices.

This theorem reveals a stark contrast with the analogous sparsification that preserves all
terminal cuts, called exact cut sparsifiers (or mimicking networks), which admit constructions
(exact cut sparsifiers) of size f0(k) ≤ 22

k [HKNR98, KR14]. Furthermore, it is known that
for networks G with at most 4 terminals, an exact cut sparsifier of G is also an exact
flow sparsifier of G (because there is no flow-cut gap, see e.g. [AGK14]), and therefore such
networks admit exact flow sparsifiers of size bounded by f0(4). This means that the condition
k ≥ 6 in the theorem is almost tight. We further note that the family of networks used in
Theorem 1.2 excludes a fixed minor, namely, K7. We discuss these issues further in Section 5.

We further use our techniques to answer a question of Seymour [Sey15] regarding a related
notion of flow-sparsification, that uses only contractions and preserves the infeasibility of one
demand vector. This is discussed in Section 1.3.

1.2 Techniques and Proof Outline
Our proof of Theorem 1.2 is based on identifying a numerical feature of the demand poly-
tope that forces a large sparsifier network. Some natural candidates are the maximum size
of feasible demands, or the bit complexity required to represent the polytope. These can-
didates fail because even a small sparsifier can have arbitrarily large capacities, and thus
can also represent an unbounded number of bits. To circumvent this problem, we identify
a feature that can be upper bounded in a manner independent of the capacities, yet can
grow arbitrarily large as the network size increases (even as the number of terminals remains
fixed).

In essence, D(G) represents all possible tradeoffs between the values of the commodities.
Since this is too complicated, we focus on the tradeoff between just two commodities, at the
neighborhood of a single point d ∈ R(

T
2
)

≥0 . We then use this tradeoff as our numerical feature.
We remark that our proof can be adapted to rely on the number of facets of the polytope,
a numerical feature that is a widely used in polyhedral theory.1

Definition 1.3 (Tradeoff). Let d ∈ R(
T
2
)

≥0 be a point in the demand polytope D(G) of a
network G with terminal set T . We say that τ ≥ 0 is a feasible tradeoff between commodity
i ∈

(
T
2

)
and commodity j ∈

(
T
2

)
at the point d if there exists a vector d∆ ∈ R(

T
2
) with entries

d∆j < 0 and d∆i = −τd∆j while all other entries are zero, such that d + d∆ ∈ D(G).2 The
1However, it seems more difficult to prove that the facet count can be arbitrarily large when the number

of terminals is constant, as our proof method is essentially a reduction to tradeoff argument. Furthermore,
we believe that our tradeoff feature is more versatile for analyzing demand polytopes, as exemplified by our
refutation of Seymour’s conjecture [Sey15] in Section 1.3, which does not seem to have an analogous proof
using facet counting.

2Observe that if τ > 0 is a feasible tradeoff then also every τ ′ ∈ [0, τ ] is a feasible tradeoff, because the
polytope D(G) is down-monotone.
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maximum tradeoff between commodities i and j at the point d is defined as

τd,i,j
def
= sup{feasible tradeoff τ ≥ 0 between commodities i and j at point d}.

Observe that τd,i,j can be infinite. However, we are interested in finite τd,i,j, and indeed
the aforementioned numerical feature of the demand polytope is the largest finite τd,i,j over all
d, i, j. The maximum tradeoff τd,i,j has a geometric interpretation in terms of the demand
polytope D(G). Consider the two-dimensional plane of points that differ from d only in
coordinates i and j, then the intersection of this plane with D(G) is a two-dimensional
polytope. When d is strictly inside this polytope, τd,i,j is infinite. However, when d lies on a
one-dimensional face of this two-dimensional polytope, τd,i,j is exactly the slope of this face,
see Figure 1 for illustration. Furthermore, if the point d is on exactly one facet of D(G), say
a facet

∑
i′∈(T

2
) ai′di′ ≤ b, then the maximum tradeoff is aj

ai
, which is essentially a “directional

slope” of this facet.

Figure 1: The two-dimensional plane of points that differ from d only in coordinates i and
j. The region inside D(G) is shown in green stripes. The vector d∆ attains the maximum
tradeoff τd,i,j, which is the slope of the face on which d lies.

Theorem 1.2 follows from the next two propositions, which we prove in Section 2 and
Section 3, respectively.

Proposition 1.4 (Tradeoff Bound). Let G be an n-vertex network with terminal set T , let
d ∈ D(G) be a point, and let i∗ ∈

(
T
2

)
and j∗ ∈

(
T
2

)
be two distinct commodities. If the

maximum tradeoff τd,i∗,j∗ is finite, then it is bounded by τd,i∗,j∗ ≤ (n4)!.

Proposition 1.5 (Graph Family with Unbounded Tradeoff). For every M > 0, there exists
a 6-terminal network GM , a point d ∈ D(GM), and two distinct commodities i∗ ∈

(
T
2

)
and

j∗ ∈
(
T
2

)
, for which the maximum tradeoff τd,i∗,j∗ is finite and τd,i∗,j∗ ≥ M .

Proof of Theorem 1.2. For every l ∈ N, choose M > ((l − 1)4)! and consider the network
GM from Proposition 1.5. It is then guaranteed by Proposition 1.4 that this network has no
exact flow sparsifier with less than l vertices.
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1.3 Seymour’s Conjectures
Seymour [Sey15] investigated the following flow-sparsification problem.

Problem 1.6. Given a network G = (V,E, c) with integral capacities together with an
infeasible integral demand vector d∗ /∈ D(G) on the set of commodities

(
V
2

)
, the goal is to

apply on G edge contractions and obtain a small network G′ in which the demand d∗ is still
infeasible.3 Such a network G′ is said to compatible with the problem instance (G, d∗).

Seymour [Sey15] proved the existence of compatible networks G′ for (G, d∗) with size
bounded with respect to the total demand, i.e., the sum of the entries in the demand vector
d∗, and asked whether the size of a compatible network can be bounded independently of
this parameter. Seymour actually posed two questions (see Section 1 and Table 1 in [Sey15]),
which we rephrase and present as two conjectures:

• There exists N > 0, such that every instance of Problem 1.6 has a compatible network
G′ with at most N vertices.

• There exists N3 > 0, such that every instance of Problem 1.6 with ∥d∗∥0 ≤ 3 has a
compatible network G′ with at most N3 vertices. (As usual, ∥·∥0 is the number of non-
zero entries in a vector, and in our case it is the number of non-trivial commodities.)

The first conjecture clearly implies the second one, and is thus stronger.
We refute both conjectures. We present below the formal statement and its proof sketch,

and provide the full proof in Section 4.

Theorem 1.7. For every N > 0, there exists an instance of Problem 1.6 with ∥d∗∥0 ≤ 3,
for which every compatible network must have more than N vertices.

Proof sketch. In this sketch, we ignore the issues of bounded ∥d∗∥0 and of integrality. Our
goal in the proof is to construct an instance for which every compatible network must have
a large tradeoff (i.e. have a point with a large finite maximum tradeoff), and thus, by
Proposition 1.4, every compatible network must have a large number of vertices. To do
this, we rely on two observations. The first one is that, because contraction operations can
only eliminate/relax constraints on the flows, every network G′ that is compatible with an
instance (G, d∗) must have D(G′) ⊇ D(G). The second observation is that the maximum
tradeoff has an alternative characterization as follows:
Claim 1.8. Let G be a network, and let i∗ and j∗ be two distinct commodities in

(
V
2

)
. Then,

for every τ > 0, the following two statements are equivalent.

1. There exists a point d ∈ D(G) with a finite τd,i∗,j∗ > τ .

2. There exists a point d∗ /∈ D(G), a point d̂ ∈ D(G) that results from d∗ by zeroing
coordinate i∗, and a vector d∆∗ ∈ R(

T
2
) with d∆∗

j∗ < 0 and d∆∗
i∗ = −τd∆∗

j∗ while all other
entries are zero, such that d∗ + d∆∗ ∈ D(G). (See Figure 2 for illustration.)

3Here, the contractions affect demands in the natural way: when an edge (u, v) is contracted, demands
that involve its endpoints u or v carry over to contracted vertices. Notice that all vertices are viewed as
terminals, but this is inconsequential.
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Claim 1.8 tells us that in order to preserve a large tradeoff, it is enough to keep one
specific point outside of the demand polytope and keep two specific points inside the demand
polytope. Together with our first observation, this implies that by creating an instance from
a network with a large tradeoff and using the right d∗, we can force all compatible networks
to have large tradeoff. The theorem follows from Proposition 1.5 and Proposition 1.4.

Figure 2: The condition for a large finite maximum tradeoff from statement 2 in Claim 1.8.
The two-dimensional plane corresponds to points that differ from d∗ only in coordinates i∗

and j∗, and the region inside D(G) is shown in green stripes.

1.4 Related Work
There is a large body of work on flow sparsification. It has began with Leighton and
Moitra [LM10], who studied approximate sparsifiers (in contrast to our focus on exact sparsi-
fiers) that are supported only on the terminals. This setting was studied further by Charikar
et al. [CLLM10], Makarychev and Makarychev [MM16], and Englert et al. [EGK+14], who
tightened the approximation factor, called quality. Chuzhoy [Chu12, Chu16] introduced a
more general setting of approximate flow sparsification, where the sparsifier can have non-
terminal vertices, and she constructed sparsifiers whose size bound depends on the total
capacity of all edges incident to the terminals, as well as a version of these sparsifiers that
preserves both fractional and integral flows. Several improved bounds are known for impor-
tant graph families, like quasi-bipartite graphs [AGK14], trees [GR16], and planar [EGK+14].

Another concept that is closely related to flow sparsification is cut sparsification. Exact
cut sparsifiers were introduced by Hagerup, Katajainen, Nishimura, and Ragde [HKNR98],
under the name mimicking networks, and tightened bounds for the general case and special
graph families were proved in [CSWZ00, KR13, KR14, KPZ19, GHP20, KR20]. Approximate
cut sparsifiers were introduced by Moitra [Moi09], and were often studied in conjunction with
approximate flow sparsifier, because of the flow-cut gap. Another closely related notion is
that of (exact) vertex-cut sparsifiers [KW20, HLW21, CDK+21, Liu20, BK22]. There are
many other notions of sparsifiers, e.g., preserving other graph properties like spectrum or
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distances, or sparsifiers that have few edges (but the same vertex set), and listing all of them
here would be prohibitive.

1.5 Preliminaries
Throughout this paper, we use tilde to denote formal variables, such as ~x.

Given a matrix A ∈ Rm1×m2 with rows a1
⊤, . . . , am1

⊤, as well as a column vector b =
(b1, ..., bm1) ∈ Rm1 , the feasibility linear program A~x ≥ b is the problem of assigning values
x = (x1, . . . , xm2) to the formal variables ~x = (x̃1, . . . , x̃m2), such that each of the inequalities
{ai

⊤x ≥ bi}i∈[m1] holds. Such an assignment x is called a feasible solution of the linear
program, and the set of all feasible solutions is called the feasible region of the linear program.

Definition 1.9. Let A~x ≥ b be a linear program with m2 variables, and let S ⊆ [m2] be a
subset of the variables. Then, the projection of the linear program onto the the variables of
S is

{x|S : x ∈ Rm2 , Ax ≥ b},
where x|S denotes the restriction of x to the coordinates in S.

The following theorem is folklore.

Theorem 1.10. Let A~x ≥ b be a linear program with m1 constraints and m2 variables,
and suppose that max{c⊤x : Ax ≥ b} is finite. Then, there exists a subset S1 ⊆ [m1]
of constraints and a subset S2 ⊆ [m2] of variables, such that the system of linear equalities
A|S1×S2~x|S2 = b|S1 has a unique solution, and such that extending this solution to the variables
outside S2 by setting them to 0 results in an optimal solution for the objective c⊤x under
constraint Ax ≥ b.

2 Tradeoff Bound (Proof of Proposition 1.4)
This section proves Proposition 1.4. For convenience, we first recall its statement.

Proposition 1.4 (Tradeoff Bound). Let G be an n-vertex network with terminal set T , let
d ∈ D(G) be a point, and let i∗ ∈

(
T
2

)
and j∗ ∈

(
T
2

)
be two distinct commodities. If the

maximum tradeoff τd,i∗,j∗ is finite, then it is bounded by τd,i∗,j∗ ≤ (n4)!.

Our proof of Proposition 1.4 relies on the following well-known lemma. For completeness,
a proof of this lemma is presented in the appendix.

Lemma 2.1. D(G) can be described as the projection of a linear program A~x ≥ b with at
most n4 variables onto

(|T |
2

)
of its variables that represent the commodities, such that all

entries of A are from {−1, 0, 1}.

Let G, T, d, i∗ and j∗ be as in Proposition 1.4, and let A~x ≥ b be the linear program
promised by Lemma 2.1. According to the lemma, D(G) is the projection of the program
onto

(|T |
2

)
of its variables. Let L : Rm2 → R(

T
2
) be the projection onto these variables. Let

m1 and m2 be the number of constraints and the number of variables in the aforementioned
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linear program. Then, m2 ≤ n4. Since d ∈ D(G), there exists a feasible solution x of A~x ≥ b
such that L(x) = d. Let EQ(x) ⊆ [m1] denote the set of inequalities in A~x ≥ b that are tight
at this solution x, and let AEQ(x)~x ≥ bEQ(x) be the linear program defined by this subset of
the constraints. We use the following claim to complete the proof of Proposition 1.4.

Claim 2.2. A value τ ≥ 0 is a feasible tradeoff at the point d between commodities i∗ and j∗

iff there exists a solution x∆ ∈ Rm2 of the linear program AEQ(x)~x ≥ 0, such that the vector
Lx∆ has (Lx∆)j∗ = −1 and (Lx∆)i∗ = τ while all other entries are zero.

Proof. For the first direction, assume τ ≥ 0 is a feasible tradeoff. Then, by the definition
of a feasible tradeoff, there exists a vector d∆ ∈ R(

T
2
) with d∆j∗ < 0 and d∆i∗ = −τd∆j∗ and

all other entries being zero, such that d + d∆ ∈ D(G). Thus, there exists a solution x′ of
A~x ≥ b such that L(x′) = d + d∆. Let x∆ def

= x′ − x. Then, by the linearity of L, we get
that L(x∆) = L(x′)− L(x) = d∆. Furthermore, since x′ is a solution of A~x ≥ b, it is also a
solution of AEQ(x)~x ≥ bEQ(x), and thus

AEQ(x)x∆ = AEQ(x)(x′ − x) ≥ bEQ(x) − AEQ(x)x = 0

Since (Lx∆)j∗ = −|d∆j∗ | and (Lx∆)i∗ = τ |d∆j∗ |, the claim follows by scaling x∆.
For the other direction, assume there exists x∆ as in Claim 2.2. Then, for every ϵ > 0,

it holds that (L(ϵx∆))j∗ < 0 and (L(ϵx∆))i∗ = −τ(L(ϵx∆))j∗ and that all other entries of
L(ϵx∆) are zero. Furthermore, for each ϵ > 0 it also holds that AEQ(x)(ϵx∆) ≥ 0, and thus

AEQ(x)(x + ϵx∆) ≥ bEQ(x)

We wish to choose ϵ such that x + ϵx∆ is also a solution of the original program A~x ≥ b.
To see that this is possible, notice that the constraints that appear in A~x ≥ b but not in
AEQ(x)~x ≥ bEQ(x) are not tight at x. Thus, by choosing a small enough ϵ > 0, we get that
x+ ϵx∆ is feasible for the original linear program, which means that L(x+ ϵx∆) ∈ D(G). By
the linearity of L we get that d + L(ϵx∆) ∈ D(G), and thus, τ is a feasible tradeoff between
i∗ and j∗ at the point d.

Using Claim 2.2, we now construct a linear program for finding the maximum tradeoff
τd,i∗,j∗ at the point d. For each i ∈

(
T
2

)
, let x̃i denote the variable that L projects onto

commodity i. We start with the linear program AEQ(x)~x ≥ 0 and add the constraint x̃j∗ = −1

as well as a constraint x̃i = 0 for every i ∈
(
T
2

)
\ {i∗, j∗}. Lastly, we add the optimization

objective to maximize x̃i∗ . Let A′~x ≥ b′ denote the new linear program. Notice that the
width of the matrix A′ is m2, and that all entries of A′ and b′ are from {−1, 0, 1}.

Remember that one of the conditions of Proposition 1.4 is that the maximum tradeoff
τd,i∗,j∗ is finite. Thus, by Theorem 1.10, there exists a submatrix A′′ of A′ and a vector b′′

whose entries are a subset of the entries of b′, such that the maximum tradeoff τd,i∗,j∗ is the
i∗th entry of the unique solution to the system A′′~x = b′′ of linear equalities. So, by Cramer’s
rule, τd,i∗,j∗ is equal to the ratio of the determinants of two matrices whose entries are all
from {−1, 0, 1} and whose size is at most m2. Such matrices must have integer determinants
whose absolute value is at most m2!, and thus τd,i∗,j∗ ≤ m2!. By Lemma 2.1, m2 ≤ n4, and
this concludes the proof of Proposition 1.4.
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3 Graph Family with Unbounded Tradeoff (Proof of
Proposition 1.5)

This section proves Proposition 1.5. For convenience, we first recall its statement.

Proposition 1.5 (Graph Family with Unbounded Tradeoff). For every M > 0, there exists
a 6-terminal network GM , a point d ∈ D(GM), and two distinct commodities i∗ ∈

(
T
2

)
and

j∗ ∈
(
T
2

)
, for which the maximum tradeoff τd,i∗,j∗ is finite and τd,i∗,j∗ ≥ M .

At a high level, we construct a network GM where both commodities i∗ and j∗ have to
cross a cut (Vleft, Vright). The idea is that the flow of commodity j∗ would have to use a path
that crosses this cut M times, while the flow of commodity i∗ only has to cross it once. To
force commodity j∗ to use such a path, we introduce additional commodities that saturate
all the edges that connect this path to the rest of the network.

We now present the network GM , assuming for simplicity that M is an odd integer.
The vertices of GM are naturally divided into two sets, which we denote by Vleft and Vright.
Each side includes three terminals, which are denoted by ttop_left, tmiddle_left, tbottom_left and
ttop_right, tmiddle_right, tbottom_right. The network includes a path of length M from tmiddle_left
to tmiddle_right, whose internal vertices are non-terminals, and whose vertices (including the
endpoints) alternate between the two sides Vleft and Vright. Let e1, ..., eM denote the edges
of this path. Thus, each of e1, ..., eM has one endpoint in Vleft and one endpoint in Vright,
which will be denoted by left(ei) and right(ei). For example, left(e1) = tmiddle_left and
right(e1) = right(e2). The edges e1, ..., eM have capacity 2. Furthermore, for each edge
ei in this path, the network includes edges of capacity 1 connecting left(ei) to ttop_left and
tbottom_left, and similarly connecting right(ei) to ttop_right, tbottom_right. Denote these edges
by ei,top_left, ei,bottom_left, ei,top_right and ei,bottom_right, respectively. For convenience, we allow
edges to appear with multiplicity, e.g., e1,top_right and e2,top_right are two parallel edges of
capacity 1 because right(e1) = right(e2), although it could effectively be modeled by a single
edge of capacity 2. Lastly, the network GM includes an edge (ttop_left, ttop_right) of capacity
2M . This concludes the description of the network GM , see Figure 3 for illustration.

Let i∗ and j∗ be the commodities i∗ def
= (ttop_left, ttop_right) and j∗

def
= (tmiddle_left, tmiddle_right).

The demand vector d which we will be analyzing has a demand of M for the commodity
(tbottom_left, ttop_right), a demand of M for the commodity (ttop_left, tbottom_right), a demand of
2 for commodity j∗ = (tmiddle_left, tmiddle_right), and a demand of zero for every other com-
modity. It is easy to see that this vector is in the demand polytope; as depicted in Figure 4a,
we can realize d by sending 2 units of flow along the path (e1, ..., eM), sending M units of
flow along the M paths of the form (tbottom_left, left(ei), ttop_left, ttop_right), and sending M
units of flow along the M paths of the form (tbottom_right, right(ei), ttop_right, ttop_left). These
2M paths all overlap on the edge (ttop_left, ttop_right), but this is fine because this edge has
capacity 2M .

In order to prove Proposition 1.5, we need to show that M is a feasible tradeoff between
commodities i∗ and j∗ at the point d, as well as show that the maximum tradeoff τd,i∗,j∗ is
finite.

Let d∆ ∈ R(
T
2
) be the vector such that d∆j∗ = −2 and d∆i∗ = −Md∆j∗ = 2M , and every

other entry of d∆ is zero. To show that M is a feasible tradeoff between commodities i∗ and
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Figure 3: The network G5.

j∗ at the point d, we need to show that d′ def
= d + d∆ is in the demand polytope D(GM).

To get some intuition, let us start by explicitly stating the demand vector d′: It has a
demand of 2M for commodity i∗ = (ttop_left, ttop_right), a demand of M for the commodity
(tbottom_left, ttop_right), a demand of M for the commodity (ttop_left, tbottom_right), and zero for
all other commodities. Now, it is not hard to see that d′ is indeed in the demand polytope;
as depicted in Figure 4b, it can be realized by sending the 2M units of flow of commodity
i∗ along the edge (ttop_left, ttop_right) of capacity 2M , while sending M units of flow along
the M paths of the form (tbottom_left, left(ei), right(ei), ttop_right) and sending M units of flow
along the M paths of the form (tbottom_right, right(ei), left(ei), ttop_left).

In order to complete the proof of Proposition 1.5, we just need to show that the maximum
tradeoff τd,i∗,j∗ is finite. To do this, we will use the following claim to show that every feasible
tradeoff τ must satisfy τ ≤ M .

Claim 3.1. Let d′′ be a demand vector in the the demand polytope D(GM) that has a
demand of M for the commodity (tbottom_left, ttop_right), and a demand of M for the commodity
(ttop_left, tbottom_right); the other entries in d′′ can be arbitrary. Then, it must hold that
d′′i∗ +M · d′′j∗ ≤ 2M , which means that

(−1) · d
′′
i∗ − di∗

d′′j∗ − dj∗
=

d′′i∗

2− d′′j∗
≤ M.

Proof. Fix some multicommodity flow that realizes the demand vector d′′. Let Stop
def
=

{ttop_left, ttop_right}. Since the cut (Stop, Stop) separates the endpoints of each of the two
commodities (tbottom_left, ttop_right) and (ttop_left, tbottom_right), and since the total capacity of
this cut is equal to the sum of the demands on these two commodities, we get that all edges

10



(a) Demand d. (b) Demand d′ = d + d∆

Figure 4: Multicommodity flows that realize the demand vectors d and d′, using colors to
distinguish between the commodities.

crossing this cut must be saturated by the flows of the two commodities (tbottom_left, ttop_right)
and (ttop_left, tbottom_right). Thus, the flow of commodity j∗ cannot use any of the edges that
cross this cut. By letting Sbottom

def
= {tbottom_left, tbottom_right} and making the exact same

argument, we get that the flow of commodity j∗ cannot use any of the edges that cross
the cut (Sbottom, Sbottom). However, the only path between the endpoints of commodity
j∗ = (tmiddle_left, tmiddle_right) that does not use any edges that cross either of the two afore-
mentioned cuts is the path (e1, ..., eM). This means that every unit of flow of commodity
j∗ must pass M times through the cut (Vleft, Vright), and therefore the flow of commodity
j∗ must use up a total of at least M · d′′j∗ capacity from edges crossing the cut (Vleft, Vright).
Furthermore, because the cut (Vleft, Vright) separates the endpoints of each of the other three
commodities, the flows of commodities (tbottom_left, ttop_right) and (ttop_left, tbottom_right) must
each use at least M capacity from edges crossing this cut, and the flow of commodity i∗

must use at least d′′i∗ capacity from edges crossing this cut. But the total capacity of the cut
(Vleft, Vright) is 4M , and thus

M · d′′j∗ +M +M + d′′i∗ ≤ 4M,

which gives us the desired inequality d′′i∗ +M · d′′j∗ ≤ 2M .

This completes the proof of Proposition 1.5.
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4 Refutation of Seymour’s conjectures (Proof of The-
orem 1.7)

We now prove one direction of Claim 1.8 (namely, that statement 2 implies statement 1),
and then use it to prove Theorem 1.7. We omit the other direction of the claim because our
proof of Theorem 1.7 does not use it, at least not in a blackbox manner; instead, our proof
follows its steps implicitly and picks a vector d∗ with additional properties not promised by
Claim 1.8 (namely, having integral entries and a small number of non-zero entries).

Claim 1.8. Let G be a network, and let i∗ and j∗ be two distinct commodities in
(
V
2

)
. Then,

for every τ > 0, the following two statements are equivalent.

1. There exists a point d ∈ D(G) with a finite τd,i∗,j∗ > τ .

2. There exists a point d∗ /∈ D(G), a point d̂ ∈ D(G) that results from d∗ by zeroing
coordinate i∗, and a vector d∆∗ ∈ R(

T
2
) with d∆∗

j∗ < 0 and d∆∗
i∗ = −τd∆∗

j∗ while all other
entries are zero, such that d∗ + d∆∗ ∈ D(G). (See Figure 2 for illustration.)

Proof of Claim 1.8 (the direction (2) → (1)). Since the points d∗ /∈ D(G) and d̂ ∈ D(G) dif-
fer only in the i∗th coordinate, the line between them must intersect some facet

∑
i∈(V

2
) aid̃i ≤

b of the polytope D(G) for which ai∗ > 0. Let d be the point at which this intersection oc-
curs. Then, d is in the polytope, and the maximum tradeoff τd,i∗,j∗ is at most aj∗

ai∗
, which in

particular means it is finite. Furthermore, since d is on the line between d∗ and d̂, it differs
from these two points only in the i∗th coordinate, and by the down monotonicity of D(G)
this implies that di∗ < d∗i∗ . Thus, d must have a feasible tradeoff larger than τ ; by defining
d∆ def

= d∗ + d∆∗ − d, we get that d + d∆ = d∗ + d∆∗ ∈ D(G) and that d∆i∗ > d∆∗
i∗ while every

other coordinate of d∆ is the same as in d∆∗. This means that τd,i∗,j∗ > τ , which concludes
the proof.

Theorem 1.7. For every N > 0, there exists an instance of Problem 1.6 with ∥d∗∥0 ≤ 3,
for which every compatible network must have more than N vertices.

To keep things simple, we first prove the theorem while dropping the condition ∥d∗∥0 ≤ 3,
which is equivalent to refuting the first conjecture presented in Section 1.3, and then show
how to adapt the proof to satisfy the condition ∥d∗∥0 ≤ 3, thereby refuting the second
conjecture in Section 1.3.

Proof of Theorem 1.7 (without the condition ∥d∗∥0 ≤ 3). Fix any integer N > 0. Our goal
is to provide an instance of Problem 1.6 in which the demand polytope of every compatible
network must include a point with a finite maximum tradeoff greater than (N4)!. Let M

def
=

(N4)!+1, and let GM be the network from our proof of Proposition 1.5. Furthermore let i∗, j∗,
d, d∆ be as in that proof. Let the vector d∗ be the result of increasing coordinate i∗ of d by 1,
and let d∆∗ def

= d+d∆−d∗. Thus, d∆∗
j∗ = −2 and d∆∗

i∗ = 2M−1 > 2·(N4)!, and every other
entry of d∆∗ is zero. Furthermore, d∗ /∈ D(GM). Notice that according to the construction
of GM and d∗, the capacities of GM and the entries of d∗ are all integral, and ∥d∗∥0 = 4.
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Now consider the instance of Problem 1.6 comprising of these network GM and demand d∗.
Every compatible network G′ of this instance must satisfy d∗ /∈ D(G′). Furthermore, as
G′ results from GM by edge-contraction operations, it must satisfy D(GM) ⊆ D(G′) and
thus d ∈ D(G′) and d∗ + d∆∗ = d + d∆ ∈ D(G′). Using Claim 1.8 with d̂ = d, every
compatible network G′ must include a point that has a finite maximum tradeoff larger than
d∆∗

i∗
|d∆∗

j∗ |
> 2·(N4)!

2
, and the theorem follows using Proposition 1.4.

Proof of Theorem 1.7 (with the condition ∥d∗∥0 ≤ 3). Fix N , and let (GM , d∗) be the in-
stance of Problem 1.6 from the previous proof. Thus, every compatible network G′ of
(GM , d∗) must have at least N vertices. However, the condition ∥d∗∥0 ≤ 3 does not hold, in
fact ∥d∗∥0 = 4.

Remove one unit from the capacity of the edge (ttop_left, ttop_right) in GM as well as one
unit from the demand of commodity i∗ = (ttop_left, ttop_right) in d∗, and let (GM

− , d∗
−) be the

resulting instance. The fact that d∗ is not feasible in GM implies that d∗
− is not feasible in

GM
− , so this is indeed a valid instance of Problem 1.6. Furthermore,

∥∥d∗
−
∥∥
0
≤ 3 holds. It

thus remains to show that every compatible network G′
− of the instance (GM

− , d∗
−) must have

at least N vertices.
Let G′

− be any compatible network of the instance (GM
− , d∗

−). This implies that G′
− is

formed from GM
− using contractions, and that d∗

− is infeasible in G′
−. Let t′top_left and t′top_right

be the vertices in G′
− that correspond to the vertices ttop_left and ttop_right in GM

− . The
vertices t′top_left and t′top_right may have been formed from multiple vertices of GM

− through
contractions, and may even be the same vertex (i.e. if ttop_left and ttop_right were merged
together by contractions). By adding 1 to the capacity of the edge (t′top_left, t

′
top_right) in G′

−,
we get a network G′ that can be created from GM using contractions, and satisfies that d∗ is
infeasible in G′. Thus, G′ is a compatible network of (GM , d∗), which means it has at least
N vertices. The theorem follows since G′

− has the same number of vertices as G′.

5 Future Directions
Our main result shows that there is no function f : N → N such that every k-terminal
network G admits an exact flow sparsifier of size bounded by f(k); in fact, this is not
possible even for k = 6. We present here three interesting directions for future work.

Direction 1. Extend our main result to planar networks G (and other graph families).

Our framework offers a potential method to prove such a result; all one has to do is show
that planar networks can have arbitrarily large finite tradeoffs (i.e., extend Proposition 1.5).
A weaker version of such a result could restrict the sparsifier graph to be planar as well. We
point out that Theorem 1.2 holds for input graphs excluding K7 as a minor, and one can try
to determine the smallest excluded minor for such results.

Direction 2. Extend from exact sparsifiers to quality 1 + ϵ. That is, provide bounds on
f(k, ϵ), the smallest value for which every k-terminal network G admits a (1+ ϵ)-quality flow
sparsifier G′ of size at most f(k, ϵ). The quality bound here means that G′ has the same
terminals as G and satisfies D(G) ⊆ D(G′) ⊆ (1 + ϵ)D(G).
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Our results imply a lower bound on f(k, ϵ), although it is somewhat weak, namely,
f(k, ϵ) = Ω

((
log(1/ϵ)

log log(1/ϵ)

)1/4)
for every k ≥ 6 and ϵ ∈ (0, 1

4
). This can be strengthened by an

Ω(k) factor, by simply taking k/6 copies of a network with 6 terminals. Using different tech-
niques, we can prove stronger lower bounds f(k, ϵ) = Ω̃( k

ϵ1/6
) and f(k, ϵ) = Ω̃(min{2k/8, k

ϵ1/2
})

for every k ≥ 10 and ϵ ∈ (0, 1
2
), where the notation Ω̃(·) hides polylog(1/ϵ) factors. In fact, it

seems quite challenging to get any upper bound on f(k, ϵ), and this gap remains a fascinating
open question.

Direction 3. Extend the result to k = 5.

It is known that for every k ≤ 4, there exists N ′
k > 0 such that every k-terminal network

G has an exact flow sparsifier of size at most N ′
k, see e.g. [AGK14]. Our main result shows

that this is not possible for any k ≥ 6, but it remains open for k = 5.
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A Proof of Lemma 2.1
In this section we present a linear program with the properties promised by Lemma 2.1. The
linear program that we use is the most standard linear program for the multicommodity flow
problem. For each commodity i ∈

(
T
2

)
we have a variable d̃i representing the number of units

of flow shipped by the flow of the i-th commodity, as well as variables f̃i,e representing the
value of fi at each edge e ∈ E. Then, we have a constraint

d̃i ≥ 0,

and for each vertex v ∈ V , we have a flow-conservation constraint for the flow fi at the
vertex v. If v /∈ {source(i), sink(i)} then the flow-conservation constraint is∑

e entering v

f̃i,e +
∑

e leaving v

(−1) · f̃i,e = 0.

However, if v = source(i) then the flow-conservation constraint is

d̃i +
∑

e entering v

f̃i,e +
∑

e leaving v

(−1) · f̃i,e = 0,

and if v = sink(i) then the constraint is

(−1) · d̃i +
∑

e entering v

f̃i,e +
∑

e leaving v

(−1) · f̃i,e = 0

Lastly, aside from including each of the aforementioned variables and constraints for each
commodity i ∈

(
T
2

)
, we need to include constraints that force the multicommodity flow to

respect the capacities of the edges. To do this, for each edge e ∈ E, and each possible choice
of signs for the commodities {si ∈ {1,−1}}

i∈(T
2
), we add a constraint∑

i∈(T
2
)

si · f̃i,e ≤ c(e).

Observe that these constraints are together equivalent to the non-linear constraint
∑

i∈(T
2
) |f̃i,e| ≤

c(e) that we need to enforce.
This concludes the presentation of the linear program. It is easy to see that the solutions

of the program are in one-to-one correspondence to the multicommodity flows in the network,
and thus that projecting the feasible region of the program onto the variables {d̃i}i∈(T

2
) gives

the demand polytope D(G). Furthermore, the coefficients of the variables in the program

16

https://doi.org/10.1109/INFCOM.2007.188
https://doi.org/10.1109/INFCOM.2007.188
https://doi.org/10.1016/j.jctb.2014.08.001


are all from {−1, 0, 1}. Lastly, since we have exactly (1 + |E|) variables for each commodity
i ∈

(
T
2

)
, we get that the total number of variables in the program is

(1 + |E|) ·
(
T

2

)
≤ n2 · |T |2 ≤ n4.

This concludes the proof of Lemma 2.1.
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