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Abstract

This thesis presents a fast algorithm for constructing separating decomposi-
tions in high-dimensional Euclidean spaces, significantly improving upon existing
methods in terms of time complexity. Separating decompositions are fundamental
in various areas of computer science, ranging from graph spanners to tree em-
beddings. Our main contribution is an algorithm that constructs an (O(

√
d),∆)-

separating decomposition for V ⊆ Rd sized n, where d = Θ(log n), in O(n1.51)
time. This represents a substantial improvement over the naive implementation
in time Õ(n3).

We begin by providing an improved implementation of a known algorithm
[CCG+98], that decreases the time complexity from Õ(n3) to Õ(n2). We then
introduce a faster algorithm that leverages Locality Sensitive Hashing (LSH)
techniques, achieving an expected running time of Õ(n1+1/c2+o(1)) for c = 1.4.
This approach incurs an additive error in the separation probability. Finally, we
present a method to eliminate this additive error while maintaining the improved
time complexity.
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1 Introduction

Graph partitioning is a fundamental problem in computer science and mathematics,
involving the division of a graph into disjoint subsets of vertices, often with the goal of
minimizing the number of edges between the subsets while satisfying constraints such as
balancing the sizes or some other measure of the sets. In the context of metric spaces,
graph partitioning can be formulated similarly by considering a complete graph whose
vertices represent points in the metric space, and edge weights correspond to pairwise
distances between points.

Low-diameter partitioning focuses on dividing the metric space into sets called clus-
ters, where each cluster has a bounded diameter. This genre of problems has var-
ious applications ranging from graph spanners [HPIS13, FN20] to tree embeddings
[AP90, LS93, Bar96, CCG+98, WLB+00, FRT03]. A probabilistic approach to such
partitioning uses a probability distribution over partitions. Each partition in the dis-
tribution ensures that the clusters have a bounded diameter, so distant elements are
separated. Meanwhile nearby points are grouped together with high (or at least non-
negligible) probability.

Low diameter graph decompositions were first introduced by Linial and Saks [LS93]
and later popularized by Bartal [Bar96]. We focus on one of the most central variants in
the literature, known as the separating decomposition, which is sometimes also referred
to as a Lipschitz decomposition.

Definition 1.1 (Separating Decomposition). Let (X, ρ) be a metric space. A distribu-
tion F over partitions of X is called a (β,∆)-separating decomposition if the following
conditions are satisfied:

1. Diameter: For every partition P ∈ supp(F ) and every cluster C ∈ P , we have
diam(C) ≤ ∆.

2. Separation Parameter: For every x, y ∈ X,

Pr
P∼F

[P (x) ̸= P (y)] ≤ β
ρ(x, y)

∆
,

where P (x) denotes the cluster of P containing x ∈ X.

The parameter β measures the quality of the decomposition, with lower values
of β indicating better partitions. For general n-point metric spaces, one can achieve
β = O(log n) and this bound is tight, as shown by Bartal [Bar96]. For planar graphs,
β = O(1) is achievable [KPR93, Rao99], and for d-dimensional Euclidean spaces, β =
O(
√
d) [CCG+98] and this bound is tight.

For shortest path metrics on general graphs, several fast decomposition algorithms
have been proposed to efficiently construct partitions. Notably, Mendel and Schwob
[MS09] achieve time complexity O(m log n+ n log2 n), where m is the number of edges
and n is the number of vertices, which is particularly effective for sparse graphs. Miller,
Peng and Chen [MPX13] achieve linear time complexity O(m) and their algorithm can
leverage parallelism to handle large-scale graphs efficiently. Both algorithms achieve
separation parameter β = O(log n). However, for Euclidean spaces, where we consider
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the complete graph with m = Θ(n2), the running time of these algorithms becomes
O(n2) or more, while achieving β = O(log n) regardless of the dimension d.

This thesis focuses on developing and analyzing fast algorithms for constructing par-
titions of high-dimensional (dimension d = Ω(log n)) Euclidean spaces. The algorithm
presented in [CCG+98] lacks an explicit implementation and a naive one results in time
complexity of Õ(n3) for n points. Our main theorem, presented below (Theorem 1.1),
significantly improves upon this bound.

To simplify the problem, we leverage the Johnson-Lindenstrauss (JL) Lemma [JL84].
The JL Lemma states that every set of n points in a high-dimensional Euclidean space
can be embedded into Rd, where d = O(log n), while preserving pairwise distances
within a small multiplicative error. This dimensionality reduction ensures that the
problem remains well-posed and manageable in O(log n)-dimensional space, with only a
constant factor impact on the final separation parameter. Moreover, the dimensionality
reduction can be performed efficiently with high probability of success. By using fast
JL transforms [AC09, KN14], the dimensionality reduction step can be applies on each
point in time proportional to the original dimension.

Theorem 1.1. Let V ⊆ Rd of size n for d = Θ(log n) and ∆ > 0. Then there
exist an algorithm that reports a partition P sampled from an (O(

√
d),∆)-separating

decomposition of V in O(n1+1/c2+o(1)) = O(n1.51) time where c = 1.4.

To achieve our result, we first present an explicit implementation of the known
algorithm that improves the running time to Õ(n2). We then develop an even faster
algorithm that incurs an additive error (in the separation probability), by utilizing
Locality Sensitive Hashing (LSH) [IM98] techniques to quickly identify points that are
likely to be in the same cluster, in order to reduce the number of distance computations.
Finally, we present a method to eliminate the additive error while maintaining the
improved time complexity, by effectively proving that the additive error is negligible for
sufficiently distant pairs of points and forcing close pairs of points to cluster together.

For low dimension (i.e. d = o(log n)), a similar result can be achieved by padding
the points with zeros to embed them into RO(logn) and running the same algorithm.
The running time remains unchanged, but the separation parameter is β = O(

√
log n)

instead of O(
√
d). Alternatively, one could use the algorithm from [CCG+98], which

provides a better β = O(
√
d) with polynomial running time Õ(n2), or use grid-based

methods to achieve β = O(d) in linear time.
In Section 6, we explore applications of our fast partitioning algorithm. We demon-

strate how our methods improve the efficiency of approximation algorithms for the
Minimum Communication Cost Spanning Tree (MCST) problem and the construction
of high-dimensional Euclidean tree covers, offering running time improvements over
previous approaches.

Future work in this area could explore extending these techniques to other metric
spaces, investigating lower bounds on the time complexity for constructing separating
decompositions and applying these fast partitioning methods to specific problems in
machine learning or network design.
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2 Running Time Analysis for [CCG+98]

Theorem 2.1 ([CCG+98]). Let d > 1, for every n-point set V ⊆ Rd and for every
∆ > 0 there exists an (O(

√
d),∆)-separating decomposition of (V, ∥.∥2).

The algorithm for constructing such a decomposition is not provided with an explicit
implementation in [CCG+98]. A naive implementation results in a time complexity of
Õ(n3) in the worst case. We omit the dependence on d, as we assume d = O(log n)
using the Johnson-Lindenstrauss Lemma [JL84], ensuring that any factor of d remains
polylogarithmic in n and does not affect the overall asymptotic complexity. Specifically,
the original algorithm draws balls of radius r = ∆/2, denoted B(v, r), around each point
v ∈ V and repeatedly selects points uniformly at random from the region defined by
the union of these balls,

⋃
v∈V B(v, r). Each time a point z is chosen, all points within

distance r from z are grouped into a cluster, i.e., B(z, r) ∩ V , and removed from V .
The process continues until all points are clustered.

The original algorithm does not explicitly define how to sample a random point z
from the union of balls

⋃
v∈V B(v, r). However, to implement this step correctly, one

must ensure a uniform distribution over this region. Since there is no direct way to
sample from a union of arbitrary balls efficiently, our implementation first selects a
random point v ∈ V and then chooses z ∈ B(v, r) uniformly at random. To account
for the varying densities of different regions, a rejection sampling step is required: z is
rejected (discarded) with probability proportional to 1−1/|B(z, r)∩V | and a new point
is picked. This ensures that the final choice of z follows the correct distribution over
the entire union. Each selection of z requires Õ(n) time for computing the intersection.
The rejection sampling process takes Õ(n) time since each z is rejected w.p. at most
1 − 1/n. Since the algorithm requires up to O(n) iterations to cluster all points, the
total running time is Õ(n3).

In this section, we present an explicit algorithm that improves upon the naive Õ(n3)
worst-case complexity by incorporating specific optimizations to achieve a time com-
plexity of Õ(n2) with high probability. The key idea is to gradually compute B(zv, r)∩V
while evaluating the rejection sampling on the fly to avoid unnecessary computations.
In other words, rather than first computing all distances from a randomly selected z
and then applying rejection sampling, we combine both steps. A random α ∈ [0, 1]
is chosen to determine the rejection threshold. The algorithm iterates through V in
random order and counts how many points lie in B(zv, r), and stops if the count exceeds
1/α. If so, z is immediately rejected, avoiding redundant distance computations.

Theorem 2.2. Algorithm 1 reports an (O(
√
d),∆)-separating decomposition of V and

w.h.p. runs in Õ(n2) time.

The key to proving this theorem is the following lemma.

Lemma 2.3. The number of iterations of the outer loop (starting in line 2) is w.h.p.
at most O(n log n).

Proof of Theorem 2.2 assuming Lemma 2.3. For each iteration in the algorithm, the
running time is dominated by the computation of Iz (the scan in line 5), which in the
worst case is bounded by n. It follows that the overall running time is w.h.p. at most
O(n2 log n).
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Algorithm 1 Separating Decomposition

Require: V ⊆ Rd of size n and ∆ > 0
1: r ← ∆

2
, P ← ∅

2: while V ̸= ∅ do
3: choose v ∈ V , zv ∈ B(v, r) and α ∈ [0, 1] uniformly at random
4: Iz ← ∅
5: scan every u ∈ V in a random order π ▷ the scan includes rejection sampling

and might terminate early
6: if ∥u− zv∥ ≤ r then
7: Iz ← Iz ∪ {u}
8: if |Iz| > 1

α
then

9: terminate the scan ▷ reject zv

10: if the scan completed then ▷ upon completion, Iz = B(zv, r) ∩ V
11: V ← V \Iz, P ← P ∪ {Iz}
12: report P

The correctness of the algorithm is proved as in [CCG+98] (Section 3.1). Since
Prα[|B(zv, r) ∩ V | > 1/α] = 1 − 1/|B(zv, r) ∩ V |, it’s easy to see that by choosing z
from a random ball and using rejection sampling, the distribution of z is uniform over
the union of all balls. It follows that if u, v ∈ V and since z is chosen uniformly from⋃

v∈V B(v, r),

Pr[P (u) ̸= P (v)] =
V ol(B(u, r)△B(v, r))

V ol(B(u, r) ∪B(v, r))
≤ O(

√
d)
∥u− v∥

∆
,

where the last inequality is from [CCG+98].

2.1 Bounding the Number of Iterations (Proof of Lemma 2.3)

We now prove Lemma 2.3 by showing that the expected size of the set V decreases
with each iteration. Let Vj denote the set V after j iterations of the outer loop (line
2), and after the iterations terminate, define Vj = ∅. Let nj denote the size of Vj, i.e.,
nj = |Vj|. We now aim to show that, at every time t ≥ 0, the expected size of the set
after j additional iterations, i.e., nt+j, decreases by at least j from the initial size nt

(modulo boundary conditions).

Lemma 2.4.
∀t, j ≥ 0, E[nt+j|nt] ≤ max(nt − j, 1).

Proof of Lemma 2.3 assuming Lemma 2.4. Let t ≥ 0. By Markov’s inequality

Pr[nt+n ≥ 2|nt] ≤
E[nt+n|nt]

2
≤ max(nt − n, 1)

2
≤ 1

2

Thus,

Pr[nn logn ≥ 2] = Pr[nn ≥ 2|n0] Pr[n2n ≥ 2|nn] . . .Pr[nn logn ≥ 2|nn(logn−1)] ≤
1

2logn
≤ 1

n
,
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which means that after O(n log n) iterations, with high probability |V |, i.e., the number
of points left to cluster is at most 1. If |V | = 0, the algorithm terminates successfully.
If |V | = 1, the way the algorithm is designed ensures that it will cluster the remaining
point in the next iteration and then terminate.

Proof of Lemma 2.4. Let t ≥ 0 and proceed by induction on j. In the base case,
j = 0: trivially E[nt|nt] = nt ≤ max(nt, 1). For the inductive step, first consider 1 ≤
j < nt, and assume that E[nt+j−1|nt] = nt − (j − 1). If nt+j−1 ≤ 1, then clearly
E[nt+j|nt, nt+j−1 ≤ 1] ≤ 1. Now assume nt+j−1 ≥ 2 and consider iteration t + j. The
scan in line 5 will be completed if and only if |B(zv, r) ∩ Vt+j−1| ≤ 1/α which happens
w.p. 1

|B(zv ,r)∩Vt+j−1| . Thus,

Ev,zv ,α[nt+j−1 − nt+j | nt, nt+j−1 ≥ 2] = Ev,zv [
1

|B(zv, r) ∩ Vt+j−1|
· |B(zv, r) ∩ Vt+j−1|

+ (1− 1

|B(zv, r) ∩ Vt+j−1|
) · 0 | nt, nt+j−1 ≥ 2] = 1

Thus,

E[nt+j | nt, nt+j−1 ≥ 2] = E[nt+j−1 | nt, nt+j−1 ≥ 2]− 1

By the law of total expectation, and since the size of the set is non-increasing, nt+j−1 ≥ 2
implies nt+j−2 ≥ 2

= E[E[nt+j−1 | nt, nt+j−1 ≥ 2, nt+j−2 ≥ 2]]− 1

= E[nt − (j − 1) | nt]− 1

= nt − j

≤ max(nt − j, 1).

In the remaining case, since the size of the set is non-increasing,

∀j ≥ nt, E[nt+j | nt, nt+j−1 ≥ 2] ≤ E[nt+nt−1 | nt, nt+nt−2 ≥ 2] = 1 ≤ max(nt − j, 1).

2.2 Time Analysis for Each Iteration

The following lemma shows that we can tighten the bound on the running time of each
iteration in some cases.

Lemma 2.5. Given v ∈ V, zv ∈ B(v, r), the expected time required for the jth iteration
of the outer loop (line 2) of Algorithm 1 is at most O(

nj

cj,zv
log n) where cj,zv = |B(zv, r)∩

Vj|

The expectation is taken over the randomness in the selection of α ∈ [0, 1] and the
random permutation π used.
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Proof. Let T be a random variable representing the number of points scanned before the
jth iteration is terminated. Then T = min(X + 1

α
, nj) where X represents the number

of points encountered in Vj\B(zv, r). The scan terminates when it finds more than
1
α

points in B(zv, r) ∩ Vj which implies that X ∼ NHG(nj, nj − cj,zv ,
1
α
) (Negative

Hyper-Geometric distribution; see [JKK05], Section 6.2.2).

E[X] =
1

α

nj − cj,zv
nj − (nj − cj,zv) + 1

=
1

α

nj − cj,zv
cj,zv + 1

≤ 1

α

nj − cj,zv
cj,zv

.

Now, by the law of total expectation

Eα,π[T | v, zv, Vj] = EαEπ[T | α, v, zv, Vj]

= EαEπ[min(X +
1

α
, nj) | α, v, zv, Vj]

since min(·, nj) is a concave function, by Jensen’s inequality

≤ Eα[min(Eπ[X] +
1

α
, nj) | v, zv, Vj]

≤ Eα[min(
1

α

nj

cj,zv
, nj) | v, zv, Vj]

=
nj

cj,zv

∫ 1

0

min(
1

a
, cj,zv) da

=
nj

cj,zv
(

∫ 1
cj,zv

0

cj,zv da+

∫ 1

1
cj,zv

1

a
da)

=
nj

cj,zv
(1 + ln cj,zv)

≤ nj

cj,zv
(1 + lnn)

3 Fast Algorithm with Additive Error

In this section, we present a faster algorithm (Theorem 3.2) that incurs an additive error
in the separation probability. This is achieved by utilizing Locality Sensitive Hashing
(LSH) [IM98] to quickly identify points that may belong to the same cluster, thereby
reducing the number of distance computations. We then combine this approach with
Lemma 2.5 to improve the (worst-case) time bound.

In Algorithm 1, the computation of Iz takes O(n) time in the worst case because
it might need to examine all points in V . To improve the running time, our aim is to
limit the set of points to only those that are sufficiently close to z, and find these points
quickly.

Definition 3.1 (Locality Sensitive Hashing [IM98]). A familyH of functions h : Rd → Z
is called (r, cr, P1, P2)-sensitive if for every two points p, q ∈ Rd:

• If ∥p− q∥ ≤ r then Prh∈H[h(q) = h(p)] ≥ p1,
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• If ∥p− q∥ ≥ cr then Prh∈H[h(q) = h(p)] ≤ p2.

We assume p1 > p2 which is needed for the LSH family to be useful and define ρ =
log 1/p1
log 1/p2

.

Theorem 3.1 ([AI06]). For every scale r > 0, dimension d > 0, and c > 1, there
exists an (r, cr, 1

nρ ,
1
n
)-sensitive family of hash functions for V ⊆ Rd of size n, where

ρ = 1
c2
+ o(1) and each function can be evaluated in time τ = O(dno(1) log n).

Definition 3.2 (Separating Decomposition with Additive Error). Let (X, ρ) be a metric
space. A distribution F over partitions of X is called a (β,∆)-separating decomposition
with additive error γ ∈ [0, 1] if the following conditions are satisfied:

1. Diameter: For every partition P ∈ supp(F ) and every cluster C ∈ P , we have
diam(C) ≤ ∆.

2. Separation Parameter: For every x, y ∈ X,

Pr
P∼F

[P (x) ̸= P (y)] ≤ β
ρ(x, y)

∆
+ γ,

where P (x) denotes the cluster of P containing x ∈ X.

Algorithm 2 follows the same overall structure of Algorithm 1, the key difference is
how the scan for computing Iz is performed. In Algorithm 1, for each chosen z, the
scan iterates over all points in V to find those within distance r. Algorithm 2 uses LSH
to reduce the number of points examined. Instead of scanning the entire set V , it scans
only the points found by the LSH, which contain points that are close to z and points
that ”might be” close to z.

Algorithm 2 Fast Separating Decomposition with Additive Error

Require: V ⊆ Rd of size n and ∆ > 0
1: r ← ∆

2
, P ← ∅

2: pick k = O(nρ log n) hash functions h1, . . . , hk ∈ H as in Theorem 3.1 and evaluate
them on all points in V

3: while V ̸= ∅ do
4: choose v ∈ V , zv ∈ B(v, r) and α ∈ [0, 1] uniformly at random
5: Bzv ←

⋃k
i=1 h

−1
i (hi(zv)) where h−1(·) is the preimage of h in V

6: Iz ← ∅
7: scan every u ∈ Bzv in a random order π
8: if ∥u− zv∥ ≤ r then
9: Iz ← Iz ∪ {u}

10: if |Iz| > 1
α
then

11: terminate the scan ▷ reject zv

12: if the scan completed then ▷ upon completion, Iz = B(zv, r) ∩Bzv

13: V ← V \Iz, P ← P ∪ {Iz}
14: remove all v ∈ Iz from hj for all j

15: report P
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Theorem 3.2. When Algorithm 2 is executed on V ⊆ Rd of size n, it reports a
sample from an (O(

√
d),∆)-separating decomposition with additive error 1

n4 of V. If

d = Θ(log n) then it runs in expected Õ(n1+1/c2+o(1)) time for c = 1.4.

We prove this theorem in subsections 3.1 and 3.2.

3.1 Additive Error Analysis

Lemma 3.3. Algorithm 2 reports a sample from an (O(
√
d),∆)-separating decomposi-

tion with additive error 1
n4 of V.

Proof. First, the output P always is a partition of V since it contains disjoint subsets
whose union is exactly V . By line 8 of the algorithm, the diameter requirement is met.

The rejection sampling process ensures that the chosen z is uniformly distributed
over the union of balls centered at points in V with radius r. Given two points x, y ∈ V ,
they will be assigned to different clusters if the first point z∗ chosen from B(x, r)∪B(y, r)
is in B(x, r)△B(y, r) and not in B(x, r) ∩ B(y, r), or if z∗ ∈ B(x, r) ∩ B(y, r) but one
of x, y is not in Bz∗ .

Pr[P (x) ̸= P (y)] = Pr[z∗ ∈ B(x, r)△B(y, r)]

+ Pr[P (x) ̸= P (y) | z∗ ∈ B(x, r) ∩B(y, r)] Pr[z∗ ∈ B(x, r) ∩B(y, r)]

Since the distribution of z∗ is uniform over B(x, r) ∪ B(y, r), the two events where
one of x, y is not in Bz∗ are symmetric.

Pr[P (x) ̸= P (y)] = Pr[z∗ ∈ B(x, r)△B(y, r)]

+ 2Pr[x /∈ Bz∗ , y ∈ Bz∗ | z∗ ∈ B(x, r) ∩B(y, r)] Pr[z∗ ∈ B(x, r) ∩B(y, r)]

≤ V ol(B(x, r)△B(y, r))

V ol(B(x, r) ∪B(y, r))

+ 2Pr[x /∈
k⋃

i=1

h−1
i (z∗) | z∗ ∈ B(x, r) ∩B(y, r)]

V ol(B(x, r) ∩B(y, r))

V ol(B(x, r) ∪B(y, r))

By the computations from [CCG+98] (Section 3.1)

≤ O(
√
d)
∥x− y∥

∆
+ 2Pr[∀i, hi(x) ̸= hi(z

∗) | z∗ ∈ B(x, r) ∩B(y, r)]

= O(
√
d)
∥x− y∥

∆
+ 2Pr[h(x) ̸= h(z∗) | z∗ ∈ B(x, r) ∩B(y, r)]k

≤ O(
√
d)
∥x− y∥

∆
+ 2(1− 1

nρ
)k

Choosing k = 5nρ lnn,

≤ O(
√
d)
∥x− y∥

∆
+

1

n4
.
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3.2 Running Time Analysis

In this section we prove the following Lemma.

Lemma 3.4. Algorithm 2 runs in expected Õ(dn1+1/c2+o(1) + n2e−Ω(d)) time where
c = 1.4.

Recall Lemma 2.5 which analyzes the expected time per iteration in Algorithm 1,
where the scan is performed over the entire set Vj. In this case, nj = |Vj| represents the
number of remaining unclustered points, and cj,zv = |B(zv, r)∩ Vj| denotes the number
of points within distance r of zv. In Algorithm 2, instead of scanning the entire set V ,
we only scan over Bzv , the set of points that share a locality-sensitive hash value with
zv. This change reduces the size of the search space from |Vj| to |Bzv |. By applying
the same analysis as in Lemma 2.5, we obtain Lemma 3.5, where the expected iteration
time is now determined by the ratio |Bzv |/|Bzv ∩B(zv, r)|.

Lemma 3.5. Given v ∈ V, zv ∈ B(v, r), the expected time required for the jth it-

eration of the outer loop (line 2) of Algorithm 2 is at most O( |Bzv |
ch,j,zv

log n), where

ch,j,zv = |Bzv ∩B(zv, r)|.

We prove the following lemma at the end of this section through a direct calculation.
The intuition behind the lemma is based on geometric properties in high-dimensional
spaces. With high probability, for a random point z ∈ B(v, r), the distance ∥z − v∥
will be close to r, and the inner product ⟨z − v, v − u⟩ will be close to zero, meaning
that the vectors z− v and v− u are nearly orthogonal. This orthogonality leads to the
approximation ∥z−u∥2 ≈ ∥z−v∥2+∥v−u∥2, which in turn implies that approximately
∥z−u∥2 ≥ 2r2. Therefore, the probability that z lies within the range r ≤ ∥z−u∥ ≤ cr
is exponentially small in d.

Lemma 3.6. Let r > 0, let 1 < c ≤ 1.4 and let u, v ∈ Rd such that r ≤ ∥u− v∥ ≤ cr.
Then for z ∈ B(v, r) chosen randomly, Prz[r < ∥z − u∥ ≤ cr] ≤ e−Ω(d).

Proof of Lemma 3.4. First, let us analyze the time for iteration j of the outer loop (line
2). In the jth iteration, after selecting a random point zv ∈ B(v, r), the algorithm scans
points from the preimage of the hash functions, denoted as Bzv . Ideally, Bzv should
contain only the points within B(zv, r). However, due to the probabilistic nature of
LSH, additional points may be included. Specifically, points that lie in the range
r < ∥u − zv∥ ≤ cr, and distant points with ∥u − zv∥ > cr. Our goal is to bound the
contribution of these errors to the overall running time.

∀i ∈ [k], h−1
i (hi(zv)) = {u ∈ h−1

i (hi(zv)) | ∥u− zv∥ ≤ r} ∪ {u ∈ h−1
i (hi(zv)) | r < ∥u− zv∥ ≤ cr}

∪ {u ∈ h−1
i (hi(zv)) | ∥u− zv∥ > cr}

12



Which means,

Bzv =
k⋃

i=1

h−1
i (hi(zv)) ⊆ (Bzv ∩B(zv, r)) ∪ {u ∈ Vj | r < ∥u− zv∥ ≤ cr}

∪
k⋃

i=1

{u ∈ h−1
i (hi(zv)) | ∥u− zv∥ > cr}

Denote
Errzv = {u ∈ Vj | r < ∥u− zv∥ ≤ cr}

Errh(hi) = {u ∈ h−1
i (hi(zv)) | ∥u− zv∥ > cr}

We can bound these as follows. Using Lemma 3.6,

Ezv [|Errzv |] = Ezv [|{u ∈ Vj | r < ∥u− zv∥ ≤ cr}|]

=
∑
u∈Vj

Pr
zv
[r ≤ ∥u− zv∥ ≤ cr] ≤ ne−Ω(d).

Using Theorem 3.1 and the law of total expectation

Ezv ,h[|
⋃
i∈[k]

Errh(hi)|] = EzvEh[|
⋃
i∈[k]

Errh(hi)| | zv]

= EzvEh[|
⋃
i∈[k]

{u ∈ h−1
i (hi(zv)) | ∥u− zv∥ > cr}| | zv]

=
∑
u∈Vj

Pr[∃i, hi(u) = hi(zv) | ∥u− zv∥ > cr]

≤ n · k
n
= k.

Now,

|Bzv | ≤ ch,j,zv + |Errzv |+ |
⋃
i∈[k]

Errh(hi)|.

By Lemma 3.5, and since v ∈ Bzv ∩B(zv, r) we know that ch,j,zv ≥ 1,

Eh,zv [time for the jth iteration | Vj] ≤ O(Eh,zv [
|Bzv |
ch,j,zv

log n | Vj])

≤ O((1 + Eh,zv |Errzv |+ Eh,zv |
⋃
i∈[k]

Errh(hi)|) · log n)

≤ O((ne−Ω(d) + k) log n)

≤ O((ne−Ω(d) + nρ log n) log n)

By Theorem 3.1, the preprocessing time for evaluating the LSH functions is O(knτ)
where τ = O(dno(1) log n).

13



The overall running time consists of the preprocessing time for the LSH functions,
plus the number of iterations multiplied by the time required for each iteration.

Õ(dn1+ρ) + Õ(n) · Õ(ne−Ω(d) + nρ) = Õ(dn1+ρ + n2e−Ω(d)).

Proof of Lemma 3.6. Without loss of generality, we can assume v = (0, ..., 0) and
u = (ar, 0, ..., 0) where 1 ≤ a ≤ c. It is known that a random z ∈ B(v, r) can be

chosen also by picking z = rx
1
d

z′

∥z′∥ where z′ ∼ N(0, 1
d
I), x ∼ U [0, 1]. Now, ∥z′∥2

1/d
∼ χ2

d

and by known tail bounds for the chi-squared distribution [LM00],

∀y > 0, Pr
z′
[
∥z′∥2

1/d
≥ 2

√
dy + 2y + d] < e−y,

∀y > 0, Pr
z′
[
∥z′∥2

1/d
≤ −2

√
dy + d] < e−y

and taking y = d
40,000

,

Pr[
∥z′∥2

1/d
≥ d

100
+

d

20, 000
+ d] < e−Ω(d) ⇒ Pr[∥z′∥2 ≥ 1.01005] < e−Ω(d).

Pr[
∥z′∥2

1/d
≤ − d

100
+ d]⇒ Pr[∥z′∥2 ≤ 0.99] < e−Ω(d)

which means that w.h.p. ∥z′∥2 ∈ (0.99, 1.02). Additionally,

Pr
x
[x

1
d < e−0.01] = Pr

x
[x < e−0.01d] = e−0.01d = e−Ω(d).

and thus w.h.p. x
1
d ∈ (e−0.01, 1). We shall assume henceforth that all these high-

probability events indeed occur. Now,

∥z − u∥2 = (ar − z1)
2 +

d∑
i=2

z2i = a2r2 − 2arz1 +
d∑

i=1

z2i

so we would like to estimate z1 and
∑d

i=1 z
2
i . By using the tail bound for gaussians,

Pr[z1 >
r

200
] = Pr[x

1
d

z′1
∥z′∥

>
1

200
]

≤ Pr[z′1 >

√
0.99

200
]

≤ e−(
√

0.99d
200

)2/2 = e−Ω(d)

then w.h.p. also z1 <
r

200
. By the events we assumed before to occur, we have

d∑
i=1

z2i = ∥z∥2 = r2x
2
d ≥ r2

e0.02
.
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Since z ∈ B(v, r) taking a = 1 will create a lower bound for the distance. Combining
everything,

∥z − u∥2 = a2r2 − 2arz1 +
d∑

i=1

z2i

≥ r2 − r2

100
+ e−0.02r2

> 1.97r2

> c2r2.

We conclude that

Pr
z
[r < ∥z − u∥ ≤ cr] ≤ Pr

z
[∥z − u∥ ≤ cr] ≤ e−Ω(d).

4 Removing the Additive Error

We adopt a black-box approach to address the additive error. Given an algorithm that
constructs a separating decomposition with a sufficiently small additive error, we first
show that for sufficiently distant points, the additive error is negligible. This implies
that by forcing close pairs to cluster together, we can create a partition with no additive
error.

To achieve this, we repeat the given algorithm until the output is a separating decom-
position where all sufficiently close pairs are clustered together, thereby constructing a
partition with no additive error.

To keep the construction relatively fast, we require an efficient method to verify
whether all sufficiently close pairs are clustered together for each partition sampled dur-
ing the repetitions of the given algorithm (the naive approach, which involves checking
all pairs explicitly, has a time complexity of O(n2)).

We outline the fast verification process, addressing the challenge of ensuring both
the efficiency of each verification step and the overall number of iterations required to
achieve the desired result.

The following lemma demonstrates that the additive error becomes negligible for
pairs that are sufficiently far apart.

Lemma 4.1. Let V ⊆ Rd of size n and let P be a partition of V chosen from a
(O(
√
d),∆)-Separating Decomposition with additive error 1

n4 . Then,

∀u, v ∈ V : ∥u− v∥ > 1√
d
· ∆
n4

, Pr
P
[P (u) ̸= P (v)] ≤ O(

√
d)
∥u− v∥

∆

Proof. If ∥u− v∥ > 1√
d
· ∆
n4 , then,

Pr
P
[P (u) ̸= P (v)] ≤ O(

√
d)
∥u− v∥

∆
+

1

n4
≤ O(

√
d)
∥u− v∥

∆
+
√
d
∥u− v∥

∆
≤ O(

√
d)
∥u− v∥

∆
.
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After showing that the additive error for sufficiently far points is negligible, we
aim to design a verification process to determine whether all close pairs are clustered
together. To achieve this, we first define a set that facilitates the identification of close
pairs in the input. We allow a relaxed threshold, meaning that the set may include
some farther pairs, in order to enable fast construction of the set.

Definition 4.1 ((c, r)-Close Pairs Set). Let V ⊆ Rd, r > 0 and c ≥ 1. A (c, r)-Close
Pairs Set, denoted Sc,r, is a set of unordered pairs from V that satisfies the following
conditions:

• if ∥u− v∥ ≤ r, then (u, v) ∈ Sc,r;

• if ∥u− v∥ > cr, then (u, v) /∈ Sc,r.

Given a partition P , the next step is to determine whether two points from the set
belong to the same cluster in P .

To verify certain properties of the pairs in a Close Pairs Set, we use a symmetric
and transitive predicate q. For instance, q can determine whether two points belong to
the same connected component in a graph. Specifically, in our case, this predicate is
used to verify whether two points from the set belong to the same cluster in P .

We prove the following lemma in Section 4.1.

Lemma 4.2. There exists a deterministic algorithm that given V ⊆ Rd and 0 < r < 1
2d+2

runs in Õ(dn) time and constructs (implicitly) an (O(d3/2), r)-Close Pairs Set. Given a
symmetric and transitive predicate q : V ×V → {0, 1}, the algorithm can then determine
whether all pairs in the set satisfy q in Õ(dn) time.

We would like to use Lemma 4.2 with r = ∆
n4 , without loss of generality ∆ = 1,

which means that r = ∆
n4 = 1

n4 < 1
2d+2

.

Algorithm 3 Fast Separating Decomposition

Require: V ⊆ Rd of size n, ∆ > 0 and an algorithm A that reports an (O(
√
d),∆)-

Separating Decomposition with additive error 1
n4

1: construct an (O(d3/2), ∆
n4 )-Close Pairs Set of V , denoted S ▷ use Lemma 4.2

2: while true do
3: run algorithm A to sample a partition P of V
4: if for every (u, v) ∈ S, P (u) = P (v) then ▷ use Lemma 4.2
5: report P

Lemma 4.3. Given a sample P as in line 3, the probability that Algorithm 3 reports
this P in line 5 is at least 1− 1

n
.

Proof. Let u, v ∈ S, Since ∥u− v∥ ≤ O(d3/2) ∆
n4 ,

Pr
P
[P (u) ̸= P (v)] ≤ O(

√
d)
∥u− v∥

∆
+

1

n4
≤ O(d2)

n4
<

1

n3

by taking the union over allO(n2) possible pairs we get that PrP [P is not reported] < 1
n
.
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Theorem 4.4. Algorithm 3 reports a partition P sampled from an (O(
√
d),∆)-separating

decomposition of V .

Proof. Since the given algorithm respects the diameter constraint, Algorithm 3 does
as well. In order to bound the probability a pair of points separate by the partition
reported by the end of Algorithm 3, we need to analyze the conditional probability
associated with the reported partition. Let u, v ∈ V . If ∥u − v∥ ≤ ∆

n4 then by the
constraint on line 4, by the end of Algorithm 3, Pr[P (u) ̸= P (v) | P is reported] = 0.
If ∥u− v∥ > ∆

n4 , then (using Lemma 4.1 and Lemma 4.3),

Pr
P
[P (u) ̸= P (v) | P is reported] =

PrP [P (u) ̸= P (v) ∧ P is reported]

PrP [P is reported]

≤ PrP [P (u) ̸= P (v)]

1− 1/n

≤ O(
√
d)
∥u− v∥

∆
.

Theorem 4.5. Let d = Θ(log n) and let the algorithm used by Algorithm 3 be Algorithm
2, then Algorithm 3 runs in expected Õ(n1+1/c2+o(1)) time where c = 1.4.

Proof. Since (by Lemma 4.2) the construction and verification of whether the (O(d3/2), r)-
Close Pairs Set satisfies q takes Õ(dn) = Õ(n) time, the running time of Algorithm 3
is dominated by running time of Algorithm 2 multiplied by the expected number of
iterations needed for success.

According to Theorem 3.2, Algorithm 2 has an expected running time of Õ(n1+ρ).
The number of iterations follows a geometric distribution, and by Lemma 4.3, the
success probability of each iteration is at least 1− 1

n
. This means the expected number

of iterations is at most 1
1−1/n

≤ 2. As a result, the expected running time of Algorithm

3 is also Õ(n1+ρ).

4.1 Fast Scanning of an (O(d3/2), r)-Close Pairs Set

In this section, we prove Lemma 4.2 by introducing an alternative definition that rep-
resents a Close Pairs Set and could also be reported quickly.

Definition 4.2 ((c, r)-Close Pairs Buckets). Let V ⊆ Rd, r > 0, c > 1 m1,m2 > 0.
Define (c, r)-Close Pairs Buckets {Bi,j}i∈[m1],j∈[m2] with Bi,j ⊆ V such that:

• For every i, {Bi,j}j∈[m2] is a partition of V

• If ∥u− v∥ ≤ r, then there are i and j such that u, v ∈ Bi,j.

• If ∥u− v∥ > cr, then there are no i and j such that both u, v ∈ Bi,j

Lemma 4.6. Let V ⊆ Rd, r > 0, c ≥ 1 m1,m2 > 0 and let {Bi,j}i<m1,j<m2 be (c, r)-
Close Pairs Buckets. Then the set S =

⋃
i,j Bi,j ×Bi,j is a (c, r)-Close Pairs Set.
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Proof. Since the buckets are subsets of V , S is a subset of V × V . Let u, v ∈ V . If
∥u − v∥ ≤ r then there exists i, j such that u, v ∈ Bi,j which means (u, v) ∈ S. if
∥u− v∥ > cr then there is no i, j such that u, v ∈ Bi,j, thus (u, v) /∈ S.

Lemma 4.7. There exists an algorithm that that given V ⊆ Rd and 0 < r < 1
2d+2

constructs (O(d3/2), r)-Close Pairs Buckets in Õ(dn) time for m1 = O(d) and some
m2 ≤ n.

Consider a uniform grid over Rd with a fixed side-length τ where each grid cell is
indexed by a point j ∈ Zd. A point p ∈ Rd belongs to a grid cell j if and only if ∀i ∈ [d],
⌊pi/τ⌋ = ji.

Definition 4.3. A point p ∈ Rd is central in its τ -grid cell if for each i ∈ [d], we have
ατ < pi − ⌊pi/τ⌋τ < (1− α)τ .

Observation 4.1. Let p, q ∈ Rd. If q is central in its τ -grid cell and ∥p − q∥∞ ≤ ατ ,
then p and q belong to the same τ -grid cell.

Lemma 4.8 ([Cha97]). For every point p ∈ Rd and l ∈ N, there exists i ∈ {0, 1, . . . , d}
such that p+ v(i) for v(i) = ( i

d+1
, . . . , i

d+1
) ∈ Rd is 1

2d+2
-central in its 2−l-grid cell.

We now aim to construct buckets as shifted grids over Rd. A shifted grid (by
s ∈ [0, 1]d) is one where the grid cells are defined as j + s for every j ∈ Zd. Its easy to
see that instead of shifting the points, we can shift the grids altogether. This implies
the following corollary.

Corollary 4.9. For every point p ∈ Rd and l ∈ N, there exists i ∈ {0, 1, . . . , d} such
that p is 1

2d+2
-central in its v(i)-shifted 2−l-grid cell.

Proof of Lemma 4.7. Given 0 < r < 1
2d+2

, let l be such that (2d+2)r ∈ [2−(l+1), 2−l) and

set τ = 2−l. Define d + 1 hash functions h0, h1, . . . , hd each corresponding to a shifted
side-length τ grid in Rd. For each i ∈ {0, . . . , d}, and for any point x = (x1, x2, . . . , xd) ∈
Rd, the hash function hi : V → Zd is defined by hi(x) = (gi(x1), . . . , gi(xd)) where
gi(y) = ⌊y/τ + i

d+1
⌋.

For every 0 ≤ i ≤ d and j ∈ Zd define Bi,j = h−1
i (j). We’ll now show that

{Bi,j ̸= ∅}i,j are (O(d3/2), r)-Close Pairs Buckets. First, {Bi,j}j is partition of V . Now
consider any two points u, v ∈ V . If ∥u− v∥ ≤ r, then

∥u− v∥∞ ≤ ∥u− v∥ ≤ r ≤ 1

2d+ 2
τ.

By Corollary 4.9, there exists i ∈ {0, . . . , d} such that u is 1
2d+2

-central in the i
d+1

shifted
τ -sided grid and by Observation 4.1, we know that u and v are located in the same
τ -grid cell, and hence hi(u) = hi(v) and both u, v ∈ Bi,hi(u). Next, the grid cells have

diameter at most
√
dτ ,

√
dτ ≤ 2

√
d(2d+ 2)r ≤ O(d3/2)r.

Thus, for u, v with a distance exceeding the grid cell diameter, which is O(d3/2)r, u, v
are guaranteed not to belong to the same grid cell. Then for all i, we have hi(u) ̸= hi(v),
and consequently, u, v will not both belong to any bucket.

For every 0 ≤ i ≤ d, the cost of hashing n points is Õ(n) and since {Bi,j}j is a
partition of V , it takes Õ(dn) time to construct all the buckets.
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Lemma 4.10. Let V ⊆ Rd, let r > 0, c > 1, m1,m2 > 0, let S be a (c, r)-Close Pairs
Set generated by m1 · m2 (c, r)-Close Pairs Buckets and let q : V × V → {0, 1} be a
symmetric and transitive predicate. Then one can determine whether all pairs in the
set S satisfy q in Õ(m1n) time.

Proof. We proceed as follows. For each bucket Bi,j, iterate through its elements, com-
paring each element with the next one. If the predicate q returns 0 for any pair,
immediately reject. If the iteration is complete over all buckets without the predicate
returning 0, accept. We now prove that the algorithm accepts if and only if all pairs in
S satisfy q.

• If all pairs in S satisfy q, it is clear that the algorithm accepts, since no pair in
the same bucket will return 0 for q.

• If the algorithm accepts, consider any pair (u, v) ∈ S. By the construction of S,
there exists a bucket Bi,j such that u, v ∈ Bi,j. Denote the elements of Bi,j as
w1, w2, . . . , wk. Since the algorithm accepts, for all 1 ≤ k0 < k, q(wk0 , wk0+1) = 1.
By the symmetry and transitivity of q, this implies that also for u, v ∈ Bi,j,
q(u, v) = 1.

For every i ∈ [m1], |
⋃

j Bi,j| = n, which means that the running time is Õ(m1n).

Proof of Lemma 4.2. Using the construction in Lemma 4.7, construct (O(d3/2), r)-Close
Pairs Buckets. By Lemma 4.10, we can verify whether all pairs in the (O(d3/2), r)-Close
Pairs Buckets satisfy q in Õ(m1n) = Õ(dn) time. By Lemma 4.6, the constructed
buckets form a (c, r)-Close Pairs Set. Therefore, we achieve the desired construction
and verification in Õ(dn) time.

5 Hashing Data Structure

In the previous sections, we assume the use of a typical dictionary hashing structure
that provides Õ(1) insertion and deletion operations. This guarantees the expected
time bounds. Under this assumption, we now prove some additional guarantees, which,
although less typical, are crucial for our time bounds.

Theorem 5.1. A hash function h has the following properties, given v ∈ V and their
corresponding hash h(v):

1. the insertion time for v, h(v) is Õ(1)

2. the deletion time for v, h(v) is Õ(1)

3. the cost of choosing a random point from h−1(h(v)) is Õ(1)

Proof. We can construct the hash functions in the following way to maintain the desired
properties: First, initialize two dictionaries. The first dictionary stores points from V as
keys, and the values are the hash values with an additional index. The second dictionary
has the hash values as keys, and its values are arrays containing the corresponding points
from V , along with the size of each array.
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Formally, given a hash function h, let d1 and d2 be the two dictionaries, defined as
follows:

∀v ∈ V, d1(v) = (h(v), index),

∀h0 ∈ h−1(V ), d2(h0) = (array, size),

where the array in d2(h(v)) contains the point v, which is indexed by d1(v).

1. Insertion: To insert v ∈ V , we first compute h(v) and append v to the array
d2(h(v)) at the end, updating the stored size. Then, we add v to d1 with the
appropriate index.

2. Deletion: To delete v ∈ V , we remove v from d1. Next, to delete v from the
array in Õ(1) we replace v with the last entry of the array, decrease the saved
size, and adjust the index in d1 of the point that was swapped into v’s original
position.

3. Randomness: Since the points corresponding to each hash value are stored in
an array, we can generate a random permutation of the indices to select a random
point efficiently.

6 Applications

6.1 Minimum Communication Cost Spanning Tree

A well-known problem in network optimization is the Minimum Communication Cost
Spanning Tree (MCST) problem, first presented by Hu [Hu74]. Its goal is to construct
a spanning tree that minimizes the total communication cost in an input graph. More
precisely, given a graph G = (V,E) with edge weights w(e) ≥ 0 for each edge e ∈ E,
and a requirement value yu,v ≥ 0 for each pair of vertices u, v ∈ V , the communication
cost of a spanning tree T is defined as

C(T ) =
∑
u,v∈V

yu,v · dT (u, v),

where dT (u, v) is the distance between u and v in the tree. The objective is to find a
spanning tree T ∗ that minimizes C(T ).

When working with metric spaces, the input graph is assumed to be a complete
graph whose edge weights represent distances. In such cases, every tree on the given
set of vertices is a spanning tree, as the graph contains all possible edges.

A widely used approach for approximating metric spaces is to embed them into
tree metrics that dominate the original space, meaning that distances in the tree never
underestimate those in the original metric. The quality of such an embedding is quanti-
fied by its distortion, defined as the worst-case multiplicative stretch, i.e., the maximum
ratio of distances in the tree to their corresponding distances in the original space.

Bartal [Bar96] introduced probabilistic embedding into k-hierarchically well-separated
trees (k-HSTs), which approximate metric spaces with polylogarithmic distortion (later
improved to logarithmic [FRT03]). It is formally defined as follows.
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Definition 6.1 ([Bar96]). A k-hierarchically well-separated tree (k-HST) is a rooted
weighted tree T = (VT , ET ) satisfying the following properties:

1. For every node v ∈ VT , all edges connecting v to a child are of equal weight.

2. The edge weight along a path from the root to a leaf decrease by a factor of at
least k.

Using the following randomized k-HST embedding for an n-point metric (X, dX),
Bartal was able to achieve expected distortion O(log2 n), which was later improved to
O(log n) [FRT03].

• partition X into clusters X1, . . . , Xk such that diam(Xi) ≤ diam(X)/k using a
separating decomposition

• recursively construct trees T1, . . . , Tk for X1, . . . , Xk

• create a tree T by joining the roots of each Ti to a new root r by edges of length
diam(X)

The expected distortion of the resulting tree is equal to the separation parameter (β)
of the separating decomposition used multiplied by the recursion depth logk(diam(X))
(assuming without loss of generality that all pairwise distances ≥ 1) which can be
made O(log n) after a small optimization. Consequently, the expected distortion can
be improved to O(log n) for planar graphs [KPR93, Rao99] and O(

√
d log n) for d-

dimensional Euclidean graphs [CCG+98].
By linearity of expectation and the fact that the optimal tree T ∗ is a spanning tree,

the approximation factor for the MCST follows directly from the distortion of the HST.

Corollary 6.1. Let (X, dX) be an n-point metric space, let T be a randomized 2-HST
embedding for X with expected distortion α, and let {yu,v} be requirement values for
every pair u, v ∈ X. Then

ET [
∑
u,v

yu,v · dT (u, v)] ≤ α
∑
u,v

yu,v · dX(u, v) ≤ αC(T ∗)

where T ∗ is an optimal MCST.

Our fast partitioning scheme for Euclidean metric spaces follows the same approach
used by Bartal, allowing us to substitute our method for his while achieving the same
results. Since our construction is faster, we can compute an O(

√
d · log(diam(X)))-

approximation for the MCST more efficiently. Specifically, the construction requires
O(log(diam(X))) levels, and using our fast construction, the total time is improved to
Õ(n1+1/c2+o(1)) time where c = 1.4.

Corollary 6.2. There exists a randomized algorithm that given X ⊆ Rd of size n
where d = Θ(log n), embeds X into the set of leaves of a 2-HST with expected distortion
O(
√
d · log(diam(X))) in Õ(n1+1/c2+o(1)) time, where c = 1.4.

Corollary 6.3. There exists a randomized algorithm that given X ⊆ Rd of size n
where d = Θ(log n), computes an O(

√
d·log(diam(X)))-approximation for the Minimum

Communication Cost Spanning Tree (MCST) problem in Õ(n1+1/c2+o(1)) time, where
c = 1.4.
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[FRT03] improved the distortion to O(log n) with a similar tree construction but a
different partitioning method, which, according to their Section 2.3, takes O(n2) time.
This result implies an O(log n) approximation for the MCST problem in polynomial
time.

6.2 Tree Covers for High-Dimensional Euclidean Spaces

Let (X, dX) be a metric space. A tree cover for X is a collection of trees F . Each tree
in F has X as its vertex set and has edge weights, such that

∀x, y ∈ X, dX(x, y) ≤ dT (x, y).

A tree cover F has stretch α ≥ 1 if for every x, y ∈ X, there exists a tree T in F that
preserves the distance between x, y up to α factor i.e.

∃T ∈ F , dT (x, y) ≤ αdX(x, y).

We call such F an α-tree cover of X.
Tree covers have gained research attention due to their algorithmic importance

[GKR05, CGMZ05, GHR06, BFN19, CCL+24]. They have been generalized to vari-
ous metric spaces and graphs. A key measure of quality for a tree cover is its size
|F|. A small tree cover is particularly useful for solving distance-related problems by
simplifying them to computations on a few trees.

In many scenarios, constructing a tree cover with the desired stretch property can
be achieved probabilistically. By using randomized partitioning techniques, such as
(β,∆)-separating decompositions, we can construct a collection of trees, forming a tree
cover, where with high probability for every pair of points, at least one tree preserves
the distance between them within an O(β) factor.

The next lemma is relatively simple and directly builds on existing methods in
the literature. Previous papers have used similar techniques to achieve related results
[CGMZ05, HPIS13, FN20], though we have not found this specific statement in the
literature, which is why it is included here.

Lemma 6.4. Let (X, dX) be an n-point metric space. If there exists an algorithm A
that reports a partition sampled from a (β,∆)-separating decomposition of X for every
∆ > 0, then there exists an algorithm that constructs an O(β)-tree cover of X of size
O(log n log(diam(X))).

Proof. First, using algorithm A, for every ∆ > 0 we can sample from a (β,∆)-separating
decomposition.

For every i ∈ {0, . . . , log(diam(X))} sample k = O(log n) partitions from a (β, 2i+2β)-
separating decomposition, denoted Fi. For each partition construct a tree as follows.
For each cluster, select an arbitrary point, and connect it to all other points in the clus-
ter using the original metric distance edges. Then, select one of these selected points
to serve as the root of the tree, and connect the other selected points (one from each
cluster) to the root using the original metric distance edges.

Observe that the number of trees is as the number of partitions sampled, O(log n log(diam(X)).
Let us show that this construction is an O(β)-tree cover for X. Let x, y ∈ X, there
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exists i such that dX(x, y) ∈ [2i, 2i+1). For each partition drawn from Fi, we have

Pr
P∼Fi

[P (x) ̸= P (y)] ≤ β · dX(x, y)
2i+2β

≤ 1

2
.

Since we sample k = O(log n) partitions from Fi, then with high probability there exists
a partition P , sampled from Fi where x, y are clustered together. Conditioned on this
event, we get that in the tree created by P , denoted TP :

dTP
(x, y) ≤ 2diam(P (x)) ≤ O(β)dX(x, y).

By taking a union bound over all pairs of points we see that this is an O(β)-tree cover
for X with high probability.

Corollary 6.5. Let d = Θ(log n) and let algorithm A be Algorithm 3, then it takes
Õ(n1+1/c2+o(1)) time where c = 1.4 to construct an O(

√
d)-tree cover of X of size

O(log n log(diam(X)))

Proof. It takes Õ(n) time to connect the vertices for each tree since only one linear
scan is required. Thus, the overall time complexity is dominated by the construction of
the partitions and is Õ(n1+1/c2+o(1)) time where c = 1.4 by using our fast construction
(Theorem 4.5).

6.3 High-Dimensional Euclidean Spanners

The notion of tree covers is closely related to the well studied notion of spanners. In
the context of metric spaces, a spanner with stretch α ≥ 1 for the metric (X, dX), is a
graph G with X = VG, such that

∀x, y ∈ X, dX(x, y) ≤ dG(x, y) ≤ α · dX(x, y).

It is often desired that the spanner would be a sparse graph.
Spanners are natural and useful representations of a metric, and as such they have

been a subject of extensive research. In particular, it is known that every n-point metric
admits a (2k− 1)-spanner of size O(n1+1/k) for any integer k > 0 [PS89], and assuming
the girth conjecture of Erdos [Erd64], this bound is tight. For simpler metrics that are
induced by a set of n points in a low-dimensional Euclidean space say of dimension d,
the stretch bound can be improved considerably: there exists a (1 + ϵ)-spanner with
only O(n(1/ϵ)O(d)) edges [Sal91, Vai91]. For a constant dimension d and fixed ϵ, this
gives a bound that is linear in n.

However, spanners for high-dimensional Euclidean spaces have received relatively
little attention due to the curse of dimensionality. As the dimension d increases, stan-
dard techniques for constructing spanners in low-dimensional spaces often fail to scale
effectively, making the construction of sparse spanners with low stretch a challenging
task. This complexity has historically limited the study of high-dimensional Euclidean
spanners compared to their low-dimensional counterparts.

Har-Peled, Indyk and Sidiropoulos [HPIS13] introduced an algorithm for construct-
ing spanners of high-dimensional Euclidean graphs. The running time of their algorithm
is not explicitly stated.
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Theorem 6.6. ([HPIS13]) Let X be a set of n points in Euclidean space. Then, there
exists a spanner for (X, ∥.∥2) with stretch O(

√
log n) and with O(n log n log(diam(X)))

edges.

The algorithm requires O(log n log(diam(X))) partitions of X. For each partition,
it iterates through every cluster, selects a vertex, and connects all other vertices in
the cluster to the selected vertex using Euclidean distance edges. The spanner is the
union of all edges accumulated across the partitions. It takes Õ(n) time to connect the
vertices for each partition since only one scan is required. Given the partitions, it takes
Õ(n) time to construct the spanner. Thus, the overall time complexity is dominated
by the construction of the partitions.

The algorithm has two variations. The first variation (Section 2 in [HPIS13]) uses the
(O(
√
d),∆)-separating decomposition from [CCG+98], while the second variation (Sec-

tion 3) employs the Locality Sensitive Hashing (LSH) construction introduced by [AI06]
to create a partition. In both variations, the algorithm requires O(log n log(diam(X)))
random partitions to achieve the desired results. In the LSH-based variation, taking
c =
√
log n to construct an O(

√
log n)-spanner, it takes Õ(n) time to process each LSH

function [AI06], resulting in overall running time Õ(n). This makes the LSH-based
variation efficient and fast.

Using our fast construction, the variation based on the separating decomposition
becomes faster, with overall time complexity Õ(n1+1/c2+o(1)), where c = 1.4. While this
is not faster than the LSH-based variation, it significantly improves the efficiency of the
method based on the separating decomposition.
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