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Abstract

Given an edge-weighted undirected graph G and a subset of “re-

quired” vertices R ⊆ V (G), called the terminals, we want to find a

minor G′ with possibly different edge-weights, that retains distances

between all terminal-pairs exactly, and is as small as possible. We

prove that every graph G with n vertices and k terminals can be re-

duced (in this sense) to a minor G′ with O(k4) vertices and edges. We

also give a lower bound of Ω(k2) on the number of vertices required.

The O(k4) upper bound on the size of the minor is achieved using

a specific construction for minors, which we call Oriented Minors. For

this specific method we show that the upper bound is tight. The Ω(k2)

lower bound is proved by an even stronger claim; there are planar

graphs G such that any planar graph that preserves distances between

terminals in G has Ω(k2) vertices. When restricting the graphs G and

G′ to trees, we prove that 2k− 2 vertices are sufficient and necessary.

Another version of this problem requires that V (G′) = R and asks

for G′ that approximates the distances between terminals within a

constant factor. Previous results proved that this is possible in trees

and in outerplanar graphs, and termed this problem Steiner Point

Removal. We study a particular planar graph G that we suspected

would give a super-constant lower bound on the approximation factor.

We refute this suspicion, finding an outerplanar minor of G achieving

constant approximation. An interesting generalization of this result

is that for any distance metric on the terminals {0, 1, .., k} adhering

to a certain monotonicity rule, there exists an outerplanar graph that

approximates the metric within a constant factor.
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1 Introduction

Suppose that we are given an undirected graph G with non-negative edge-

lengths, and a subset of k terminal vertices R ⊆ V (G), and are only interested

in the distances between terminal-pairs (henceforth: terminal distances). If

|V (G)| ≫ k, a lot of the information in the graph may be redundant, mak-

ing it beneficial to find a smaller graph G′ that contains the terminals and

preserves their distances. We seek a bound f ∗(k) such that for every edge-

weighted graph G and set of k terminals, there exists a minor G′ of G of size

f ∗(k) with new edge-lengths, that preserve terminal distances exactly. We

show that it is always possible to find such a minor of G with O(k4) vertices

and edges, and that some graphs G might require |V (G′)| ≥ Ω(k2) for every

such minor G′. We are not aware of previous publications on this problem. 1

This problem is one instance of a general genre of problems; given an edge-

weighted graph G and a set of terminals R, is there a structurally (or topo-

logically) similar graph G′ with new edge-lengths, such that G′ preserves

terminal distances and is small. Instances of this problem may vary in terms

of the possible input graphs G (e.g. restrict them to planar graphs), the

structural similarity required of G′ (a minor of G, a member of the same

graph family etc.), the number of non-terminal vertices allowed in G′ (if

any), the degree to which G′ preserves the terminal distances in G (retains

them exactly or approximates them) and more. Many instances of this genre

are natural, but only a few of them were previously asked, and even fewer

were answered.

The problem of approximating terminal distances by a graph without non-

terminals was introduced by Gupta [Gup01] and termed the Steiner Point

Removal (SPR) problem, where Steiner points refer to the non-terminals.

We extend this term to include the removal of some, but not all, Steiner

points, effectively reducing the number of non-terminals in the graph. Algo-

rithmically, the input to this problem is an edge-weighted graph G and a set

of terminals R. The output is an edge-weighted graph G′ with R ⊆ V (G′)

1We recently posted a paper [KZ12], that includes our main results from Section 3 on

this problem, as well as additional results on bounded treewidth graphs.
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that preserves (exactly or approximately) the terminal distances. Ideally, this

graph is small (has size proportional to k) and preserves terminal distances

faithfully (either exactly or within a small constant factor). The graph G′

can then potentially replace the original graph G in various computations

involving terminal distances.

For example, given a planar graph G and k terminals, we can use SPR to

approximate the minimal-length TSP tour that visits every terminal more

efficiently. If we can find a planar graph G′ with f(k) vertices that preserves

terminal distances exactly, then we can use it to replace G in the approx.

TSP computation. The runtime of the approx. TSP computation on G′ is a

function of k, whereas on G it is a function of |V (G)|, which is potentially

much larger. However, since the construction of G′ also takes time, a sig-

nificant reduction in runtime occurs especially when TSP queries on several

subsets of the terminals are computed. In this case we can find G′ as a pre-

processing stage, with runtime polynomial in |V (G)|, and run queries in time

that depends only on k.

Trivially, the complete graph on the terminals can always retain distances

exactly, by setting the edge-length of every edge to the distance in G between

its endpoints. It is easy to see that in some cases the complete graph is the

only graph without non-terminals that preserves terminal distances exactly.

To see this, consider the star graph K1,k with unit edge-lengths, and let

the k leaves in the star graph be its terminals. The distance between any

two terminals is 2, making the complete graph the only graph without non-

terminals that preserves these distances exactly. By allowing a single non-

terminal vertex in the graph, we can avoid this dense structure. Alternatively,

we can use K1,k−1 as a tree on the terminals (without non-terminals) that

approximates all terminal distances within a factor of 2. These two options

exemplify the two main questions addressed in this work:

1. How many non-terminals are needed to guarantee that there exists a

graph G′ that preserves terminal distances exactly, while adhering to

certain structural requirements (same graph family, minor, etc.)?

2. In what graph-families F does every graph G ∈ F have a graph G′
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only on the terminals that approximates terminal distances within

a constant factor, while adhering to certain structural requirements

(same graph family, minor, etc.)?

1.1 Maintaining Distances Exactly

Some minors of G are what we call Oriented Minors. They are constructed

by specific operations and are accompanied by a calculation of induced edge-

lengths (see definitions 2.5, 2.6 and 2.7). Informally, every vertex in such a

minor corresponds to a vertex in G, with distances greater or equal to the

distances in G.

Any oriented minor of G is also a minor of G, and in minor-closed graph

families, it also belongs to the same graph family. Therefore, we aim to find

upper bounds on oriented minors G′, and lower bounds on family-preserving

graphs G′ (graphs which belong to the same family as G), whenever possible.

Our Results: Trees form a relatively simple family of input graphs to

analyze, due to the uniqueness of simple paths between any two vertices.

However, removing all non-terminals cannot be done without modifying ter-

minal distances, as exemplified above by a star graph. In Section 3.1 we

prove that for any edge-weighted tree G and any subset of k terminals, there

exists an oriented minor of G with at most k−2 non-terminals, that preserves

terminal distances exactly. We further prove that this bound is tight, even

for family-preserving graphs G′ (i.e. when G′ is only required to be a tree,

not necessarily a minor of G).

In Section 3.2 we give a construction that for any graph and k terminals,

creates an oriented minor with at most O(k4) non-terminals, that preserves

terminal distances exactly. We prove a matching lower bound of Ω(k4) non-

terminals for oriented minors, and a lower bound of Ω(k2) non-terminals for

family-preserving reductions in the family of planar graphs. This last bound

also implies that in every family of graphs containing all planar graphs, Ω(k2)

non-terminals are needed to guarantee the existence of minors that preserve

terminal distances.
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Related Work: Reducing the size of a graph while retaining distances

between vertex-pairs is analogous to reducing it while retaining s − t cuts

between vertex-pairs. Gomory and Hu [GH61] proved that it is possible to

construct a weighted tree preserving s− t cuts between all vertex-pairs in a

graph.

Another related question regarding flows is the Mimicking Network problem.

Given a graph G and a set of k terminals, a Mimicking Network is a weighted

graph G′ that preserves flows (or cut sizes) between all possible partitions

of the terminals. Hagerup et al. [HKNR95] first introduced the problem

of finding the minimal number of non-terminals needed to guarantee the

existence of a Mimicking Network, and proved that for any graph and k

terminals, O(22
k
) non-terminals are enough. A lower bound proving that

at least one non-terminal might be required was proved by Chaudhuri et

al. [CSWZ98] along with upper bounds for specific graph families.

Coppersmith and Elkin [CE06] consider the problem of preserving terminal

distances exactly, while reducing the number of edges in the graph (instead

of vertices). They prove that for every weighted graph G = (V,E) and set of

O(|V | 14 ) terminals R, there exists a weighted graph G′ = (V,E ′) preserving

terminal distances exactly, such that E ′ ⊆ E and |E ′| ≤ O(|V |).

1.2 Approximating terminal distances (without non-

terminals)

Previous Results: The question of approximating terminal distances within

a constant factor by graphs without non-terminals was first introduced by

Gupta [Gup01], where it was proved that for any weighted tree and set of

terminals, there exists a weighted tree without non-terminals, that approxi-

mates all terminal distances within a factor of 8. In [CGN+06] it was stated

that the approximating tree proved to exist in [Gup01] is, in fact, a mi-

nor of the original tree. Chan et al. [CXKR06] later proved a matching

lower bound of 8(1 − o(1)). Basu and Gupta [BG08] proved that for any

weighted outerplanar graph there exists an outerplanar graph without non-

terminals, approximating terminal distances within a factor of 15. Englert
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et al. [EGK+10] proved a randomized version of this problem for all minor-

excluded graph families, with an expected approximation factor depending

only on the size of the excluded minor.

Our Results: A known open question in this area is whether or not the re-

sults of [Gup01] and [BG08] extend to planar graphs, i.e. if it is true that for

every planar graph G and set of terminals R there exists a minor G′ without

non-terminals that approximates terminal distances within a constant factor.

At the beginning of our research we conjectured that this property does not

extend to planar graphs. We tried proving this conjecture using an interest-

ing planar example, suggested to us by Anastasios Sidiropoulos. This planar

graph is a discretized version of a hyperbolic plane with all terminals on the

outer face, so every minor without non-terminals is in fact an outerplanar

graph. We suspected that no outerplanar graph can give a constant approx-

imation to the terminal distances in this graph, which would imply that no

minor can do so. We then found that the opposite is true - there exists an

outerplanar minor of this graph that achieves constant approximation to all

terminal distances. We then generalized this construction, proving that out-

erplanar graphs can achieve constant factor approximation to every metric

with a similar monotonicity property.
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2 Preliminaries

In this paper, we discuss properties of edge-weighted, connected, undirected

graphs. An SPR (Steiner Point Removal) instance is a triple ⟨G, ℓG, R⟩ of
such a graph G with edge-lengths ℓG : E(G) → R+, and a set of terminals

R ⊆ V (G). An SPR “output” instance is a triple ⟨G′, ℓG′ , R⟩ of a graph G′

with edge-lengths ℓG′ : E(G′)→ R+ such that R ⊆ V (G′). Unless otherwise

specified, we use the following notations: n := |V (G)|, m := |E(G)|, and
k := |R|. The shortest-path distances of a graph G according to its edge-

lengths define a metric, denoted dG on the vertices V (G), so that dG(u, v) is

the length of the shortest-path between u and v in G for every u, v ∈ V (G).

The distance metric of the SPR instance ⟨G, ℓG, R⟩ induced by the terminals

is denoted dG|R×R. We will use the notions of weighted graphs and graph

distance interchangeably throughout this work.

Given an SPR instance ⟨G, ℓG, R⟩ , we want to find an SPR instance

⟨G′, ℓG′ , R⟩ that induces a distance metric dG′|R×R on the terminals that

is faithful to dG|R×R.

Definition 2.1 The SPR instance ⟨G′, ℓG′ , R⟩ is faithful to the SPR in-

stance ⟨G, ℓG, R⟩ if terminal distances are preserved exactly, i.e.

dG′(t1, t2) = dG(t1, t2) ∀t1, t2 ∈ R.

Definition 2.2 The SPR instance ⟨G′, ℓG′ , R⟩ is α-approximately faithful

to the SPR instance ⟨G, ℓG, R⟩ if terminal distances are preserved up to a

factor α ≥ 1, i.e.

dG(t1, t2) ≤ dG′(t1, t2) ≤ α · dG(t1, t2) ∀t1, t2 ∈ R.

We require that the graph G′ is structurally (or topologically) similar to the

graph G. Three requirements are made of G′ in this work: family-preserving,

minor, and Oriented-Minor.

Definition 2.3 Given a graph family F and a graph G ∈ F , a graph G′ is

family-preserving of G if it also belongs to F .
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Definition 2.4 A minor of a graph G is any graph G′ that is the result of a

series of edge-removals, vertex-removals, and edge-contractions applied to G.

We are free to assign any edge-length function to G′, since the claim that G′

is a minor of G is only structural. We hereby define an Oriented Minor G′

of G, a minor with specific induced edge lengths, assigned according to the

series of operations performed to create G′.

Definition 2.5 An Oriented Minor of a graph G is the result of a series of

edge-removals, vertex-removals and oriented edge-contractions performed on

G.

Definition 2.6 An oriented edge-contraction of an edge (u, v) is the con-

traction of one of its vertices, wlog u, into the other, so that the new vertex

created by the edge-contraction is named v.

Definition 2.7 The Induced Edge-Lengths of an oriented minor are created

along with the oriented minor itself as follows:

1. Let G′ and ℓG′ be the oriented minor and induced edge-lengths created

thus far (at first G′ is set to G and ℓG′ is set to ℓG).

2. Edge-removal removes the edge from the range of ℓG′ .

3. Vertex-removal removes all the edges adjacent to the vertex from ℓG′ .

4. The oriented contraction of (u, v) into v does the following for every

(u,w) ∈ E(G′):

• If (v, w) ∈ E(G′) set ℓG′(v, w) to min{ℓG′(v, w), ℓG′(v, u)+ℓG′(u,w)}

• Otherwise, add (v, w) to the range of ℓG′ , and set ℓG′(v, w) to

ℓG′(v, u) + ℓG′(u,w).

This action also removes all the edges adjacent to u from the range of

ℓG′.

Note that if G′ is an oriented minor of G, it holds that V (G′) ⊆ V (G). It is

easy to verify that ∀u, v ∈ V (G′) the inequality dG′(u, v) ≥ dG(u, v) holds.
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Defining the Goals: The Steiner Point Removal (SPR) problem is a gen-

eral genre of problems, and has many instances depending on the promised

graph family F to which G belongs, the required property of the returned

graph G′ (family-preserving, minor, or oriented minor), and a bound on ei-

ther the number of vertices allowed in |V (G′)| or the maximal factor to which

terminal shortest paths may be increased.

The following notations are used to denote the values we wish to bound in

the Exact Faithfulness section:

• f ∗(k,F) denotes the minimal size of V (G′) such that for every SPR

instance ⟨G, ℓG, R⟩ with G ∈ F there exists an SPR instance with

G′ ∈ F such that G′ is faithful to G.

• fminor(k,F) denotes the minimal size of V (G′) such that for every SPR

instance ⟨G, ℓG, R⟩ with G ∈ F there exists an SPR instance such that

G′ is a faithful minor of G.

• f orient(k,F) denotes the minimal size of V (G′) such that for every SPR

instance ⟨G, ℓG, R⟩ with G ∈ F there exists an SPR instance such that

G′ is a faithful oriented minor of G and ℓG′ is the induced edge-lengths

for G′.

The following notations are used to denote the values we wish to bound in

the α-Approximate Faithfulness section:

• α∗(k,F) denotes the minimal approximation α ≥ 1 such that for every

SPR instance ⟨G, ℓG, R⟩ with G ∈ F there exists an α-approximately

faithful SPR instance ⟨G′, ℓG′ , R⟩ with G′ ∈ F and V (G′) = R.

• αminor(k,F) denotes the minimal approximation α ≥ 1 such that for ev-

ery SPR instance ⟨G, ℓG, R⟩ withG ∈ F there exists an α-approximately

faithful SPR instance ⟨G′, ℓG′ , R⟩ whereG′ is a minor ofG and V (G′) =

R.

If ⟨G, ℓG, R⟩ is an oriented minor with induced edge-lengths, it is also a

minor, hence fminor(k,F) ≤ f orient(k,F). In a minor-closed graph family F ,
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any minor is also a member of the family. Therefore f ∗(k,F) ≤ fminor(k,F)
and α∗(k,F) ≤ αminor(k,F) in any minor-closed family F .
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3 Exact Faithfulness

The goal of this section is to bound the minimal number of non-terminals

required to guarantee that for every SPR instance ⟨G, ℓG, R⟩ there exists a

faithful SPR instance ⟨G′, ℓG′ , R⟩ such that G′ is either a minor of G, an

oriented-minor of G, or belongs to the same family as G. As exemplified in

a star graph it is impossible, even on simple graphs, to find such an instance

without allowing that V (G′) contains some non-terminals.

We begin with the simple case of tree graphs, and prove that

f∗(k,Trees) ≤ f orient(k,Trees) ≤ 2k−2.We show a matching lower bound

for infinitely many k; for k = 2i, we prove that 2k − 2 ≥ f ∗(k,Trees). We

later discuss minors of general graphs, and bound Ω(k2) ≤ fminor(k,AllGraphs) ≤
O(k4) and f orient(k,AllGraphs) = Θ(k4).

3.1 Trees

In trees, it is simple to calculate the shortest-path between any two terminals,

as it is the only simple path between them. This simplifies the analysis, which

we consider as more of a baseline. In this section we prove that

f∗(k,Trees) = fminor(k,Trees) = f orient(k,Trees) = 2k − 2.

We start by proving the upper bound f orient(k,Trees) ≤ 2k − 2. This

bound would imply that f ∗(k,Trees) ≤ fminor(k,Trees) ≤ 2k − 2. We

later show that these bounds are tight. First we give the simpler proof that

f orient(k,Trees) ≥ 2k − 2, and then generalize this result, proving that

f∗(k,Trees) ≥ 2k − 2.

3.1.1 Upper Bound for trees

Theorem 3.1 Let ⟨G, ℓG, R⟩ be an SPR instance where G is a tree. Then

there exists a faithful SPR instance ⟨G′, ℓG′ , R⟩ such that G′ is an oriented

minor of G, ℓG′ is its induced edge-lengths, and |V (G′)| ≤ 2k − 2.

In other words, f orient(k,Trees) ≤ 2k − 2.
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The instance ⟨G′, ℓG′ , R⟩ can be computed in time polynomial in |V (G)|.

We construct the oriented minor G′ and its induced length function ℓG′ using

Algorithm 1.

Algorithm 1 ReduceTree( ⟨G, ℓG, R⟩ )
1: G′ ← G

2: ℓG′ ← ℓG

3: while there exists a vertex v ∈ V (G′) \R such that degG′(v) = 1 do

4: Remove v from G′ along with its edges

5: end while

6: while there exists a vertex v ∈ V (G′) \R such that degG′(v) = 2 do

7: Let u,w be the neighbors of v in G′.

8: Use Oriented Edge-Contraction to contract v into u

(ℓG′(u,w) is set to the induced length ℓG′(u, v) + ℓG′(v, w)).

9: end while

10: return ⟨G′, ℓG′ , R⟩.

It is clear from the construction of G′ that it is an oriented minor of G, and

that ℓG′ is its induced edge-lengths.

Claim 3.2 The returned SPR instance ⟨G′, ℓG′ , R⟩ is faithful to ⟨G, ℓG, R⟩
.

Proof No terminals are removed during the algorithm, so R ⊆ V (G′) ⊆
V (G).

Every non-terminal vertex with degree 1 is never on a shortest-path between

two terminals, and can thus be removed without changing the metric dG′|R×R.

When contracting a non-terminal vertex with degree 2, the 2-edge path is

replaced by an edge with the same length, thus retaining the original distance.

As a result, any two vertices u, v ∈ V (G′) have dG′(u, v) = dG(u, v), and the

returned SPR instance is faithful.

We denote the non-terminals in G′ at the end of the algorithm by S.
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Lemma 3.3 |S| ≤ k − 2.

Proof After the first loop terminates, every non-terminal v ∈ V (G′) has

degG′(v) ≥ 2. Since the degrees of remaining vertices in G′ don’t change

during the second loop, once it terminates there are no non-terminals with

degrees 1 or 2, i.e. ∀v ∈ S it holds that degG′(v) ≥ 3. The graph G′ is a

connected tree, so it holds that
∑

v∈V (G′) degG′(v) = 2|E(G′)| = 2|V (G′)|−2.

It now holds that:

2|V (G′)| − 2 = 2(k + |S|)− 2 =
∑

v∈V (G′)

degG′(v)

=
∑
v∈R

degG′(v) +
∑
v∈S

degG′(v) ≥ k + 3|S|

⇒ |S| ≤ k − 2.

It is easy to see that the algorithm described above has polynomial time

complexity in |V (G)|. Lemma 3.3 implies that |V (G′)| ≤ 2k − 2, making

⟨G′, ℓG′ , R⟩ a faithful oriented minor with induced edge lengths and |V (G′)| ≤
2k − 2, thus proving Theorem 3.1.

3.1.2 Lower Bound for trees

Both the proof for f orient(k,Trees) and the proof for f ∗(k,Trees) use the

complete binary tree as an example. Let Gk be a complete binary tree with

k = 2i leaves, denoted L(Gk). Let the terminals Rk be these leaves. Let

G̃k be the result of the oriented contraction of the root of Gk into one of

its children, and the edge-lengths ℓG̃k
be the induced edge-lengths of G̃k.

The triple ⟨G̃k, ℓG̃k
, L(Gk)⟩ is an SPR instance, with 2k − 2 vertices and k

terminals.

Claim 3.4 For every k = 2i, the only faithful oriented minor of

⟨G̃k, ℓG̃k
, L(Gk)⟩ with induced edge lengths, is ⟨G̃k, ℓG̃k

, L(Gk)⟩ itself. In other

words,

f orient(k,Trees) ≥ |V (G̃k)| ≥ 2k − 2.
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Proof It is easy to see that any operation on G̃k increases the length of

the induced shortest path. Induced distances only increase when performing

a series of operations, so if no single operation can be performed without

increasing distances, no series of natural operations can be performed without

doing so.

Thus proving that all 2k − 2 vertices in ⟨G̃k, ℓG̃k
, L(Gk)⟩ are needed in any

faithful oriented minor with induced distances, i.e. f orient(k,Trees) ≥
|V (G̃k)| ≥ 2k − 2.

We now prove the more general claim, stating that for infinitely many values

of k, f∗(k,Trees) ≥ 2k − 2. We do so by proving that any SPR instance

⟨G′, ℓG′ , L(G̃k)⟩ that is faithful to ⟨G̃k, ℓG̃k
, L(Gk)⟩, and with a tree G′, has

at least 2k − 2 vertices.

Theorem 3.5 For any k = 2i, any triple ⟨G′, ℓG′ , R⟩ such that G′ is a tree,

and is faithful to ⟨G̃k, ℓG̃k
, L(Gk)⟩ has at least 2k − 2 vertices. Furthermore,

in any such tree there doesn’t exist a vertex v ∈ V (G′) at equal distances from

each of the terminals of G′.

Thus, f orient(k,Trees) ≥ 2k − 2.

Proof We proceed by induction on i.

When i = 1 this is clear. The tree must be a single edge between two vertices,

with length 2. Clearly, there is no vertex within equal distance to the two

vertices.

Consider the tree G̃2k. Let T1 and T2 be the two complete binary trees in

G̃2k.

Lemma 3.6 There doesn’t exist a vertex x ∈ V (G′) used both by a path

between v1, v2 ∈ L(T1) and between u1, u2 ∈ L(T2)

Proof of Lemma 3.6 Suppose towards contradiction that this is not the

case, and denote this vertex by x. Suppose wlog that dG′(v1, x) ≤ dG′(v2, x),

and dG′(u1, x) ≤ dG′(u2, x). Then dG′(u1, v1) ≤ 1
2
dG′(v1, v2) +

1
2
dG′(u1, u2).

Since T1 and T2 are the two subtrees of a complete binary tree, the distance
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between leaves of these subtrees must be larger than any internal path, thus

causing a contradiction.

No vertices are used by internal shortest paths between terminals in T1 and

terminals in T2. This means that there exist two distinct subtrees in G′

as well, which we denote T ′
1 and T ′

2. These subtrees are connected by only

one edge, since the graph G′ is a tree. This edge must retain distances,

and the distances between any terminal in T ′
1 to any terminal in T ′

2 are

equal. Therefore, the connection must be between a point equally close to

all terminals in T ′
1 and a point equally close to all terminals in T ′

2.

From the induction hypothesis, the trees T ′
1 and T ′

2 have a central point only if

they each have at least 2k−1 vertices. Therefore, |V (G′)| ≥ 2(2k−1) = 4k−2
vertices, which proves Theorem 3.5.

3.2 General Graphs

We start by proving an intuitive upper bound of f orient(k,AllGraphs) ≤
O(k4). An immediate corollary of this result is the following:

Corollary 3.7 For any minor-closed family of graphs F , any SPR instance

⟨G, ℓG, R⟩ with G ∈ F has a faithful graph G′ ∈ F with O(k4) vertices. In

other words, f∗(k,AllGraphs) ≤ O(k4).

This corollary is useful when discussing graph-family specific problems on

terminals, as it effectively reduces complexities depending on n to ones de-

pending solely on k, assuming that the graph-family is minor-closed.

We later prove that f orient(k,AllGraphs) = Θ(k4), as well as a lower bound

of fminor(k,AllGraphs) ≥ Ω(k2).

3.2.1 Upper Bound for minors of General Graphs

Theorem 3.8 For every SPR instance ⟨G, ℓG, R⟩ there exists an instance

⟨G′, ℓG′ , R⟩ s.t. G′ is a faithful oriented minor of G and ℓG′ is its induced

edge lengths, such that |V (G′)| ≤ k4, and |E(G′)| = O(k4). Furthermore, G′

can be found in time polynomial in |V (G)|.
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We construct the oriented minor (and induced edge lengths) as follows. Con-

sider all the shortest paths in a graph G, and suppose that the lengths of

shortest paths are unique. This assumption is reasonable since otherwise we

can either enforce a lexicographic order on the paths, and choose the shortest

paths accordingly, or perturbate the path lengths by ϵ small as we like.

Observation 3.9 Let u, v, x, y be terminals in R. Then assuming the short-

est path uniqueness, their shortest paths in G, denoted pG(u, v) and pG(x, y),

converge and diverge at most once.

This is easy to see since otherwise the shortest path between the first conver-

gence and last divergence is not unique, in contradiction to the unique path

lengths.

We construct the graph G′ as follows. First we mark all the vertices in which

there is convergence or divergence of two paths between terminals. There

are (k2) paths, and thus ≤ k4 such vertices.

Clearly, two paths starting at the same terminal mark that terminal as a

convergence vertex. So, a vertex v is not marked if it is both not a terminal

and also one of the following holds:

1. The vertex v is never used in any shortest-path between terminals in

G.

In this case, v and its edges can be safely removed from G.

2. The vertex v is only traversed using the same two edges (u, v), (v, w).

In this case, v can be orientally contracted into w, and all shortest paths

using v (i.e. using the path between u and w) retain their lengths in

G′ with its induced edge-lengths.

The SPR instance ⟨G′, ℓG′ , R⟩ we create by constructing this oriented mi-

nor, G′, with its induced edge-lengths, ℓG′ , is the result of performing these

vertex-removals and oriented contractions. This SPR instance is clearly faith-

ful to ⟨G, ℓG, R⟩ .
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It is therefore possible to eliminate all vertices but the convergence and di-

vergence vertices of shortest paths between terminals in G, thus proving that

f orient(k,AllGraphs) ≤ O(k4).

It is interesting to note that the new graph is rather sparse, with |E(G′)| ≤
O(k4). This is an immediate result of the following claim:

Claim 3.10 A path pG′(t1, t2) between t1, t2 ∈ R uses O(k2) edges.

Proof Suppose wlog we begin by comparing the original paths pG(a1, a2)

with pG(t1, t2) for all a1, a2 ∈ R. This marks at most two vertices as ones

not to be contracted. Overall, these comparisons mark at most k2 vertices

on the path pG(t1, t2).

Then we compare the rest of the terminal-pairs’ paths, and mark their con-

vergence and divergence points. These points are either not on pG(t1, t2), or

they are also the convergence of one of the paths with pG(t1, t2) and thus

have already been marked.

Since only marked vertices exist in G′, there are at most O(k2) vertices along

the path between t1 and t2 in G′, hence also O(k2) vertices along that path.

There are (k2) paths, meaning O(k4) edges in G′ overall.

The graph G′ can be easily constructed by finding the shortest paths between

terminals and comparing them, and can therefore be constructed in time

polynomial in the number of vertices |V (G)|. This completes the proof of

Theorem 3.8

3.2.2 Lower Bounds for Minors of General Graphs

We proved above that f orient(k,AllGraphs) ≤ O(k4). We now show that

this bound is tight, i.e. f orient(k,AllGraphs) = Θ(k4). Later, we prove

that f ∗(k,Planar) ≥ Ω(k2), and hence that fminor(k,AllGraphs) ≥
Ω(k2). How to settle the gap for fminor(k,AllGraphs) between Ω(k2) and

O(k4) is an interesting open problem resulting from this work.
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Theorem 3.11 For every k there exists an SPR instance ⟨G, ℓG, R⟩ such
that every faithful SPR instance ⟨G′, ℓG′ , R⟩ of an oriented minor G′ and

induced edge-lengths ℓG′ has |V (G′)| ≥ Ω(k4). This holds also for planar

graphs G. In other words, f orient(k,AllGraphs) ≥ f orient(k,Planar) ≥
Ω(k4).

Proof We construct ⟨G, ℓG, R⟩ probabilistically as follows. Consider the

[0, 1] × [0, 1] square in the 2-dimensional Euclidean plane. On each of the

edges of this square, we randomly choose ⌊k
4
⌋ points, and place terminals in

them. We connect by a straight line the vertices on the top edge with those

on the bottom edge, and those on the right with those on the left. There are

Θ(k2) “horizontal” edges each meeting Θ(k2) “vertical” edges, creating Θ(k4)

intersections. An intersection point is the intersection of only two lines; the

probability of an intersection of three lines is the probability that the last

point is placed at a specific number, which is 0. The probability is 0 even

after applying the union bound on all potential sets of three lines.

Let the graph G include the terminals and intersection points as its vertices,

and the segmented lines as its edges. The edge-lengths ℓG are set to be the

Euclidean distances between the endpoints of the edges.

Figure 1: Illustration for contraction of v.

Let v be any of the Θ(k4) internal intersection points. Then degG(v) = 4,

and each of its edges is used in some shortest path between terminals. Let

its neighbors be a, b, c, d according to clockwise order. Suppose wlog that

we contracted v into a. Then the direct path between b and c that went
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through v now detours through a, which means an increase of 2dG(v, a) to

that path. No alternative shortest path exists, since the graph distances equal

the Euclidean distances, and the only shortest path between two points is

the straight line between them. See Figure 1 for illustration. Hence, any

single oriented contraction is not possible. Since all of the edges are used in

some shortest paths, it is clear that no edge or vertex removals can be done

either.

Since any further oriented edge-contractions, vertex- and edge-removals can

only further increase the lengths of the induced shortest paths, no oriented

minor with induced edge-lengths can be faithful to G but G itself, with Ω(k4)

vertices, as required.

This proof hinges on the fact that when we contract a vertex with degree> 2,

the edges incident to it get the sum of two edges, clearly larger than the

original Euclidean distance. This is not the case when edge-contractions

don’t dictate the new edge-lengths.

The freedom to select edge lengths changes the problem dramatically. We

prove a weaker lower bound of Ω(k2) for minors of general graphs, and for

family-preserving planar graphs.

Theorem 3.12 For every k there exists a planar SPR instance ⟨G, ℓG, R⟩
such that every faithful SPR instance ⟨G′, ℓG′ , R⟩ with a planar G′ has

|V (G′)| ≥ Ω(k2). In other words, f ∗(k,Planar) ≥ Ω(k2).

Proof Our proof uses a k×k grid graph with k terminals, whose edge-lengths

are chosen so that terminal distances are essentially “linearly independent”

of one another. We use this independence to prove that no faithful SPR

instance ⟨G′, ℓG′ , R⟩ with a planar G′ can have a small vertex-separator.

Since G′ is planar, we can apply the planar separator theorem [LT79], and

obtain the desired lower bound.

For simplicity we shall assume that k is even. Consider the SPR instance

⟨G, ℓG, R⟩ with a grid graph G of size k × k with vertices (x, y) for x, y ∈
[0, k − 1], the length function ℓG such that the length of all horizontal edges

((x, y), (x+1, y)) is 1, and the length of each vertical edge ((x, y), (x, y+1)) is
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1+ 1

2x
2 ·k

. Let R1 = {(0, y) : y ∈ [0, k
2
− 1]}, and R2 = {(x, x) : x ∈ [k

2
, k− 1]}.

Let the terminals in the graph be R = R1 ∪R2, so |R| = k. See Figure 2 for

illustration.

  

(0; 0)

(k¡1; k¡1)

(x; y)

(x; y+1)

(x+1; y)

`(e) = 1`(e) = 1+ 1

2x
2
¢k

(0; 1
2
k¡1)

(1
2
k; 1

2
k)

Figure 2: A grid graph G and terminals R.

It is easy to see that the shortest-path between a vertex (0, y) ∈ R1 and a

vertex (x, x) ∈ R2 includes exactly x horizontal edges and x−y vertical edges.
Indeed, such paths have length smaller than x+(x− y)(1+ 1

k
) ≤ 2x− y+1.

Any other path between these vertices will have length greater than 2x−y+2.

Furthermore, the shortest path with x horizontal edges and x − y vertical

edges starting at vertex (0, y) makes horizontal steps before vertical steps,

since the vertical edge-lengths decrease as x increases, hence

dG((0, y), (x, x)) = 2x− y +
x− y

2x2 · k
. (1)

Assume towards contradiction that there exists a faithful SPR instance ⟨G′, ℓG′ , R⟩
with a planar graph G′ and |V (G′) ≤ k2

1600
vertices. Since G′ is planar,

by the weighted version of the planar separator theorem by Lipton and

Tarjan [LT79] with vertex-weight 1 on terminals and 0 on non-terminals,

there exists a partitioning of V ′ into three sets A1, S, and A2 such that
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w(S) ≤ |S| ≤ 2.5 ·
√

k2

1600
< 3k

40
, each of A1 and A2 has at most w(Ai) ≤ 2k

3

terminals, and there are no edges going between A1 and A2. Hence, for

i ∈ {1, 2} it holds that w(Ai ∪ S) ≥ k/3 and w(Ai) ≥ k
3
− 3k

40
> k

4
.

Without loss of generality, we claim that A1 ∩ R1 and A2 ∩ R2 each have

Θ(k) terminals. To see this, suppose without loss of generality that A1 is

the heavier of the two sets (i.e. w(A1) ≥ k
2
− 3k

40
and k

4
≤ w(A2) ≤ k

2
).

Suppose also that w(A2 ∩ R2) ≥ w(A2 ∩ R1). Then w(A2 ∩ R2) ≥ k
8
, and

w(A2 ∩ R1) ≤ 1
2
· w(A2) ≤ k

4
, implying that w(A1 ∩ R1) ≥ w(R1)− (w(R1 ∩

A2)+w(R1∩S)) ≥ k
2
−(k

4
+ 3k

40
) = k

5
. In conclusion, without loss of generality

it holds that w(A1 ∩ R1) ≥ k
5
and w(A2 ∩ R2) ≥ k

8
. Let Q1 ⊆ A1 ∩ R1 and

Q2 ⊆ A2 ∩R2 be two sets with the exact sizes k
5
and k

8
.

Every path between a terminal in Q1 and a terminal in Q2 goes through at

least one vertex of the separator S. Overall, the vertices in the separator

participate in k
8
× k

5
paths between Q1 and Q2. See Figure 3 for illustration.

Figure 3: Terminals on different sides connected by paths going through

v ∈ S.

We will need the following lemma, which is proved below.

Lemma 3.13 Let ⟨G′, ℓG′ , R⟩ , S, Q1 and Q2 be as described above. Then

every vertex v ∈ S participates in at most |Q1|+ |Q2| = k
5
+ k

8
shortest paths

between Q1 and Q2.

Applying Lemma 3.13 to every vertex in S, at most 3k
40
· 13k

40
= 39k2

1600
< k2

40

shortest paths between Q1 and Q2 go through S, which contradicts the fact
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that all k
8
· k
5
= k2

40
shortest-paths between Q1 and Q2 in G′ go through the

separator, and proves Theorem 3.12.

Proof of Lemma 3.13 Define a bipartite graph H on the sets Q1 and Q2,

with an edge between (0, y) ∈ Q1 and (x, x) ∈ Q2 whenever a shortest path

in G′ between (0, y) and (x, x) uses the vertex v. We shall show that H does

not contain an even-length cycle. Since H is bipartite, it contains no odd-

length cycles either, making H a forest with |E(H)| < |Q1| + |Q2| = k
5
+ k

8
,

thereby proving the lemma.

Let us consider a potential 2s-length (simple) cycle in H on the vertices

(0, y1), (x1, x1), (0, y2), (x2, x2), ..., (0, ys), (xs, xs) (in that order), for par-

ticular (0, yi) ∈ Q1 and (xi, xi) ∈ Q2. Every edge ((0, y), (x, x)) ∈ E(H)

represents a shortest path in G′ that uses v, thus

dG((0, y), (x, x)) = dG′((0, y), v) + dG′(v, (x, x)). (2)

If the above cycle exists in H, then the following equalities hold (by conven-

tion, let ys+1 = y1). Essentially, we get that the sum of distances correspond-

ing to “odd-numbered” edges in the cycle equals the one corresponding to

“even-numbered” edges in the cycle.

s∑
i=1

dG((0, yi), (xi, xi))
(2)
=

s∑
i=1

dG′((0, yi), v) +
s∑

i=1

dG′(v, (xi, xi))

=
s∑

i=1

dG′(v, (0, yi+1)) +
s∑

i=1

dG′((xi, xi), v)

(2)
= dG((xi, xi), (0, yi+1)).

Plugging in the distances as described in (1) and simplifying, we obtain

s∑
i=1

(2xi − yi + (xi − yi) ·
1

2x
2
i · k

) =
s∑

i=1

(2xi − yi+1 + (xi − yi+1) ·
1

2x
2
i · k

),

or equivalently,
s∑

i=1

yi

2x
2
i

=
s∑

i=1

yi+1

2x
2
i
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Suppose without loss of generality that x1 = min{xi : i ∈ [1, s]} (otherwise
we can rotate the notations along the cycle), and that y1 > y2 (otherwise we

can change the orientation of the cycle). Then we obtain

y1 − y2

2x
2
1

=
s∑

i=2

yi+1 − yi

2x
2
i

.

However, since y1 > y2, the lefthand side is at least 1

2x
2
1
, whereas the righthand

side is
∑s

i=2
yi+1−yi

2x
2
i
≤ s − 1 · k

2(x1+1)2
≤ k2

2(x1+1)2
. Therefore it must hold that

22x1+1 ≤ k2. Since x1 >
k
2
this inequality does not hold for any k > 4. Hence,

for any s, no cycle of size 2s exists in H, completing the proof of Lemma

3.13.

This completes the proof of Theorem 3.12. It is easy to see the following

corollary of the above theorem.

Corollary 3.14

fminor(k,AllGraphs) ≥ fminor(k,Planar) ≥ f∗(k,Planar) ≥ Ω(k2)
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4 α-Approximate Faithfulness

So far we tried to reduce the size of graphs, while retaining their structure

as well as the exact distances between given terminals. We showed that

this reduction is possible to an extent, but that some SPR instances exist

that cannot be reduced to instances where the graphs have less than Ω(k2)

vertices. For these SPR instances, any graph on the terminals alone has

either a different structure or different terminal distances. In this section

we discuss the problem of constructing graphs without non-terminals, which

retain the structure (or topology) of given graphs (minors or graphs in the

same graph family), while allowing the distances to increase by a constant

factor. This problem was first introduced in [Gup01], where the following

theorem was proved.

Theorem 4.1 (Gupta [Gup01]) Given an SPR instance ⟨T, ℓT , R⟩ where
T is a tree, there exists an SPR instance ⟨T ′, ℓT ′ , R⟩ such that T ′ is a tree,

V (T ′) = R and for all x, y ∈ R,

dT (x, y) ≤ dT ′(x, y) ≤ 8 · dT (x, y).

In other words, this means that α∗(k,Trees) ≤ 8. It was later stated,

in [CGN+06], that the graph T ′ is in fact a minor of T , implying that

αminor(k,Trees) ≤ 8 as well. In [BG08] it was proved that α∗(k,Outerplnanar) ≤
15.

We first conjectured that for some graphs G, there exists no minor (induced

oriented minor or otherwise) that retains the terminal distances within any

constant factor. In other words, that there exists a graph family F such that

α∗(k,F)→∞ as k →∞. More specifically, we conjectured the following:

Conjecture 4.2 αminor(k,Planar)→∞ as k →∞.

Our attempt to prove this conjecture failed, and in the process we found a

family of metricsM such that every graph such that its terminal distances
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induce a metric inM has an SPR instance ⟨G′, ℓG′ , R⟩ that gives a constant

factor approximation, where G′ is outerplanar2.

4.1 The attempt

Let Tk be a complete binary tree with k = 22
a
leaves. Draw it in the plane

and order the vertices of each level from left to right. The graph Gk is

constructed by taking Tk, and for every level i, adding edges connecting every

two consecutive vertices, and also connecting the first and last vertices. It

is easy to see that Gk is planar. See figure 4 for illustration. Let ℓGk
be the

uniform edge-length function, assigning the length 1 to all edges.

Number the vertices on the last level by the integers [0, k − 1] according to

their order. These are the terminals. The minimal number of hops along

edges in the last level between terminals number i and j (wlog j > i) is

denoted by ∥i − j∥ and equals min{j − i, k − j + i}. Notice this is not the

shortest path in Gk; in fact, dGk
(i, j) = Θ(log ∥i− j∥)+Θ(1). For simplicity

we shall assume that the constants are 1, i.e. dGk
(i, j) = log(∥i − j∥) + 1.

The actual constants do not change the proof, as the edge-lengths need only

be multiplied by them to achieve a construction that approximates the true

graph distances.

Figure 4: The graph G2

Figure 5: Another embedding of G2

in the plane

As seen in figures 4 and 5, the graph Gk is planar, and the vertices in the last

2An outerplanar graph is a graph that can be drawn in the plane so that all its vertices

touch the outer face.
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level are all incident to the outer face. Edge-contractions, edge-removals and

vertex-removals can all be done in a way that guarantees that the locations of

the vertices in the embedding remain fixed, while retaining a legal embedding

in the plane. Therefore, any oriented minor of this graph which includes only

the terminals (incident to the outer face), is an outerplanar graph.

Theorem 4.3 For every k = 22
a
, the SPR instance ⟨Gk, ℓGk

, R⟩ where R is

the set of vertices in the last level, numbered by [0, k−1], has an SPR instance

⟨G′
k, ℓG′

k
, R⟩ such that V (G′

k) = R, the graph G′
k is an oriented minor of Gk,

ℓG′
k
is some edge-length function, and for every x1, x2 ∈ [0, k−1] it holds that

dG(x1, x2) ≤ dG′(x1, x2) ≤ O(1) · dG(x1, x2).

4.1.1 Constructing G′
k:

An oriented minor G′ of some graph G, with V (G′) = R and created only by

oriented edge contractions, can be described as an assignment h : V (G)→ R

assigning a terminal to each of the vertices in V (G), where h(t) = t for

every t ∈ R, and vertices assigned to the same terminal (h−1(t)) induce a

connected component in G. As a result of the contraction process, an edge

(t1, t2) exists in the minor iff there exists an edge between some vertex v

assigned t1 (v ∈ h−1(t1)) and some vertex u assigned t2 (u ∈ h−1(t2)).

The structure of the graph Gk we discuss is that of a complete binary tree

of depth 2a, with additional edges. This gives an intuitive definition to

the concepts of levels and subtrees in the graph. We show the contraction

process from the bottom of the tree and up, in stages. At the end of stage i,

all vertices in the lowest 2i levels of Gk are contracted into (in other words,

have been assigned) the terminals.

Let Gk|i denote the subgraph of Gk induced on the vertices in the lowest 2i

levels of the graph. This graph can be described as a series of subtrees of

depth 2i with additional edges connecting the vertices of each level. We prove

that we can create the assignment h (hence, the minor) while maintaining

the following.
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Claim 4.4 The assignment h : V (Gk|i) → [0, k − 1] and the corresponding

graph G′
k|i can be created such that:

1. Let min(v) be the smallest number of a terminal in v’s subtree. Then

every vertex r at the highest level of Gk|i (closest to the root of Gk),

gets h(r) = min(r).

2. G′
k|i is a legal oriented minor of Gk|i, i.e. vertices assigned the same

terminal induce a connected component in Gk|i.

3. Let l ≤ i be some integer, and p · 22l ≤ k and ((p + 1) · 22l mod k)

be two consecutive multiples of 22
l
. Then there in an edge (p · 22l , (p+

1) ·22l mod k) in E(G′
k|i) connecting these terminals. In other words,

there exist vertices v ∈ h−1(p · 22l) and u ∈ h−1((p + 1) · 22l mod k)

such that (v, u) ∈ E(Gk|i).

4. Let 1 ≤ l ≤ i be some integer, p · 22l−1 ≤ k be some multiple of 22
l−1

,

and p′ ·22l be the multiple of 22
l
that minimizes ∥p′ ·22l−p ·22l−1∥. Then

there is an edge (p ·22l−1
, p′ ·22l) in E(G′

k|i) connecting these terminals.

In other words, there exist vertices v ∈ h−1(p·22l−1
) and u ∈ h−1(p′ ·22l)

such that (v, u) ∈ E(Gk|i).

Proof by induction on i.

i=0: To begin with, the terminals (leaves) are assigned to themselves, and

vertices in level 20 = 1 are assigned the their smaller child. Conditions (1)

and (2) and satisfied. Condition (3) is satisfied by the edges at level 1, and

condition (4) is satisfied vacuously. Note that the cycle edges connect every

terminal with a terminal numbered by some multiple of 2, satisfying a slight

variation of condition (4) (an endcase resulting from the fact that 1 is the

result of 22
−∞

and not 22
−1
).

Suppose that the invariant holds for i−1. Consider the graph Gk|i and assign

terminals to vertices in its lower half (the vertices of Gk|i−1) accordingly. The

construction now assigns terminals to the upper half of Gk|i.

Let r be a vertex in the highest level of Gk|i and let left-child(r) and

right-child(r) be r’s children, right(r) be the next vertex in level 2i to the right
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of r (connected to it by an edge) and left(r) be the previous vertex in level

2i, to the left of r. Assign min(r) to r, left-child(r) and all of the vertices in

left-child(r)’s subtree not yet assigned. Assign min(right(r)) to right-child(r)

and all of the vertices in its subtree not yet assigned. Do this to all the

subtrees in Gk|i. See Figure 6 for illustration.

Figure 6: Illustration for assignments h.

Numbers in figure are values of h function.

Vertices inside dashed lines are assigned the same value.

Vertex r is on level 2i+1, r′ = left(r), v = left-child(r) and u = right-child(left(r)).

Clearly this assignment satisfies condition (1).

From the induction hypothesis, before adding vertices to h−1(min(r)) it was

a connected component. The vertices added to h−1(min(r)) at this stage are

r, the vertices in the top half of left-child(r)’s subtree, and the vertices in the

top half of right-child(left(r))’s subtree. These vertices induce a connected

component due to the subtrees’ edges and the edges connecting consecutive

trees. This component is connected to the previous connected component,

since from the induction hypothesis on (1), the value min(r) is assigned to a

vertex in level 2i−1. Hence, all modified sets, h−1(min(r)) for some such r,

induce connected components, proving (2).

Condition (3) holds for l < i according to the induction hypothesis. Since the

roots are all assigned to their subtree’s minimal terminal, they are assigned

consecutive multiples of 22
i
. The edges connecting consecutive roots satisfy

condition (3) for l = i.
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Condition (4) also holds for l < i according to the induction hypothesis.

Every multiple of 22
i−1

is the smallest value in some tree of depth 2i−1, and

according to the induction hypothesis some root at level 2i−1 is assigned that

value. This root is either in the left or right subtree of some root r′ at level

2i, and its parent is assigned accordingly - either to the largest multiple of

22
i
smaller than it, or to the smallest multiple of 22

i
larger than it, which

proves (4) and the claim.

4.1.2 Proving the approximation factor

Let G′
k be the minor induced by the assignment h from the previous section.

We set the length ℓG′
k
(i, j) = dG(i, j) to every (i, j) ∈ E(G′

k|i). We hereby

prove the following claim:

Claim 4.5 The SPR instance ⟨G′
k, ℓG′

k
, [0, k−1]⟩ is 12-approximately faithful

to the SPR instance ⟨Gk, ℓGk
, [0, k − 1]⟩.

Proof of Claim Since ℓG′
k
(v, u) = dG(v, u) to every (v, u) ∈ E(G′

k|i),
distances in G′

k dominate those in Gk. To prove that the increase is by at

most a factor of 12, we first prove the following lemma about the distance to

a multiple of 22
i
for any i.

Lemma 4.6 Suppose terminal x is in [p · 22i , (p + 1) · 22i ]. Then either

dG′
k
(x, p · 22i) ≤ 2 · 2i + 2, or dG′

k
(x, (p+ 1) · 22i) ≤ 2 · 2i + 2.

Proof of Lemma We use induction on i.

i=0: Since the terminals are assigned to themselves, all edges from the last

level exist also in G′
k, and connect odd-numbered terminals to even-numbered

terminals. The lemma holds.

Induction step: Consider a terminal x ∈ [p · 22i , (p + 1) · 22i ]. There exists

p′ ∈ [0, 22
i−1 − 1] such that x ∈ [p · 22i + p′22

i−1
, p · 22i + (p′ + 1)22

i−1
]. From

the induction hypothesis, to one of these endpoints, y ∈ {p · 22i + p′22
i−1

, p ·
22

i
+ (p′ + 1)22

i−1}, it holds that dG′
k
(x, y) ≤ 2 · 2i−1 + 2.
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Let z be the terminal numbered by a multiple of 22
i
that minimizes ∥y− z∥.

Then z ∈ {p22i , (p + 1)22
i}. From (4) in Claim 4.4, the edge (y, z) is in

E(G′
k), with the length ℓG′

k
(y, z) = dGk

(y, z). Hence,

dG′
k
(x, z) ≤ dG′

k
(x, y) + dG′

k
(y, z)

≤ 2 · 2i−1 + 2 + log(22
i

) + 1

≤ 2 · 2i + 2.

Let x1, x2 ∈ [0, k− 1] be two terminals. Suppose wlog that x2 > x1 and that

∥x2 − x1∥ = x2 − x1 (since the construction is symmetric, this holds for all

other cases as well). Let s denote x2 − x1. Suppose 22
t ≤ s ≤ 22

t+1
. Then in

Gk|t+1, x1 and x2 were either in the same subtree, or in consecutive subtrees.

In both cases we can denote by q the largest multiple of 22
t+1

that is smaller

than x2, and have x2 − q and |x1 − q| (x1 may be greater or smaller than q)

smaller than 22
t+1

. Using Lemma 4.6, condition (3) from Claim 4.4, and the

edge-lengths, we have dG′
k
(x1, q) ≤ 3 · 2t+1 + 2 and the same for x2. Using

the triangle inequality, dG′
k
(x1, x2) ≤ 6 · 2t+1 + 4 = 12 · 2t + 4.

The original distance is dG(x1, x2) ≥ log s ≥ log 22
t
= 2t.

Therefore dG′
k
(x1, x2) ≤ 12 · 2t + 4 ≤ 12dG(i, j), proving Claim 4.5.

Condition (2) in Claim 4.4 implies that G′
k is a minor of Gk, and along with

Claim 4.5 proves Theorem 4.3.

4.2 A Generalization

In the previous section, we constructed an outerplanar graph (specifically, a

minor of a given SPR instance) that approximates a specific distance metric

on the terminals. Assuming a numbering of the terminals, the metric assigned

two terminals x1 and x2 the logarithm of the (cyclic) difference between their

indices, ∥x1 − x2∥. The construction we proved used the structure of the

original SPR instance, but the outcome is an outerplanar graph that mimics

the metric dG|R×R, independently from the structure. In this section we prove

for a broader family of metrics, that they can be embedded into outerplanar

graphs, using similar constructions to that of the previous section.
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When viewing the construction of the outerplanar graph from the top-down

instead of bottom-up, we realize that the same graph can also be constructed

as follows: Split the vertices into two segments: [0, k/2] and [k/2, k] (where

k ≡ 0 in the cyclic structure), by adding the edge (0, k/2). Further split these

segments into multiple segments of equal size, by choosing evenly spaced

vertices in each segment, and adding edges between two consecutive chosen

vertices, and between each chosen vertex and the closest endpoint of the

containing segment. Continue this process until the segments can no longer

be split. This construction gives the same graph we proved for the logarithm

function, but now the construction applies also to any metric M on [0, k− 1]

for which dM(i, j) = g(∥i− j∥) for some monotonic function g.

In fact, we can generalize this result even further, and prove the following

theorem.

Theorem 4.7 Let M be a metric on [0, k − 1] such that ∀i < x < j it

holds that d(i, x) ≤ d(i, j) and that d(x, j) ≤ d(i, j). Then there exists an

SPR instance ⟨G′, ℓG′ , [0, k − 1]⟩ such that V (G′) = [0, k − 1], dG′ is 34-

approximately faithful to M , and the graph G′ can be drawn in the plane so

that its terminals lie on a line, and all edges are drawn above the line.

4.2.1 Constructing the graph G′:

We will need the following definition. For r > 0, an r-net of the metric X is

a subset N ⊆ X such that:

1. If p1, p2 ∈ N then dX(p1, p2) > r.

2. For every v ∈ X there is p ∈ N that covers v, i.e. dX(v, p) ≤ r.

Such a net always exists. It can be constructed by picking vertices (in any

order) that are not yet covered by any vertex in N and adding them to it,

until all vertices are covered.

Given a metric dM as in Theorem 4.7, we construct the graph G′ according

to Algorithm 2.
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Algorithm 2 Construct ⟨G′, ℓG′ , [0, k − 1]⟩ (M)

1. Normalize distances in the graph so that the smallest one equals 2.

2. Construct 2i-nets, denoted N i, for i from log(dM(0, k − 1)) to 0, so

that N i−1 ⊇ N i. Let vi1, v
i
2, ..., v

i
li
denote the vertices of the 2i-net in

increasing order.

3. Set V (G′) = [0, k − 1] and E(G′) = ∅.

4. For i = log(dM(0, k − 1))− 1 to 0 do

(a) For every j ∈ [1, li − 1] add to E(G′) the edge (vij, v
i
j+1).

(b) For every j ∈ [1, li] add to E(G′) an edge connecting vij with the

vertex vi+1
a that minimizes dM(vij, v

i+1
a ). Break ties by minimizing

|vij − vi+1
a |. Further ties can be broken arbitrarily.

5. For every edge (v, u) ∈ E(G′) set ℓG′(v, u) = dM(v, u).

Claim 4.8 The graph G′ constructed above can be drawn in the plane so that

its terminals lie on a line, and all edges are drawn above it.

Proof of Claim Embed the vertices [0, k − 1] in a line, in order. An edge

(x1, x2) induces a segment of the line, denoted [x1, x2], which includes all the

vertices t ∈ [x1, x2]. It is easy to see that if the intersection of two segments

[x1, x2] and [y1, y2] is either [x1, x2], [y1, y2] a single vertex or ∅, then we can

draw the edges of G′ above the line so that no two edges intersect.

We show by induction on i from log(dM(0, k − 1)) to 0, that the segments

induced by edges added in round i are contained in or lie completely outside

of segments induced by the edges from round i+ 1, and also don’t intersect

each other. At the beginning, the net N log(dM (0,k−1)) includes a single vertex,

and no edges are added. Suppose that there are no intersections by round

i+ 1. Since N i+1 ⊆ N i, the segments induced by consecutive vertices in N i,

and induced by the edges added in step 4a, are contained in larger segments

in N i+1.
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Because of monotonicity, edges added in step 4b connect a vertex via ∈ N i

to a vertex x ∈ N i+1 which minimizes |via − x|. There is some b such that

via ∈ [vi+1
b , vi+1

b+1]. Then x = vi+1
b or vi+1

b+1. Hence, the segment induced by

the edge (via, x) is contained inside the segment [vi+1
b , vi+1

b+1], and from the

induction hypothesis is either contained in or lies completely outside of all

the other segments from previous rounds.

It is easy to see that edges added in step 4a induce segments that are con-

tained or equal to those induced by edges added in step 4b, and that two

edges added in step 4a induce segments that intersect in at most one vertex.

Consider the segments induced by edges added in step 4b. If these segments

are contained in two distinct segments from round i + 1, they are disjoint.

Suppose that they belong to the same segment [vi+1
b , vi+1

b+1] from round i+ 1.

If both edges connect to the same endpoint of that segment, then one of the

segments is contained in the other. Otherwise, denote the edges by (vi+1
b , vix)

and (viy, v
i+1
b+1). In this case, it must be that viy > vix. Otherwise, from the

construction, dM(vi+1
b , vix) ≤ dM(vix, v

i+1
b+1) and dM(viy, v

i+1
b+1) ≤ dM(vi+1

b , viy).

From monotonicity of M , dM(vix, v
i+1
b+1) ≤ dM(viy, v

i+1
b+1). Put together, we get

that dM(vi+1
b , vix) ≤ dM(vix, v

i+1
b+1) ≤ dM(viy, v

i+1
b+1) ≤ dM(vi+1

b , viy), and due to

the monotonicity of M , all these terms are equal, and the edges contradict

the tie-breaking rule. Since viy > vix, the segments [vi+1
b , vix] and [viy, v

i+1
b+1] are

disjoint. Two edges added in round i don’t intersect, and induce segments

contained in segments from round i+1, proving the induction and the claim.

4.2.2 Proving the approximation factor

The proof is very similar to that in Section 4.1.2, and uses a similar lemma.

Lemma 4.9 For every v ∈ V (G′) every vertex vij ∈ N i at distance

dM(v, vij) ≤ 2i is at distance dG′(v, vij) ≤ 7 · 2i.

Proof of Lemma The proof is by induction on i. When i = 0 the only

vertex at distance smaller than 1 from v is v itself, at distance 0.
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Suppose that the lemma holds for i−1. Because N i−1 is a net, there exists a

vertex vi−1
j′ ∈ N i−1 such that dM(v, vi−1

j′ ) ≤ 2i−1. From the triangle inequality,

the distance dM(vij, v
i−1
j′ ) ≤ 2i + 2i−1. The vertex vi−1

j′ is connected in G′ by

an edge to the closest vertex to it in N i: either vij, v
i
j−1, or v

i
j+1. Since vi−1

j′

is covered by a vertex in N i, the closest vertex to it in N i is within distance

2i.

If vi−1
j′ is connected to vij then using the induction hypothesis,

dG′(v, vij) ≤ dG′(v, vi−1
j′ ) + dM(vi−1

j′ , vij)

≤ 7 · 2i−1 + 2i

≤ 7 · 2i

Otherwise, suppose wlog that vi−1
j′ is connected to vij−1. We get:

dG′(v, vij) ≤ dG′(v, vi−1
j′ ) + dM(vi−1

j′ , vij−1) + dM(vij−1, v
i
j) (3)

≤ 7 · 2i−1 + 2i + dM(vij−1, v
i−1
j′ ) + dM(vi−1

j′ , v) + dM(v, vij) (4)

≤ 7 · 2i−1 + 2i + 2 · 2i + 2i−1 (5)

= 7 · 2i. (6)

Using (1) the triangle inequality, (2) the induction hypothesis, the edge

(vi−1
j′ , vij−1) and the triangle inequality, and (3) the lemma’s statement, and

the facts that vi−1
j′ covers v and vij−1 covers vi−1

j′ .

We can now prove the approximation factor.

Claim 4.10 The SPR instance ⟨G′, ℓG′ , [0, k− 1]⟩ constructed above induces

distances such that for every two vertices x1, x2 ∈ [0, k − 1],

dM(x1, x2) ≤ dG′(x1, x2) ≤ 34dM(x1, x2).

Proof of Claim Denote by a the power for which 2a ≤ dM(x1, x2) < 2a+1

and suppose that x1 < x2. Since the distance between any two vertices in

[x1, x2] is smaller than 2a+1, there can be at most one vertex in [x1, x2] that

is in Ia+1.
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• If there is a vertex va+1
p ∈ Ia+1 ∩ [x1, x2], then it is at distance smaller

than 2a+1 from both x1 and x2. Using Lemma 4.9, dG′(x1, v
a+1
p ) ≤

7 · 2a+1 and dG′(x2, v
a+1
p ) ≤ 7 · 2a+1, hence dG′(x1, x2) ≤ 14 · 2a+1 ≤

28dM(x1, x2).

• If there isn’t such a vertex, then one of the following holds:

– Both x1 and x2 are covered by the same vertex in Ia+1, using

similar inequalities we get dG′(x1, x2) ≤ 14 · 2a+1 ≤ 28dM(x1, x2).

– x1 is covered by a vertex va+1
p < x1, and x2 is covered by the vertex

va+1
p+1 > x2. From the triangle inequality, dM(va+1

p , va+1
p+1) ≤ 3 · 2a+1.

Using Lemma 4.9 and the edge (va+1
p , va+1

p+1) from the construction,

we get

dG′(i, j) ≤ 2 · 7 · 2a+1 + 3 · 2a+1

= 17 · 2a+1

≤ 34dM(i, j).

Let M be a metric on [0, k − 1]. A rotation i of the vertices is a re-ordering

[0i, k − 1i] such that 0i ≡ i, k − 1i − i ≡ k − 1 and k − 1i − (i− 1) + j ≡ j.

We say that the segment [v, u] is contained in the segment [x, y] if for some

rotation i of the the vertices it holds that xi ≤ vi < ui ≤ yi, ∥ui−vi∥ = ui−vi
and ∥yi − xi∥ = yi − xi.

We say that M is circularly monotonic in regards to containment, if for

every segment [v, u] contained in the segment [x, y] it holds that dM(v, u) ≤
dM(x, y).

Then using a similar construction to that for Theorem 4.7, we get that every

metric M that is circularly monotonic in regards to containment, can be

embedded in an outerplanar graph with a constant distortion to its values.
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