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ABSTRACT
We undertake a systematic study of sketching a quadratic
form: given an n × n matrix A, create a succinct sketch
sk(A) which can produce (without further access to A) a
multiplicative (1+ε)-approximation to xTAx for any desired
query x ∈ Rn. While a general matrix does not admit non-
trivial sketches, positive semi-definite (PSD) matrices ad-
mit sketches of size Θ(ε−2n), via the Johnson-Lindenstrauss
lemma, achieving the “for each” guarantee, namely, for each
query x, with a constant probability the sketch succeeds.
(For the stronger “for all” guarantee, where the sketch suc-
ceeds for all x’s simultaneously, again there are no non-
trivial sketches.)

We design significantly better sketches for the important
subclass of graph Laplacian matrices, which we also extend
to symmetric diagonally dominant matrices. A sequence
of work culminating in that of Batson, Spielman, and Sri-
vastava (SIAM Review, 2014), shows that by choosing and
reweighting O(ε−2n) edges in a graph, one achieves the “for
all” guarantee. Our main results advance this front.
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1. For the “for all” guarantee, we prove that Batson et
al.’s bound is optimal even when we restrict to “cut
queries” x ∈ {0, 1}n. Specifically, an arbitrary sketch
that can (1 + ε)-estimate the weight of all cuts (S, S̄)
in an n-vertex graph must be of size Ω(ε−2n) bits.
Furthermore, if the sketch is a cut-sparsifier (i.e., itself
a weighted graph and the estimate is the weight of the
corresponding cut in this graph), then the sketch must
have Ω(ε−2n) edges.

In contrast, previous lower bounds showed the bound
only for spectral-sparsifiers.

2. For the “for each” guarantee, we design a sketch of size
Õ(ε−1n) bits for “cut queries” x ∈ {0, 1}n. We apply
this sketch to design an algorithm for the distributed
minimum cut problem. We prove a nearly-matching
lower bound of Ω(ε−1n) bits. For general queries x ∈
Rn, we construct sketches of size Õ(ε−1.6n) bits.

Our results provide the first separation between the sketch
size needed for the “for all” and “for each” guarantees for
Laplacian matrices.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY—General
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1. INTRODUCTION
Sketching emerges as a fundamental building block used

in numerous algorithmic contexts to reduce memory, run-
time, or communication requirements. Here we focus on
sketching quadratic forms, defined as follows: Given a ma-
trix A ∈ Rn×n, compute a sketch of it, sk(A), which suffices
to estimate the quadratic form xTAx for every query vector
x ∈ Rn. Typically, we aim at (1 + ε)-approximation, i.e.,
the estimate is in the range (1± ε)xTAx, and sketches that
are randomized. The randomization guarantee comes in two
flavors. The first one requires that the sketch sk(A) succeeds
(produces a (1 + ε)-approximation) on all queries x simulta-
neously. The second one requires that for every fixed query
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x, the sketch succeeds with high probability. The former is
termed the “for all” guarantee and the latter the “for each”
guarantee, following the prevalent terminology in compres-
sive sensing. The main goal is then to design a sketch sk(A)
of small size.

Sketching quadratic forms is a basic task with many appli-
cations. In fact, the definition from above abstracts several
specific concepts studied before. One important example
is the sparsification of a graph G, where we take the ma-
trix A to be the Laplacian of G and restrict the sketch to
be of a specific form, namely, a Laplacian of a sparse sub-
graph G′. Then a cut-sparsifier corresponds to the setting
of query vectors x ∈ {0, 1}n, in which case xTAx describes
the weight of the corresponding cut in G. Also, a spectral-
sparsifier corresponds to query vectors x ∈ Rn in which
case xTAx is a Laplacian Rayleigh quotient. Cut queries
to a graph have been studied in the context of privacy in
databases [GRU12, JT12, BBDS13, Upa13, Upa14] where,
for example, vertices represent users and edges represent
email correspondence between users, and email correspon-
dences between groups of users are of prime interest. These
papers study also directional covariance queries on a ma-
trix, which correspond to evaluating the quadratic form of
a positive semidefinite (PSD) matrix, as well as evaluating
the quadratic form of a low-rank matrix, which could corre-
spond to, e.g., a user-movie rating matrix. Finally, sketching
quadratic forms has appeared and has been studied in other
contexts [AHK05, AGM12a, AGM12b, KLM+14, McG14].

Quadratic form computations also arise in numerical lin-
ear algebra. Consider the least squares regression problem
of minimizing ‖By − c‖22 for an input matrix B and vec-
tor c. Writing the input as an adjoined matrix M = [B, c]
and denoting x = (y,−1), the objective is just ‖By − c‖22 =

‖Mx‖22 = xTMTMx, and thus regression queries can be
modeled by a quadratic form over the PSD matrix A =
MTM . Indeed, for a concrete example where a small-space
sketch sk(A) leads to memory savings (in the data-stream
model) in regression problems, see [CW09].

To simplify the exposition, let us assume that the ma-
trix A is of size n × n and its entries are integers bounded
by a polynomial in n, and fix the success probability to be
90%. When we consider a graph G, we let n denote its
number of vertices, with edge-weights that are positive in-
tegers bounded by a polynomial in n. We use Õ(f) to de-

note f ·(log f)O(1), which suppresses the distinction between
counting bits and machine words.

The general quadratic forms, i.e., when the square matrix
A is arbitrary, require a sketch of size Ω̃(n2) bits, even in
the “for each” model (see Appendix A).

Hence we restrict our attention to the class of PSD matri-
ces A, and its subclasses like graph Laplacians, which occur
in many applications. We provide tight or near-tight bounds
for these classes, as detailed in Table 1. Overall, our results
show that the specific class of matrices as well as the model
(“for each” vs. “for all” guarantee) can have a dramatic effect
on the sketch size, namely, quadratic vs. linear dependence
on n or on ε.

1.1 Our Contributions
We start by characterizing the sketching complexity for

general PSD matrices A, in both the “for all” and “for each”
models. First, we show that, for the “for all” model, sketch-
ing an arbitrary PSD matrix A requires Ω(n2) bits (Theo-

rem 2.1); i.e., storing the entire matrix is essentially opti-
mal. In contrast, for the “for each” model, we show that the
Johnson-Lindenstrauss lemma immediately yields a sketch
of size O(nε−2 logn) bits and this is tight up to the logarith-
mic factor (see Section 2.1). We conclude that the bounds
for the two models are quite different: quadratic vs. linear
in n.

Surprisingly, one can obtain significantly smaller sketches
when A is the Laplacian of a graph G, a subclass of PSD ma-
trices that occurs in many applications. Specifically, we refer
to a celebrated result of Batson, Spielman, and Srivastava
[BSS14], which is the culmination of a rich line of research
on graph sparsification [BK96, ST04, ST11, SS11, FHHP11,
KP12]. They show that every graph Laplacian A admits a
sketch in the “for all” model whose size is O(nε−2 logn) bits.

This stands in contrast to the Ω̃(n2) lower bound for general
PSD matrices. Their sketch has a particular structure: it is
itself a graph, consisting of a reweighted subset of edges in G
and works in the “for all” model. Batson et al. [BSS14] also
prove a lower bound for the case of spectral sparsification
(for cut sparsifiers, the bound remained open).

The natural question is whether there are qualitatively
better sketches we can construct by relaxing the guarantees
or considering more specific cases. Indeed, we investigate
this research direction by pursuing the following concrete
questions:

Q1. Can we improve the “for all” upper bound O(nε−2) by
using an arbitrary data structure?

Q2. Can we improve the bound by restricting attention to
cut queries? Specifically, can the optimal size of cut-
sparsifiers be smaller than that of spectral-sparsifier?

Q3. Can we improve the“for each”bound beyond the Õ(nε−2)
bound that follows from general PSD matrices result
(and also from the “for all” model via [BSS14])?

We make progress on all of the above questions, often pro-
viding (near) tight results.

In all of these questions, the main quantitative focus is
the dependence on the accuracy parameter ε. We note that
improving the dependence on ε is important for a variety
of reasons. From a theoretical angle, a quadratic depen-
dence is common for estimates with two-sided error, and
hence sub-quadratic dependence elucidates new interesting
phenomena. From a practical angle, we can set ε to be
the smallest value for which the sketch still fits in memory
(i.e., we can get better estimates with the same memory).
In general, quadratic dependence might be prohibitive for
large-scale matrices: if, say, ε is 1% then 1/ε2 = 10000.

We answer Q1 negatively by showing that every sketch
that satisfies the “for all” guarantee requires Ω(nε−2) bits
of space, even if the sketch is an arbitrary data structures
(see Section 2.2). This matches the upper bound of [BSS14]
(up to a logarithmic factor, which stems from the difference
between counting words and bits).

Our answer to Q1 essentially answers Q2 as well: our
lower bound actually holds even if we only consider cut
queries x ∈ {0, 1}n. Indeed, an immediate consequence of
the Ω(nε−2) bits lower bound is that a cut-sparsifier G′ must
have Ω(nε−2/ logn) edges. We strengthen this further and
obtain a tight lower bound of Ω(nε−2) edges (even in the
case when the cut-sparsifier G′ is a not necessarily a sub-
graph of G). Such an edge lower bound was not known



before. The previous lower bound for a cut-sparsifier G′,
due to Alon [Alo97], uses two additional requirements —
that the sparsifier G′ has regular degrees and uniform edge
weights — to reach the same conclusion that G′ has Ω(n/ε2)
edges. Put differently, Alon’s lower bound is quantitatively
optimal — it concludes the tight lower bound of Ω(n/ε2)
edges — but it is unsatisfactory qualitatively, as it does
not cover a cut-sparsifier G′ that has edge weights or has
non-regular degrees, which may potentially lead to a smaller
sparsifier. Similarly, the results of [Nil91, BSS14] apply to
spectral-sparsification, which is a harder problem than cut-
sparsification. Our result subsumes all of these bounds, and
for cut sparsifiers it is in fact the first lower bound under no
assumption. Our lower bound holds even for input graphs
G that are unweighted.

On the upside, we answer Q3 positively by showing how to
achieve the “for each” guarantee using nε−1 polylog(n) bits
of space (see Section 2.3.1). This bound can be substan-
tially smaller than in the “for all” model when ε is small:
e.g., when ε = 1/

√
n we obtain size n3/2 polylog(n) instead

of the O(n2) needed in the “for all” model. We also show
that Ω(nε−1) bits of space is necessary for the “for each”
guarantee (Theorem 2.8).

We then give an application for the “for each” sketch to
showcase that it is useful algorithmically despite having a
guarantee that is is weaker than that of a “for all” cut-
sparsifier. In particular, we show how to (1+ε)-approximate
the global minimum cut of a graph whose edges are dis-
tributed across multiple servers (see Section 1.3).

Finally, we consider a “for each” sketch of a Laplacian ma-
trix under arbitrary query vectors x ∈ Rn, which we refer to
as spectral queries on the graph G. Such spectral queries give
more flexibility than cut queries. For example, if the graph
corresponds to a physical system, e.g., the edges correspond
to electrical resistors, then spectral queries can evaluate the
total heat dissipation of the system for a given set of po-
tentials on the vertices. Also, a spectral query x that is a
permutation of {1, 2, . . . , n} gives the average squared dis-
tortion of a line embedding of G. We design in Section 2.3.2
a sketch for spectral queries that uses nε−1.6 polylog(n) bits
of space. These upper bounds also apply to the symmetric
diagonally-dominant (SDD) matrices.

Our results and previous bounds are summarized in Ta-
ble 1.

1.2 Highlights of Our Techniques
In this section we give technical overviews for our three

main results: (1) the lower bound for cut queries on Lapla-
cian matrices (answering Q1 and Q2); (2) the upper bound
for cut queries on Laplacian matrices; and (3) the upper
bound for spectral queries on Laplacian matrices (answer-
ing Q3). We always useG to denote the corresponding graph
of the considered Laplacian matrix.

1.2.1 Lower Bound for Sketching Laplacian Matri-
ces with Cut Queries, “For All” Model

We first prove our Ω(nε−2)-bit lower bound using commu-
nication complexity for arbitrary data structures. We then
show how to obtain an Ω(nε−2) edge lower bound for cut
sparsifiers by encoding a sparsifier in a careful way so that if
it had o(n/ε2) edges, it would violate an Ω(nε−2) bit lower
bound in the communication problem.

For the Ω(nε−2) bit lower bound, the natural thing to

do would be to give Alice a graph G, and Bob a cut S.
Alice produces a sketch of G and sends it to Bob, who must
approximate the capacity of S. The communication cost
of this problem lower bounds the sketch size. However, as
we just saw, Alice has an upper bound with only Õ(nε−1)
bits of communication. We thus need for Bob to solve a
much harder problem which uses the fact that Alice’s sketch
preserves all cuts.

We let G be a disjoint union of ε2n/2 graphs Gi, where
each Gi is a bipartite graph with 1

ε2
vertices in each part.

Each vertex in the left part is independently connected to a
random subset of half the vertices in the right part. Bob’s
problem is now, given a vertex v in the left part of one of
the Gi, as well as a subset T of half of the vertices in the
right part of that Gi, decide if |N(v) ∩ T | > 1

4ε2
+ c

ε
(N(v)

is the set of neighboring vertices of v), or if |N(v) ∩ T | <
1

4ε2
− c

ε
, for a small constant c > 0. Most vertices v will

satisfy one of these conditions, by anti-concentration of the
binomial distribution. Note that this problem is not a cut
query problem, and so a priori it is not clear how Bob can
use Alice’s sketch to solve it.

To solve the problem, Bob will do an exhaustive enumer-
ation on cut queries, and here is where we use that Alice’s
sketch preserves all cuts. Namely, for each subset S of half
of the vertices in the left part of Gi, Bob queries the cut
S ∪ T . As Bob ranges over all (exponentially many) such
cuts, what will happen is that for most vertices u in the left
part for which |N(u)∩T | > 1

4ε2
+ c
ε
, the capacity of S∪T is

a “little bit” larger if u is excluded from S. This little bit is
not enough to be detected, since |N(u) ∩ T | = Θ

(
1
ε2

)
while

the capacity of S ∪T is Θ
(

1
ε4

)
. However, as Bob range over

all such S, he will eventually get lucky in that S contains all
vertices u for which |N(u)∩T | > 1

4ε2
+ c
ε
, and now since there

are about 1
2ε2

such vertices, the little c
ε

bit gets “amplified”

by a factor of 1
2ε2

, which is just enough to be detected by a
(1 + ε)-approximation to the capacity of S ∪T . If Bob finds
the S which maximizes the (approximate) cut value S ∪ T ,
he can check if his v is in S, and this gives him a correct
answer with large constant probability.

We believe our main contribution is in designing a com-
munication problem which requires Alice’s sketch to preserve
all cuts instead of only a single cut. There are also several
details in the communication lower bound for the problem
itself, including a direct-sum theorem for a constrained ver-
sion of the Gap-Hamming-Distance problem, which could be
independently useful.

For the Ω(nε−2) edge lower bound for cut sparsifiers, the
straightforward encoding would encode each edge usingO(logn)
bits, and cause us to lose a logn factor in the lower bound.
Instead, we show how to randomly round each edge weight
in the sparsifier to an adjacent integer, and observe that
the integer weights sum up to a small value in our com-
munication problem. This ultimately allows to transmit, in
a communication-efficient manner, all the edge weights to-
gether with the edge identities.

1.2.2 Upper Bound for Sketching Laplacian Matri-
ces with Cut Queries, “For Each” Model

To discuss the main ideas behind our Õ(nε−1)-bit sketch
construction for Laplacian matrices with queries x ∈ {0, 1}n,
let us first give some intuition on why the previous algo-
rithms cannot yield a Õ(nε−1) bound, and show how our
algorithm circumvents these roadblocks on a couple of illus-



“for all” model “for each” model
Matrix family upper bound lower bound upper bound lower bound

General Õ(n2) Ω(n2) Õ(n2) Ω(n2) App. A

PSD Õ(n2) Ω(n2) Sec. 2.1 Õ(nε−2) Sec. 2.1 Ω(nε−2) Sec. 2.1

Laplacian, SDD Õ(nε−2) [BSS14] Ω(nε−2) [BSS14] Õ(nε−1.6) Sec. 2.3.2 Ω(nε−1) Sec. 2.3.1
edge-count: O(nε−2) [BSS14] Ω(nε−2) [BSS14]

Laplacian+cut queries Õ(nε−2) [BSS14] Ω(nε−2) Sec. 2.2 Õ(nε−1) Sec. 2.3.1 Ω(nε−1) Sec. 2.3.1
edge-count: O(nε−2) [BSS14] Ω(nε−2) Sec. 2.2

Table 1: Bounds for sketching quadratic forms, expressed in bits, except when counting edges.

trative examples. For concreteness, it is convenient to think
of ε = 1/

√
n.

All existing cut (and spectral) sparsifiers algorithms con-
struct the sparsifier by taking a subgraph of the original
graph G, with the“right” re-weightening of the edges [BK96,
SS11, BSS14, FHHP11, KP12]. In fact, except for [BSS14],
they all proceed by sampling edges independently, each with
its own probability (that depends on the graph).

Consider for illustration the complete graph. In this case,
these sampling schemes employ a uniform probability p ≈
1/ε2

n
of sampling every edge. It is not hard to see that one

cannot sample edges with probability less than p, as other-
wise anti-concentration results suggest that even the degree
of a vertex (i.e., the cut of a “singleton”) is not preserved
within 1 + ε approximation. Perhaps a more interesting ex-
ample is a random graph Gn,1/2; if edges are sampled inde-
pendently with (roughly) uniform probability, then again it
cannot be less than p, because of singleton cuts. However, if
we aim for a sketch for the complete graph or Gn,1/2, we can
just store the degree of each vertex using only O(n) space,
and this will allow us to report the value of every singleton
cut (which is the most interesting case, as the standard devi-
ation for these cut values have multiplicative order roughly
1 ± ε). These observations suggest that sketching a graph
may go beyond considering a subgraph (or a different graph)
to represent the original graph G.

Our general algorithm proceeds in several steps. The core
of our algorithm is a procedure for handling cuts of value
≈ 1/ε2 in a graph with unweighted edges, which proceeds
as follows. First, repeatedly partition the graph along every
sparse cut, namely, any cut whose sparsity is below 1/ε. This
results with a partition of the vertices into some number of
parts. We store the cross-edges (edge connecting different
parts) explicitly. We show the number of such edges is only

Õ(nε−1), and hence they fit into the space allocated for the
sketch. Obviously, the contribution of these edges to any
desired cut w(S, S̄) is easy to compute from this sketch.

The sketching algorithm still needs to estimate the con-
tribution (to a cut w(S, S̄) for a yet unknown S ⊂ V ) from
edges that are inside any single part P of the partition. To
accomplish this, we sample ≈ 1/ε edges out of each vertex,
and also store the exact degrees of all vertices. Then, to es-
timate the contribution of edges inside a part P to w(S, S̄),
we take the sum of (exact) degrees of all vertices in S ∩ P ,
minus an estimate for (twice) the number of edges inside
S ∩ P (estimated from the edge sample). This “difference-
based”estimate has a smaller variance than a direct estimate
for the number edges in (S ∩ P, S̄ ∩ P ) (which would be the
“standard estimate”, in some sense employed by previous
work). The smaller variance is achieved thanks to the facts

that (1) the assumed cut is of size (at most) 1/ε2; and (2)
there are no sparse cuts in P .

Overall, we achieve a sketch size of Õ(nε−1). We can
construct the sketch in polynomial time by employing an
O(
√

logn)-approximation algorithm for sparse cut [ARV09,

She09] or faster algorithms with (logO(1) n)-approximation
[Mad10].

1.2.3 Upper Bound for Sketching Laplacian Matri-
ces with Spectral Queries, “For Each” Model

Now we consider spectral queries x ∈ Rn, starting first
with a space bound of nε−1.66polylog(n) bits, and then dis-
cuss how to improve it further to nε−1.6 polylog(n).

We start by making several simplifying assumptions. The
first is that the total number of edges is O(nε−2). Indeed,
we can first compute a spectral sparsifier [BSS14]. It is use-
ful to note that if all edges weights were between 1 and
poly(n), then after spectral sparsification the edge weights
are between 1 and poly(n), for a possibly larger polynomial.
Next, we can assume all edge weights are within a factor of 2.
Indeed, by linearity of the Laplacian, if all edge weights are
in [1,poly(n)], then we can group the weights into powers
of 2 and sketch each subset of edges separately, incurring
an O(logn) factor blowup in space. Third, and most im-
portantly, we assume that Cheeger’s constant hG of each
resulting graph G = (V,E) satisfies hG > ε1/3, where recall
that hG = infS⊂V ΦG(S) where

ΦG(S) =
w(S, S̄)

min{vol(S), vol(S̄)}
and vol(S) =

∑
u∈S

w({u}, V \{u}).

We can assume hG > ε1/3 because if it were not, then by
definition of hG there is a sparse cut, that is, ΦG(S) ≤ ε1/3.
We can find a sparse cut (a polylogarithmic approximation
suffices), store all sparse cut edges in our data structure, and
remove them from the graph G. We can then recurse on the
two sides of the cut. By a charging argument we can bound
the total number of edges stored across all sparse cuts.

As for the actual data structure achieving our nε−1.66polylog(n)
upper bound, we first store the weighted degree δu(G) =∑
v:(u,v)∈E w(u, v) of each node (as that for the cut queries).

A difference is that we now partition vertices into “heavy”
and “light” classes VL and VH , where VH contains those ver-
tices whose weighted degree exceeds a threshold, and light
consists of the remaining vertices. We include all edges inci-
dent to light vertices in the data structure. The remaining
edges have both endpoints heavy and for each heavy vertex,
we randomly sample about ε−5/3 of its neighboring heavy

edges; edge u, v is sampled with probability w(u,v)
δu(GH )

where

δu(GH) is the sum of weighted edges from the heavy vertex
u to neighboring heavy vertices v.



For the estimation procedure, we write xTLx =
∑

(u,v)∈E(xu−
xv)2w(u, v) as

xTLx =
∑
u∈V

δu(G)x2
u −

∑
u∈VL,v∈V

xuxvw(u, v)

−
∑

u∈VH ,v∈VL

xuxvw(u, v)−
∑
u∈VH

∑
v∈VH

xuxvw(u, v)

and observe that our data structure has the first three sum-
mations on the right exactly; error can only come from es-
timating

∑
u∈VH

∑
v∈VH

xuxvw(u, v), for which we use our
sampled heavy edges. Since this summation has only heavy
edges, we can control its variance and upper bound it by
ε10/3‖D1/2x‖42, where D is a diagonal matrix with the de-
grees of G on the diagonal. We can then upper bound this
norm by relating it to the first non-zero eigenvalue λ1(L̃)

of the normalized Laplacian L̃, which cannot be too small,
since by Cheeger’s inequality, λ1(L̃) ≥ h2

G/2, and we have
ensured that hG is large.

To improve the upper bound to nε−1.6polylog(n) bits, we
partition the edges of G into more refined groups, based on
the degrees of their endpoints. More precisely, we classify
edges e by the minimum degree of their two endpoints, call
this number m(e), and two edges e, e′ are in the same class
if the nearest power of 2 of m(e) and of m(e′) is the same.
We note that the total number of vertices with degree in
ω(ε−2) is o(n), since we are starting with a graph with only
O(nε−2) edges; therefore, all edges e with m(e) = ω(ε−2)
can be handled by applying our entire procedure recursively
on say, at most n/2 nodes. Thus, it suffices to consider
m(e) ≤ ε−2.

The intuition now is that as m(e) increases, the variance
of our estimator decreases since the two endpoints have even
larger degree now and so they are even “heavier” than be-
fore. Hence, we need fewer edge samples when processing a
subgraph restricted to edges with large m(e). On the other
hand, a graph on edges e for which every value of m(e)
is small simply cannot have too many edges; indeed, every
edge is incident to a low degree vertex. Therefore, when we
partition the graph to ensure that Cheeger’s constant hG is
small, since there are fewer total edges (before we just as-
sumed this number was upper bounded by nε−2), now we
pay less to store all edges across sparse cuts. Thus, we can
balance these two extremes, and doing so we arrive at our
overall nε−1.6polylog(n) bit space bound.

Several technical challenges arise when performing this
more refined partitioning. One is that when doing the sparse
cut partitioning to ensure the Cheeger’s constant is small,
we destroy the minimum degree of endpoints of edges in the
graph. Fortunately we can show that for our setting of pa-
rameters, the total number of edges removed along sparse
cuts is small, and so only a small number of vertices have
their degree drop by more than a factor of 2. For these
vertices, we can afford to store all edges incident to them
directly, so they do not contribute to the variance. Another
issue that arises is that to have small variance, we would like
to “assign” each edge {u, v} to one of the two endpoints u or
v. If we were to assign it to both, we would have higher vari-
ance. This involves creating a companion or “buddy graph”
which is a directed graph associated with the original graph.
This directed graph assists us with the edge partitioning,
and tells us which edges to potentially sample from which
vertices.

1.3 Application to Distributed Minimum Cut
We now illustrate how a “for each” sketch can be use-

ful algorithmically despite its relaxed guarantees compared
to a cut sparsifier. In particular, we show how to (1 +
ε)-approximate the global minimum cut of a graph whose
edges are distributed across multiple servers. Distributed
large-scale graph computation has received recent attention,
where protocols for distributed minimum spanning tree, breadth-
first search, shortest paths, and testing connectivity have
been studied, among other problems, see, e.g., [KNPR15,
WZ13]. In our case, each server locally computes the “for
each” data structure of Sec. 2.3.1 on its subgraph (for ac-
curacy ε), and sends it to a central server. Each server
also computes a classical cut sparsifier, with fixed accuracy
ε′ = 0.2, and sends it to the central server. Using the fact
that cut-sparsifiers can be merged, the central server ob-
tains a (1± ε′)-approximation to all cuts in the union of the
graphs. By a result of Henzinger and Williamson [HW96]
(see also Karger [Kar00]), there are only O(n2) cuts strictly
within factor 1.5 of the minimum cut, and they can be found
efficiently from the sparsifier (see [Kar00] for an Õ(n2) time
way of implicitly representing all such cuts). The central
server then evaluates each “for each” data structure on each
of these cuts, and sums up the estimates to evaluate each
such cut up to factor 1 + ε, and eventually reports the min-
imum found. Note that the “for each” data structures can
be assumed, by independent repetitions, to be correct with
probability 1 − 1/n4 for any fixed cut (and at any server),
and therefore correct with high probability on all O(n2) can-
didate cuts.

2. MAIN THEOREMS
Due to space constraints, this extended abstract lists only

the main results of our paper. We refer the reader to the full
version of the paper for other results and the proof details.

2.1 Positive-Semidefinite Matrices
For PSD matrices, we show the following two lower bounds,

for the “for all” and “for each” models, respectively, which
resolve the sketching complexities for PSD matrices up to
a logarithmic factor. Indeed, the first lower bound matches
the trivial upper bound of storing the whole matrix, and
the second one matches a straightforward application of the
Johnson-Lindenstrauss dimension reduction lemma.

Theorem 2.1. For a general PSD matrix A and relative
approximation ε > 0 that is a sufficiently small constant,
every sketch sk(A) that satisfies the “for all” guarantee (with
constant probability of success), must use Ω(n2) bits of space.
This is true even if all of entries of A are promised to be in
the range {−1,−1 + 1/nC ,−1 + 2/nC , . . . , 1− 1/nC , 1} for
a sufficiently large constant C > 0,

Theorem 2.2. For a general PSD matrix A and relative
approximation ε ∈ (1/

√
n, 1), every sketch sk(A) that satis-

fies the “for each” guarantee (with constant probability) must
use Ω(n/ε2) bits of space.

2.2 Symmetric Diagonally Dominant Matrices,
“For All” Model

Our first main result is an Ω(n/ε2) space lower space
for sketching SDD matrices under the “for all” guarantee.
In fact, we prove the lower bound Ω(n/ε2) for the special



case where A is a Laplacian matrix and for cut queries
x ∈ {0, 1}n.

We additionally show in Appendix B that the quadratic
form of an SDD matrix can be reduced to that of a Laplacian
matrix, with only a modest increase in the matrix size, from
order n to order 2n. Thus, the upper bound of sketching
SDD matrices in both “for each” and “for all” cases will be
the same as that for Laplacians. Since in the “for all” case,
we can build the cut (or spectral) sparsifier for a graph using

Õ(n/ε2) bits (using e.g. [BSS14]), we can also construct a

“for all” sketch for an SDD matrix using Õ(n/ε2) bits of
space. This means that our Ω(n/ε2) lower bound is tight up
to a logarithmic factor.

Theorem 2.3. Fix an integer n and ε ∈ (1/
√
n, 1), and

let sk = skn,ε and est = estn,ε be possibly randomized
sketching and estimation algorithms for unweighted graphs
on vertex set [n]. Suppose that for every such graph G =
([n], E), with probability at least 3/4 we have1

∀S ⊂ [n], est
(
S, sk(G)

)
∈ (1± ε) · w(S, S̄).

Then the worst-case size of sk(G) is Ω(n/ε2) bits.

If the sketch must take the form of a graph H (i.e., be a
cut sparsifier), then a straightforward application of Theo-
rem 2.3 implies thatH must have Ω(n/(ε2 logn)) edges. The
following theorem improves this lower bound by a logarith-
mic factor, and obtains a bound that is tight up to constant
factors.

Theorem 2.4. For every integer n and ε ∈ (1/
√
n, 1),

there is an n-vertex graph G for which every (1 + ε)-cut
sparsifier H has Ω(n/ε2) edges, even if H is not required to
be a subgraph of G.

Proof outline for Theorem 2.3.
The proof uses the following communication lower bound

for a version of the Gap-Hamming-Distance problem. Fix
c = 10−3.

Theorem 2.5. Consider a distributional communication
problem, where Alice has as input n/2 strings s1, . . . , sn/2 ∈
{0, 1}1/ε

2

of Hamming weight 1
2ε2

, and Bob has an index

i ∈ [n/2] together with one string t ∈ {0, 1}1/ε
2

of Hamming
weight 1

2ε2
, drawn as follows:2

• i is chosen uniformly at random;

• si and t are chosen uniformly at random but condi-
tioned on their Hamming distance ∆(si, t) being, with
equal probability, either ≥ 1

2ε2
+ c

ε
or ≤ 1

2ε2
− c

ε
;

• the remaining strings si′ for i′ 6= i are chosen uni-
formly at random.

Consider a (possibly randomized) one-way protocol, in which
Alice sends to Bob an m-bit message, and then Bob deter-
mines, with success probability at least 2/3, whether ∆(si, t)
is ≥ 1

2ε2
+ c

ε
or ≤ 1

2ε2
− c

ε
. Then Alice’s message size is

m ≥ Ω(n/ε2) bits.
1The probability is over the randomness of the two algo-
rithms; more precisely, the two algorithms have access to a
common source of random bits.
2Alice’s input and Bob’s input are not independent, but the
marginal distribution of each one is uniform over its domain,

namely, {0, 1}(n/2)×(1/ε2) and [n]× {0, 1}1/ε
2

, respectively.

We then prove Theorem 2.3 by a reduction to the above
communication problem, interpreting the one-way protocol
as a sketching algorithm, as follows. Given the instance
(s1, . . . , sn/2, i, t), define an n-vertex graph G that is a dis-

joint union of the graphs {Gj : j ∈ [ε2n/2]}, where each Gj
is a bipartite graph, whose two sides, denoted L(Gj) and
R(Gj), are of size |L(Gj)| = |R(Gj)| = 1/ε2. The edges of
G are determined by s1, . . . , sn/2, where each string su is in-
terpreted as a vector of indicators for the adjacency between
vertex u ∈ ∪j∈[ε2n/2]L(Gj) and the respective R(Gj).

Observe that Alice can compute G without any communi-
cation, as this graph is completely determined by her input.
She then builds a sketch of this graph, that with probability
≥ 99/100, succeeds in simultaneously approximating all cut
queries within factor 1±γε, where γ > 0 is a small constant
to be determined later. This sketch is obtained from the the-
orem’s assumption about m-bit sketches by standard ampli-
fication of the success probability from 3/4 to 0.99 (namely,
repeating r = O(1) times independently and answering any
query with the median value of the r answers). Alice then
sends this O(m)-bit sketch to Bob.

Bob then uses his input i to compute j = j(i) ∈ [ε2n/2]
such that the graph Gj contains vertex i (i.e., the vertex
whose neighbors are determined by si). Bob also interprets
his input string t as a vector of indicators determining a
subset T ⊆ R(Gj). Let N(v) be the neighbor set of the
vertex v. We have the following lemma.

Lemma 2.6. Using the O(m)-bit sketch he received from
Alice, Bob can compute a “list” B ⊂ L(Gj) of size |B| =
1
2
|L(Gj)| = 1

2ε2
, and with probability at least 0.96, this list

contains at least 4
5

-fraction of the vertices in the set

Lhigh := {v ∈ L(Gj) : |N(v) ∩ T | ≥ 1
4ε2

+ c
ε
}. (1)

Moreover, Bob uses no information about his input i other
than j = j(i).

Finally, Bob can decide whether ∆(si, t) is ≥ 1
2ε2

+ c
ε

or

≤ 1
2ε2
− c
ε

using Lhigh, thereby solving the (variation of the)

Gap-Hamming problem, which implies that m ≥ Ω(n/ε2),
and proves Theorem 2.3.

2.3 Symmetric Diagonally Dominant Matrices,
“For Each” Model

Our second and third main results design sketches of SDD
matrices in the “for each” model, namely, sketch-size Õ(n/ε)

for cut queries x ∈ {0, 1}n and sketch-size Õ(n/ε1/6) for
spectral queries x ∈ Rn. Again, due to the reduction shown
in Appendix B, sketching of SDD matrices and of Laplacian
matrices are equivalent, hence, we only need to prove these
bounds for Laplacian matrices.

2.3.1 Laplacian Matrices with Cut Queries
Given a Laplacian matrix L, let G = G(L) = (V,E,w) be

the corresponding graph, and let n = |V |. For cut queries,
we obtain the following upper bound.

Theorem 2.7. Fix an integer n and ε ∈ (1/n, 1/30). Then
every n-vertex graph G = (V,E,w) with edge weights in the

range [1,W ] admits a cut sketch of size Õ(nε−1 · log logW )
bits with the “for each” guarantee. Specifically, for every
query S ⊂ V (equivalently, x ∈ {0, 1}n), the sketch can
produce with high probability a 1 + O(ε) approximation to
w(S, S̄).



We can also show a matching lower bound (up to loga-
rithmic factors).

Theorem 2.8. Fix an integer n and ε ∈ [2/n, 1/2]. Sup-
pose sk(·) is a sketching algorithm that outputs at most s =
s(n, ε) bits, and est is an estimation algorithm, such that
together for every n-vertex graph G,

∀S ⊂ V, Pr
[
est(S, sk(G)) ∈ (1± ε) · w(S, S̄)

]
≥ 9/10.

Then s ≥ Ω(n/ε).

We next outline the proof of Theorem 2.7. The start-
ing point of our algorithm design is to consider the a spe-
cial graph (S1-graph) under a special set of queries (the
weighted cut value w(S, S̄) ≤ 5). We then show how to
massage a general graph with polynomial weights to a set
of S1-graph’s (using the importance sampling and a hier-
archical partition on the edge weights, and by repeatedly
finding sparse cuts), and how to handle general cut queries.
Finally we remove the polynomial weight constraints using
a finer grade of “pruning and partition” step making use of
a minimum-weight spanning tree of the graph. Due to the
space constraints, we only present here the definition of the
S1-graph and the algorithm for sketching S1-graph for cut
queries w(S, S̄) ≤ 5.

Definition 2.9 (S1-graph). We say an undirected weighted
graph G = (V,E,w) is an S1-graph if it satisfies the follow-
ing.

1. All edge weights are within a factor of 2, i.e. ∀e ∈ E,
w(e) ∈ [γ, 2γ) for some γ > 0.

2. The expansion constant of G is ΓG ≥ 1
ε

, where ΓG :=

min|S|≤n/2
|E(S,S̄)|
|S| , where E(S, S̄) = {(u, v) ∈ E |u ∈

S, v ∈ S̄}.

The sketching algorithm for S1-graph and the special cut
queries w(S, S̄) ≤ 5 is fairly simple: we first add all weighted
degrees of vertices to the sketch, and then for each vertex
we sample uniformly with replacement a set of 1/ε adjacent
edges and store them in the sketch. As mentioned in the
techniques overview (Section 1.2), using a “difference-based”
estimator together with the fact that there is no sparse cut
and the assumption that w(S, S̄) ≤ 5 (and consequently the
cut is of size at most O(1/ε2) because the weight of each
edge of an S1-graph is at least ε2), we can tightly bound the
variance of the estimator of a cut w(S, S̄) in an S1-graph,
which allows a small set of edge samples and thus the small
space usage.

2.3.2 Laplacian Matrices with Spectral Queries

Theorem 2.10. Given a Laplacian matrix L with polynomially-
bounded entries, and ε ∈ (0, 1), there exists a spectral sketch

of size Õ(n/ε8/5) bits such that for every query x ∈ Rn, the
sketch can produce with high probability a (1 + ε) to xTLx.

We next outline the proof of Theorem 2.10. Let G be the
corresponding graph of the Laplacian matrix L. To prove
Theorem 2.10 we again start from a simple type of graphs we
call S2-graph, whose definition is given below. Note that an
S2-graph again has almost uniform edge weights, and a small
Cheeger’s constant which is similar in spirit to the expansion

constant, but has more to do with the spectral properties of
the graph. We then finish the proof via a long sequence of
generalizations and optimizations, as partly discussed in the
technique overview (Section 1.2).

Definition 2.11 (S2-graph). We say an undirected weighted
graph G = (V,E,w) is an S2-graph if it satisfies the follow-
ing.

1. All edge weights are within a factor of 2, i.e. ∀e ∈ E,
w(e) ∈ [γ, 2γ) for some γ > 0.

2. Cheeger’s constant hG > cαε
1
3 for a large constant

cα > 0.

The sketching algorithm for S2-graph is slightly more com-
plicated than that for S1-graph in the cut query case: We
first add all weighted degrees of vertices to the sketch. Next,
we partition the vertices to two sets S and L, where S con-
tains all vertices of weighted degrees less than γcαε

−5/3, and
L contains the rest of the vertices. We then store all adjacent
edges of vertices in S in the sketch, and then delete these ver-
tices and edges from G, obtaining a graph G′ = (V ′, E′, w′).

For each vertex in G′, we sample with replacement cαε
−5/3

of its adjacent edges with probability proportional to the
edge weights, and store them in the sketch.

This algorithm, however, only gives a sketch of size Õ(n/ε5/3)
bits (even for this special type of graphs). To improve it to

Õ(n/ε1.6) we need a finer process of edge partition.
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APPENDIX
A. GENERAL MATRICES, “FOR EACH” MODEL

Theorem A.1. Any sketch sk(A) of a general n× n ma-
trix A that satisfies the “for each” guarantee with probability
0.9, even when all entries of A are promised to be in the set
{0, 1}, must use Ω(n2) bits of space.

Proof. Let A be a symmetric matrix with zero on the
diagonal, and a random bit in every other entry. Set the
query vector x = (ei + ej). Then using 1

2
xTAx we can re-

cover the entry Ai,j , with probability 0.9. Think the sketch-
ing problem as a communication problem where Alice holds
the matrix A; she sends a message (the sketch) M to Bob
such that Bob can recover each entries of A with probability
0.9 (except for the diagonal entries, which are fixed to be 0,
Bob can recover exactly). Then,

H(A | M) =
∑
i,j∈[n]

H(Ai,j | M) (Ai,j are independent)

≤ (H2(0.9) + 0.1) · n2 (Fano’s inequality)

< 0.6n2.

Thus H(M) ≥ H(A)−H(A | M) = Ω(n2).

http://dx.doi.org/10.1145/237814.237827
http://dx.doi.org/10.1137/130949117
http://dx.doi.org/10.1145/1993636.1993647
http://dx.doi.org/10.1007/978-3-642-28914-9_19
http://dx.doi.org/10.1145/331605.331608
http://arxiv.org/abs/1407.1289
http://dx.doi.org/10.1109/FOCS.2014.66
http://arxiv.org/abs/1311.6209
http://dx.doi.org/10.1137/1.9781611973730.28
http://dx.doi.org/10.1145/2090236.2090267
http://dx.doi.org/10.1016/0012-365X(91)90112-F
http://dx.doi.org/10.1137/080734029
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1137/08074489X
http://dx.doi.org/10.1007/978-3-642-42033-7_15
http://arxiv.org/abs/1410.2470
http://dx.doi.org/10.1007/978-3-642-41527-2_2


B. REDUCTION FROM SDD MATRICES TO
LAPLACIAN MATRICES

In this section we show that the quadratic form of an
SDD matrix, xTAx, can be reduced to the quadratic form
of a Laplacian, therefore our upper bounds for Laplacian
matrices in Section 2.3.1 and Section 2.3.2 can be extended
to SDD matrices.

An SDD matrixA has the property thatAi,i ≥
∑
j 6=i |Ai,j |

for all i. In the case when Ai,i =
∑
i6=j |Ai,j | for all i, we

can write A as Ap + An +D where D is the diagonal of A,
An is the matrix consisting of only the negative off-diagonal
entries of A, and Ap is the matrix consisting of only the pos-
itive off-diagonal entries of A. It is straightforward to verify
that(

xT −xT
)( D +An −Ap

−Ap D +An

)(
x
−x

)
= 2xTAx.

The matrix

(
D +An −Ap
−Ap D +An

)
is clearly a Laplacian

matrix.
For the general case when Ai,i ≥

∑
i6=j |Ai,j |. We can

remove some “weights” from the diagonal entries of A, so
that A can be written as A = D +B where D is a diagonal
matrix and B satisfies the requirement Bi,i =

∑
i6=j |Bi,j |

for all i. We then have xTAx = xTDx+xTBx. The matrix
D can be stored explicitly, and xTBx can be reduced to the
quadratic form of a Laplacian matrix as discussed above.

Theorem B.1. Given an n×n SDD matrix A, let wmax =
maxi,j |Ai,j | and wmin = mini,j with Ai,j 6=0 |Ai,j |, and as-
sume wmax/wmin = poly(n) We can then construct a sketch
of A that gives a (1 + ε, 0.99)-approximation to xTAx for

any fixed x ∈ Rn. The size of this sketch is Õ(n/ε8/5) bits.
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