
Approximate Nearest Neighbor Search in Metrics
of Planar Graphs
Ittai Abraham1, Shiri Chechik2, Robert Krauthgamer∗3, and
Udi Wieder3

1 VMware Research, Palo Alto, CA, USA, {iabraham,uwieder}@vmware.com
2 Tel-Aviv University, Tel-Aviv, Israel, shiri.chechik@gmail.com
3 Weizmann Institute of Science, Israel, robert.krauthgamer@weizmann.ac.il

Abstract
We investigate the problem of approximate Nearest-Neighbor Search (NNS) in graphical metrics:
The task is to preprocess an edge-weighted graph G = (V,E) on m vertices and a small “dataset”
D ⊂ V of size n� m, so that given a query point q ∈ V , one can quickly approximate dG(q,D)
(the distance from q to its closest vertex in D) and find a vertex a ∈ D within this approximated
distance. We assume the query algorithm has access to a distance oracle, that quickly evaluates
the exact distance between any pair of vertices.

For planar graphs G with maximum degree ∆, we show how to efficiently construct a compact
data structure – of size Õ(n(∆ + 1/ε)) – that answers (1 + ε)-NNS queries in time Õ(∆ + 1/ε).
Thus, as far as NNS applications are concerned, metrics derived from bounded-degree planar
graphs behave as low-dimensional metrics, even though planar metrics do not necessarily have a
low doubling dimension, nor can they be embedded with low distortion into `2. We complement
our algorithmic result by lower bounds showing that the access to an exact distance oracle (rather
than an approximate one) and the dependency on ∆ (in query time) are both essential.
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1 Introduction

In the Nearest Neighbor Search (NNS) problem, the input is a dataset D = {p1, . . . , pn}
containing n points that lie in some large host metric space (M,d). These points should
be preprocessed into a data structure so that given a query point q ∈M , the dataset point
pi ∈ D closest to q can be reported quickly. The scheme’s efficiency is typically measured by
the space complexity of the data structure and the time complexity of the query algorithm.
NNS is a fundamental problem with numerous applications, and has therefore attracted a lot
of attention, including extensive experimental and theoretical analyses. Often, finding the
exact closest neighbor is relaxed to finding an approximate solution, called (1+ε)-NNS, where
the goal is to report a dataset point pi ∈ D satisfying d(q, pi) ≤ (1+ε) min{d(q, pj) | pj ∈ D}.

Previous work on NNS has largely focused on the case where the host metric is `p-norm for
some p, typically `1 or `2, over M = Rm for some dimension m > 0. In this common setting,
exact NNS exhibits a “curse of dimensionality” – either the space (storage requirement) or
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the query time must be exponential in the dimension – which provides a strong motivation
to study approximate solutions. When the dimension m is constant, known (1 + ε)-NNS
algorithms achieve almost linear space and a polylogarithmic query time; but when the
dimension is logarithmic (in n), all known algorithms, including approximate ones, require
(in the worst-case) either a super-linear space or a polynomial query time.

While the `p-norm setting captures many applications, certain data types cannot be
embedded (with low distortion) into Rm, and it is therefore desirable to consider other metric
spaces. However, the notion of dimensionality is not well-defined for general metrics, and
it is unclear a-priori what type of internal structure suffices for efficient approximate NNS
algorithms. A notable example of such an approach, initiated by [22, 17, 18], is the study of
NNS in general metric spaces assuming the algorithm has access to a distance oracle, i.e.,
that the distance function can be evaluated in unit time; their motivation was drawn from the
analysis of computer networks, where distances are derived from a huge graph (rather than
by a norm or another simple function of the vertex names). It is known [18, 19, 8, 15, 12]
that if the metric space restricted to the n dataset points has a bounded doubling dimension,
then (1 + ε)-NNS can be solved with near-linear space and polylogarithmic query time.

1.1 Our Results

We look at another family of metric spaces, those derived by way of shortest paths from a
graph with positive edge weights. Similarly to [22, 17, 18], we assume the NNS algorithm
has access to a distance oracle.

As a motivating application consider the case where the graph represents a road network,
say of the continental United States. Even though this graph has tens of millions of nodes,
extremely efficient exact distance oracles have been built for it (see [14, 6, 2]). Now suppose
we wish to find the nearest shop from a collection like the set of all Starbucks shops, which
currently has roughly 12, 000 locations in the US. This means we want to design a compact
application (e.g., mobile app) that has access to a generic server (like google maps). While
the server could use much larger space (but cannot be customized to support specialized
operations like NNS), the application must be very efficient in terms of query time and
space, and thus our goal is to build an NNS data structure whose efficiency depends on the
significantly smaller number of shops (n = |D| in our notation).

Our main result is that in planar graphs of bounded degree, (1 + ε)-NNS can be solved
using near-linear space and polylogarithmic query time. Thus, bounded-degree planar metrics
exhibit “low-dimensional” behavior, even though they do not necessarily have a low doubling
dimension, nor can they be embedded with low distortion into `2. This phenomenon, namely,
that the restricted topology of planar graphs maintains some of the geometric structure of
the Euclidean plane, is known in other contexts like compact routing and TSP, but here we
show it for the first time in the context of NNS.

I Theorem 1. Let (M,d) be a metric derived from a plane graph of maximum degree ∆ > 0
with positive edge weights, and let ε > 0. Then every dataset D ⊂ M of size n = |D| can
be preprocessed into a data structure of size O(ε−1n logn log |M |+ n∆ log2 n) words, which
can answer (1 + ε)-NNS queries in time O((ε−1 log logn+ tDO) logn log |M |+ logn ·∆tDO),
assuming the distance between any two points in M can be computed in time tDO.

The data structure’s size is measured in words, where a single word can accommodate a
point in M or a (numerical) distance value. The term plane graph refers to a planar graph
accompanied with a specific drawing in the plane.
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22 Approximate Nearest Neighbor Search in Metrics of Planar Graphs

Theorem 1 makes two assumptions, that there is a bound on the maximum degree, and
that the data structure has access to an exact distance oracle. We further show (in Section 4)
that both of these assumptions are necessary. Roughly speaking, we prove that if the degree
is large, or if the distance oracle is approximate, the graph could contain symmetries that
only a large number of accesses to the distance oracle could break.

I Remark. We cannot dispose of the maximum degree assumption by “vertex splitting”,
where a high-degree vertex is replaced with a binary tree with zero edge weights, because we
assume access to a distance oracle for G (but not necessarily for a modified graph G′), since
the distance oracle models a generic server. For the same reason, we cannot make the usual
assumptions that G is triangulated or perturb the pairwise distances to be all distinct.

1.2 Related Work
Our model of NNS for a dataset D embedded inside a (huge) graph G is related to vertex-
sparsification of distances [20], where the goal is to construct a small graph G′ that (i) contains
all the dataset point D (called terminals here) and furthermore maintains all their pairwise
distances; and (ii) is isomorphic to a minor of G.

Here is another interesting related problem that is open: Given only the distances between
a dataset D, find in polynomial time a planar host graph G that contains D and realizes
their given pairwise distances (perhaps even approximately).

A key difference of our NNS model from these two problems is that the vertices outside of
D are actually used explicitly as query points. However, one may hope for some connections,
at least at a technical level.

1.3 Techniques
At a very high level, our algorithm is reminiscent of the classical k-d tree algorithm for NNS
due to Bentley [7], as it partitions the graph recursively using separators that split the current
dataset in an approximately balanced manner. While k-d trees use hyperplanes as separators
of the host space, for planar metrics we use shortest-paths as separators (see [23, 3, 1, 13]).
This recursive partitioning process can be described as creating a “hierarchy” tree T , whose
nodes correspond to “regions” in the metric space, and every leaf node represents a region
with at most one dataset point; in our graphical case, every region is an induced subgraph
of G. Given a query point q, one often uses a top-down algorithm to identify the leaf node
in the hierarchy tree T that “contains” q, by tracing the location of q along the recursive
partitioning, a process that we call the “zoom-in” phase. While this phase is trivial in k-d
trees, and simple in bounded treewidth graphs (see Section 1.4), it is quite non-trivial in
planar graphs, as explained below.

The key observation that completes the k-d tree algorithm is that once the tree leaf node
containing q has been located, the nearest neighbor of q must lie “near the boundary” of one
of the regions along the tree path leading to this leaf. Thus, all we need to store is just the
separators themselves and the dataset points near them.

In planar graphs, this master plan has two serious technical difficulties. First, the
separators themselves are too large to be stored explicitly. Recalling that the separators
consist of shortest paths, we can employ the known trick [23, 3, 1, 13] of using a carefully
chosen “net” to store them within reasonable accuracy, but since we actually need a net
of all nearby dataset points, our solution is more involved and roughly uses a net of nets.
Second, tracing the path to q along the hierarchy tree is a major technical challenge because
our storage is proportional to n = |D|, while the separator size could be much larger, even
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linear in |M |. Our solution is to store just enough auxiliary information to identify at each
level of the tree a few (rather than one) potential nodes, which suffices to “zoom-in” towards
a small set of leaves that one of them contains q. The construction is presented in Section 2.

As a warm-up to the main result, we demonstrate our approach on the much simpler case
of graphs with a bounded treewidth, where our algorithm solves NNS exactly using a standard
tool of vertex separators of bounded size. This is only an initial example how NNS algorithms
can leverage topological information, and the case of planar graphs is considerably more
difficult — our algorithm uses a path separator, whose size is not bounded, and consequently
solves NNS approximately (within factor 1 + ε).

1.4 Warmup: Bounded Treewidth Graphs
I Theorem 2. Let D be a dataset of n points in a metric (V, d) derived from an edge-weighted
graph of treewidth w ≥ 1 and maximum degree ∆ > 0. Then D can be preprocessed into a
data structure of size O(∆wn) words, which can answer (exactly) nearest neighbor search
queries in time O(∆w logn · tDO), assuming the distance between any two points in V can be
computed in tDO steps.

We assume for simplicity of exposition that an optimal tree decomposition is given to
us; otherwise, it is possible to compute in polynomial time a tree decomposition of width
O(w logw) [5] (or for fixed w, one of the algorithms of [9, 10]).

We use the following well-known property of bounded treewidth graphs: Given a set
X ⊂ V , we can efficiently find a separator S ⊂ V of size |S| ≤ w + 1 whose removal breaks
G into connected components V1, V2, . . . such that |Vi ∩X| ≤ |X|/2 for all i. (The separator
can be found by picking a single suitable node in the tree decomposition, and the width
bound implies the bound on the separator size, see e.g. [11, Lemma 6].) It follows that in G,
every path from Vi to Vj for i 6= j, must intersect the separator S.

The preprocessing phase

Given a dataset D = {p1, . . . , pn}, recursively compute a partition (using the above property)
with respect to the dataset points in the current component (i.e., D ∩ V ′ where V ′ ⊆ V

denotes the current component), until no dataset points are left (they were all absorbed in
the separators). It is easy to see that the depth of the recursion tree is O(logn), and the
number of separators used (non-leaf nodes in the recursion tree) is at most O(n), each with
at most w + 1 nodes. The data structure stores all the separators explicitly arranged in
the form of their recursion tree. In addition, for each vertex u in any of these separators, it
stores the following meta-data:

All the neighbors (at most ∆) of u, along with the index of the part Vi to which they
belong.
A dataset point that is closest to u, i.e., argminp∈D d(p, u), breaking ties arbitrarily.

The total number of vertices in all the separators is at most O(nw) and the meta-data
held for every separator vertex u is of size O(∆), hence the total size is O(∆wn) words.

The query phase

We first argue that given a query point q ∈ V and a separator S, it is possible to check, using
the meta-data stored in the preprocessing phase, which part Vi contains q. This would imply
that we can trace the path along the recursion tree all the way down to the last component
containing q, a process that was mentioned before as the “zoom-in” phase. Indeed, finding
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this Vi is done by finding a vertex u ∈ S that is closest to q, this task takes at most |S| = w+1
distance queries. If u = q we are done. Otherwise, compute u’s neighbor that is closest to q,
namely, v = argmin{d(q, v) | (v, u) ∈ E}, which takes another ∆ distance queries. Observe
that q must lie in the same part Vi as v, because the shortest between these two vertices
does not intersect S.

The next step after the zoom-in process is to find the nearest neighbor itself. Let S′ be
the union of all the vertices in all the separators encountered during the zoom-in on q. It is
easy to verify the following two facts:
|S′| ≤ O(w logn).
There exists u ∈ S′ that lies on the shortest-path between q and its nearest neighbor in
the dataset D. So q and u have the same nearest neighbor.

Recall that the vertices in S′ along with all their nearest neighbors are stored explicitly in
the data structure, and they can be “compared” against q using a distance oracle. Hence,
it is possible to find q’s exact nearest neighbor in time O(∆w logn), assuming access to a
distance oracle. This proves Theorem 2.
I Remark. Both the “zoom-in” phase and the calculation of the nearest neighbor itself were
made easy by the fact that we stored all the separators explicitly in the data structure.
Planar graphs on m nodes have separators of size O(

√
m), but in our model m � n, and

thus storing the separators explicitly is prohibitively expensive.

2 Planar Graph Metrics

In this section we start proving Theorem 1. Let G = (M,E) be a connected planar graph
with positive edge weights ω : E → R+, and let D ⊆M be the dataset vertices. We denote
n = |D|, m = |M |, and ∆ is the maximum degree in G. Assume the minimal edge weight
is 1, and let Diam be the diameter of the graph. We use dG(·, ·) to denote the shortest
path distance in G, and assume it can be computed in time tDO e.g., by having access to a
distance oracle.

We shall start with the case where shortest paths in G are unique, as it simplifies technical
matters considerably. A common workaround to this uniqueness issue is to perturb the edge
weights, but this solution is not applicable in our model of a black-box access to the distance
function dG(·, ·), because its implementation could potentially exploit ties (e.g., by assuming
all distances are small integers). The general case is sketched in Section 3.

It is worth pointing out that our algorithm relies on machinery developed in [1] to
recursively partition a planar graph G, which relies in turn on a two-path planar separator.
Unlike many algorithms for planar graphs, which use existence of small separators, this
machinery, described in detail in Section 2.1, uses the fact that the separators are shortest
paths, and therefore could be represented succinctly, even if they are large. While this idea
had been used before, applying it in the context of NNS (and providing matching lower
bounds) requires a considerable amount of technical novelty, as described in Section 2.2.

2.1 Building the Hierarchy tree T
Preprocessing algorithm, step 1. The algorithm fixes some vertex s ∈ M . It then con-
structs a shortest-path tree T rooted at s ∈M by invoking Dijkstra’s single-source shortest-
path algorithm from s.

Two-path planar separator. We use a version of the well-known Planar Separator Theorem
by Lipton and Tarjan [21], where the separator consists of two paths in the shortest-paths
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tree T of G. In the specific version stated below, we are only required to separate a subset
U ⊂ M , and the balance constraint refers to a subset W ⊂ U . As usual, G[U ] denotes
the subgraph of G induced on U ⊂ M(G). We apply this theorem recursively using the
same shortest-paths tree T . An additional concern for us is that this tree is too large to be
stored entirely (it spans all nodes M), hence our algorithm will store partial information
that suffices to efficiently perform the Zoom-In and Estimating the Distance operations.

Given a connected planar graph G, we assume throughout it is a plane graph, i.e.,
accompanied by a specific drawing in the plane, and that it is already triangulated. We
let the new edges introduced by the triangulation have infinite weight (hence they do not
participate in any shortest-path). While the triangulation operation may increase the
maximum degree, it will not affect our runtime bounds (which depend on ∆), because our
runtime bounds depend on the maximum degree in the tree T , which contains only edges
from the original graph (and not from the triangulated one).1

For a rooted spanning tree T̃ of G, define the root-path of a vertex v ∈ M in this tree,
denoted T̃v, to be the path in the tree T̃ connecting v to the root. (We use here T̃ for
generality, but will soon instantiate it with the tree T constructed in step 1.) The next
theorem has essentially the same proof as of [21, Lemma 2]. It is particularly convenient for
a recursive application, where U ⊂M is the “current” subset to work on, yet G and the tree
T̃ remain fixed through the recursive process. It shows that each set could be partitioned
using a cycle which composed of two paths in the shortest path tree, plus an edge called the
separator edge. We remark that G[U ] is not required to be connected.

I Lemma 3 ([21]). Given a triangulated plane graph G = (M,E), a rooted spanning tree T̃
of G, a subset U ⊂M , and a vertex subset W ⊆ U , one can find in linear time a non-tree
edge (u, v) ∈ E(G) \ E(T̃ ) such that the cycle T̃u ∪ T̃v ∪ {(u, v)} is a vertex-separator in the
following sense: U \ (T̃u ∪ T̃v) can be partitioned into two subsets U1 and U2 such that (i)
each of U1 ∩W and U2 ∩W is of size at most 2|W |/3; and (ii) all paths from a vertex in U1
to a vertex in U2 intersect T̃u ∪ T̃v at a vertex.

Preprocessing algorithm, step 2. We invoke the algorithm of Lemma 3 recursively to
construct a “hierarchy” tree T as follows. Each node µ in T corresponds to a triple
〈G(µ), D(µ), e(µ)〉 that records an invokation of Lemma 3 on G:

G(µ) records the induced subgraph used as G[U ];
D(µ) ⊂ D records the subset of data points used as W ;
the tree T constructed in step 1 is used as T̃ (the same tree for all µ); and
e(µ) records the edge of G obtained by this invokation.

The root of T corresponds to 〈G,D, e0〉 where e0 is the edge obtained by invoking Lemma 3
with U = M , W = D. Consider now some node µ in T , and let U1 and U2 be the two subsets
of U obtained from the corresponding invokation of Lemma 3 on G(µ) and D(µ). The two
children of µ in the tree, denoted µi for i = 1, 2, correspond, respectively, to the invokations
of Lemma 3 on the induced subgraphs G(µi) = G[Ui] with the sets D(µi) = Ui ∩D. The
recursion stops at a node µ if the corresponding G(µ) ∩D = ∅.

Structural properties of the hierarchy tree T . We need several definitions and proofs
from [1], which are repeated here for completeness. For a node µ ∈ T , let the level of

1 One can also triangulate G while increasing its maximum degree by at most a constant factor [16,
Theorem 4.4].

APPROX/RANDOM’15



26 Approximate Nearest Neighbor Search in Metrics of Planar Graphs

u

2v u

2

z

v

z

R
1

1 2

2

z

v

z

R
1

1 2

u

R

v u22

1

1

root(T)

3R

4R

root(T)

1

2

Figure 1 An illustration of apices and frames. The left figure shows the tree T using solid
edges. The first separator-edge, at the hierarchy’s root, is the dashed edge (v1, u1). Let R be the
corresponding cycle’s interior region. This region R has a separator-edge (v2, u2). The cycle-separator
of this region R is the union of the two cycles defined by (v1, u1) and by (v2, u2). The apices of R
are labeled z1 and z2.
The right figure then shows what happens in region R1; the separator-edge is a green dashed line,
and the new apices are green circles. The frame of R is the subgraph colored blue. The frame of R2

contains all red and some blue edges. Note that all edges in the first separator Tv1 ∪ Tu1 belong to
the frame of only one of R1 and R2.

µ, denoted Level(µ), be the number of edges in T from µ to the root of T . Clearly,
0 ≤ Level(µ) ≤ 1 + log3/2 n ≤ 2 logn. We now associate with each node µ of T three
subgraphs of G. First, define the cluster of µ to be

Cluster(µ) := G(µ).

Second, define the cycle-separator of µ recursively as follows. If µ is the root of T , then
Cycle-Sep(µ) := Tu ∪ Tv ∪ {(u, v)}. Otherwise, let µ′ be the parent of µ in T , and let

Cycle-Sep(µ) := Cycle-Sep(µ′) ∪ Tu ∪ Tv ∪ {(u, v)} .

Third, define the separator of µ to be the subgraph of Cycle-Sep(µ) induced by the edges
of T , formally,

Sep(µ) := Cycle-Sep(µ) ∩ E(T ).

I Observation 4. For every µ, the subgraph Sep(µ) is a subtree of T containing its root s.

I Observation 5. For every µ (other than the root) and its parent µ′, the vertices of Sep(µ′)
separate Cluster(µ) from the rest of G. This is immediate from Lemma 3.

Define the home of a vertex x ∈ M , denoted Home(x), as the node µ of T of smallest
level such that x belongs to Sep(µ).

Define the apices of a node µ, denoted Apices(µ), as the set of vertices in Cycle-Sep(µ)
that have degree ≥ 3; see Figure 1 for an illustration. The apices of µ turn out to be a key
enabler of our solution. As we show below, there are very few apices per region and they
concisely represent the topological connections between nearby regions (note that degree 2
vertices of Cycle-Sep(µ) simply form paths between pairs of apices and topologically each
such path can be contracted into an edge)

The new apices of µ are defined as follows. If µ is the root of T , then NewApices(µ) :=
Apices(µ); otherwise, let NewApices(µ) := Apices(µ)\Apices(µ′), where µ′ is the parent
of µ in T . Intuitively, the new apices of µ are the vertices where the separator of µ
“disconnects" from its parent separator µ′.
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I Lemma 6 ([1]). For every µ we have |NewApices(µ)| ≤ 2.

We next define the frame of a node µ, which is, loosely speaking, a small subgraph of
Sep(µ′) that separates Cluster(µ) from the rest of G. Formally, if µ is the root of T , then
Frame(µ) is the empty graph. Otherwise, let µ′ be the parent of µ, and let Frame(µ) be
the subgraph of Sep(µ′) induced by the vertices x in Sep(µ′), which can be connected to
(some vertex z in) Cluster(µ) by a path whose internal vertices (i.e., all but x, z) are all
in Sep(µ′) \Apices(µ′). By construction, a path connecting a vertex of Cluster(µ) to a
vertex outside the cluster has to intersect Frame(µ).

The region of µ, denoted Reg(µ), is the subgraph of G induced by all the vertices of
Cluster(µ) ∪ Frame(µ).

I Lemma 7 ([1]). For every level ` ≥ 0 in T , every edge e ∈ E belongs to the frame of at
most two nodes µ for which Level(µ) = `.

2.2 Finding the Query’s Region
Our goal is to find for every level ` ≤ Level(Home(q)) the region that contains the query
q. (There is exactly one such region, because q is not in the separator.) We provide
a slightly weaker guarantee that is sufficient for our needs: we show how to compute
for every ` = 0, 1, . . . , 2 logn a set A`(q) of at most two regions, such that whenever
` ≤ Level(Home(q)), the set A`(q) contains the region containing q.

Query Algorithm for Region Finding (Zoom-In). For a node µ of T , let its near-apices
be the set of all edges incident to the apices of µ or to s (the root of the shortest path tree
T ); formally, NA(µ) := {(y, x) ∈ E | x ∈ Apices(µ) ∪ {s}}, where we view each (y, x) as an
ordered pair.

The query algorithm computes A`(q) iteratively for level ` = 0, 1, . . . , 2 logn. After
initializing A0(q) = {root(T )}, it computes the next set A`(q) using A`−1(q) as follows. Find
the edge (y, x) for which y is furthest away from s, among all edges (y, x) ∈ ∪µ∈A`−1(q)NA(µ)
such that (y, x) is on the shortest path from q to s. Here, we treat (y, x) as an ordered
pair, and insist that y appears before x along the path from q to s, or equivalently, that
dG(q, y) +ω(y, x) + dG(x, s) = dG(q, s), which can be checked using only a constant number
of distance oracle queries. Notice such (y, x) always exists, because the root s is an apex and
one of its incident edges is on the shortest paths from q to s. Next, let A`+1(q) be the set of
regions at level `+ 1 that contain the edge (y, x), which we prepare in advance (during the
preprocessing phase) as the set Â`′((y, x)). Finally, proceed to the next iteration.

algorithm FindRegions (q)
0. let A0(q) = {root(T )}
1. for ` = 1 to 2 logn do

a. pick (y, x) ∈ E of maximal dG(y, s) among all (y, x) ∈
∪µ∈A`−1(q)NA(µ) that satisfy dG(q, y)+ω(y, x)+dG(x, s) = dG(q, s)

b. let A`(q) = Â`((y, x))
2. return the sets A`(q) for ` = 0, . . . , 2 logn

Figure 2 Zooming-in on the query’s region.
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I Lemma 8. For every level ` ≤ Level(Home(q)), the query vertex q belongs to a region
in {Reg(µ) | µ ∈ A`(q)}.

Proof. The proof is by induction on `. For ` = 0, we initialized A0(q) = {root(T )} and the
corresponding region Reg(root(T )) is the entire graph G, hence q ∈ Reg(root(T )). Assume
now the claim holds for level ` and consider level `+ 1. Let (y, x) be the edge of maximal
dG(s, y) among all edges in ∪µ∈A`(q)NA(µ) that lie on a shortest path from q to s.

Suppose q ∈ R for a region R at level `+ 1, and let us show that R ∈ A`(q). Let µ be the
corresponding node in T , i.e., Reg(µ) = R, and let µ′ be the parent node of µ in T . Observe
that q ∈ Reg(µ′), because q must be in Cluster(µ) (rather than Frame(µ)), and all such
vertices are inside the region of the parent µ′. Thus by the induction hypothesis µ′ ∈ A`(q).

Let P (q, s) be the unique shortest path from q to s, and let z be the first vertex along
this path (furthest from the root s) which is in Apices(µ′). Such z exists (because the root
s is an apex) and is not the first vertex on the path (because q itself is not an apex), so let
z1 be vertex preceding z on this path.

We now claim that (z1, z) is exactly the edge (y, x) chosen. Indeed, the edge (z1, z)
satisfies the two requirements (it is in NA(µ′) and on the shortest path from q to s) by
definition, and moreover, z was chosen to that it is closest to q and thus furthest from s.

The claim implies, by the construction of z as the first apex on P (q, s), that the region R
containing q also contains the edge (z1, z) = (y, x), which means that the algorithm will add
R = Reg(µ) to A`+1(q). J

2.3 Estimating the Distance
Once we have located the region of q, we would like to complete the nearest neighbor search.
Let t∗ ∈ D be the closest dataset point to q, and let P (q, t∗) be the shortest path from q to
t∗, then we would like to approximate the length of P (q, t∗). Since we located q’s region, we
can follow the path from the root of the tree T to q’s region. We observe that at some tree
node µ we reach a situation where P (q, t∗) intersects Frame(µ). Indeed, the region at the
root of the tree contains both q and t∗; however, at the leaf µ of the tree, the region contains
q and either (i) does not contain t∗, in which case the path P (q, t∗) connects a vertex in
Cluster(µ) to one outside Cluster(µ), and thus must intersect Frame(µ); or (ii) it does
contain t∗, but only in its frame and not in its cluster (because Cluster(µ) ∩D = ∅), in
which case t∗ is itself in the intersection.

If the query procedure could identify a vertex v on this intersection between P (q, t∗) and
Frame(µ), then it could solve finding the nearest neighbor problem for q by finding the
nearest neighbor of v and reporting the exact same vertex (and this holds also for approximate
nearest neighbor). This is exactly the approach taken in our warmup, the bounded treewidth
case, where the preprocessing phase stores for every separator vertex its nearest neighbor
in D, and the query procedure just considers all the separator vertices in all the regions
encountered during the zoom-in process for q.

However, in the planar graph setting, the number of vertices on a single separator may be
arbitrarily large (compared to n). So we must exploit the separator’s structure as the union
of a few shortest paths. At a very high level, our solution is to carefully choose net-points on
the boundary of each region, and only for these net-point we store their nearest neighbor in
D. The challenge is to choose the net-points in such a way that (i) for at least one “good”
net-point in the sense that the distance from q through the net-point and then to D (i.e.,
to the nearest neighbor of this net-point) is guaranteed to approximate the optimal NNS
answer; and (ii) the query procedure can examine very few net-points (compared to the total
number of net-points stored, which is linear in n) until one of these good points is found.
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Before describing the algorithm in more detail, let us introduce some useful notations.
For a vertex c on a path P and a distance ρ′ > 0, let P (c, ρ′) be all nodes in P at distance
at most ρ′ from c. Let N (P, c, ρ, ρ′) be a set of nodes in P (c, ρ′) such that every node in
P (c, ρ′) has a node in N (P, c, ρ, ρ′) at distance ρ and every two nodes in N (P, c, ρ, ρ′) are
at distance at least ρ from one another (this set can be obtained by considering all nodes
on the path P (c, ρ′) from endpoint of the path to another and adding to N (P, c, ρ, ρ′) every
node that does not have yet a node in N (P, c, ρ, ρ′) at distance ρ from it). For a shortest
path P and a node v, let

Ni(v, P ) := N (P, cv, 2iε/32, 2i+1),

and
N(v, P ) :=

⋃
0≤i≤log (nDiam)

Ni(v, P ),

where cv is the vertex in P closest to v.
For a tree node µ ∈ T such that e(µ) = (u, v), we let N(Tu) := ∪w∈Cluster(µ)∩DN(w, Tu),

and similarly for N(Tv). (Formally, it depends also on µ, but we suppress this.) For a
shortest path P from s to some vertex f , let N(P, d1, d2) to be a vertex in N(P ) as follows.
If d2 > dG(s, f) then N(P, d1, d2) := f . If d1 < 0 then N(P, d1, d2) := s. Otherwise let
N(P, d1, d2) be the vertex x ∈ N(P ) with minimal dG(x, s) among all vertices x satisfying
d1 ≤ dG(x, s) ≤ d2; if no such vertex x exists, set N(P, d1, d2) := null. For a tree node µ,
let P(µ) = {Tu} ∪ {Tv} where e(µ) = (u, v).

Preprocessing. Let us describe the additional information stored by our data structure.
For every node µ, where we denote (u, v) = e(µ), store the sets N(Tz) for all z ∈ {u, v}. In
addition, construct a range reporting data structure on N(Tz) according to the distance from
s. Namely, a data structure that given two distances d1, d2 returns in O(log logn) time a
vertex x ∈ N(Tz) with dG(x, s) ∈ [d1, d2] that has minimal dG(x, s) among all such vertices,
or returns null if no such vertex exists. Observe that the range reporting data structure on
N(P ) makes it possible to find N(P, d1, d2) in O(log logn) time [4].

In addition, for every node µ, level ` ∈ {1, . . . , 2 logn} and apex x ∈ NewApices(µ), store
for every edge e incident to x the set Â`(e) = {µ ∈ T | e ∈ E(Reg(µ)) and Level(µ) = `},
namely, the set of level ` tree nodes µ for which e belongs to their region (recall there are at
most two such nodes). The algorithm also stores the number OT (v) for every vertex v that
is a neighbor of an apex of some node µ ∈ T (for all apices).

For every tree node µ the algorithm stores an indicator IL(µ) if µ is a leaf in T . Note
that if µ is a leaf in T then its cluster contains at most one dataset point, denoted by D(µ).
The algorithm also stores the dataset point D(µ) in case µ is a leaf.

Distance Query. The distance query given a vertex q is performed as follows. (See Figure 3
for a pseudo-code description.) The algorithm starts by invoking Procedure FindRegions to
obtain the sets {Ai(q)} for 1 ≤ i ≤ 2 logn, where each set Ai(q) contains at most two nodes
of level i in T such that q belongs to the region of at least one of them. The algorithm then
iterates on all path separators P in P(q) = ∪1≤i≤2 logn ∪µ∈Ai(q) P(µ). For a path P ∈ P(q),
let µ(P ) be the node such that P ∈ P(µ). For each such path separator P , the algorithm
invokes Procedure DistThroughPath to estimate dG(q,D ∩Cluster(µ(P )), P ), namely,
the length of the shortest path from q to some vertex in D ∩Cluster(µ(P )) among all such
paths that go through some vertex in P . Let d̃(P, q,D) be the estimated distance returned
by this invokation of Procedure DistThroughPath. In addition, the algorithm iterates over
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algorithm Dist(q)
1. {Ai(q)} ← FindRegions(q).
2. Let P(q) = ∪µ∈Ai(q),1≤i≤2 lognP(µ).
3. For every P ∈ P(q) do the following:

a. Set d̃(q,D, P )← DistThroughPath(q, P ).
4. Set d1 ←∞.
5. For every µ ∈ ∪µ∈Ai(q),1≤i≤2 logn do:

a. If IL(µ) then set d1 ← min{d1,dG(q,D(µ))}.
6. Return min({d̃(q,D, P ) | P ∈ P(q)} ∪ {d1}).

Figure 3 Our main algorithm for estimating the distance between a given query vertex q and the
closest data point to it in D.

algorithm DistThroughPath (q, P )
1. found = false.
2. Set p← s.
3. While (found = false)

a. Let d̃ = dG(p, q).
b. Find an d̃/8-net S′ on N(P ) ∩ P (p, 2d̃).
c. Set p to be the vertex in S′ ∪ {p} such that dG(q, p) is minimal.
d. If dG(q, p) > d̃/2 then set found = true.

4. For i from 1 to lognM do the following.
a. Find an 2iε/8-net Si on N(P ) ∩ P (p, 2i+3).
b. Set d̃(q,D, P )i to be the minimal distance dG(q, x) + dG(q,D) for x ∈ Si.

5. Set d̃(q,D, P ) to be the minimal distance d̃(q,D, P )i.
6. Return d̃(q,D, P ).

Figure 4 A procedure for estimating dG(q,D, P ), which is the minimum length of a path from a
given query vertex q to some vertex in D among all such paths that go through some vertex in P .

all nodes µ ∈ ∪1≤i≤2 lognAi(q) to check if µ is a leaf in T , and among all such leaf nodes
µ, the algorithm finds the node µ̃ such that dG(q,D(µ̃)) is minimal, denoting it d1. (This
computation is straightforward, since |D(µ̃)| ≤ 1 for leaf nodes.) The algorithm then returns
min({d1} ∪ {d̃(q,D, P ) | P ∈ P(q)}).

Procedure DistThroughPath is given (q, P ) and works in two stages. (See Figure 4 for
a pseudo-code description.) The first stage finds a vertex p ∈ P that is “close” to q, and the
second one uses this p to compute the estimated distance d̃(q,D, P ). The first stage is done
as follows. Initialize p = s and found = false, and now while found = false, do the following:
first, let d̃ = dG(p, q); second, find a d̃/8-net S′ on N(P ) ∩ P (p, 2d̃); third, set p to be a
vertex in S′ ∪ {p} that minimizes dG(q, p); finally, if dG(q, p) > d̃/2 then set found = true
(namely, the first part is finished).

The second stage is then done as follows. For i from 1 to log(nM) do the following. First,
find a 2iε/8-net Si on N(P ) ∩ P (p, 2i+3). Second, set d̃(q,D, P )i to be the minimal distance
dG(q, x) + dG(q,D) for x ∈ Si. Now return the minimal distance d̃(q,D, P )i as the final
answer d̃(q,D, P ).

2.4 Analysis
Recall that t∗ ∈ D is the closest data point to q.
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I Lemma 9. Consider a node µ ∈ T , let C = Cluster(µ) and e(µ) = (u, v). Let
P ∈ {Pu, Pv}. Consider a vertex x ∈ P , there is a vertex z ∈ N(P ) at distance at most
εdG(x,D ∩ C)/16 from x.

Proof. Let t ∈ D∩C be the vertex of minimal dG(x, t), namely, dG(x, t) = dG(x,D∩C). Let
i be the index such that 2i−1 ≤ dG(x, t) ≤ 2i. Note that dG(ct, x) ≤ dG(ct, t) + dG(t, x) ≤
2 dG(t, x). Hence x ∈ P (ct, 2i+1).

Recall that N(P ) contains N (P, ct, 2iε/32, 2i+1), namely, for every vertex y ∈ P (ct, 2i+1)
there is a vertex z′ ∈ N(P ) such that dG(y, z′) ≤ 2iε/32 ≤ εdG(x,D ∩ C)/16. Hence in
particular there is a vertex z ∈ N(P ) at distance at most εdG(x,D ∩ C)/16 from x. J

Consider a node µ̂ ∈ T such that t∗ ∈ Cluster(µ̂) and let e(µ̂) = (û, v̂). Let P ∈ {Tû, Tv̂}.
Let dG(q, t∗, P ) be the distance of the shortest path from q to t∗ among all q to t∗ paths that
contain at least one vertex in P . Consider Procedure DistThroughPath when invoking
on (q, P ). Let pfinal(P ) be the vertex p when the algorithm reaches step 4 of Procedure
DistThroughPath invoked on (q, P ).

I Lemma 10. dG(q, pfinal(P )) ≤ 4 dG(q, t∗, P ).

Proof. Let cq be the closest vertex to q in P . Let pi be the vertex p in the beginning of the
i’th iteration of the while loop in step 3 of Procedure DistThroughPath.

Note that the algorithm continues to the next iteration as long dG(q, pi+1) ≤ dG(q, pi)/2.
Let pr = pfinal(P ). Note also that dG(q, pr) > dG(q, pr−1)/2. From triangle inequality it
follows that cq ∈ P (pr−1, 2 dG(q, pr−1)).

Let S′ be the dG(q, pr−1)/8-net on N(P ) ∩ P (p, 2 dG(q, pr−1)) from step 3b of the
while loop. If dG(q, pr−1) ≤ 4 dG(q, t∗, P ) then we are done as dG(q, pr) ≤ dG(q, pr−1).
Seeking a contradiction assume dG(q, pr−1) > 4 dG(q, t∗, P ). By Lemma 9, N(P ) contains
a vertex z1 at distance εdG(cq, t∗)/16 from cq. Recall that S′ is an dG(q, pr−1)/8-net
on N(P ) ∩ P (pr−1, 2 dG(q, pr−1)). Hence there is a vertex z2 ∈ S′ at distance at most
dG(q, pr−1)/8 from z1.

We get that,

dG(q, pr) ≤ dG(q, z2)
≤ dG(q, cq) + dG(cq, z2)
≤ dG(q, t∗, P ) + εdG(cq, t∗)/16 + dG(q, pr−1)/8
≤ dG(q, t∗, P ) + ε(dG(cq, q) + dG(q, t∗))/16 + dG(q, pr−1)/8
≤ dG(q, t∗, P ) + ε(dG(q, t∗, P ) + dG(q, t∗, P ))/16 + dG(q, pr−1)/8
= dG(q, t∗, P )(1 + ε/8) + dG(q, pr−1)/8
≤ dG(q, pr−1)(1 + ε/8)/4 + dG(q, pr−1)/8
≤ dG(q, pr−1)/2,

contradiction. J

Let i be the index such that 2i−1 ≤ dG(q, t∗, P ) ≤ 2i.

I Lemma 11. The distance d̃G(q,D, P ) returned by the Procedure DistThroughPath
satisfies dG(q,D, P ) ≤ d̃G(q,D, P ) ≤ (1 + ε) dG(q, t∗, P ).

Proof. It is not hard to verify that dG(q,D, P ) ≤ d̃G(q,D, P ), we therefore only need to
show the second direction where d̃G(q,D, P ) ≤ (1 + ε) dG(q, t∗, P ).
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Let w ∈ P ∩ P (q, t∗, P ). Note that dG(w, t∗) ≤ dG(q, t∗, P ). By Lemma 9 there is a
vertex x ∈ N(P ) at distance at most εdG(w, t∗)/16 ≤ εdG(q, t∗, P )/16 from w.

We have

dG(x, pfinal(P )) ≤ dG(x,w) + dG(w, q) + dG(q, pfinal(P ))
≤ dG(x,w) + dG(w, q) + 4 dG(q, t∗, P )
≤ εdG(q, t∗, P )/16 + dG(q, t∗, P ) + 4 dG(q, t∗, P )
< 6 dG(q, t∗, P )
≤ 6 · 2i

< 2i+3,

where the second inequality follows by Lemma 10.
We get that x ∈ P (pfinal(P ), 2i+3). Recall that Si is an 2iε/8-net onN(P )∩P (pfinal(P ), 2i+3).

Hence there is a vertex x2 ∈ Si at distance at most 2iε/8 from x. Note that dG(x2, w) ≤
dG(w, x) + dG(x, x2) ≤ εdG(w, t∗)/16 + 2iε/8 ≤ εdG(q, t∗, P )/2. We get that

d̃G(q,D, P ) ≤ dG(q, x2) + dG(x2, t
∗)

≤ dG(q, w) + dG(w, x2) + dG(x2, w) + dG(w, t∗)
≤ dG(q, t∗, P ) + 2 dG(x2, w)
≤ (1 + ε) dG(q, t∗, P ).

J

The following lemma shows that the estimated distance returned by the algorithm satisfies
the desired stretch.

I Lemma 12. The distance d̃G(q,D) returned by the algorithm satisfies dG(q,D) ≤
d̃G(q,D) ≤ (1 + ε) dG(q,D).

Proof. it is not hard to verify that dG(q,D) ≤ d̃G(q,D), we therefore only need to show
the other direction, namely, d̃G(q,D) ≤ (1 + ε) dG(q,D). Let µ be the leaf node in T that
contains t∗.

If q ∈ Reg(µ), then note that by Lemma 8 µ ∈ {µ ∈ Ai(q) | 1 ≤ i ≤ 2 logn}, therefore
the algorithm examines the distance dG(q,D(µ)) and returns it if this is the minimal distance
examined by the algorithm. We get that d̃G(q,D) ≤ dG(q,D(µ)) = dG(q,D). So assume
q /∈ Reg(µ). Notice that there must be an ancestor node µ′ such that P (q, t∗) ∩ P 6= ∅ for
some P ∈ {Tu, Tv} where e(µ′) = (u, v). Notice that P ∈ P(q) and thus by the algorithm
and Lemma 11 we have d̃G(q,D) ≤ (1 + ε) dG(q,D, P ) = (1 + ε) dG(q,D). J

I Lemma 13. The query algorithm runs in time O( 1
ε · log logn+ tDO) logn logDiam+logn ·

∆tDO).

Proof. Let us start with bounding the time to find the sets A`(q) for 1 ≤ ` ≤ 2 logn in
Procedure FindRegions. Recall that in order to find the setsA`+1(q) the algorithm examines
all (y′, x′) ∈ ∪µ∈A`(q)NA(µ) and check which ones satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) =
dG(q, s), and among the ones that satisfy the equality, the algorithm picks the edge e = (y, x)
of minimal ÔT (e). Checking if an edge (y′, x′) satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) =
dG(q, s) can be done by constant queries to the distance oracle and thus takes O(tDO) time.

Let µ̃ be a node in A`+1(q) and let µ̃′ be its parent in T . Recall that µ̃′ ∈ A`(q). Recall
also that NA(µ̃) is the set of all edges incident to the apices of µ̃ or to s. Since µ̃ is a child
of µ̃′ we have Apices(µ̃) ⊆ Apices(µ̃′) ∪NewApices(µ̃).
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For level j let e = (xj , yj) ∈ ∪µ∈Aj(q)NA(µ) be the edge of minimal OT (yj) among all
edges (x′, y′) ∈ ∪µ∈Aj(q)NA(µ) that satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) = dG(q, s).

Let NNA(µ) be the set of all edges incident to the new apices of µ. It is not hard to
verify that in order to find e = (xj+1, yj+1) given the edge e = (xj , yj), it is enough to find
the edge (x, y) of minimal OT (y) among all edges (x′, y′) ∈ ∪µ∈Aj(q)NNA(µ) that satisfy
dG(q, y′) +ω(y′, x′) + dG(x′, s) = dG(q, s) and compare it with (xj , yj). Recall that Aj+1(q)
contains at most two nodes. Hence the time spend for level j + 1 is O(∆ · tDO). Hence the
total time to find all sets A`(q) is O(logn∆ · tDO).

We now turn to bound the running time of Procedure DistThroughPath invoked on
(q, P ). Recall that Procedure DistThroughPath has two main parts. The first part finds a
vertex pfinal such that dG(q, pfinal(P )) ≤ 4 dG(q, t∗, P ) and the second part uses pfinal(P )
to find an estimation on dG(q,D, P ).

Let pi be the vertex p in the beginning of the i’th iteration of the while loop in step 3
of Procedure DistThroughPath. The first part is done in iterations, where the algorithm
continues to the next iteration i as long as dG(q, pi) ≤ dG(q, pi−1). Therefore the number of
iteration is O(logDiam). It is not hard to see that the time of iteration i is dominated by the
maximum of the time for finding a d̃/8-net S′ on N(P )∩ P (pi, 2d̃) and the time for invoking
the distance oracle a constant number of times. Finding a d̃/8-net S′ on N(P ) ∩ P (pi, 2d̃)
can be done by O(log logn) using the range reporting data structure on N(P ) as follows.

For j from −16 to 15, find N(P,dG(s, pi) + jd̃/8,dG(s, pi) + (j + 1)d̃/8) and add it
to S′ (initially set to be empty). It is not hard to verify that S′ is indeed d̃/8-net on
N(P ) ∩ P (pi, 2d̃).

The time for a single invokation of the range reporting data structure takes O(log logn).
Note that the range reporting data structure is invoked a constant number of times. We get
that each iteration of the first part takes O(log logn+ tDO) time.

Hence the first part takes O((log logn+ tDO) logDiam) time.
Let us now turn to the second part of Procedure DistThroughPath. The second

part consists of lognM = O(logDiam) iterations. It is not hard to see that the time of
each iteration is dominated by the maximum of the time for finding a 2iε/8-net Si on
N(P ) ∩ P (p, 2i+3) and the time for invoking the distance oracle O(1/ε) times.

Similarly as explained in the first part finding a 2iε/8-net Si on N(P ) ∩ P (p, 2i+3) can
be done in O(1/ε log logn) time. Thus the total time for the second part is O((1/ε log logn+
tDO) logDiam) time. We get that the total time for Procedure DistThroughPath is
O((1/ε log logn+ tDO) logDiam).

Finally, we turn to bound the running time of Procedure Dist. Procedure Dist starts
by invoking Procedure FindRegions to obtain the sets {Ai(q)} for 1 ≤ i ≤ 2 logn. This
takes O(logn∆ · tDO) as explained above.

The algorithm then iterates on all path separators P in P(q) = ∪µ∈Ai(q),1≤i≤2 lognP(µ).
Recall that there are at most O(logn) such paths. For each such path P the algorithm
invokes Procedure DistThroughPath which takes O((1/ε log logn+ tDO) logDiam) time.
In addition, the algorithm iterates over all nodes µ ∈ ∪µ∈Ai(q),1≤i≤2 logn and invokes the
distance oracle a constant number of items for each iteration.

We get that the total running time of Procedure Dist is O((1/ε log logn + tDO) logn
logDiam+ logn∆ · tDO). J

I Lemma 14. The space requirement of the data structure is O( 1
εn logn logDiam+n∆ log2 n).

Proof. The number of nodes in T is O(n logn). It is not hard to verify that the depth
of T is O(logn) as for every node µ with parent node µ′ we have Cluster(µ) ∩ D ≤
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2/3 ·Cluster(µ′) ∩D. In addition, the number of nodes in each level is at most n as the
clusters of the nodes are disjoint and the cluster of each node contains a vertex in D.

For every node µ, every level ` and every apex x ∈ NewApices(µ), the algorithm stores
for every edge e that is incident to x the set of at most two nodes Â`(e) = {µ ∈ T | e ∈
E(Reg(µ)) and Level(µ) = `}. The algorithm also stores the number OT (v) for every
vertex v that is a neighbor of an apex of some node µ ∈ T .

There are at most two apices in NewApices(µ). For each such apex x there are most ∆
incident edges. For each such edge e and for each level ` the size of Â`(e) is two. We get
that the size stored for each node µ for this part is O(∆ logn). There are at most O(n logn)
nodes. Thus the total size for this part is O(n∆ log2 n).

For every node µ such that e(µ) = (u, v), the algorithm stores the sets N(Tz) in an
increasing distance from s for z ∈ {u, v}. In addition, construct a range reporting data
structure on N(Tz) according to the distance from s. The size of the range reporting data
structure is |N(Tz)|. We thus need to bound the size of all N(P ) for all path separators P .

Every vertex w ∈ D belongs to the clusters of at most 2 logn nodes µ. For each such
node µ such that e(µ) = (u, v), w contributes at most O(logDiam/ε) vertices to N(Tz). We
get that the sum of the sizes of all N(P ) for all path separators P is O(n logn logDiam/ε).
Thus the total size for this part is O(n logn logDiam/ε).

Finally, for every node µ the algorithm stores an indicator IL(µ) if µ is a leaf in T .
The algorithm also stores the data-point D(µ) in case µ is a leaf. Thus the total size
for this part is O(n logn). Overall, we get that the total size of the data structure is
O(n logn logDiam/ε+ n∆ log2 n). J

3 The General Case: Non-Unique Shortest Paths

In this section we show how to handle the general and seemingly much more involved case of
non-unique shortest paths. As mentioned above, the common workaround of perturbing the
edge weights is not applicable here because we assume only a black-box access to a distance
oracle. The main challenge is to efficiently perform the zoom-in operation. In the unique
shortest paths case, if we found a node x that is on the shortest path from q to s, then we
knew that x is an ancestor of q in the tree T . This provided us with a better idea on where
the query q is and and thus we could zoom in to the right regions. The main idea in handling
the non-unique case is to have a consistent way of breaking ties in the preprocessing phase
while constructing the shortest path tree T . This also considerably complicates the analysis
of the zoom-in operation, and we need to use planarity to show that our consistent way of
breaking the ties together with planarity is enough to be able to zoom-in correctly (it is easy
to create examples where the graph is not planar and then our way of breaking the ties does
not give us more information on where the query q is).

Let us start with the modifications needed in the preprocessing phase. We will later show
the modifications needed in the zoom-in operation and in the analysis.

3.1 Preprocessing: The General Case
The main difference in the preprocessing phase is in the way the algorithm chooses the
shortest path tree T . The definitions below provide a consistent way of breaking such ties,
and will be used later extensively.

Identifiers. Fix some vertex s ∈ M , and assign each vertex v ∈ M a unique identifier
id(v) ∈ [1..m], such that for all v1, v2 ∈ M with dG(s, v1) < dG(s, v2), we have id(v1) >
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id(v2). Such identifiers can be computed easily by ordering the vertices according to their
distance from s, breaking ties arbitrarily.

Partial-order on shortest paths. The unique identifiers and s ∈ M induce the following
partial order l on shortest paths in the graph. Let P = (s = z1, z2, . . . , zr) and P ′ = (s =
z′1, z

′
2, . . . , z

′
r′) be two shortest paths originating from the same vertex s. (Our definition below

actually extends to every two shortest paths, but we will only need the case z1 = z′1 = s.)
We say that P is smaller than P ′ with respect to l, denoted P l P ′, if the smallest index
j ≥ 1 for which zj 6= z′j , satisfies id(zj) < id(z′j). If no such index j exists, which happens if
P is a subpath of P ′ or the other way around, then the two paths are incomparable under l.
A shortest path P from s ∈M to v ∈M is called minimal with respect to l if it is smaller
with respect to l than every other shortest path from s to v. Observe that for every v ∈M ,
every two non-identical shortest paths from s to v are comparable, and thus exactly one of
all these shortest paths is minimal. We remark that in the above description, and also in
the foregoing discussion, it is convenient to implicitly consider paths as “directed” from one
endpoint to the other one (usually going further away from s).

Tree with ordered shortest paths. Let T be a shortest-path tree rooted at the fixed vertex
s ∈M , and let P (s, v, T ) denote the path in the tree from s to vertex v ∈M . We say that
the tree T is minimal with respect to l if for every vertex v ∈M the path P (s, v, T ), which
is obviously a shortest path, is minimal with respect to l.

Preprocessing algorithm, step 1’. The algorithm fixes some vertex s ∈M , and gives the
vertices unique identifiers as described above. It then constructs a shortest-path tree T
rooted at s ∈ M that is minimal with respect to l, by invoking Dijkstra’s single-source
shortest-path algorithm from s, with the following slight modification. When there is a tie,
namely, the algorithm has to choose an edge (x, y) that minimizes dG(s, x, T ) +ω(x, y), then
among all the edges achieving the minimum, the algorithm selects the (unique) one for which
the path P (s, xi, T ) is minimal with respect to l.

I Claim 3.1. A tree T constructed as above is indeed minimal with respect to l.

We now define a total order on the vertices induced by l and T as follows. We say that
v lT u if either (i) v and u are not related and P (s, v, T ) l P (s, u, T ); or (ii) v and u are
related and v is a descendant of u. The algorithm assigns every vertex v a number OT (v)
from [1..m] such that OT (u) < OT (v) iff ulT v.

In addition, the algorithm assigns every ordered edge e = (y, x) a number ÔT (e) ∈ [1..3m]
such that for two edges e = (y, x) and e′ = (y′, x′), we have ÔT (e) < ÔT (e′) iff OT (x) <
OT (x′) or OT (x) = OT (x′) and OT (y) < OT (y′).

The rest of the preprocessing phase is similar to the unique-distances case, with the slight
modification that every vertex v (resp., edge e) the algorithm stores, it also stores OT (v)
(resp., ÔT (e)).

3.2 Finding the Query’s Region: The General Case
In this section we describe the modifications needed in the zoom-in operation for the general
non-unique case. The main difference is in the analysis of the zoom-in operation.

The only modification to the zoom-in operation is as follows. Instead of picking the edge
(y, x) ∈ ∪µ∈A`(q)NA(µ) such that (y, x) is on any shortest path from q to s of maximum
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dG(s, x) and zooming in to regions of (y, x) on the next level, the algorithm picks the edge
(y, x) with minimal OT (y) among all edges (y, x) ∈ ∪µ∈A`(q)NA(µ) such that (y, x) is on
any shortest path from q to s (not necessarily the path in T ).

The following main lemma proves the correctness of the zoom-in operation for the
non-unique case (the proof is quite technical and is omitted from this version).

I Lemma 15. For every level ` ≤ Level(Home(q)), the query vertex q belongs to a region
in {Reg(µ) | µ ∈ A`(q)}.

4 Lower Bounds

Our approximate NNS scheme, presented in Theorem 1, requires access to an exact (rather
than approximate) distance oracle, and its space and time complexity bounds depend linearly
on the graph’s maximum degree ∆. In this section we prove that these two requirements are
necessary. The graphs used in our lower bounds are in fact trees (and thus certainly planar).
Let DO(u, v) denote (the answer for) a distance-oracle probe for the distance between points
u, v.

4.1 Linear Dependence on the Degree ∆
We first assume access to an exact distance oracle, and prove a lower bound on the NNS
worst-case query time, assuming that the space requirement is not prohibitively large. We
actually prove a stronger assertion, and bound the NNS query time only by the number of
distance-oracle probes, regardless of any other operations; in particular, we allow the NNS
query procedure to read the entire data structure!

Consider a c-approximate NNS (randomized) scheme with the following guarantee: When
given a planar graph with N vertices and maximum degree logN ≤ ∆ ≤ n, together with
a dataset of n vertices, it produces a data structure of size s. Using this data structure,
for every query vertex q, with probability at least 1/2 it finds q’s c−approximate nearest
neighbor using at most t distance-oracle probes. We are interested in the setting where
N � n, say N ≥ n2. The following theorem shows that unless s is huge, the query time t
must grow linearly with the maximum degree ∆. Let us justify the above requirements on
∆; the assumption ∆ ≤ n is necessary because t ≤ n is always achievable, by answering NNS
queries using exhaustive search (with no preprocessing); the assumption ∆ ≥ logN is for
ease of exposition, and can probably be removed with some extra technical work.

I Theorem 16. If s ≤ O(N/(∆ log∆ n)) bits, then t ≥ Ω(∆ log∆ n).

Outline. We prove the theorem by presenting a single distribution over inputs, which is
“hard” for all deterministic algorithms. That is, every deterministic algorithm is unlikely to
succeed in producing a correct answer, under certain space/time constraints (Lemma 20).
A bound for randomized algorithms is achieved by fixing the best possible coins (the easy
direction of Yao’s minimax principle).

The bound for deterministic algorithms is obtained in three steps. First we assume there
is no data structure, i.e., memory size s = 0, and show that no deterministic algorithm can
succeed with more than a constant probability (Lemma 18). We then amplify the bound by
considering a series of query points (Lemma 19), at which point the success probability is so
tiny that a small data structure cannot help.
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4.1.1 The hard distribution
We specify a distribution over NNS instances, namely, a distribution over tree graphs T of
size roughly N and degree roughly ∆, data sets D of size n and a query points q. All but
the last level of the tree would be fixed, and the randomization occurs only in the way the
leaves are connected.

The fixed part of T : Start with a complete tree of arity ∆ and exactly N leaves, which
means the tree’s depth is H := log∆N . (We shall assume for simplicity that all values are
integral, to avoid the standard yet tedious rounding issues.) The dataset D is formed by the
n vertices at depth (also called level) h := log∆ n, and they are labeled p1, . . . , pn. Let all
edges have unit length, except for the edges at level h, which have length cH. (To extend
our results to unweighted trees, replace these edges with paths of corresponding length.) In
particular, the distance between every two distinct dataset points is at least 2cH. Since this
part of the tree is fixed, we assume the algorithm “knows it”, i.e., it can compute distances
without any distance-oracle probes.

The random part of T : The last level H + 1 of the tree is random; it is constructed by
hanging N leaves labeled `1, . . . , `N independently at random. In other words, for each
vertex `i we sample uniformly at random one of the N/∆ nodes at level H − 1 and connect
to it. By standard tail bounds, with probability greater than 1− 1/n, at most 2∆ leaves are
attached to the same node, so the maximum degree of the graph is ≤ 2∆. We note that this
is the only place where we use that ∆ ≥ logN . We denote this input distribution by T .

Finally, we need to specify the distribution of query points. Throughout our analysis the
query point is chosen uniformly at random from the leaves, namely, a vertex `q for uniformly
random q ∈ [N ]. Observe that the nearest neighbor of `q is the dataset point pi which is
the unique ancestor of `q at level h. In fact, this pi is the unique c-approximate nearest
neighbor, because d(`q, pi) = H − h while for i′ 6= i we have d(`q, pi′) ≥ 2cH. Thus, in all
these instances, exact NNS is equivalent to c-approximate NNS.

4.1.2 The no-preprocessing case
Let A be a deterministic algorithm that solves c-approximate NNS without any preprocessing,
in other words, A has zero space requirements and consists of only a query algorithm. Define
TA as the number of distance-oracle probes that A makes given a query. Under the above
input distribution, TA is a random variable, and our goal is to show that it is likely to be
Ω(∆ log∆ n). Towards this end, we shall make a few adaptations to TA and to the algorithm
A.

Let T ′A be the number of distance-oracle probes of the form DO(`q, ·). Clearly T ′A ≤ TA
so it suffices to bound T ′A. We next show that in effect, we may restrict attention to
algorithms that do not probe the distance from `q to vertices at level bigger than h (i.e.,
strict descendants of the dataset D).

I Lemma 17. There is an algorithm A1 that probes DO(`q, w) only for vertices w at level
at most h, and with probability 1 (i.e., on every instance in the support), T ′A1

≤ T ′A.

Proof. Algorithm A1 simulates A probe by probe, except that when A probes DO(`q, w)
for some w at level bigger than h, algorithm A1 probes DO(`q, pi) where pi is the dataset
point which is the ancestor of w. Now, if pi is also the ancestor of `q then pi is the nearest
neighbor and A1 can output pi. Otherwise observe that d(`q, w) = d(`q, pi) + d(pi, w), so A1
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can compute d(`q, w) and continue the simulation of A. Since A1 uses one query to simulate
a query of A, clearly T ′A1

≤ T ′A.
The remaining thing to specify is how does A1 find the ancestor of w. Now, if w is not

a leaf, then it is part of the fixed graph, and the ancestor is hard-wired into A1. If w is a
leaf, we will assume that the parent pi is just given to A1 for free. Formally we allow A1 to
query DO(w, pj) for various j’s until w’s ancestor is found, and note that these queries are
not counted in T ′A1

. J

For illustration, consider the case where n = ∆ and N = n2, which means that the tree
has depth H = 2, and the dataset D lies at level h = 1. The algorithm A1 is given a label
for a leaf `q and has to find its parent. We only consider distance-oracle probes of the form
DO(`q, pi), which have value 1 if pi is the nearest neighbor of `q, and value 3 otherwise.
Observe that queries that don’t involve `q carry no information on the parent of `q, and in
queries of the form DO(`q, `q′), we effectively replace `q′ with its parent. The situation is
thus identical to searching in an unsorted array of size n. The algorithm “scans” the vertices
pi in some order, which is not deterministic (as it might depend on parents of other leaves)
but is independent of the correct answer (the parent of `q). Therefore, T ′A1

is distributed
uniformly in [∆].

We now return to the general hard distribution T which follows the same intuition but
requires additional technical maneuvers. Our goal is to show that without loss of generality,
A1 could be thought as finding the ancestors of q level by level, starting from the root at
level 0 and proceeding down to level h = log∆ n. Each level requires a search over ∆ items,
hence we will obtain a lower bound of Ω(∆h).

Given algorithm A1, define a new algorithm A2 as follows. Simulate A1, but whenever
A1 probes DO(`q, w), probe instead DO(`q, w′), where w′ is the minimum-level ancestor of
w for which DO(`q, w′) wasn’t probed yet. Now, based on the answer, detect whether `q is
a descendant of w′ and proceed according to the case at hand:

If `q is a not descendant of w′, proceed in the simulation of A1 by calculating the distance
d(`q, w) = d(`q, w′) + d(w′, w) without probing DO(`q, w) directly.
If `q is a descendant of w′, probe the entire path from w′ to w (namely, the distance
between `q and each vertex along this path) until you can compute d(`q, w), which could
happen by reaching either w itself or a vertex which is not an ancestor of `q.

We point out two crucial observations. First, A2 recovers the ancestors of `q one by one
starting from level 0 (the root) down to level h (some dataset point). Second, the extra
probes are along the path from the root to `q, with at most one probe outside that path at
each level. This is done only up to level h and without repeating the same probe. Thus in
total, A2 always makes at most 2h = 2 log∆ n more probes of the form DO(`q, ·) than A1
does, i.e., T ′A2

≤ T ′A1
+ 2h. The next lemma analyzes this “well-behaved” algorithm A2.

I Lemma 18. PrT ,q[T ′A2
≤ h∆/3] ≤ 1/16.

Proof. Let w0, w1, . . . , wh denote the ancestors of `q from level 0 to level h (e.g., w0 is the
root and wh ∈ D). We say A2 recovers wi, the first time it queries DO(`q, wi) and we recall
that a key feature of A2 is that it recovers these vertices one by one.

Denote by Xj , for j ∈ [h], the number of distance-oracle probes of the form DO(`q, ·)
that A2 makes after recovering wj−1 and until recovering wj . The main observation is that
Xj dominates a random value chosen uniformly from [∆], even when conditioned on the
sequence of probes made prior to recovering wj−1. Indeed, when sampling the location of
`q, the decision which child of wj−1 is the ancestor of `q could be deferred to the moment
the children of wj−1 are being probed. Hence algorithm A2 is essentially performing an
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exhaustive search, akin to searching in an unsorted array. It follows that E[Xj ] ≥ ∆/2 and
E[T ′A2

] ≥ h∆/2. Moreover, by applying Azuma’s inequality (assuming n is large enough),
Pr[T ′A2

≥ h∆/3] ≤ 1/16. J

Recalling that TA ≥ T ′A ≥ T ′A1
≥ T ′A2

− 2h (always) and assuming ∆ ≥ 24, we obtain
using Lemma 18 that

Pr
T ,q

[
TA ≤ h∆/4

]
≤ Pr
T ,q

[
T ′A2
− 2h ≤ h∆/4

]
≤ 1/16. (1)

A sequence of queries (with no preprocessing). We say algorithm A (with no prepro-
cessing) succeeds on a query `q if it outputs a correct answer and makes at most h∆/4
distance-oracle probes. Eq. (1) states that PrT ,q[A succeeds on query `q] ≤ 1/16. In order
to extend the argument to the case with preprocessing we need to decrease that probability
to be exponentially small, which we achieve by looking at a sequence of several queries. Let
q1, . . . , qm ∈ [N ] be chosen uniformly at random and independently.

I Lemma 19. For every m ≤ N/(4h∆),

Pr
T ,q1,...,qm

[A succeeds on all queries `q1 , . . . , `qm ] ≤ ( 1
8 )m.

Proof. The main difficulty here is that there might be dependencies between different query
points, e.g., if the algorithm’s first probe is DO(`6, `7), then there is a chance that q1 = 6
and q2 = 7, and we cannot argue the success of A on q1 and on q2 are independent. In
particular, we cannot assume that A never probes other leaves (other than the query point).

The way we handle it is by sampling the tree using deferred decisions, meaning that we
attach every leaf of the tree only when it is needed. Trace the executions of A on query qi for
i = 1, . . . ,m one by one, where each execution is restricted to at most h∆/4 distance-oracle
probes. Every time a leaf is probed for the first time (more precisely, the distance from/to
that leaf), determine its location by attaching it to a random vertex at level H − 1.

Now, assume algorithm A succeeded on queries q1, . . . , qi−1 and consider its execution on qi.
The number of leaves attached prior to this execution is at most (i−1)h∆/4 ≤ mh∆/4 ≤ N/16.
Thus, the probability that a random qi is one of these leaves is at most 1/16; if this is not
the case, then qi is completely random leaf, and Eq. (1) applies to it. Thus, assuming A
already succeeded on queries q1, . . . , qi−1 the probability it succeeds on query qi is at most
1/8. The theorem follows. J

4.1.3 Algorithm with preprocessing
We turn to the case where an algorithm can prepare a data structure of size s, and prove a
lower bound under the same input distribution as before. Specifically, an input tree is first
drawn from the distribution T , and then the tree is processed to create a data structure of s
bits. Next, a random leaf `q is chosen as a query point, and algorithm B, which can read the
entire data structure (as “advice”), answers the query. As before, we say that algorithm B

succeeds on a query `q if it outputs a correct answer and makes at most h∆/4 distance-oracle
probes.

I Lemma 20. If s ≤ N/(4h∆) then PrT ,q[B succeeds on a query q] < 1/2.

Proof. Assume for contradiction that B succeeds with probability at least 1/2. Define a
new algorithm A that guesses the s bits of advice at random and then simulates algorithm
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B. We will show that this algorithm A (which obviously uses no preprocessing) contradicts
Lemma 19.

Now consider sampling a tree from T . In expectation, algorithm B would succeed on
at least half the leaves of this tree (as query points), hence by Markov’s inequality, with
probability at least 1/4 (over the choice of the tree) algorithm B succeeds on at least
1 − 4

3 ·
1
2 = 1

3 of the leaves. In such a tree, the probability that B succeeds on m random
leaves is at least ( 1

3 )m.
Recall that Algorithm A guesses the advice strings independently at random. Thus, the

probability that A succeeds on all the m leaves of a random tree is at least ( 1
2 )s · 1

4 · (
1
3 )m.

Taking m = N/(4h∆) and observing s ≤ m, we have

Pr
T ,q1,...,qm

[A succeeds on all queries `q1 , . . . , `qm ] ≥ 1
4 · (

1
6 )m.

Now observe that for N (and hence m) large enough, we have contradicted Lemma 19. J

We can now complete the proof of Theorem 16.

Proof of Theorem 16. Assume towards contradiction there is a randomized algorithm C for
the c-approximate NNS problem, such that on tree instances with maximum degree at most
2∆ + 2, we have (the theorem would then follow by substituting ∆′ = 2∆ + 2): (a) for each
query point, with probability at least 3/4, the algorithm answers correctly (a c-approximate
nearest neighbor); (b) the space requirement is s ≤ N/(4h∆) = N/(4∆ log∆ n); and (c) for
each query point, the algorithm makes at most t ≤ h∆/4 distance-oracle probes.

By fixing the coins of algorithm C optimally, it immediately follows there exists some
deterministic algorithm B that achieves PrT ,q[B succeeds on a query q] ≥ 3

4 , in addition to
satisfying the space requirement (b) and query time bound (c), which contradicts Lemma 20.
The theorem follows. J

4.2 Approximate Distance Oracles
We now sketch the argument claiming it is essential to have an exact distance oracle (rather
than an approximate one). Suppose the distance oracle provides a (1 + δ) multiplicative
approximation of the distance for some δ > 0. We show an instance with the following
properties:

The total number of nodes is O(n2) and the maximum degree is O(logn).
The aspect ratio across edge weights is max{(2 logn)/δ, (1 + ε) logn}.
If the space of the data structure is ≤ n2 bits then the number of distance-oracle probes
needed is Ω(n).

The construction is as follows. Build a binary tree of height logn from root s, so the
binary tree has n leaves, and call this part of the graph the top tree. Now, from each leaf of
the top tree hang an edge of length max{2 logn/δ, (1 + ε) logn}. To simplify the exposition,
assume this maximum is 2 logn/δ. The bottom nodes of these edges are labeled p1, . . . , pn
and these are the dataset points. Finally, from each dataset point hang a binary tree of depth
logn, so we have a total of n2 leaves to which we hang random n2 nodes labeled l1, . . . , ln2 ,
thus creating nodes of maximum degree O(logn) with high probability. We call these trees
the bottom trees.

Observe that for each leaf li there is one pj for which d(li, pj) = logn while for k 6= j

d(li, pk) ≥ (1 + ε) logn. Thus, for a query li the algorithm must output pj , which is the
unique (1 + ε)-approximate nearest neighbor. When probed for DO(u, v), the distance oracle
answer is as follows:
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If both u, v belong to the top tree or to the same bottom tree, the oracle answers with
the exact distance between them.
If u belongs to a bottom tree and v belongs to a top tree, the oracle answers 2 logn/δ.
Note that the exact distance is in the range [2 logn/δ, (1 + δ)2 logn/δ].
If u and v belong to different bottom trees, the oracle outputs 4 logn/δ. Again, observe
that the correct distance is in the range [4 logn/δ, (1 + δ)4 logn/δ].

The way the distance oracle is set up, the NNS algorithm faces a situation which is
similar to the case where the root has degree n, and is connected to the all the dataset points
by distinct edges. In this case the total size of the graph is n2. The proof of the previous
section essentially shows that unless the data structure is of size roughly n2, the query time
is Ω(∆) = Ω(n).
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