
The Computational Hardness of Estimating Edit Distance

[Extended Abstract]

Alexandr Andoni∗

MIT
andoni@mit.edu

Robert Krauthgamer
Weizmann Institute and IBM Almaden
robert.krauthgamer@weizmann.ac.il

Abstract

We prove the first non-trivial communication com-
plexity lower bound for the problem of estimating the
edit distance (aka Levenshtein distance) between two
strings. A major feature of our result is that it pro-
vides the first setting in which the complexity of com-
puting the edit distance is provably larger than that of
Hamming distance.

Our lower bound exhibits a trade-off between approx-
imation and communication, asserting, for example,
that protocols with O(1) bits of communication can only
obtain approximation α ≥ Ω(log d/ log log d), where d
is the length of the input strings. This case of O(1)
communication is of particular importance, since it
captures constant-size sketches as well as embeddings
into spaces like L1 and squared-L2, two prevailing algo-
rithmic approaches for dealing with edit distance. Fur-
thermore, the bound holds not only for strings over al-
phabet Σ = {0, 1}, but also for strings that are permu-
tations (called the Ulam metric).

Besides being applicable to a much richer class of al-
gorithms than all previous results, our bounds are near-
tight in at least one case, namely of embedding permu-
tations into L1. The proof uses a new technique, that
relies on Fourier analysis in a rather elementary way.

1 Introduction

The edit distance (aka Levenshtein distance) be-
tween two strings is the number of insertions, dele-
tions, and substitutions needed to transform one string
into the other. This distance is of key importance in
several fields such as computational biology and text
processing, and consequently computational problems

∗Part of this work was done while the author was visiting
IBM Almaden.

involving the edit distance were studied quite exten-
sively. The most basic problem is that of comput-
ing the edit distance between two strings of length d
over alphabet Σ. The fastest algorithm known for the
case of constant-size alphabet remains the algorithm of
Masek and Paterson [20] from 1980, that runs in time
O(d2/ log d). Unfortunately, such near-quadratic time
is prohibitive when working on large datasets, which
is a common case in areas such as computational biol-
ogy, and a possible approach is to trade accuracy for
speed and employ faster algorithms that compute the
edit distance approximately (possibly as a preliminary
filtering step). Currently, the best quasi-linear time al-
gorithm, due to Batu, Ergün, and Sahinalp [6], achieves
d1/3+o(1) approximation.

Another major algorithmic challenge is to design a
scheme for Nearest Neighbor Search (NNS) under the
edit distance. In this problem, we wish to design a
data structure that preprocesses a dataset of n strings
of length d each, so that when a query string is given,
the query’s nearest neighbor (i.e., a dataset string with
the smallest edit distance to the query string) can be re-
ported quickly. However, no efficient solutions for this
problem are known, even if one is content with a small
approximation. All known algorithms with fast query
time (polynomial in d and logn) either require large
space or have large approximation – Indyk [14] achieves
constant approximation using ndΩ(1)

space, and Ostro-
vsky and Rabani [23] obtain 2O(

√
log d log log d) approxi-

mation using space that is polynomial in d and n.

It is thus natural to ask: is it really “hard” to design
algorithms for the edit distance? A natural benchmark
is the Hamming distance, in which substitutions are
allowed, but not insertions and deletions. For Ham-
ming distance, much better algorithms are known: (i)
the distance between two strings can clearly be com-
puted in time O(d), and (ii) NNS schemes by Indyk
and Motwani [15] and by Kushilevitz, Ostrovsky and
Rabani [19] achieve 1 + ε approximation using space

1

that is polynomial in d and in n1/ε2 . Empirically, edit
distance appears to be more difficult than Hamming
distance, and the reason is quite clear – insertions and
deletions cause portions of the string to move and cre-
ate an alignment problem – but there is no rigorous
evidence that supports this intuition. In particular, we
are not aware of a computational model in which the
complexity of edit distance is provably larger than that
of Hamming distance.

We give the first rigorous evidence for the computa-
tional hardness of the edit distance. In fact, we show
a computational model in which the complexity of es-
timating edit distance is significantly larger than that
of Hamming distance, and this is the first setting for
such a separation. Our results hold for two important
metrics:

1. standard edit metric, i.e. edit distance on {0, 1}d;
2. the Ulam metric, which is the edit distance on

permutations of length d.
Here and throughout, a permutation is a string consist-
ing of distinct characters. Our results immediately im-
ply lower bounds for sketching algorithms and nonem-
beddability statements, areas that received a lot of at-
tention; we will discuss these implications in more de-
tail after stating our main results.

1.1 Main Results

Our main result is stated in terms of communication
complexity of the distance threshold estimation problem
(DTEP) and holds for both edit metric over Σ = {0, 1},
and for the Ulam metric. In DTEP [26], for a thresh-
old R and an approximation α fixed as parameters, we
are given inputs x, y and we want to decide whether
ed(x, y) > R or ed(x, y) ≤ R/α.

In the communication protocols setting, Alice and
Bob, who have access to a common source of random-
ness, receive strings x and y respectively as their in-
puts, and their goal is to solve DTEP by exchanging
messages. The communication complexity of the pro-
tocol is then defined as the minimum number of bits
Alice and Bob need to exchange, to succeed with prob-
ability at least 2/3. When x, y come from the standard
edit metric, we denote the communication complexity
by CC{0,1}

α,R . Similarly, when x, y come from the Ulam
metric, we denote the communication complexity by
CCUlam

α,R . Our main theorem provides a lower bound on
the latter, exhibiting a trade-off between communica-
tion and approximation.

Theorem 1.1. Let d > 1 and α = α(d) > 1. Then,
there exist constants c > 0 and 0 < c1 < c2 < 1, such

that for all R satisfying dc1 ≤ R ≤ dc2 ,

c ·CCUlam
α,R + log(α logα) ≥ log log d.

We extend this result from the Ulam metric to the
standard edit metric by reducing the latter to the for-
mer. The key idea, which may be of independent inter-
est, is that substituting every alphabet symbol with an
independent random bit preserves the edit distance, up
to a constant factor (with high probability), as stated
in the following theorem.

Theorem 1.2. Let P,Q ∈ Σd be two permutations,
and let π : Σ �→ {0, 1} be a random function. Then

Pr[ed(π(P), π(Q)) ≤ ed(P,Q)] = 1; and

Pr[ed(π(P), π(Q)) ≥ Ω(1)·ed(P,Q)] ≥ 1− 2−Ω(ed(P,Q)).

Using the last two theorems, we obtain the following.

Corollary 1.3. Let d > 1 and α = α(d) > 1. Then,
there exist constants c > 0 and 0 < c1 < c2 < 1, such
that for all R satisfying dc1 ≤ R ≤ dc2 ,

c ·CC{0,1}
α,R + log(α logα) ≥ log log d.

The only lower bounds known previously for CC{0,1}
α,R

and CCUlam
α,R are obtained by a straightforward re-

duction from the same problem on Hamming metric.
These bounds assert that the communication complex-
ity for α = 1 + ε is Ω(1/ε), and in the case of sketching
protocols Ω(1/ε2) [27], and both are clearly uninfor-
mative for (say) α ≥ 2. See also [25] for other related
results.

Comparison with Hamming distance. The next
proposition, proved (implicitly) by Kushilevitz, Ostro-
vsky, and Rabani [19], upper bounds the communica-
tion complexity of DTEP over the Hamming metric.
Let H(x, y) be the Hamming distance between x and
y.

Proposition 1.4 ([19]). Let d > 1, R > 1 and ε > 0.
Then there exists a communication protocol (in fact, a
sketching algorithm) that given inputs x, y ∈ Σd distin-
guishes whether H(x, y) > R or H(x, y) ≤ R/(1 + ε),
using O(1/ε2) communication.

Observe that for a constant approximation factor
α (namely, independent of d), the complexity of the
Hamming metric is O(1), while that of edit metric is
Ω(log log d). It thus follows that edit distance is in-
deed provably harder to compute than Hamming, for
communication protocols.

2

1.2 Implications and Related Work

Two promising approaches to designing algorithms
for the edit metrics are via metric embeddings and via
sketching, and our results preclude good approximation
algorithms obtained via either of these approaches.

Embedding of edit distance into normed met-
rics. A current line of attack on edit distance is by
embedding it into a computationally easier metric, for
which efficient algorithms are known. An embedding is
a mapping f from the strings into, say, �1 metric, such
that for all strings x, y,

ed(x, y) ≤ ‖f(x)− f(y)‖1 ≤ D · ed(x, y),

and D ≥ 1 is called the embedding’s distortion (ap-
proximation factor). An embedding with low distortion
would have major consequences since it allows porting
a host of existing algorithms for �1 metric to the case of
edit distance. For example, an (efficiently computable)
embedding with distortion D gives an efficient nearest
neighbor data structure for approximation (say) 2D,
by applying the embedding and reverting to [15, 19].

Naturally, researchers were keen to find the least
distortion for an embedding into �1 – the problem is
cited in Matoušek’s list of open problems [21], as well
as in Indyk’s survey [13]. Table 1.2 summarizes the
previously known upper and lower bounds, as well as
the implications of our theorems. The reader may find
more background, including on some variations of the
edit distance, in [24].

It is readily seen from the table that the only
previous super-constant distortion lower bound is
Ω(log d) for embedding of edit distance into �1, due
to Krauthgamer and Rabani [18], building on a tech-
nique of Khot and Naor [17]. Although an important
lower bound, one can potentially overcome such a lower
bound by, say, embedding edit distance into a richer
space, such as (�2)2, the square of �2, with a possi-
bly smaller distortion – the major implications of an
embedding into (�2)2 are precisely the same as when
embedding into �1. Unfortunately, on this front, much
weaker lower bounds are known – the previous lower
bound is only 3/2 [1]. To further stress how little is
known, we note that one can consider even richer met-
rics, such as any fixed power of �2 (essentially equiva-
lent to embedding a fixed root of edit distance into �2),
which also has an efficient nearest neighbor data struc-
ture. For sufficiently high (but fixed) power of �2, the
3/2 bound of [1] gets weaker and becomes arbitrarily
close to 1.

Our results rule out all such embeddings indirectly,
by targeting a richer class of metrics – metrics that

admit protocols with O(1) communication and O(1)
approximation. (Proposition 1.4 shows that this class
of metrics is indeed richer.) Observe that every embed-
ding of edit distance (either one of the two mentioned
earlier) into a metric in that richer class must incur dis-
tortion D ≥ Ω(log d

log log d), as otherwise it would contra-
dict our communication lower bounds. (Note that the
embedding does not have to be efficiently computable.)

Corollary 1.5. For every p ≥ 1, embedding the stan-
dard edit metric or the Ulam metric into (�2)p requires
distortion Ω

(
log d

log log d

)
. The same is true also for em-

bedding into �1.

For the Ulam metric, this distortion lower bound
is near-optimal, since the metric embeds into �1 with
O(log d) distortion [8]. The previous distortion lower
bound was 4/3 [9].

Sketching of edit distance. The sketch of a string
x is a (randomized) mapping of x into a short “finger-
print” sk(x), such that sketches of two strings, sk(x)
and sk(y), are sufficient to distinguish between the case
where x, y are at edit distance ed(x, y) ≤ R/α, and
the case where ed(x, y) > R, for approximation factor
α > 1 and parameter R > 1. The main parameter of
a sketching algorithm is its sketch size, the length of
sk(x).

The sketching model can also be described as a si-
multaneous communication protocol, as follows. Al-
ice receives x and computes sk(x), Bob receives y and
computes sk(y), and then they send their computed
values to a “referee”, who needs to decide whether x, y
are close or far based only on the sketches. By let-
ting either Alice or Bob play the role of the referee
in this simultaneous protocol, one easily sees that the
sketch size required by a sketching algorithm is always
no smaller than the number of communication bits re-
quired by a (general) protocol. The following corollary
thus follows immediately from our preceding commu-
nication lower bounds.

Corollary 1.6. Every O(1)-size sketching algorithm
of the standard edit metric or of the Ulam metric can
only achieve approximation of Ω

(
log d

log log d

)
.

Sketching with constant sketch size can be viewed
as a generalization of the “embeddings approach” pre-
sented above, by using Proposition 1.4, albeit with a
small constant factor loss in the approximation fac-
tor. An important observation is that this more gen-
eral approach suffices for the purpose of designing an
NNS scheme with efficient query time (assuming that
computing the sketch can be done efficiently) and in

3

Metric Reference �1-embedding (�2)2-embedding O(1)-size sketch

Edit on {0, 1}d
[23] 2O(

√
log d log log d) −→ −→

[17, 18] Ω(log d)
[1] ←− ≥ 3/2
This paper ←− ←− Ω(log d

log log d)

Ulam (edit on
permutations)

[8] O(log d) −→ −→
[9] ←− ≥ 4/3
This paper ←− ←− Ω(log d

log log d)

Block edit distance [11, 22, 9] O(log d log∗ d) −→ −→
Edit distance with moves [10] O(log d log∗ d) −→ −→

Figure 1: Known bounds on distortion of embedding variants of edit distance into �1, (�2)
2, and the approximation for

achieving O(1)-size sketch. Since �1 ⊂ (�2)
2 and (�2)

2 has O(1)-size sketch for 2-approximation, the upper bounds transfer
from left to right, and the lower bounds transfer from right to left (as suggested by the arrows). Grayed cell mean no implied
result for the corresponding column.

polynomial space.1 Indeed, the nearest neighbor data
structure for Hamming metric of [19] could be viewed
as an instantiation of the last step. In addition, sketch-
ing can be useful for the original goal of quickly com-
puting the distance.

The sketching model is also important as a basic
computational notion for massive data sets, and in re-
cent years, an intensive research effort has led to many
sketching algorithms for DTEP over different metrics.
Prior to our work, there were essentially three metrics
for which a sketch size lower bound is known: for �1 [27]
(equivalently, for �p, p ∈ (1, 2]), for �∞ [26, 4] (implying
lower bounds for �p, p > 2), and for the Earth-mover
distance over {0, 1}d [2].

Sketching of edit distance was studied in [5, 3, 23, 8],
but the only lower bound known for sketching of edit
distance is trivial in the sense that it follows imme-
diately from Hamming distance (by a straightforward
reduction). This lower bound on the sketch size is
Ω(1/ε2) for approximation α = 1 + ε [27], which be-
comes uninformative for even a 2-approximation. In
fact, Bar-Yossef et al. [3] write that “The state of af-
fairs indicates that proving sketching lower bounds for
edit distance may be quite hard.”

1In particular, one can first amplify the sketching’s probabil-
ity of success to 1 − n−Ω(1), where n is the number of points
in the dataset, using sketch size O(log n). Then, the data struc-
ture pre-indexes all possible sketches in the amplified protocol,
using only 2O(log n) = nO(1) space. For each possible value of
the amplified sketch, data structure stores the answer that the
sketching referee would conclude from the sketches of the query
and each dataset point. Note that, in fact, s-sized sketch imply
nO(s)-size NN data structure.

1.3 Our Techniques

Our proof of Theorem 1.1 consists of three steps.
Generally speaking, we design two input distributions:
µ̃0 over “far” pairs (x, y) (i.e. ed(x, y) > R), and µ̃1

over “close” pairs (i.e. ed(x, y) ≤ R/α). The goal
then becomes to show that these distributions are in-
distinguishable by protocols with low communication
complexity. By Yao’s minimax principle, it suffices to
consider deterministic protocols.

The first step reduces the problem to proving that
the two distributions µ̃0, µ̃1 are indistinguishable by
boolean functions over Zd

p. Roughly speaking, we show
that if there is a protocol using at most l bits of commu-
nication, then there exists a (deterministic) sketching
protocol that uses sketch size of 1 bit and achieves an
advantage of at least 2−O(l) in distinguishing between
the two distributions. Let HA,HB : Zd

p → {−1,+1}
be the boolean functions that Alice and Bob, respec-
tively, use as their sketch functions. We can then fur-
ther restrict the sketching protocol such that the referee
decides by checking whether HA(x) = HB(y) or not.
This step follows the approach employed earlier in [2],
with some minor technical differences.

The second step’s main goal is to further charac-
terize the advantage achieved by HA,HB in terms of
a carefully crafted measure of statistical distance be-
tween the two input distributions µ̃0, µ̃1. For this ap-
proach to be effective, it is important that the functions
HA,HB depend only on a few coordinates, and in or-
der to guarantee this (indirectly), we include in µ̃0, µ̃1

a random noise component, which effectively destroys
any dependence on many coordinates. Specifically, this
step assumes that, each distribution µ̃t, t ∈ {0, 1}, has
the following structure: choose x ∈ Zd

p uniformly at

4

random, and then generate y from x via a sequence
of two randomized operations. The first operation is
a random noise with rate ρ > 0, i.e., each coordi-
nate is modified independently with probability 1 − ρ
into a randomly chosen value. The second operation
permutes the coordinates according to a permutation
drawn from a distribution Dt. Given this Dt, consider
the following derived distribution: take a vector u ∈ Zd

p

with λ non-zero positions (called a λ-test) and apply a
random permutation π ∈ Dt to it; let A(t,λ)

u be the re-
sulting distribution of vectors. (Note that the support
of A(t,λ)

u contains only vectors with precisely λ non-zero
entries.) Our measure ∆λ, called λ-test distinguishabil-
ity, is the maximum, over all such λ-tests u, of the total
variation distance between A

(0,λ)
u and A

(1,λ)
u . It cap-

tures to what extent one can distinguish D0 from D1

(and thus µ̃0 from µ̃1) by inspecting only λ positions
of y. Our upper bound on the advantage achieved by
HA,HB takes roots in the following dichotomy. If HB

essentially depends on many coordinates of y (e.g., a
linear function with many terms), then the advantage
is bounded by ρλ (i.e., the random noise Nρ destroys
almost all the information), and if HB essentially de-
pends on a few, say λ, coordinates, then the advantage
is bounded by ∆λ. To prove this dichotomy, we rely
on Fourier analysis which expands HA,HB into linear
functions at different levels λ.

In the third step, we complete the description of
µ0, µ1 by detailing the construction of D0,D1, and give
an upper bound the λ-test distinguishability ∆λ for
these distributions. In a simplified view, each distri-
bution Dt is generated by a block rotation operation,
namely, choosing a random block of length L and ap-
plying to it εtL cyclic shifts. The difference between
the two distributions is in the magnitude of the rota-
tion (namely, εt).

Our use of Fourier analysis is elementary, and does
not involve the KKL theorem [16] or Bourgain’s noise
sensitivity theorem [7], which were used in the previous
non-embeddability results for edit distance [17, 18]. We
also note that our hard distribution is notably different
from the distributions of [18] or [17], which do admit
efficient communication protocols.

To prove Theorem 1.2, we give a new characteri-
zation of the Ulam distance between two strings. In
particular, building on the work of [12, 25], we prove
that if two strings (permutations) P,Q are at distance
k = ed(P,Q), then there exist Θ(k) pairs of characters
in P , all characters at distinct positions, such that for
each pair (a, b), their order in P is opposite to that
in Q (if they appear in Q at all). Once we have this
characterization, a careful counting of the number of
the possible alignments between P and Q finishes the

proof of the theorem.

Organization. The proof of Theorem 1.1 appears in
Section 3. Due to space constraints, for some lemmas
we give only proof sketches. The proof of Theorem 1.2
is deferred to the full version of the paper.

2 Preliminaries

We use notation [d] = {1, 2 . . . d}, and Zp =
{0, 1 . . . p− 1}. For a vector u ∈ Zd

p, define the weight
of u, denoted wt(u), to be the number of coordinates
in u that are non-zero.

Definition 2.1. For matrix A ∈ Mn,n(R) and
p ∈ [1,∞], the p-norm of A is defined by ‖A‖p =
max{‖Av‖p : v ∈ Cn, ‖v‖p = 1}.

2.1 Fourier Analysis over Zd
p

We review basic Fourier Analysis over Zd
p for a prime

p ≥ 2.
The collection of functions f : Zd

p → C is a vector
space of dimension pd, equipped with an inner prod-
uct given by 〈f, g〉 = Ex∈Zd

p

[
f(x) · g(x)

]
. For u ∈ Zd

p,

define a character χu(x) = e
2πi
p (x·u), where x · u is

the scalar product of x, u ∈ Zd
p. The set of charac-

ters {χu | u ∈ Zd
p} forms an orthonormal basis, called

the Fourier basis. Thus every function f : Zd
p → C

admits a Fourier expansion f =
∑

u∈Zd
p
f̂uχu, where

f̂u = 〈f, χu〉 is called the Fourier coefficient of f
corresponding to u. Parseval’s equality states that
Ex∈Zd

p

[
f(x)g(x)

]
=

∑
u∈Zd

p
f̂uĝu.

We let Nρ stand for a random noise vector over in
Zd

p, namely, a vector where each coordinate is set inde-
pendently at random as follows: with probability ρ it
is set to zero, and with probability 1− ρ it is set to a
random value from Zp.

The noise operator Tρ (also called Bonami-Beckner
operator) operates on functions f : Zd

p → R, and is
defined by (Tρf)(x) = ENρ [f(x+Nρ)]. The following
standard fact relates the Fourier coefficients of f with
those of Tρf .

Fact 2.2. For every vector u ∈ Zd
p, (̂Tρf)u = f̂u·ρwt(u).

Note that, for p = 2, i.e. Fourier expansion over
{0, 1}d, this is equivalent to having (̂Tρf)S = f̂Sρ

|S|

for every S ⊆ [d].

5

2.2 Edit metric and Ulam metric

Let Σ be the alphabet; we mostly consider Σ =
{0, 1} or Σ = Zp = {0, 1, . . . p − 1} for p ∈ N. For
x ∈ Σd, we let xi denote the ith position in x whenever
i ∈ [d], and extend the notation to i �∈ [d] by defining
xi = xj where i ≡ j (mod d) and j ∈ [d].

Definition 2.3 (Edit metrics). Let d > 0. The edit
metric over Σ is the space Σd endowed with distance
function ed(x, y), which equals to the minimum num-
ber of character substitutions/insertions/deletions to
transform x into y.

When |Σ| ≥ d, we call Ulam metric the space over
permutations x ∈ Σd, where x is called a permuta-
tion if no symbol c ∈ Σ appears more than once in x.
The space is endowed with the same distance function
ed(x, y).

We will also use the following operation on strings.

Definition 2.4 (Rotation operations). Fix d > 1 and
an alphabet Σ. For s, L ∈ [d], define the right rotation
operation

−→
R s,L : Σd → Σd as follows. When applied

to a string x, it takes the substring of x of length L
starting at position s (with wrap-around) and performs
on it a cyclic shift to the right (by 1 position); the rest
of x remains unchanged. A left rotation

←−
R s,L is defined

similarly.
L is called the length of the rotation operation.

For example,
−→
R j,2 swaps positions j and j + 1 in

x. Note that
−→
R s,L works as a permutation (i.e. it is

a bijection). Also, for i ∈ [L], (
−→
R s,L)i is a rotation of

the same block but by i positions to the right. Note
that a rotation operation can be simulated by at most
two deletions and two insertions (and only one of each
when the rotation block does not wrap-around).

3 Proof of the Main Theorem

In this section we prove Theorem 1.1. Fix the values
of d and R, and let us use the alphabet Σ = Zp for
p being the smallest prime greater than d3. For the
rest of this section, define µ̃ (our hard distribution) as
µ̃ = µ̃0+µ̃1

2 , where µ̃0 will be a distribution over far
pairs of points (x, y) and µ̃1 will be a distribution over
close pairs (x, y), i.e., ed(x, y) > R and ed(x, y) ≤ R/α,
respectively.

We will follow the steps outlined in Section 1.3, and
eventually put all the pieces together in Section 3.5. It
is worth noting that the definition of the hard distribu-
tion µ̃ is quite technical, and that we will mention (and
use) a few simple properties of it even before specifying
it in full detail in Section 3.3.

3.1 Reduction to Boolean Functions

Our first lemma says that if there is an efficient com-
munication protocol, then there are boolean functions
with a non-negligible advantage in distinguishing the
distribution µ̃0 from µ̃1. This lemma is based on the
ideas from [2], although the current proof is simpler
than in [2].

Lemma 3.1. If CCUlam
α,R ≤ l for some l ≥ 1, then there

exist boolean functions HA,HB : Zd
p → {−1,+1}, such

that

Pr
µ̃0

[HA(x) �= HB(y)]− Pr
µ̃1

[HA(x) �= HB(y)] ≥ 2−O(l).

Proof sketch. The main idea is to reduce the communi-
cation to a simultaneous (i.e. sketching) protocol where
Alice and Bob each send a sketch of one bit only, and
the referee performs an equality test on these two bits.
Then, using Yao’s minimax principle, we easily obtain
two deterministic boolean functions HA and HB that
complete the proof.

To accomplish the reduction, assume an l-bit pro-
tocol and construct a one-bit sketching protocol as
follows: Alice and Bob guess the entire transcript
of length l using public coins (the guess is indepen-
dent of the actual inputs). Each of them then checks
whether the guessed transcript describes the messages
they would send using the assumed l-bit protocol, us-
ing the guessed transcript to simulate the other party’s
messages. If the transcript turns out to be incompat-
ible, they send a bit chosen independently at random.
Otherwise, Alice always outputs 1, and Bob outputs
the outcome of the guessed transcript. Observe that if
the guessed transcript is not correct, then at least one
of the two bits output by Alice and Bob is completely
random. Thus, for inputs from µ̃1, Alice and Bob’s bits
are equal with probability at least 2−l · 23 +(1−2−l) · 12 ,
and for inputs from µ̃0, that probability is at most
2−l · 1

3 + (1− 2−l) · 1
2 .

The rest of the proof of the Theorem 1.1 focuses on
these boolean functions HA,HB.

3.2 From Boolean Functions to λ-Tests

Next we provide a method to lower bound the ad-
vantage achieved by the boolean functions HA,HB, by
relating it to a certain statistical property of the hard
distribution µ̃. The lemma below will use the general
structure of the hard distribution µ̃ = µ̃0+µ̃1

2 , which
we describe next. For each t ∈ {0, 1}, the distribution
µ̃t will be formed via a small modification of another
distribution µt, which has a structure that is easier for

6

analysis. We analyze below (in Lemma 3.4) the distri-
butions µ0 and µ1, but eventually the total variation
distance between µ̃t and µt for each t will be shown to
be extremely small, and the lemma will immediately
extend to µ̃0,µ̃1 as well.

The distribution µt consists of pairs (x, y) chosen as
follows: x ∈ Zd

p is chosen uniformly at random, and y
is constructed from x in two steps. In the first step,
let z � x+Nρ, where Nρ is random noise of some rate
ρ ∈ (0, 1) (that does not depend on t). In the second
step, y is obtained from z by permuting the coordinates
of z according to a distribution Dt over permutations.
Formally, Dt is a distribution over permutation oper-
ations, where a permutation operation is a function
π : Zd

p → Zd
p for which there exists a permutation π̂

over [d] such that π(x) = (xπ̂(1), . . . xπ̂(d)). We will re-
quire that Dt is symmetric in the sense that every two
permutation operations π and π−1 are equi-probable
(in it).

We next quantify the “difference” between the dis-
tributions D0,D1 from the perspective of what we call
λ-tests. For λ ∈ [d], we define a λ-test to be a vec-
tor u ∈ Zd

p with precisely λ non-zero entries, i.e.,
wt(u) = λ. For a distribution Dt and λ ∈ [d], let
the matrix A(t,λ) be the transition matrix a Markov
chain whose states are all the λ-tests, and whose tran-
sitions are according to Dt, i.e., at a λ-test u, the pro-
cess picks π ∈ Dt and moves to state π(u) (which is
also a λ-test). In other words, a row u of A(t,λ) is a
vector, that has, for every λ-test w, a coordinate of
value Prπ∈Dt [w = π(u)]. We denote this row by A(t,λ)

u .
Note that the matrix A(t,λ) is symmetric (since Dt is
symmetric) and thus it is doubly-stochastic.

Definition 3.2. The λ-test distinguishability of
D0,D1, denoted ∆λ, is the maximum, over all λ-tests
u, of the total variation distance between the distribu-
tions A(0,λ)

u and A(1,λ)
u .

Fact 3.3. ∆λ = ‖A(0,λ) −A(1,λ)‖∞/2.
The following lemma bounds the advantage achieved

by HA,HB using the λ-test distinguishability ∆λ.

Lemma 3.4. Consider HA,HB : Zd
p → {−1,+1} and

ρ ∈ (0, 1). If each µt, for t ∈ {0, 1}, is defined as above
from a symmetric distributions Dt over permutation
operations, then

Pr
µ0

[HA(x) �= HB(y)]−Pr
µ1

[HA(x) �= HB(y)] ≤ max
λ∈[d]

∆λρ
λ.

Proof. For t ∈ {0, 1}, define C(t) � Eµt

[HA(x)HB(y)
]

to be the correlation between the two boolean
functions. Note that, Eµt

[HA(x) �= HB(y)
]

=

1
4Eµt

[
(HA(x)−HB(y))2

]
= Ex

[
(HA(x))2

]
/4 +

Ex

[
(HB(x))2

]
/4− C(t)/2 = 1/2− C(t)/2. Thus,

Pr
µ0

[HA(x) �= HB(y)]−Pr
µ1

[HA(x) �= HB(y)] =
C(1) − C(0)

2
.

We will show that C(1) − C(0) ≤ 2 maxλ∈[d] ∆λρ
λ.

For this purpose, it is more convenient to express each
C(t) in terms of the Fourier coefficients of HA and HB .
Recall that µt is generated by picking a random x,
and constructing y from x using a random noise Nρ

and a random permutation drawn from Dt, namely,
y = π(x + Nρ), where π ∈ Dt. Let µt|x denote the
distribution µt conditioned on the value of x. Thus,

Eµt

[HA(x)HB(y)
]

= Ex∈Zd
p

[HA(x) · Eµt|x
[HB(y)

]]
Define f (t)(x) � Eµt|x

[HB(y)
]
. Then

f (t)(x) = ENρ

[
Eπ∈Dt

[HB(π(x +Nρ))
]]
.

Since C(t) = Ex

[HA(x)f (t)(x)
]
, we can switch to the

Fourier basis by applying Parseval’s equality, and get

C(t) =
∑
u∈Zd

p

(̂HA)u(̂f (t))u, (1)

where (̂HA)u and (̂f (t))u are the Fourier coefficients of
HA and f (t) respectively.

The next proposition, which we shall prove shortly,
expresses the level λ Fourier coefficients of f (t) in terms
of those of HB. Let

(
(̂f (t))u

)
u:wt(u)=λ

be the vector of

the Fourier coefficients of f (t) indexed by u’s of weight
wt(u) = λ. Define

(
(̂HB)u

)
u:wt(u)=λ

similarly.

Proposition 3.5. For all λ ∈ [d] and HB : Zd
p → C,(

(̂f (t))u

)
u:wt(u)=λ

= ρλA(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(2)

This proposition naturally leads us to break each
C(t) into the terms corresponding to each Fourier level
λ. Define the λth-correlation to be

C
(t)
λ �

∑
u∈Zd

p:wt(u)=λ

(̂HA)u(̂f (t))u. (3)

Then, C(1)−C(0) =
∑d

λ=0

(
C

(1)
λ − C(0)

λ

)
. We can now

bound each C(1)
λ − C(0)

λ in terms of ∆λ and ρ.

Let ωA
λ =

∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

be the �2-weight

of the level λ Fourier coefficients of HA, and define
similarly ωB

λ . By Parseval’s identity,
∑d

λ=0

(
ωA

λ

)2 =

Ex

[
HA(x) · HA(x)

]
= 1, and similarly

∑d
λ=0

(
ωB

λ

)2 =
1.

7

Proposition 3.6. For all λ ∈ [d],

C
(1)
λ − C(0)

λ ≤ 2∆λρ
λ · ωA

λ ω
B
λ .

We will prove the proposition shortly by a straight-
forward calculation. Given this proposition, we have

C(1) − C(0) =
d∑

λ=0

(
C

(1)
λ − C(0)

λ

)
≤

d∑
λ=1

2∆λρ
λ · ωA

λ ω
B
λ

≤
d∑

λ=1

2∆λρ
λ ·

(
ωA

λ

)2 +
(
ωB

λ

)2

2
≤ 2 max

λ∈[d]
∆λρ

λ.

thereby proving Lemma 3.4.

It remains to prove Propositions 3.5 and 3.6.

Proof of Proposition 3.5. Define a new function g(t) :
Zd

p → R as

g(t)(z) � Eπ∈Dt

[HB(π(z))
]
.

Then f (t) = Tρg
(t), and thus (̂f (t))u = (̂g(t))u · ρwt(u)

for all u ∈ Zd
p (by Fact 2.2). It remains to prove that

(
(̂g(t))u

)
u:wt(u)=λ

= A(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(4)

Similarly to the operator Tρ, we define the operator
Ot as (OtHB)(x) � Eπ∈Dt

[HB(π(x))
]
. Since g(t) =

OtHB, we proceed to analyze how the operator Ot

works on the Fourier coefficients of a function HB .

Fact 3.7. For a permutation operation π, define Pπ

to be an operator on functions ψ : Zd
p → R, given by

(Pπψ)(x) � ψ(π(x)). Then, (̂Pπψ)u = ψ̂π(u).

Now, the operator Ot defined earlier is simply a con-
vex combination of several Pπ, where π is drawn from
Dt. Thus, with the above fact, for every u ∈ Zd

p,

(̂g(t))u = ̂(OtHB)u = Eπ∈Dt

[
(̂HB)π(u)

]
. (5)

Consequently, the vector of level λ Fourier coefficients
of g(t) can be written as a product of the matrix A(t,λ)

and the vector of the (same) level λ Fourier coefficients
of HB, which proves Proposition 3.5.

We will need the following fact for the proof of
Proposition 3.6.

Fact 3.8. Let B ∈ Mn,n(R) be a symmetric matrix.
Then, ‖B‖2 ≤ ‖B‖∞.

Proof. It is known that ‖B‖1 = maxj∈[n]

∑
i∈n |Bij |

and ‖B‖∞ = maxi∈[n]

∑
j∈[n] |Bij |, and since B is sym-

metric, these two norms are equal. By Riesz-Thorin
interpolation theorem, ‖B‖2 ≤ ‖B‖∞.

Proof of Proposition 3.6. For every λ, the matrix
A(t,λ) is symmetric, and so is A(1,λ) −A(0,λ). Thus,

C
(1)
λ − C(0)

λ =

=
∑

u∈Zd
p:wt(u)=λ

(̂HA)u ·
((̂
f (1)

)
u
− (̂

f (0)
)
u

)

≤
∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

·
∥∥∥∥∥
((̂
f (1)

)
u
− (̂

f (0)
)
u

)
u:wt(u)=λ

∥∥∥∥∥
2

= ωA
λ ·

∥∥∥∥∥ρλ
(
A(1,λ) −A(0,λ)

)(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥∥
2

≤ ρλ · ωA
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥

2

∥∥∥∥
(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥
2

≤ ρλ · ωA
λ ω

B
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥
∞

= 2∆λ · ρλ · ωA
λ ω

B
λ ;

where we used (3), Cauchy-Schwarz, Proposition 3.5,
Definition 2.1, Fact 3.8, and Fact 3.3, respectively.

3.3 The Hard Distribution

Our hard distribution construction follows the gen-
eral outline given in Section 3.2. In particular, we first
define the intermediary distributions µ0 and µ1, for
which we need to specify the value of ρ and the distribu-
tions D0,D1 over permutation operators. The descrip-
tion of the latter will form the bulk of the construction.
Also, we will describe how to finally construct µ̃t from
µt, for each t ∈ {0, 1}.

Fix ε0 � 1/2 and select ε1 = Θ(1
α) as follows. Let

β � 1−ε1
1−ε0

= 2(1 − ε1), and ξ1 � �log2(C1α)�, for a
sufficiently large constant C1 > 0 to be determined
later. Set ε1 to be the solution2 to the equation (1 −
ε1) = ε1β

ξ1 ; one can indeed verify that ε1 = Θ(1
α).

Then, by construction,

ε0 = (1− ε0) = (1 − ε1)β−1 = ε1β
ξ1−1. (6)

For each t ∈ {0, 1}, we define the distribution µt

over (x, y) such that ed(x, y) is likely to be Θ(εtR),
as follows. Choose x ∈ Σd = Zd

p at random. Then
set z � x + Nρ where Nρ ∈ Zd

p is a random noise of
rate ρ � 1 − ε1R/d. To obtain y, we apply a num-
ber of random rotation operations to z, each picked

2A proof of the existence is deferred to the full version.

8

independently from a specific distribution. We use the
following notation:

• m � 0.01 · logβ d = Θ(log d) is the number of pos-
sible lengths of a rotation operation;

• L � βlLmin, where l ∈ [m], is the random variable
defining the length of a rotation operation, where
Lmin is defined next;

• Lmin � Θ(d0.01/ε0ε1) is the minimum length of a
rotation operation, divided by β. Lmin is chosen
such that ε0L and ε1L are integers3 for all l ∈ [m];

• w � C2 · R
m·Lmin

is the number of rotation op-
erations that we apply, where C2 > 0 is a large
constant.

Generate a sequence (r1, r2, . . . , rw) of w rotations
by picking each ri i.i.d. according to the following dis-
tribution Drot

t :
1. pick li ∈ [m] randomly so that Pr[li = l] = β−l

ζ for
l ∈ [m], where ζ =

∑m
l=1 β

−l is the normalization
constant;

2. pick a starting position si ∈ [d] uniformly at ran-
dom, and rotate the block that starts at posi-
tion si and has length Li = βliLmin by εt · Li

positions randomly either to the right or to the
left. That is, ri is chosen at random from the set{
(R̃s,Li)εtLi | s ∈ [d], R̃ ∈ {−→R,←−R}

}
.

To obtain y, apply to z the sequence of rotations
(r1, . . . , rw), i.e.,

y � rw(rw−1(. . . r1(z) . . .)) = (rw ◦ . . .◦r2 ◦r1)(x+Nρ).

In the language of the Section 3.2, the distribution Dt

of permutation operations is simply the distribution of
π = rw ◦ rw−1 ◦ . . . ◦ r1, where r1, . . . rw are drawn
independently from Drot

t .
Finally, we need to construct µ̃t for t ∈ {0, 1}. We

note that we cannot set µ̃t to be exactly µt because the
latter may sometime generate pairs (x, y) that are not
far or close, respectively. We thus define µ̃0 to be the
distribution µ0 restricted to (i.e. conditioned on) pairs
(x, y) with that ed(x, y) > R, and similarly µ̃1 is the
distribution µ1 restricted to pairs with ed(x, y) ≤ R/α.
As we will see, the resulting distributions are very close
to µ0, µ1, respectively. The total variation distance
between µ̃0 and µ0 is at most Prµ0 [ed(x, y) ≤ R] +
O(1/d), where the second summand is upper bound
on the event that either x or y is not a permutation.

3It becomes more delicate when ε1 is an irrational number,
though there are many standard tricks to deal with this. We
leave the details for the full version of the paper, and assume
that ε0L and ε1L are integers in this extended abstract.

Similarly, total variation distance between µ̃1 and µ1

is at most Prµ1 [ed(x, y) > R/α] + O(1/d). The next
lemma proves that µ0 and µ1 are very likely to generate
pairs that are far and close, respectively.

Lemma 3.9. For the above distributions,
Prµ0 [ed(x, y) ≤ R] ≤ d−Ω(1) and Prµ1 [ed(x, y) >
R/α] ≤ d−Ω(1). Hence, for every t ∈ {0, 1}, the total
variation distance between µ̃t and µt is at most d−Ω(1).

The proof of this lemma relies on a claim that each
individual rotation induces an expected distance of εtL,
and that over several rotation operations (and similarly
for the noise) the resulting distance has a high concen-
tration around its expectation. Full details are deferred
to the full version.

3.4 λ-Test Indistinguishability

Having constructed the hard distribution, we now
wish to apply to it Lemma 3.4, and we thus need to
prove an upper bound on ∆λ, the λ-test distinguisha-
bility of D0,D1.

Lemma 3.10. Let D0,D1 be defined as in Section 3.3.
Then for all λ ≥ 1, we have ∆λ ≤ O

(
λ log 1/ε1

log d · R
d

)
.

Proof sketch. Fix a λ-test u and let δλ be the total
variation distance between the distributions r0(u) and
r1(u) where each rt ∈ Drot

t . The heart of this lemma
is the bound:

δλ ≤ O
(
λ log

1
ε1
· Lmin

d

)
. (7)

The lemma would then follow by the union bound:
∆λ ≤ δλw = O

(
λ log 1

ε1
· Lmin

d w
)

= O
(
λ log 1/ε1

log d · R
d

)
.

We prove the bound (7) on δλ in two steps. The
first step proves the bound for λ = 1, which already
illustrates the intuition why this distribution is hard.
The second step builds on the first step to show the
bound for general λ ≥ 2.

Step 1: λ = 1. We prove that δ1 ≤ O(log 1
ε1
· Lmin

d)
next.

Since λ = 1, we have only one non-zero entry in u,
say at position j. For t ∈ {0, 1}, let j(t) be the random
variable denoting the position of the symbol uj in the
vector r(u) obtained by applying the random rotation
r ∈ Drot

t on u.
The total variation distance between the distribu-

tions of j(0) and of j(1) can be computed as the
complement of their “common” weight, i.e., as 1 −∑

i∈[d] mint∈{0,1} Prj(t) [j(t) = i]. It therefore suffices to
show that the common weight is ≥ 1− O(log 1

ε1
Lmin

d).

9

First, for both distributions t ∈ {0, 1}, the symbol
uj remains at position j with probability

Pr[j(t) = j] =
m∑

l=1

β−l

ζ

d− L
d

= 1− mLmin

ζd
.

Next, consider any k = ε1L = ε1 · βlLmin for l ∈
{ξ1 + 1, . . .m}. We now prove that, for all t ∈ {0, 1},

Pr
j(t)

[j(t) = j + k] = Pr
j(t)

[j(t) = j − k] =
Lmin

ζ · 2d.

Indeed, by the choice of ε0, ε1 (Eqn. (6)),

k = ε1 · βlLmin = (1− ε1) · βl−ξ1Lmin

as well as

k = ε0 · βl−(ξ1−1)Lmin

= (1− ε0) · βl−(ξ1−1)Lmin.

The event {j(1) = j + k}, i.e., the symbol uj moves k
positions to right under the distribution Drot

1 , happens
when either:

• the symbol uj falls into the rotation block, the
block is of length k

ε1
= βlLmin, the rotation is to

the right, and the symbol does not wrap-around;
or

• the symbol uj falls into a the rotation block, the
block is of length k

1−ε1
= βl−ξ1Lmin that is rotated,

the rotation is to the left, and the symbol is in the
wrap-around part.

We thus obtain

Pr
j(1)

[j(1) = j + k] =

= β−l

ζ · (1−ε1)β
lLmin

d · 1
2 + β−(l−ξ1)

ζ · ε1βl−ξ1Lmin
d · 1

2

=
Lmin

ζ · 2d,

and one can similarly prove that {j(1) = j−k}, {j(0) =
j+k} and {j(0) = j−k} all have the same probability,
Lmin
ζ·2d . We note that this “match-up” happens only for
l ≥ ξ1+1, since for l ≤ ξ1 the second type of movement
of the symbol uj cannot happen anymore.

We can now sum the total weight that we identified
as common in the two distributions to be

(
1− mLmin

ζd

)
+ 2 ·

m∑
l=ξ1+1

Lmin

ζ · 2d = 1− ξ1 · Lmin

d
.

And thus, δ1 ≤ ξ1 Lmin
d = O

(
log 1

ε1
· Lmin

d

)
.

Step 2: λ ≥ 2. When we have λ ≥ 2 non-zero entries
in u, the intuition is to group these non-zero entries into
one or more segments and then reduce to the λ = 1
case with the role of “symbol uj” being replaced by
a segment. For example, when, say, there are λ = 2
non-zero entries in u, most of the block lengths L fall
into two categories:

• L is much larger than the distance between the
positions of the two non-zero entries – in which
case, the two non-zero symbols from umove jointly
most of the time, and thus the segment connecting
the two symbols roughly behaves as the “symbol
uj” in the λ = 1 scenario;

• L is much smaller than the distance between the
two positions – in which case, each of the two non-
zero entries can be treated separately as in λ = 1
case.

Furthermore, we can bound the number of values of
L that do not satisfy one of the above properties.
A relatively straight-forward bound is roughly O(λ2)
(all pair-wise distances between the non-zero entries),
times O(log 1/ε1) (i.e., same factor as in λ = 1 case).
This already gives a bound of δλ ≤ O(λ3 log 1

ε1
· Lmin

d).
To get the final bound (7), we employ a much more
careful global analysis, that takes into consideration
the fact that the same value of L is “good” for some
segments but “bad” for other segments. The complete
proof for this case appears in the full version of the
paper.

3.5 Putting it all together

Proof of Theorem 1.1. Let µ̃ = µ̃0+µ̃1
2 be the distribu-

tion defined in Section 3.3. By Lemma 3.1, there must
exist functions HA,HB such that

Pr
µ̃0

[HA(x) �= HB(y)]−Pr
µ̃1

[HA(x) �= HB(y)] ≥ 2−O(CCUlam
α,R).

Applying Lemma 3.4 to the distributions µ0, µ1, and
using the fact that µ̃0 and µ̃1 are statistically close to
µ0 and µ1 respectively (Lemma 3.9), we deduce that

Prµ̃0 [HA(x) �= HB(y)]− Prµ̃1 [HA(x) �= HB(y)]

≤ maxλ∈[d] ∆λρ
λ + d−Ω(1).

Plugging in the bound on ∆λ (Lemma 3.10) and the
value ρ = 1− ε1R/d (Section 3.3), we obtain

2−O(CCUlam
α,R) ≤ max

λ∈[d]
O

(
λ log(1/ε1)

log d · R
d

)
· (1− ε1R

d

)λ
+ d−Ω(1)

≤ O
(

1
ε1
· log(1/ε1)

log d

)
+ d−Ω(1)

= O

(
α logα
log d

)
,

10

which concludes the proof of Theorem 1.1.

Acknowledgments

We thank Parikshit Gopalan, Piotr Indyk, T.S.
Jayram, Ravi Kumar, Ilan Newman, and Yuri Rabi-
novich for numerous early discussions on nonembed-
dability of the Ulam metric, which undoubtedly were
a precursor of the current work.

References

[1] A. Andoni, M. Deza, A. Gupta, P. Indyk, and
S. Raskhodnikova. Lower bounds for embedding
edit distance into normed spaces. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms,
pages 523–526, 2003.

[2] A. Andoni, P. Indyk, and R. Krauthgamer. Earth
mover distance over high-dimensional spaces. ECCC
Report TR07-048, May 2007.

[3] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and
R. Kumar. Approximating edit distance efficiently.
In 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 550–559, Oct. 2004.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. J. Com-
put. Syst. Sci., 68(4):702–732, 2004.

[5] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhod-
nikova, R. Rubinfeld, and R. Sami. A sublinear al-
gorithm for weakly approximating edit distance. In
Proceedings of the Symposium on Theory of Comput-
ing, pages 316–324, 2003.

[6] T. Batu, F. Ergün, and C. Sahinalp. Oblivious string
embeddings and edit distance approximations. In Pro-
ceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 792–801, 2006.

[7] J. Bourgain. On the distributions of the Fourier spec-
trum of Boolean functions. Israel J. Math., 131:269–
276, 2002.

[8] M. Charikar and R. Krauthgamer. Embedding the
ulam metric into �1. Theory of Computing, 2(11):207–
224, 2006.

[9] G. Cormode. Sequence Distance Embeddings. Ph.D.
Thesis. University of Warwick, 2003.

[10] G. Cormode and S. Muthukrishnan. The string edit
distance matching problem with moves. ACM Trans.
Algorithms, 3(1):2, 2007.

[11] G. Cormode, M. Paterson, S. C. Sahinalp, and
U. Vishkin. Communication complexity of document
exchange. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 197–206, 2000.

[12] P. Gopalan, T. S. Jayram, R. Krauthgamer, and
R. Kumar. Estimating the sortedness of a data stream.
In Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[13] P. Indyk. Tutorial: Algorithmic applications of
low-distortion geometric embeddings. Proceedings of
the Symposium on Foundations of Computer Science,
pages 10–33, 2001.

[14] P. Indyk. Approximate nearest neighbor under edit
distance via product metrics. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms,
pages 646–650, 2004.

[15] P. Indyk and R. Motwani. Approximate nearest neigh-
bor: towards removing the curse of dimensionality.
Proceedings of the Symposium on Theory of Comput-
ing, pages 604–613, 1998.

[16] J. Kahn, G. Kalai, and N. Linial. The influence of vari-
ables on boolean functions. In Proceedings of the Sym-
posium on Foundations of Computer Science, pages
68–80, 1988.

[17] S. Khot and A. Naor. Nonembeddability theorems via
fourier analysis. Mathematische Annalen, 334(4):821–
852, 2006.

[18] R. Krauthgamer and Y. Rabani. Improved lower
bounds for embeddings into l1. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Al-
gorithm, pages 1010–1017, 2006.

[19] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high di-
mensional spaces. Proceedings of the 30th ACM Sym-
posium on Theory of Computing, pages 614–623, 1998.

[20] W. J. Masek and M. Paterson. A faster algorithm
computing string edit distances. J. Comput. Syst. Sci.,
20(1):18–31, 1980.

[21] J. Matoušek. Collection of open problems on low-
distortion embeddings of finite metric spaces. March
2007. Available online. Last access in August, 2007.

[22] S. Muthukrishnan and C. Sahinalp. Approximate
nearest neighbors and sequence comparison with block
operations. Proceedings of the Symposium on Theory
of Computing, pages 416–424, 2000.

[23] R. Ostrovsky and Y. Rabani. Low distortion embed-
ding for edit distance. In Proceedings of the Sympo-
sium on Theory of Computing, pages 218–224, 2005.

[24] C. Sahinalp. Edit distance under block operations.
Encyclopedia of Algorithms (Ming Yang Kao, ed.).
Springer. Forthcoming, available online. Last access
in August, 2007.

[25] C. Sahinalp and A. Utis. Hardness of string similarity
search and other indexing problems. In Proceedings
of International Colloquium on Automata, Languages
and Programming (ICALP), pages 1080 – 1098, 2004.

[26] M. Saks and X. Sun. Space lower bounds for distance
approximation in the data stream model. In Proceed-
ings of the Symposium on Theory of Computing, pages
360–369, 2002.

[27] D. Woodruff. Optimal space lower bounds for all fre-
quency moments. Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, pages 167–175, 2004.

11

