
On Solving Linear Systems in Sublinear Time
Alexandr Andoni1

Columbia University, New York, NY, USA
andoni@cs.columbia.edu

Robert Krauthgamer2

Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Yosef Pogrow
Weizmann Institute of Science, Rehovot, Israel
yosef.pogrow@weizmann.ac.il

Abstract
We study sublinear algorithms that solve linear systems locally. In the classical version of this
problem the input is a matrix S ∈ Rn×n and a vector b ∈ Rn in the range of S, and the goal is
to output x ∈ Rn satisfying Sx = b. For the case when the matrix S is symmetric diagonally
dominant (SDD), the breakthrough algorithm of Spielman and Teng [STOC 2004] approximately
solves this problem in near-linear time (in the input size which is the number of non-zeros in S),
and subsequent papers have further simplified, improved, and generalized the algorithms for this
setting.

Here we focus on computing one (or a few) coordinates of x, which potentially allows for
sublinear algorithms. Formally, given an index u ∈ [n] together with S and b as above, the goal
is to output an approximation x̂u for x∗u, where x∗ is a fixed solution to Sx = b.

Our results show that there is a qualitative gap between SDD matrices and the more general
class of positive semidefinite (PSD) matrices. For SDD matrices, we develop an algorithm that
approximates a single coordinate xu in time that is polylogarithmic in n, provided that S is sparse
and has a small condition number (e.g., Laplacian of an expander graph). The approximation
guarantee is additive |x̂u − x∗u| ≤ ε‖x∗‖∞ for accuracy parameter ε > 0. We further prove that
the condition-number assumption is necessary and tight.

In contrast to the SDD matrices, we prove that for certain PSD matrices S, the running time
must be at least polynomial in n (for the same additive approximation), even if S has bounded
sparsity and condition number.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases Linear systems, Laplacian solver, Sublinear time, Randomized linear
algebra

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.3

Related Version Full version at arXiv:1809.02995.

Acknowledgements The authors thank anonymous reviewers for suggesting additional relevant
references.

1 Work supported in part by Simons Foundation (#491119), NSF grants CCF-1617955 and CCF-1740833.
2 Work supported in part by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18,

a Minerva Foundation grant, and a Google Faculty Research Award.

© Alexandr Andoni, Robert Krauthgamer, and Yosef Pogrow;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andoni@cs.columbia.edu
mailto:robert.krauthgamer@weizmann.ac.il
mailto:yosef.pogrow@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2019.3
https://arxiv.org/abs/1809.02995
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 On Solving Linear Systems in Sublinear Time

1 Introduction

Solving linear systems is a fundamental problem in many areas. A basic version of the
problem has as input a matrix A ∈ Rn×n and a vector b ∈ Rn, and the goal is to find x ∈ Rn
such that Ax = b. The fastest known algorithm for general A is by a reduction to matrix
multiplication, and takes O(nω) time, where ω < 2.373 [19] is the matrix multiplication
exponent. When A is sparse, one can do better (by applying the conjugate gradient method
to the equivalent positive semidefinite (PSD) system ATAx = ATb, see for example [32]),
namely, O(mn) time where m = nnz(A) is the number of non-zeros in A. This O(mn) bound
for exact solvers assumes exact arithmetic, and in practice, one seeks fast approximate solvers.

One interesting subclass of PSD matrices is that of symmetric diagonally dominant
(SDD) matrices.3 Many applications require solving linear systems in SDD matrices, and
most notably their subclass of graph-Laplacian matrices, see e.g. [32, 36, 14]. Solving SDD
linear systems received a lot of attention in the past decade after the breakthrough result
by Spielman and Teng in 2004 [31], showing that a linear system in SDD matrix S can be
solved approximately in near-linear time O(mlogO(1)n log 1

ε), where m = nnz(S) and ε > 0
is an accuracy parameter. A series of improvements led to the state-of-the-art SDD solver
of Cohen et al. [14] that runs in near-linear time O(m

√
logn(log logn)O(1) log 1

ε). Recent
improvements extend to connection Laplacians [24]. Obtaining similar results for all PSD
matrices remains a major open question.

Motivated by fast linear-system solvers in alternative models, here we study which linear
systems can be solved in sublinear time. We can hope for such sublinear times if only one (or
a few) coordinates of the solution x ∈ Rn are sought. Formally, given a matrix S ∈ Rn×n, a
vector b ∈ Rn, and an index u ∈ [n], we want to approximate the coordinate xu of a solution
x ∈ Rn to the linear system Sx = b (assume for now the solution is unique), and we want
the running time to be sublinear in n.

Our main contribution is a qualitative separation between the class of SDD matrices and
the larger class of PSD matrices, as follows. For well-conditioned SDD matrices S, we develop
a (randomized) algorithm that approximates a single coordinate xu fast – in polylog(n) time.
In contrast, for some well-conditioned PSD (but not SDD) matrices S, we show that the same
task requires nΩ(1) time. In addition, we justify the dependence on the condition number.

Our study is partly motivated by the advent of quantum algorithms that solve linear
systems in sublinear time, which were introduced in [20], and subsequently improved in
[2, 11], and meanwhile used for a number of (quantum) machine learning algorithms (see,
e.g., the survey [15]). In particular, the model in [20] considers a system Ax = b given: (1)
oracle access to entries of A (including fast access to the j-th non-zero entry in the i-th
row), and (2) a fast black-box procedure to prepare a quantum state |b〉 =

∑
i

bi|i〉
‖
∑

i
bi|i〉‖

.
Then, if the matrix A has condition number κ, at most d non-zeros per row/column, and
‖A‖ = 1, their quantum algorithm runs in time poly(κ, d, 1/ε), and outputs a quantum state
|x̂〉 within `2-distance ε from |x〉 =

∑
i
xi|i〉

‖
∑

i
xi|i〉‖

. The runtime was later improved in [11] to
depend logarithmically on 1/ε. (The original goal of [20] was different – to output a “classical”
value, a linear combination of |x〉 – and for this goal the improved dependence on 1/ε is not
possible unless BQP = PP .) These quantum sublinear-time algorithms raise the question
whether there are analogous classical algorithms for the same problems; for example, a very
recent success story is a classical algorithm [35] for a certain variant of recommendation

3 A symmetric matrix S ∈ Rn×n is called SDD if Sii ≥
∑

j 6=i |Sij | for all i ∈ [n].

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:3

systems, inspired by an earlier quantum algorithm [22]. Our lower bound precludes a classical
analogue to the aforementioned linear-system solver, which works for all matrices A and in
particular for PSD ones.

Problem Formulation. To formalize the problem, we need to address a common issue for
linear systems – they may be underdetermined and thus have many solutions x, which is a
nuissance when solving for a single coordinate. We require that the algorithm approximates
a single solution x∗, in the sense that invoking the algorithm with different indices u ∈ [n]
will output coordinates that are all consistent with one “global” solution. This formulation
follows the concept of Local Computation Algorithms, see Section 1.3.

Our formal requirement is thus as follows. Given a matrix S ∈ Rn×n, a vector b ∈ Rn
in the range (column space) of S, and an accuracy parameter ε > 0, there exists x∗ ∈ Rn
satisfying Sx∗ = b, such that upon query u ∈ [n] the (randomized) algorithm outputs x̂u
that satisfies

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 3

4 . (1)

This guarantee corresponds (modulo amplification of the success probability) to reporting
a solution x̂ ∈ Rn with ‖x̂− x∗‖∞ ≤ ε||x∗||∞. We remark that the guarantee in [31] is
different, that ||x̂− x∗||S ≤ ε||x∗||S where ||y||S

def=
√
yTSy, see also Section 1.4.

Basic Notation. Given a (possibly edge-weighted) undirected graph G = (V,E), we assume
for convenience V = [n]. Its Laplacian is the matrix LG

def= D −A ∈ Rn×n, where A is the
(weighted) adjacency matrix of G, and D is the diagonal matrix of (weighted) degrees in G.
It is well-known that all Laplacians are SDD matrices, which in turn are always PSD.

The sparsity of a matrix is the maximum number of non-zero entries in a single row/column.
The condition number of a PSD matrix S, denoted κ(S), is the ratio between its largest
and smallest non-zero eigenvalues.4 For example, for the Laplacian LG of a connected
d-regular graph G, let µ1 ≤ . . . ≤ µn denote its eigenvalues, then the condition number
is κ(LG) = Θ(d

µ2
). This follows from two well-known facts, that µn ∈ [d, 2d], and that

µ2 > µ1 = 0 if G is connected (µ2 is called the spectral gap). Throughout, ||A|| denotes the
spectral norm of a matrix A, and A+ denotes the Moore-Penrose pseudo-inverse of A.5

1.1 Our Results
Below we describe our results, which include both algorithms and lower bounds. First, we
present a polylogarithmic-time algorithm for the simpler case of Laplacian matrices, and
then we generalize it to all SDD matrices. We further prove two lower bounds, which show
that our algorithms cannot be substantially improved to handle more general inputs or to
run faster. The first lower bound shows that general PSD matrices require polynomial time,
thereby showing a strong separation from the SDD case. The second one shows that our
SDD algorithm’s dependence on the condition number is necessary and in fact near-tight.

4 Our definition is in line with the standard one, for a general matrix A, which uses singular values instead
of eigenvalues. If A is singular, one could alternatively define κ(A) =∞, which would only make the
problem easier (say to bound performance in terms of κ), see e.g. [32].

5 For a PSD matrix A ∈ Rn×n, let its eigen-decomposition be A =
∑n

i=1 λiuiu
T
i , then the Moore-Penrose

pseudo-inverse of A is A+ =
∑

i:λi>0
1
λi
uiu

T
i .

ITCS 2019

3:4 On Solving Linear Systems in Sublinear Time

Algorithm for Laplacian matrices. We first present our simpler algorithm for linear systems
in Laplacians with a bounded condition number.

I Theorem 1.1 (Laplacian Solver, see Section 2). There exists a randomized algorithm, that
given input 〈G, b, u, ε, κ̄〉, where

G = (V,E) is a connected d-regular graph given as an adjacency list,
b ∈ Rn is in the range of LG (equivalently, orthogonal to the all-ones vector),
u ∈ [n], ε > 0, and
κ̄ ≥ 1 is an upper bound on the condition number κ(LG),

the algorithm outputs x̂u ∈ R with the following guarantee. Letting x∗ = L+
Gb, we have

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε · ‖x∗‖∞

]
≥ 1− 1

s ,

and the algorithm runs in time O(dε−2s3 log s), for suitable s = Θ(κ̄ log(ε−1 κ̄ n)).

A few extensions of the theorem follow easily from our proof. First, if the algorithm is
given also an upper bound Bup on ||b||0, then the expression for s can be refined by replacing
n with Bup ≤ n. Second, we can improve the running time to O(ε−2s3 log s) whenever the
representation of G allows to sample a uniformly random neighbor of a vertex in constant
time. Third, the algorithm has an (essentially) cubic dependence on the condition number
κ(LG), which can be improved to quadratic if we allow a preprocessing of G (or, equivalently
if we only count the number of probes into b). Later we show that this quadratic dependence
is near-optimal.

Algorithm for SDD matrices. We further design an algorithm for SDD matrices with
bounded condition number. The formal statement, which appears in Theorem 3.1, is a
natural generalization of Theorem 1.1 with two differences. One difference is that a natural
solution to the system Sx = b is x = S+b, but our method requires S to have normalized
diagonal entries, and thus we aim at another solution x∗, constructed as follows. Define

D
def= diag(S11, ..., Snn) and S̃

def= D−1/2SD−1/2, (2)

then our linear system can be written as S̃(D1/2x) = D−1/2b, which has a solution

x∗
def= D−1/2S̃+D−1/2b, (3)

which is expressed using the pseudo-inverse of S̃ rather than of S.
A second difference is that Theorem 3.1 makes no assumptions about the multiplicity of the

eigenvalue 0 of S̃, e.g., if S is a graph Laplacian, then the graph need not be connected. The
assumptions needed to achieve a polylogarithmic time, beyond S̃ having a bounded condition
number,6 are only that a random “neighbor” in the graph corresponding to S can be sampled
quickly, and that maxi∈[n] Dii

mini∈[n] Dii
≤ poly(n), which holds if S has polynomially-bounded entries.

Lower Bound for PSD matrices. Our first lower bound shows that the above guarantees
cannot be obtained for a general PSD matrix, even if we are allowed to preprocess the matrix
S, and only count probes into b. The proof employs a PSD matrix S that is invertible (i.e.,
positive definite), in which case the linear system Sx = b has a unique solution x = S−1b.

6 We cannot phrase our requirements in terms of κ(S), because we are not aware of a non-trivial
relationship between it and κ(S̃).

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:5

I Theorem 1.2 (Lower Bound for PSD Systems, see Section 4). For every large enough n,
there exists an invertible PSD matrix S ∈ Rn×n with uniformly bounded sparsity d = O(1)
and condition number κ(S) ≤ 3, and a distinguished index u ∈ [n], which satisfy the following.
Every randomized algorithm that, given as input b ∈ Rn, outputs x̂u satisfying

Pr
[
|x̂u − x∗u| ≤ 1

5‖x
∗‖∞

]
≥ 6

7 ,

where x∗ = S−1b, must probe nΩ(1/d2) coordinates of b (in the worst case).

Dependence on Condition Number. The second lower bound shows that our SDD algo-
rithm has a near-optimal dependence on the condition number of S, even if we are allowed
to preprocess the matrix S, and only count probes into b. The lower bound holds even for
Laplacian matrices. Here and throughout, we use Õ(f) to hide polylogarithmic factors in f
or in the input size, i.e., it stands for O(f logO(1)(f + n)), and similarly for Ω̃(f).

I Theorem 1.3 (Lower Bound for Laplacian Systems). For every large enough n and k ≤
O(n1/2/ logn), there exist an unweighted graph G = ([n], E) with maximum degree 4 and
whose Laplacian LG has condition number κ(LG) = O(k), and a distinguished edge (u, v) in
G, which satisfy the following. Every randomized algorithm that, given input b in the range
of LG, succeeds with probability 2/3 to approximate xu − xv within additive error ε‖x∗‖ for
ε = Θ(1/ logn) and any solution x∗ ∈ Rn for LGx = b, must probe Ω̃(k2) coordinates of b
(in the worst case).

The proof of this result is omitted here but appears in the full version.

Applications. An example application of our algorithmic results is computing the effective
resistance between a pair of vertices u, v in a graph G (given u,v and G as input). It is well
known that the effective resistance, denoted Reff(u, v), can be expressed as xu − xv, where x
solves LGx = eu − ev. The spectral-sparsification algorithm of Spielman and Srivastava [33]
relies on a near-linear time algorithm (that they devise) for approximating the effective
resistances of all edges in G. For unweighted graphs, there is also a faster algorithm [25] that
runs in time Õ(n), which is sublinear in the number of edges, and approximates effective
resistances within a larger factor polylog(n). In a d-regular expander G, it is the effective
resistance of every vertex pair is Θ(1/d), and in this case our algorithm from Theorem 1.1 can
quickly compute, for any single pair, an arbitrarily good approximation (factor 1 + ε). Indeed,
observe that we can use Bup = 2, hence the running time is O(1

ε2 polylog 1
ε), independently

of n. The additive accuracy is ε‖x‖∞, where x ∈ Rn represents the vertex potentials when
imposing a unit of current from u to v, or equivalently, imposing a potential difference
Reff(u, v) between u and v, which implies that every xi ∈ [xu, xv]. By considering a solution
with xu = 0 we get ‖x‖∞ = xu − xv = Reff(u, v), and thus with high probability, the output
actually achieves a multiplicative guarantee R̂eff(u, v) ∈ (1± ε) Reff(u, v).

1.2 Technical Outline
Algorithms. Our basic technique relies on a classic idea of von Neumann and Ulam [18, 38]
for estimating a matrix inverse by a power series; see Section 1.3 for a discussion of related
work. Our starting point is the identity

∀X ∈ Rn×n, ‖X‖ < 1, (I −X)−1 =
∞∑
t=0

Xt.

ITCS 2019

3:6 On Solving Linear Systems in Sublinear Time

(Recall that ||X|| denotes the spectral norm of a matrix X.) Now given a Laplacian L = LG of
a d-regular graph G, observe that 1

dL = I− 1
dA, where A is the adjacency matrix of G. Assume

for a moment that || 1dA|| < 1; then by the above identity, (1
dL)−1 = (I− 1

dA)−1 =
∑∞
t=0(1

dA)t,
and the solution of the linear system Lx = b would be x∗ = L−1b = 1

d

∑∞
t=0(1

dA)tb. The point
is that the summands decay exponentially because ||(1

dA)tb||2 ≤ ||(1
dA)t|| · ||b||2 ≤ ||(1

dA)||t ·
||b||2. Therefore, we can estimate x∗u using the first t0 terms, i.e., x̂u = eT

u
1
d

∑t0
t=0(1

dA)tb,
where t0 is logarithmic (with base ‖ 1

dA‖
−1 > 1). In order to compute each term eT

u
1
d (1
dA)tb,

observe that eT
u(1

dA)tew is exactly the probability that a random walk of length t starting at
u will end at vertex w. Thus, if we perform a random walk of length t starting at u, and let
z be its (random) end vertex, then

E
z
[bz] =

∑
w∈V

eT
u(1

dA)tewbw = eT
u(1

dA)tb.

If we perform several random walks (specifically, poly(t0, 1
ε) walk suffice), average the resulting

bz’s, and then multiply by 1
d , then with high probability, we will obtain a good approximation

to eT
u

1
d (1
dA)tb.

As a matter of fact, we have a non-strict inequality || 1dA|| ≤ 1, because of the all-ones
vector ~1 ∈ Rn. Nevertheless, we can still get a meaningful result if all eigenvalues of A except
for the largest one are smaller than d (equivalently, the graph G is connected). First, we get
rid of any negative eigenvalues by the standard trick of considering (dI + A)/2 instead of
A, which is equivalent to adding d self-loops at every vertex. Second, we may assume b is
orthogonal to ~1 (otherwise the linear system has no solution), and while the linear system
Lx = b has infinitely many solutions, we estimate the specific solution x∗ def= L+b (recall L is
PSD) by 1

d

∑t0
t=0(1

dA)tb. Indeed, the idealized analysis above still applies by restricting all
our calculations to the subspace orthogonal to ~1. This is carried out in Theorem 1.1.

To generalize the above approach to SDD matrices, we face three issues. First, due
to the irregularity of general SDD matrices, it is harder to properly define the equivalent
random walk matrix. We resolve this by normalizing the SDD matrix S into S̃ defined in (2),
and solving the equivalent (normalized) system S̃(D1/2x) = D−1/2b. Second, general SDD
matrices can have positive off-diagonal elements, in constrast to Laplacians. To address this,
we interpret such entries as negative-weight edges, and employ random walks that “remember”
the signs of the traversed edges. Third, diagonal elements may strictly dominate their row,
which we address by terminating the random walk early with some positive probability.

Lower Bound: Polynomial Time for PSD Matrices. We first discuss our lower bound for
PSD matrices, which is one of the main contributions of our work. It exhibits a family of
matrices S for which estimating a coordinate x∗u of the solution x∗ = S−1b requires nΩ(1)

probes into the input b.
Without the sparsity constraint on S, one can deduce such a lower bound via a reduction

from the communication complexity of the Vector in Subspace Problem (VSP), in which
Alice has an n/2-dimensional subspace H ⊂ Rn, Bob has a vector b ∈ Rn, and their goal is
to determine whether b ∈ H or b ∈ H⊥. The randomized communication complexity of this
promise problem is between Ω(n1/3) [23] and O(

√
n) [28] (while for quantum communication

it is O(logn)). To reduce this problem to linear-system solvers, let PH ∈ Rn×n be the
projection operator onto the subspace H, and set S = I + PH . Consider the system Sx = b,
and notice that Alice knows S and Bob knows b. It is easy to see that the unique solution x∗
is either b or 1

2b, depending on whether b ∈ H⊥ or b ∈ H. Alice and Bob could use a solver
that makes few probes to b, as follows. Bob would pick an index u ∈ [n] that maximizes

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:7

|bu| (and thus also |xu|), and send it to Alice. She would then apply the solver, asking Bob
for only a few entries of b, to estimate xu within additive error 1

2‖x‖∞, which suffices to
distinguish the two cases. This matrix S is PSD with condition number κ(S) ≤ 2. However,
it is dense.

We thus revert to a different approach of proving it from basic principles. Our high-level
idea is to take a 2d-regular expander and assign to its edges random signs (±1) that are
balanced everywhere, namely, at every vertex the incident edges are split evenly between
positive and negative. The signed adjacency matrix A ∈ {−1, 0,+1}n×n should have spectral
norm µ

def= ‖A‖ = O(
√
d), and then instead of the (signed) Laplacian L = (2d)I − A, we

consider S = 2µI −A, which is PSD with condition number κ(S) ≤ 3, as well as invertible
and sparse. Now following arguments similar to our algorithm, we can write S−1 as a power
series of the matrix A, and express coordinate x∗u of the solution x∗ = S−1b via Ez[bz]
where z is the (random) end vertex of a random walk that starts at u and its length is
bounded by some t0 (performed in the “signed” graph corresponding to A). Now if the
graph around u looks like a tree (e.g., it has high girth), then not-too-long walks are highly
symmetric and easy to count. We now let bv be non-zero only at vertices v at distance
exactly t0 from u, and for these vertices set bv ∈ {+1,−1} at random but with a small bias
δ towards one of the values. Some calculations show that sgn(Ez[bz]), and consequently
sgn(x∗u), will be according to our bias (with high probability), however discovering this
sgn(x∗u) via probes to b is essentially the problem of learning a biased coin, which requires
Ω(δ−2) coin observations. An additional technical obstacle is to bound ‖x∗‖∞, so that we
can argue that an 1

5‖x
∗‖∞-additive error to x∗u will not change its sign. Overall, we show we

can set t0 = Ω(logd n) and δ ≈ ((2d − 1)t0)−1/2, thus concluding that the algorithm must
observe Ω(δ−2) = nΩ(1) entries of b.

It is instructive to ask where in the above argument is it crucial to have µ = O(
√
d),

because if it were valid also for µ = d, then it would hold also for the SDD matrix S = 2µI−A,
and contradict our own algorithm for SDD matrices. The answer is that µ� 2d is required
to bound ‖x∗‖∞ in Lemma 4.8.

Lower Bound: Quadratic Dependence on Condition Number. We now outline the ideas
to prove the Ω̃(κ2) lower bound even for Laplacian systems with condition number κ. First,
it is relatively straightforward to prove that a linear dependence on the condition number is
necessary. Indeed, consider a dumbbell graph, namely, two 3-regular expanders connected
by a bridge edge (u, v), and suppose one need to estimate x∗u − x∗v. For input b = ei − ej ,
the value of x∗u − x∗v is non-zero iff vertices i, j are on opposite sides of the bridge, and
determining the latter requires Ω(n) probes into b. Since this graph has condition number
O(n), we obtain an Ω(κ) lower bound.

The quadratic lower bound requires both a different graph and a different vector b. We
use the following graph G with condition number O(k): take two 3-regular expanders and
connect them with n/k “bridge edges”. The vector b ∈ {−1,+1}n is dense and in particular
it is either: 1) balanced, i.e.,

∑
bi on each expander is zero; or 2) unbalanced, i.e., each

bi ∈ {+1,−1} at random with a bias p ≈ 1/k towards +1 on the first expander, and towards
−1 on the second one. Now, as above, it is simple to prove that: 1) in the balanced case,
the average of x∗u − x∗v over all bridge edges (u, v) must be zero; and 2) in the unbalanced
case, the same average must be Ω(1). The main challenge is that the actual values might
differ from the average – e.g., even in the balanced case, each bridge edge (u, v) will likely
have non-zero value of x∗u − x∗v. Nonetheless, we manage to prove an upper bound on the
maximum value of |x∗u − x∗v| over all edges (u, v) (as in the previous lower bound, we need to
bound ‖x∗‖∞ as well). For the latter, we need to again analyze Ez[bz] where z is the end
vertex of a random walk of some fixed length i ≥ 1 starting from u in the graph G. Since

ITCS 2019

3:8 On Solving Linear Systems in Sublinear Time

the vector b is not symmetric over the graph G, a direct analysis seems hard – instead we
estimate Ez[bz] via a coupling of such walks in G with random walks in an expander, which
is amenable to a direct analysis.

1.3 Related Work
The idea of approximating the inverse (I − X)−1 =

∑∞
t=0X

t (for ||X|| < 1) by random
walks dates back to von Neumann and Ulam [18, 38]. While we approximate each power Xt

by separate random walks of length t and truncate the tail (powers above some t0), their
method employs random walks whose length is random and whose expectation gives exactly
the infinite sum, achieved by assigning some probability to terminate the walk at each step,
and weighting the contributions of the walks accordingly (to correct the expectation).

The idea of approximating a generalized inverse L∗ of L = dI −A by the truncated series
1
d

∑t0
t=0(1

dA)t on directions that are orthogonal to the all-ones vector was recently used by
Doron, Le Gall, and Ta-Shma [16] to show that L∗ can be approximated in probabilistic log-
space. However, since they wanted to output L∗ explicitly, they could not ignore the all-ones
direction and they needed to relate L∗ to 1

d

∑∞
t=0(1

dA)t by “peeling off” the all-ones direction,
inverting using the infinite sum formula, and then adding back the all-ones direction.

The idea of estimating powers of a normalized adjacency matrix 1
dA (or more generally,

a stochastic matrix) by performing random walks is well known, and was used also in [16]
mentioned above, and in [17]. Chung and Simpson [12] used it in a context that is related
to ours, of solving a Laplacian system LGx = b, but with a boundary condition, namely,
a constraint that xi = bi for all i in the support of b. Their algorithm solves for a subset
of the coordinates W ⊆ V , i.e., it approximates x|W (the restriction of x to coordinates in
W) where x solves Lx = b under the boundary condition. They relate the solution x to the
Dirichlet heat-kernel PageRank vector, which in turn is related to an infinite power series
of a transition matrix (specifically, to fTe−t(I−PW) = e−tfT∑∞

k=0
tk

k!P
k
W where PW is the

transition matrix of the graph induced by W , t ∈ R, and f ∈ R|W |), and their algorithm
uses random walks to approximate the not-too-large powers of the transition matrix, proving
that the remainder of the infinite sum is small enough.

Recently, Shyamkumar, Banerjee and Lofgren [30] considered a related matrix-power
problem, where the input is a matrix A ∈ Rn×n, a power ` ∈ N, a vector z ∈ Rn, and an index
u ∈ [n], and the goal is to compute coordinate u of A`z. They devised for this problem a
sublinear (in nnz(A)) algorithm, under some bounded-norm conditions and assuming u ∈ [n]
is uniformly random. Their algorithm relies, in part, on von Neumann and Ulam’s technique
of computing matrix powers using random walks, but of prescribed length. It can be shown
that approximately solving positive definite systems for a particular coordinate is reducible
to the matrix-power problem.7 However, in contrast to our results, their expected running
time is polynomial in the input size, namely nnz(A)2/3, and holds only for a random u ∈ [n].

Comparison with PageRank. An example application of our results is computing quickly
the PageRank (defined in [8]) of a single node in an undirected d-regular graph. Recall that
the PageRank vector of an n-vertex graph with associated transition matrix P is the solution

7 Let Ax = b be a linear system where A is positive definite. Let λ be the largest eigenvalue of A. Let
A′

def= 1
2λA and b′ def= 1

2λ b. Consider the equivalent system (I − (I −A′))x = b′. As the eigenvalues of
A′ are in (0, 1/2], the eigenvalues of I − A′ are in [1/2, 1). Thus, the solution to the linear system is
given by x = (I − (I −A′))−1b′ =

∑∞
t=0(I −A′)tb. Therefore, we can approximate xu by truncating

the infinite sum at some t0 and approximating each power t < t0 by the algorithm for the matrix-power
problem.

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:9

to the linear system x = 1−α
n
~1 +αPx, where 0 < α < 1 is a given parameter. In personalized

PageRank, one replaces 1
n
~1 (the uniform distribution) with some b ∈ Rn, e.g., a standard

basis vector. Equivalently, x solves the system Sx = 1−α
n
~1 where S = I − αP is an SDD

matrix with 1’s on the diagonal. As all eigenvalues of P are of magnitude at most 1 (recall
P is a transition matrix), all eigenvalues of I − S̃ = I − S = αP are of magnitude at most α,
and the running time guaranteed by Theorem 3.1 is logarithmic (with base 2

α+1).
Algorithms for the PageRank model were studied extensively, and usually consider

arbitrary (and even directed) graphs. In particular, the sublinear algorithms of [7] approximate
the PageRank of a vertex using Õ(n2/3) queries, or using Õ((n∆)1/2) queries when the
maximum degree is ∆. Another example is the heavy-hitters algorithm of [6], which reports
all vertices whose approximate PageRank exceeds a threshold T in sublinear time Õ(1/∆),
when PageRanks are viewed as probabilities and sum to 1. Other work explores connections
to other graph problems, including for instance using PageRank algorithms to approximate
effective resistances [13], the PageRank vector itself, and computing sparse cuts [4].

Local Algorithms. Our algorithms in Theorems 1.1 and 3.1 are local in the sense that
they query a small portion of their input, usually around the input vertex, when viewed as
graph algorithms. Local algorithms for graph problems were studied in several contexts, like
graph partitioning [31, 5], Web analysis [10, 3], and distributed computing [34]. Rubinfeld,
Tamir, Vardi, and Xie [29] introduced a formal concept of Local Computation Algorithms
that requires consistency between the local outputs of multiple executions (namely, these
local outputs must all agree with a single global solution). As explained earlier, our problem
formulation (1) follows this consistency requirement.

1.4 Future Work
One may study alternative ways of defining the problem of solving a linear system in sublinear
time, in particular if the algorithm can access b in a different way. For example, similarly
to assumptions and guarantees in [35], the goal may be to produce an `2-sample from the
solution x (i.e., report a random index in [n] such that the probability of each coordinate
i ∈ [n] is proportional to x2

i) assuming oracle access to an `2-sampler from b ∈ Rn, i.e., use
an `2-sampler for b to construct an `2-sampler for x. Another version of the problem may
ask to produce heavy hitters in x, assuming, say,8 heavy hitters in b (which may be useful for
the PageRank application). We leave these extensions as interesting open questions, focusing
here on the classical access mode to b, via queries to its coordinates.

Another variation one may consider is to bound the error using a norm other than `∞,
like ‖y‖S

def=
√
yTSy used in [31]. For example, if S is the Laplacian of a d-regular expander

and y is orthogonal to the all-ones vector, then ‖y‖S = Θ(
√
d‖y‖2), which might exceed

‖y‖∞ significantly even for constant d. Nevertheless, our requirement ‖x̂− x∗‖∞ ≤ ε||x∗||∞
is generally incomparable to ‖x̂− x∗‖2 ≤ ε||x∗||2.

2 Laplacian Solver (for Regular Graphs)

In this section we shall prove Theorem 1.1. The ensuing description deals mostly with a
slightly simplified scenario, where the algorithm is given not one but two vertices u, v ∈ [n],
and returns an approximation δ̂u,v to xu − xv with a slightly different error bound, see

8 This kind of oracle seems necessary even when S = I.

ITCS 2019

3:10 On Solving Linear Systems in Sublinear Time

Algorithm 1 Solve-Linear-Laplacian.
input : d-regular graph G; vector b; ||b||0; vertices u, v; accuracy parameter ε; and µ2
output : estimate δ̂u,v for xu − xv

1 set s =
log(2

√
2ε−1 d

µ2

√
||b||0)

log(d
d−µ2

) and ` = O((ε4s)−2 log s)

2 for t = 0, 1, . . . , s− 1 do
3 Perform ` independent random walks of length t starting at u, and let u(t)

1 , . . . , u
(t)
` be

their end vertices. Independently, perform ` independent random walks of length t

starting at v, and let v(t)
1 , . . . , v

(t)
` be their end vertices.

4 set δ̂(t)
u,v = 1

`

∑
i∈[`](bu(t)

i

− b
v

(t)
i

)

5 return δ̂u,v = 1
d

∑s−1
t=0 δ̂

(t)
u,v

Theorem 2.5 for the precise statement. The advantage is that if G is connected, all solutions
x give rise to a unique value for xu − xv. We will then explain the modifications required to
prove Theorem 1.1 (which actually follows also from our more general Theorem 3.1).

Let G = (V = [n], E) be a connected d-regular graph with adjacency matrix A ∈ Rn×n.
Let the eigenvalues of A be d = λ1 > λ2 ≥ · · · ≥ λn, and let their associated orthonormal
eigenvectors be u1, . . . , un. Then u1 = 1√

n
· ~1 ∈ Rn, and we can write A = UΛUT where

U = [u1 u2 . . . un] is unitary and Λ = diag(λ1, ..., λn). For u, v ∈ [n], let χu,v
def= eu − ev

where ei is the i-th standard basis vector. Then the Laplacian of G is given by

L
def=

∑
uv∈E

χu,vχ
T
u,v = dI −A = U(dI − Λ)UT.

Observe that L does not depend on the orientation of each edge uv, and that µ2
def= d− λ2 is

the smallest non-zero eigenvalue of L. The Moore-Penrose pseudo-inverse of L is

L+ def= U · diag(0, (d− λ2)−1, . . . , (d− λn)−1) · UT.

We assume henceforth that all eigenvalues of A are non-negative. At the end of the proof,
we will remove this assumption (by adding self-loops).

The idea behind the next fact is that L = d(I − 1
dA), and 1

dA has norm strictly smaller
than one when operating on the subspace that is orthogonal to the all-ones vector, and hence,
the formula (I −X)−1 =

∑∞
t=0X

t for ||X|| < 1 is applicable for the span of {u2, ..., un}.

I Fact 2.1. For every x ∈ Rn that is orthogonal to the all-ones vector, L+x = 1
d

∑∞
t=0(1

dA)tx.

Proof. It suffices to prove the claim for each of u2, . . . , un as the fact will then follow by
linearity. Fix i ∈ {2, . . . , n}. Then since |λid | < 1,

∞∑
t=0

(1
d
A
)t
ui =

∞∑
t=0

(λi
d

)t
ui = 1

1− λi
d

ui = d

d− λi
ui = dL+ui. J

We now describe an algorithm that on input b ∈ Rn that is orthogonal to the all-ones
vector, and two vertices u 6= v ∈ [n], returns an approximation δ̂u,v to xu − xv, where x
solves Lx = b. As G is connected, the null space of L is equal to span{~1} and hence xu − xv
is uniquely defined, and can be written as xu − xv = χT

u,vL
+b.

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:11

I Claim 2.2. For b that is orthogonal to the all-ones vector and s =
log(2

√
2ε−1 d

µ2

√
||b||0)

log(d
d−µ2

) ,

|χT
u,vL

+b− χT
u,v

1
d

∑s−1
t=0 (1

dA)tb| ≤ ε
2d ||b||∞.

Proof. Using Fact 2.1,

χT
u,vL

+b− χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb = χT

u,v

1
d

∞∑
t=s

(1
d
A)tb,

and thus

|χT
u,vL

+b− χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb| ≤ ||χT

u,v||2 · ||
1
d

∞∑
t=s

(1
d
A)tb||2.

We know that ||χT
u,v||2 =

√
2, so it remains to bound || 1d

∑∞
t=s(

1
dA)tb||2. Decomposing

b =
∑n
i=2 ciui we get that

∑n
i=2 c

2
i = ||b||22 and

∞∑
t=s

(1
d
A)tb =

n∑
i=2

ciui

∞∑
t=s

(λi
d

)t =
n∑
i=2

(λid)s

1− λi
d

ciui = d

n∑
i=2

(λid)s

d− λi
ciui.

Hence,

||1
d

∞∑
t=s

(1
d
A)tb||22 =

n∑
i=2

(
(λid)s

d− λi

)2

c2i ||ui||22 ≤

(
(λ2
d)s

d− λ2

)2 n∑
i=2

c2i =
((1− µ2

d)s

µ2

)2

||b||22,

where the first equality is because the ui’s are orthogonal. Altogether,

|χT
u,vL

+b−χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb| ≤

√
2

(1− µ2
d)s

µ2
||b||2 ≤

√
2

(1− µ2
d)s

µ2

√
||b||0 ·||b||∞ = ε

2d ||b||∞,

as claimed. J

I Claim 2.3. Pr
[
|δ̂u,v − χT

u,v
1
d

∑s−1
t=0 (1

dA)tb| > ε
2d ||b||∞

]
≤ 1

s .

Proof. Observe that eT
u(1

dA)t is a probability vector over V , and eT
u(1

dA)tew is exactly the
probability that a random walk of length t starting at u will end at w. Thus, for every
t ∈ {0, 1, . . . , s− 1} and i ∈ [`], we have

E[b
u

(t)
i

] =
∑
w∈[n]

eT
u(1
d
A)tewbw = eT

u(1
d
A)tb,

and similarly E[b
v

(t)
i

] = eT
v (1

dA)tb. By a union bound over Hoeffding bounds, with probability
at least 1− 1

s , for every t ∈ {0, 1, . . . , s−1}, we have | 1`
∑
i∈[`] bu(t)

i

−eT
u(1

dA)tb| ≤ ε
4s ||b||∞ and

| 1`
∑
i∈[`] bv(t)

i

− eT
v (1

dA)tb| ≤ ε
4s ||b||∞. Recalling that δ̂u,v = 1

d

∑s−1
t=0

1
`

∑
i∈[`](bu(t)

i

− b
v

(t)
i

),
with probability at least 1− 1

s we have |δ̂u,v−χT
u,v

1
d

∑s−1
t=0 (1

dA)tb| ≤ ε
2d ||b||∞, as claimed. J

Combining Claim 2.2 and Claim 2.3 we get that (with probability 1− 1
s) |δ̂u,v−χ

T
u,vL

+b| ≤
ε
d ||b||∞. Now, as x solves Lx = b, for every i ∈ [n] we have

∑
j∈N(i)(xi − xj) = bi where

N(i) is the set of neighbors {j : ij ∈ E}, which implies that for some neighbor j of i, it
holds that |xi − xj | ≥ |bi|

d . Therefore, maxij∈E |xi − xj | ≥ 1
d ||b||∞. We conclude that

|δ̂u,v − χu,vL+b| ≤ ε ·maxij∈E |xi − xj |. We now turn to the running time of Algorithm 1,

ITCS 2019

3:12 On Solving Linear Systems in Sublinear Time

which is dominated by the time it takes to perform the random walks. There are 2s ·` random
walks in total. The random walks do not need to be independent for different values of t (as
we applied a union bound over the different t), we can extend, at each iteration t, the 2`
respective random walks constructed at iteration t−1 by an extra step in time O(d) (recall we
assume G is given as an adjacency list), obtaining a total runtime O(s ·` ·d) = O(dε−2s3 log s).
To simplify the expression for s, we need the following bound.

I Fact 2.4. For all δ ∈ (0, 1), 1
ln(1−δ)−1 ≤ 1

δ .

Proof. We need to show that δ ≤ ln(1 − δ)−1, or equivalently, e−δ ≥ 1 − δ, which is
well known. J

Applying Fact 2.4 to δ = µ2
d , we have s ≤ d

µ2
log(2

√
2ε−1 d

µ2

√
||b||0), and conclude

the following.

I Theorem 2.5. Given an adjacency list of a connected d-regular n-vertex graph G, a vector
b ∈ Rn that is orthogonal to the all-ones vector, vertices u, v ∈ [n], and scalars ||b||0, ε > 0,
and µ2 = d− λ2 > 0, Algorithm 1 outputs δ̂u,v ∈ R satisfying

Pr
[
|δ̂u,v − χT

u,vL
+b| ≤ ε ·max

ij∈E
|xi − xj |

]
≥ 1− 1

s ,

in time O(dε−2s3 log s) for s = O(d
µ2

log(ε−1 d
µ2
||b||0)).

I Remark. If we allow preprocessing of G, the runtime of Algorithm 1 can be reduced
to O(ε−2s2), as follows. At the preprocessing phase, compute (1

dA)t for all powers t ≤ s.
Then, instead of approximating eT

u(1
dA)tb for all powers t ≤ s, sample a uniform t ∈

{0, 1, ..., s}, and then, in O(1) time (because the probability vector is precomputed, see [37]),
sample z ∈ [n] based on the probability vector eT

u(1
dA)t, and finally, output s+1

d bz. The
expectation of the output is 1

d

∑s
t=0(1

dA)tb. As for concentration, since the output is in
[− s+1

d ·||b||∞,
s+1
d ·||b||∞], by the Hoeffding bound, O(ε−2s2) many repetitions suffice to obtain

(with constant probability) an approximation with additive error ε
2d ||b||∞ (as in Claim 2.3).

We still need to show how to remove the assumption that A has no negative eigenvalues.
Given an adjacency matrix A which might have negative eigenvalues, consider the PSD
matrix A′ = A+ dI, which is the adjacency matrix of the 2d-regular graph G′ obtained from
G by adding d self-loops to each vertex. Observe that A′ = U(Λ + dI)UT and we can write
L = dI −A = (2dI −A′), and thus, similarly to Fact 2.1, L+x = 1

2d
∑∞
t=0(1

2dA
′)t, for x ∈ Rn

that is orthogonal to the all-ones vector. Therefore, if we use A′ (which is PSD) to guide
Algorithm 1’s random walks (i.e., at each step of a walk, with probability 1/2 the walk stays
put and with probability 1/2 it moves to a uniform neighbor in G) and apply Claims 2.2
and 2.3 (which apply even when A has self-loops), an estimate δ̂u,v satisfying with high
probability | 12 δ̂u,v − χ

T
u,vL

+b| ≤ εmaxij∈E |xi − xj | is obtained. When running Algorithm 1
on G′, the term s evaluates to O(2d

2d−(λ2+d) log(ε−1 2d
2d−(λ2+d) ||b||0)) = O(d

µ2
log(ε−1 d

µ2
||b||0)),

thus, leaving the guarantee of Theorem 2.5 intact (up to constant factors).

Proof of Theorem 1.1. The theorem follows by a simple modifications to the analysis above.
Observe that the analysis in Claims 2.2 and 2.3 holds also when replacing µ2 by a lower
bound on µ2, which in turn is easy to derive from the upper bound κ̄ given in the input and
d given as part of input G. Similarly, ||b||0 can be replaced by an upper bound Bup ≥ ||b||0.

To handle one vertex u ∈ [n] instead of two vertices u, v ∈ [n], ignore the part dealing
with v in Algorithm 1, and modify the analysis in the two aforementioned claims to use
eu instead of χu,v. The error bound obtained from combining these lemmas is ε

d ||b||∞,
but since each |bi| = |

∑
j Lijxj | ≤

∑
j |Lij | · ‖x‖∞ = 2d‖x‖∞, we can bound the error by

ε
d ||b||∞ ≤ 2ε‖x‖∞. J

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:13

3 An SDD Solver

In this section we prove the following theorem for solving linear systems in SDD matrices.
To generalize from Laplacianss of regular graphs to SDD matrices, we face several issues as
described in Section 1.2. We use the notation defined in (2)-(3).

I Theorem 3.1 (SDD Solver). There exists a randomized algorithm, that given input〈
S, b, u, ε, λ̃up

〉
, where

S ∈ Rn×n is an SDD matrix,
b ∈ Rn is in the range of S (equivalently, orthogonal to the kernel of S),
u ∈ [n], ε > 0, and
κ̄ ≥ 1 is an upper bound on the condition number κ(S̃),

this algorithm outputs x̂u ∈ R with the following guarantee. Suppose x∗ is the solution for
Sx = b given in (3), then

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 1− 1

s

for suitable s = O(κ̄ log(ε−1 κ̄ ||b||0 ·
maxi∈[n] Dii
mini∈[n] Dii

)). The algorithm runs in time O(fε−2s3 log s),
where f is the time to make a step in a random walk in the weighted graph formed by the
non-zeros of S.

Due to space constraints, the proof is omitted from this version.

4 Lower Bound for PSD Matrices

In this section we prove Theorem 1.2. The entire proof relies on a d-regular n-vertex graph
G1, such that (i) its girth is Ω(logd n); and (ii) its adjacency matrix A1 has eigenvalues
λ1 ≥ . . . ≥ λn that satisfy max{|λ2|, |λn|} ≤ 1

4d
2/3 (this bound is somewhat arbitrary, chosen

to simplify the exposition). We actually need such a graph to exist for infinitely many n,
with d bounded uniformly (as n grows). Such graphs are indeed known, for example the
Ramanujan graphs constructed by Lubotzky, Philips and Sarnak [26] and by Margulis [27]
for the case where d− 1 is a prime, have eigenvalue upper bound 2

√
d− 1 and girth lower

bound (4/3− o(1)) logd−1 n (see e.g. [21]).
In what follows, let G2 be a certain isomorphic copy of G1 (i.e., obtained from G1 by

permuting the vertices, as explained below). It will be convenient to assume that G1 and G2
have the same vertex set, which we denote by V , as then we can consider the multi-graph
obtained by their edge union, denoted G1 ∪G2. Denoting the adjacency matrix of each Gi
by Ai, the adjacency matrix of their edge union G1 ∪G2 is simply A1 +A2. We can similarly
view A1 − A2 as the adjacency matrix of the same graph, except that now the edges are
signed – those from G1 are positive, and those from G2 are negative.

The proof of the theorem will follow easily from the three propositions below. Proposi-
tion 4.1 provides combinatorial, girth-like, information aboutG1∪G2. Proposition 4.2 provides
spectral information, like the condition number, about A1 −A2. These two propositions are
proved by straightforward arguments, and the heart of the argument is in Proposition 4.3.
This proposition constructs a PSD linear system based on A1 −A2, for which we can sow
show that recovering a specific coordinate of the solution x, even approximately, requires
many probes to b. Due to space constraints, the proof of the next proposition is omitted
from this version.

ITCS 2019

3:14 On Solving Linear Systems in Sublinear Time

I Proposition 4.1. Let G1 be as above and fix a vertex ŵ ∈ V . Then there exists an
isomorphic copy G2 of G1 (on the same vertex set), such that in their edge-union G1 ∪G2,
the neighborhood of ŵ of radius rtree

def= 0.2 log4d n is a 2d-regular tree.

I Proposition 4.2. Let A1, A2 be the adjacency matrices described above, and let µ def=
2‖A1 −A2‖. Then µ ≤ 1

2d
2/3, and the matrix M def= µI + A1 − A2 ∈ Rn×n is PSD with

all its eigenvalues in the range [1
2µ,

3
2µ]. Thus, M is invertible and has condition number

κ(M) ≤ 3.

Proof. By the triangle inequality, µ/2 = ‖A1 −A2‖ ≤ ‖A1 − dI‖ + ‖−(A2 − dI)‖ ≤
2 max{|λ2|, |λn|} ≤ 1

2d
2/3. The eigenvalues of A1 − A2 are in the range [− 1

2µ,
1
2µ], and

thus those of M are in the range [1
2µ,

3
2µ]. J

I Proposition 4.3 (Proved in Section 4.1). Let the graphs G1, G2 be according to Propo-
sition 4.1, let M def= µI + A1 − A2 ∈ Rn×n as above, and fix r ≤ rtree/d

2. Then every
randomized algorithm that, given input b ∈ {−1, 0,+1}n, succeeds with probability at least
6/7 to approximate coordinate xŵ of x = M−1b within additive error at most 1

5‖x‖∞, must
probe dΩ(r) entries from b ∈ Rn, even when b is supported only on vertices at distance r from
ŵ (in G1 ∪G2).

We can now prove Theorem 1.2 using the above 3 propositions. Let G1,G2,A1,A2 and M
be as required for these propositions, and fix r = rtree/d

2. Let S def= M and observe that it has
the sparsity and condition number required for Theorem 1.2, and let the distinguished index
be u def= ŵ. Now consider a randomized algorithm that, given an input b ∈ Rn, estimates
coordinate x∗u of x∗ = S−1b, or in other words, coordinate xŵ of x = M−1b. We can then
apply Proposition 4.3 and deduce that this algorithm must probe b ∈ Rn in

dΩ(r) ≥ dΩ((log4d n)/d2) ≥ nΩ(1/d2)

entries, which proves Theorem 1.2.

4.1 Proof of Proposition 4.3
Let Vk ⊂ V be the set of vertices at distance exactly k from ŵ in the edge-union graph
G1 ∪G2. By Proposition 4.1, we can view the radius-rtree neighborhood of ŵ as a tree rooted
at ŵ. In particular, for all k ≤ rtree we have |Vk| = 2d(2d− 1)k−1. For each vertex v ∈ Vk,
let sv ∈ {±1} be the value of entry (ŵ, v) in (A2 −A1)k, i.e., the product of the signs along
the unique length-k walk from ŵ to v in A2 −A1 (i.e., the shortest path in G1 ∪G2).

Now generate a random b ∈ {−1, 0,+1}n as follows. First pick an arbitrary signal
σ ∈ {±1}; then use it to choose for each v ∈ Vr, a random bv ∈ {±1} with a small bias δ > 0
(determined below) towards σsv ∈ {±1}, i.e.,

E[bv|σ] = (1
2 + δ

2)σsv + (1
2 −

δ
2)(−σsv) = δσsv.

Observe that E[svbv|σ] = sv(δσsv) = δσ, which means that svbv has a small bias towards
the signal σ. Finally, let all other entries be 0, i.e., bv = 0 for v /∈ Vr. Observe that
‖b‖22 = |supp(b)| = |Vr| and E[σ

∑
v∈Vr svbv | σ] = δ|Vr|. We set the bias to be

δ
def= C(r2 log d) |Vr|−1/3 (4)

for a sufficiently large constant C > 0. Notice that {sv}v∈Vr have fixed values known to
the algorithm, hence observing bv (by probing this entry of b) is information-theoretically
equivalent to observing svbv.

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:15

The next lemma is standard and follows easily from Yao’s minimax principle, together
with a bound on the total-variation distance between two Binomial distributions, with biases
1
2 + δ and 1

2 − δ), see e.g. [9, Fact D.1.3] or [1, Eqn. (2.15)].

I Lemma 4.4. Every randomized algorithm that, with probability at least 1/2 + γ for γ ∈
(0, 1/2), recovers an unknown signal σ ∈ {±1} from b1, b2, . . . ∈ {±1}, each set independently
to σ or −σ with bias δ > 0, must probe at least Ω(δ−2γ2) entries of b.

Thus, all probabilities from this point onward are computed over the randomness of b.
We proceed to analyze xŵ, aiming to show that it can be used to recover σ, namely, that
with high probability sgn(xŵ) = σ. Later we will bound ‖x‖∞ aiming to show a similar
conclusion for xŵ± 1

5‖x‖∞. For convenience, denote B def= A2−A1
µ , hence ‖B‖ = µ/2

µ = 1
2 and

M−1 = (µ(I − A2−A1
µ))−1 = µ−1

∑
i≥0

Bi,

and since B is symmetric, for every vertex u ∈ V (including ŵ),

xu = 〈eu,M−1b〉 = µ−1
∑
i≥0
〈eu, Bib〉 = µ−1

∑
i≥0

bTBieu. (5)

Each summand bTBieu can be viewed as the summation, over all length-i walks from vertex
u, of the coordinate bv corresponding to the walk’s end-vertex v, multiplied by µ−i and by
the product of the signs of A2 −A1 along the walk. We can restrict the summation to walks
ending at vertices v ∈ Vr, as otherwise bv = 0.

I Lemma 4.5. For every vertex u ∈ V (including ŵ),∑
i≥2r logµ

∣∣∣bTBieu

∣∣∣ ≤ 1
4µ
−2r · δ|Vr|.

Proof of Lemma 4.5. For each i, we have by Cauchy-Schwartz |bTBieu| ≤ ‖b‖2 · ‖B‖i2 ≤
|Vr|1/2 · 2−i, and then by our choice of the bias δ in (4),∑

i≥2r logµ
|bTBieu| ≤ |Vr|1/2

∑
i≥2r logµ

2−i ≤ (|Vr| · δ/8) · 2µ−2r. J

Recall that by Proposition 4.1, the neighborhood of ŵ of radius rtree is a tree, and view
it as a tree rooted at ŵ. For a vertex u in this tree, let Su be the set of all vertices v ∈ Vr
that are descendants of u; for example, Sŵ = Vr, and if the distance of u from ŵ is greater
than r then Su = ∅. Define a random variable Zu

def=
∑
v∈Su svbv, whose expectation is

E[Zu] =
∑
v∈Su

E[svbv | σ] = |Su| · δσ.

I Lemma 4.6. With probability at least 6/7,

∀0 ≤ k ≤ r, ∀u ∈ Vk,
∣∣Zu − E[Zu]

∣∣ ≤ O (√|Su| · ln(3|Vk|)
)
. (6)

We remark that the constant 3 is somewhat arbitrary but needed to make sure the righthand-
side is positive even for k = 0 (as |V0| = 1). In addition, applying (6) to ŵ ∈ V0 yields, by
our choice of the bias δ in (4),∣∣Zŵ − E[Zŵ]

∣∣ ≤ O (√|Vr| · ln(3|Vr|)
)
≤ 1

4δ|Vr|. (7)

ITCS 2019

3:16 On Solving Linear Systems in Sublinear Time

Proof of Lemma 4.6. Fix 0 ≤ k ≤ r and u ∈ Vk. By Hoeffding’s inequality, for every c > 0,

Pr
[
|Zu − E[Zu]| ≥ c

√
|Su| ln(3|Vk|)

]
≤ e−2c2|Su| ln(3|Vk|)/(4|Su|)

≤ e−(c2/2) ln(3|Vk|) = (3|Vk|)−c
2/2.

By a union bound over all u ∈ V0 ∪ · · · ∪ Vr,

Pr
[
∃u, |Zu − E[Zu]| ≥ c

√
|Su| ln(3|Vk|)

]
≤

r∑
k=0
|Vk| · (3|Vk|)−c

2/2 = 1
3

r∑
k=0

(3|Vk|)1−c2/2.

For all c ≥ 2 this series is decreasing geometrically, because |Vk| grows at least by a factor
of 2d − 1 ≥ 5, and thus the sum is dominated by its first term. By choosing c to be an
appropriate constant, the first term (and the entire sum) can be made arbitrarily small. J

We assume henceforth that the event described in Lemma 4.6 occurs. Let Wi be the
set of all walks of length i that start at ŵ and end (at some vertex) in Vr, i.e., at distance
exactly r from ŵ. To simplify notation (later), define

Q
def=

5r logµ∑
i=r

µ−i|Wi|.

We make two remarks. First, we can equivalently start the summation from i = 0, because
Wi = ∅ for all i < r. Second, the range of i here complements the one in Lemma 4.5, except
that the constant 5 here is intentionally bigger than the 2 there, creating a slack needed at
the very end of the proof.

I Lemma 4.7. If the event in Lemma 4.6 occurs, then

xŵ ∈ (σ ± 1
2)δ · µ−1Q,

and thus sgn(xŵ) = σ (i.e., recovers the signal).

Proof of Lemma 4.7. We would like to employ (5) and the interpretation of bTBieŵ via
walks of length i. To this end, fix 0 ≤ i ≤ 5r logµ. Observe that i ≤ rtree, hence a walk of
length i from ŵ is entirely contained in the 2d-regular tree formed by the neighborhood of ŵ
of radius rtree. Each such walk contributes to bTBieŵ the value bv at the walk’s end vertex
v, multiplied by all the signs seen along the walk. We make two observations. First, we can
restrict attention to end vertices v ∈ Vr (and in particular i ≥ r), because otherwise bv = 0
and the contribution is 0. Second, because it is a tree, every edge along the shortest path
between ŵ and v (the start and end vertices) is traversed by the walk an odd number of
times, and every other edge is traversed an even number of times. Hence, the product of the
signs along the walk equals the product along that shortest path, which is exactly sv. By
symmetry, the number of walks ending at each v ∈ Vr is the same, namely, |Wi|

|Vr| , and thus

bTBieŵ =
∑
v∈Vr

|Wi|
|Vr| µ

−isvbv = Zŵ
|Vr| · µ

−i|Wi|. (8)

Assuming the event in Lemma 4.6 occurs, we have Zŵ ∈ (δσ|Sŵ| ± 1
4δ|Vr|) = (1± 1

4)σδ|Vr|,
and therefore (recall terms for i < r have zero contribution)

5r logµ∑
i=0

bTBieŵ ∈
5r logµ∑
i=r

(1± 1
4)σδ · µ−i|Wi| = (1± 1

4)σδ ·Q.

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:17

For the range of i > 5r logµ, we can use Lemma 4.5 and the obvious |Wr| = |Vr| to derive∣∣∣ ∑
i>5r logµ

bTBieŵ

∣∣∣ ≤ ∑
i>5r logµ

∣∣∣bTBieŵ

∣∣∣ ≤ 1
4µ
−2r · δ|Vr| ≤ 1

4δQ.

Altogether, plugging into (5) we obtain

µ · xŵ =
∑
i≥0

bTBieŵ ∈
5r logµ∑
i=0

(1± 1
4)σδ ·Q± 1

4δ ·Q = (1± 1
2)σδ ·Q,

which proves the lemma because σ ∈ {±1}. J

I Lemma 4.8. If the event in Lemma 4.6 occurs, then

‖x‖∞ ≤ 2δ · µ−1Q.

The proof of this lemma is omitted here but appears in the full version.
We can now complete the proof of Proposition 4.3. By Lemma 4.6, with probability

at least 6/7 the event described therein occurs. Assume this is the case and consider an
estimate x̂ŵ for xŵ that has additive error at most ε‖x‖∞ for ε ≤ 1

5 . By Lemma 4.7 we have
xŵ ∈ (σ ± 1

2)δ · µ−1Q, and by Lemma 4.8 we have ‖x‖∞ ≤ 2δ · µ−1Q. Altogether

x̂ŵ ∈ xŵ ± 1
5‖x‖∞ ⊆ (σ ± 1

2 ±
2
5)δ · µ−1Q,

which implies that sgn(xŵ) = σ.
Now consider a randomized algorithm for estimating xŵ, and whose output x̂ŵ satisfies

the above additive bound with probability at least 6/7. We can use this estimation algorithm
to recover the signal σ, by simply reporting the sign of its estimate, namely sgn(xŵ). This
recovery does not require additional probes to b, and by a union bound, it succeeds (in
recovering σ) with probability at least 5/7. But by Lemma 4.4, such a recovery algorithm,
and in particular the algorithm for estimating xŵ, must probe b in at least

Ω(δ−2) ≥ Ω
(
|Vr|2/3/(r4 log2 d)

)
≥ Ω

(
(2d− 1)2r/3/(r4 log2 d)

)
≥ dΩ(r)

entries, which proves Proposition 4.3.

References
1 José A. Adell and P. Jodrá. Exact Kolmogorov and total variation distances between some

familiar discrete distributions. Journal of Inequalities and Applications, 2006(1):64307,
2006. doi:10.1155/JIA/2006/64307.

2 Andris Ambainis. Variable time amplitude amplification and quantum algorithms for lin-
ear algebra problems. In 29th Symposium on Theoretical Aspects of Computer Science
(STACS’12), volume 14, pages 636–647. LIPIcs, 2012. doi:10.4230/LIPIcs.STACS.2012.
636.

3 Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S. Mirrokni,
and Shang-Hua Teng. Local computation of PageRank contributions. Internet Mathematics,
5(1):23–45, 2008. doi:10.1080/15427951.2008.10129302.

4 Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using PageRank to locally partition a
graph. Internet Mathematics, 4(1):35–64, 2007. doi:10.1080/15427951.2007.10129139.

5 Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 235–244. ACM, 2009. doi:10.1145/1536414.1536449.

ITCS 2019

http://dx.doi.org/10.1155/JIA/2006/64307
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.636
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.636
http://dx.doi.org/10.1080/15427951.2008.10129302
http://dx.doi.org/10.1080/15427951.2007.10129139
http://dx.doi.org/10.1145/1536414.1536449

3:18 On Solving Linear Systems in Sublinear Time

6 Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Shang-Hua Teng. Multiscale
matrix sampling and sublinear-time PageRank computation. Internet Mathematics, 10(1-
2):20–48, 2014. doi:10.1080/15427951.2013.802752.

7 Marco Bressan, Enoch Peserico, and Luca Pretto. Brief announcement: On approximating
PageRank locally with sublinear query complexity. In 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 87–89. ACM, 2018. arXiv:1404.1864,
doi:10.1145/3210377.3210664.

8 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search en-
gine. Computer Networks, 30(1-7):107–117, 1998. doi:10.1016/S0169-7552(98)00110-X.

9 Clément L. Canonne. A survey on distribution testing: Your data is big. but is it blue?
Electronic Colloquium on Computational Complexity (ECCC), 22:63, 2015. URL: http:
//eccc.hpi-web.de/report/2015/063.

10 Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating PageRank
values. In Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management, CIKM ’04, pages 381–389. ACM, 2004. doi:10.1145/1031171.
1031248.

11 A. Childs, R. Kothari, and R. Somma. Quantum algorithm for systems of linear equa-
tions with exponentially improved dependence on precision. SIAM Journal on Computing,
46(6):1920–1950, 2017. doi:10.1137/16M1087072.

12 Fan Chung and Olivia Simpson. Solving local linear systems with boundary conditions
using heat kernel PageRank. Internet Mathematics, 11(4-5):449–471, 2015. doi:10.1080/
15427951.2015.1009522.

13 Fan Chung and Wenbo Zhao. PageRank and Random Walks on Graphs, pages 43–62.
Springer, 2010. doi:10.1007/978-3-642-13580-4_3.

14 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly m log1/2 n time.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 343–
352, 2014. doi:10.1145/2591796.2591833.

15 Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naïri Usher, and
Leonard Wossnig. Quantum linear systems algorithms: a primer. CoRR, abs/1802.08227,
2018. arXiv:1802.08227.

16 Dean Doron, François Le Gall, and Amnon Ta-Shma. Probabilistic logarithmic-space algo-
rithms for Laplacian solvers. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2017, pages 41:1–41:20, 2017.
doi:10.4230/LIPIcs.APPROX-RANDOM.2017.41.

17 Dean Doron, Amir Sarid, and Amnon Ta-Shma. On approximating the eigenvalues of
stochastic matrices in probabilistic logspace. Comput. Complex., 26(2):393–420, June 2017.
doi:10.1007/s00037-016-0150-y.

18 George E Forsythe and Richard A Leibler. Matrix inversion by a Monte
Carlo method. Mathematics of Computation, 4(31):127–129, 1950. doi:10.1090/
S0025-5718-1950-0038138-X.

19 François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, 2014.
doi:10.1145/2608628.2608664.

20 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Phys. Rev. Lett., 103:150502, Oct 2009. doi:10.1103/PhysRevLett.
103.150502.

21 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43(4):439–561, 2006. doi:10.1090/S0273-0979-06-01126-8.

http://dx.doi.org/10.1080/15427951.2013.802752
http://arxiv.org/abs/1404.1864
http://dx.doi.org/10.1145/3210377.3210664
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://eccc.hpi-web.de/report/2015/063
http://eccc.hpi-web.de/report/2015/063
http://dx.doi.org/10.1145/1031171.1031248
http://dx.doi.org/10.1145/1031171.1031248
http://dx.doi.org/10.1137/16M1087072
http://dx.doi.org/10.1080/15427951.2015.1009522
http://dx.doi.org/10.1080/15427951.2015.1009522
http://dx.doi.org/10.1007/978-3-642-13580-4_3
http://dx.doi.org/10.1145/2591796.2591833
http://arxiv.org/abs/1802.08227
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.41
http://dx.doi.org/10.1007/s00037-016-0150-y
http://dx.doi.org/10.1090/S0025-5718-1950-0038138-X
http://dx.doi.org/10.1090/S0025-5718-1950-0038138-X
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1090/S0273-0979-06-01126-8

A. Andoni, R. Krauthgamer, and Y. Pogrow 3:19

22 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In 8th
Innovations in Theoretical Computer Science Conference (ITCS’ 17), volume 67 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 49:1–49:21. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.49.

23 Bo’az Klartag and Oded Regev. Quantum one-way communication can be exponentially
stronger than classical communication. In 43rd Annual ACM Symposium on Theory of
Computing, STOC ’11, pages 31–40, 2011. doi:10.1145/1993636.1993642.

24 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman.
Sparsified Cholesky and multigrid solvers for connection Laplacians. In 48th Annual ACM
Symposium on Theory of Computing, pages 842–850. ACM, 2016.

25 Yin Tat Lee. Probabilistic spectral sparsification in sublinear time. CoRR, abs/1401.0085,
2014. arXiv:1401.0085.

26 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988. doi:10.1007/BF02126799.

27 G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Problemy Peredachi In-
formatsii, 24(1):51–60, 1988.

28 Ran Raz. Exponential separation of quantum and classical communication complexity. In
31st Annual ACM Symposium on Theory of Computing, STOC ’99, pages 358–367, 1999.
doi:10.1145/301250.301343.

29 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Innovations in Computer Science - ICS 2010, pages 223–238, 2011. URL: http://
conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html.

30 Nitin Shyamkumar, Siddhartha Banerjee, and Peter Lofgren. Sublinear estimation of a
single element in sparse linear systems. In 54th Annual Allerton Conference on Commu-
nication, Control, and Computing, Allerton 2016, pages 856–860, 2016. doi:10.1109/
ALLERTON.2016.7852323.

31 D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In 36th Annual ACM Symposium on Theory of
Computing, pages 81–90. ACM, 2004. doi:10.1145/1007352.1007372.

32 Daniel A. Spielman. Algorithms, graph theory, and linear equations in Laplacian matrices.
In Proceedings of the International Congress of Mathematicians, volume 4, pages 2698–2722,
2010. doi:10.1142/9789814324359_0164.

33 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, December 2011. doi:10.1137/080734029.

34 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, March
2013. doi:10.1145/2431211.2431223.

35 Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. CoRR,
abs/1807.04271, 2018. arXiv:1807.04271.

36 Nisheeth K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer Science,
8(1–2):1–141, 2013. doi:10.1561/0400000054.

37 Alastair J. Walker. An efficient method for generating discrete random variables with
general distributions. ACM Trans. Math. Softw., 3(3):253–256, 1977. doi:10.1145/355744.
355749.

38 Wolfgang R Wasow. A note on the inversion of matrices by random walks. Mathematical
Tables and Other Aids to Computation, 6(38):78–81, 1952. doi:10.2307/2002546.

ITCS 2019

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.49
http://dx.doi.org/10.1145/1993636.1993642
http://arxiv.org/abs/1401.0085
http://dx.doi.org/10.1007/BF02126799
http://dx.doi.org/10.1145/301250.301343
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html
http://dx.doi.org/10.1109/ALLERTON.2016.7852323
http://dx.doi.org/10.1109/ALLERTON.2016.7852323
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1142/9789814324359_0164
http://dx.doi.org/10.1137/080734029
http://dx.doi.org/10.1145/2431211.2431223
http://arxiv.org/abs/1807.04271
http://dx.doi.org/10.1561/0400000054
http://dx.doi.org/10.1145/355744.355749
http://dx.doi.org/10.1145/355744.355749
http://dx.doi.org/10.2307/2002546

	Introduction
	Our Results
	Technical Outline
	Related Work
	Future Work

	Laplacian Solver (for Regular Graphs)
	An SDD Solver
	Lower Bound for PSD Matrices
	Proof of Proposition 4.3

