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Abstract—Min-Cut queries are fundamental: Preprocess an
undirected edge-weighted graph, to quickly report a minimum-
weight cut that separates a query pair of nodes s, t. The best
data structure known for this problem simply builds a cut-
equivalent tree, discovered 60 years ago by Gomory and Hu,
who also showed how to construct it using n−1 minimum st-cut
computations. Using state-of-the-art algorithms for minimum
st-cut (Lee and Sidford, FOCS 2014), one can construct the
tree in time Õ(mn3/2), which is also the preprocessing time
of the data structure. (Throughout, we focus on polynomially-
bounded edge weights, noting that faster algorithms are known
for small/unit edge weights, and use n and m for the number
of nodes and edges in the graph.)

Our main result shows the following equivalence: Cut-
equivalent trees can be constructed in near-linear time if and
only if there is a data structure for Min-Cut queries with
near-linear preprocessing time and polylogarithmic (amortized)
query time, and even if the queries are restricted to a fixed
source. That is, equivalent trees are an essentially optimal
solution for Min-Cut queries. This equivalence holds even
for every minor-closed family of graphs, such as bounded-
treewidth graphs, for which a two-decade old data structure
(Arikati, Chaudhuri, and Zaroliagis, J. Algorithms 1998) im-
plies the first near-linear time construction of cut-equivalent
trees.

Moreover, unlike all previous techniques for constructing
cut-equivalent trees, ours is robust to relying on approxima-
tion algorithms. In particular, using the almost-linear time
algorithm for (1 + ε)-approximate minimum st-cut (Kelner,
Lee, Orecchia, and Sidford, SODA 2014), we can construct a
(1 + ε)-approximate flow-equivalent tree (which is a slightly
weaker notion) in time n2+o(1). This leads to the first (1 + ε)-
approximation for All-Pairs Max-Flow that runs in time
n2+o(1), and matches the output size almost-optimally.

Keywords-Gomory-Hu; all-pairs max-flow; cut-equivalent
tree; flow-equivalent tree; ultrametrics.

I. INTRODUCTION

Minimum st-cut queries, or Min-Cut queries for short, are
ubiquitous: Given a pair of nodes s, t in a graph G we ask
for the minimum cut that separates them. Countless papers
study their algorithmic complexity from various angles and
in multiple contexts. Unless stated otherwise, we are in the
standard setting of an undirected graph G = (V,E, c) with
n = |V | nodes and m = |E| weighted edges, where the
weights (aka capacities) are polynomially bounded, While
a Min-Cut query asks for the set of edges of the minimum

cut, a Max-Flow query only asks for its weight.1 A single
Min-Cut or Max-Flow query can be answered in time
Õ(m

√
n) [3],2 and there is optimism among the experts that

near-linear time, meaning Õ(m), can be achieved.
In the data structure (or online) setting, we would like to

preprocess the graph once and then quickly answer queries.
There are two naive strategies for this. We can either skip the
preprocessing and use an offline algorithm for each query,
making the query time at least Ω(m). Or we can precompute
the answers to all possible O(n2) queries, making the query
time O(1), at the cost of increasing the time and space
complexity to Ω(n3) or worse.

Half a century ago, Gomory and Hu gave a remarkable
solution [4]. By using an algorithm for a single Min-Cut
query n − 1 times, they can compute a cut-equivalent tree
(aka Gomory-Hu tree) of the original graph G. This is a tree
on the same set of nodes as G, with the strong property that
for every pair of nodes s, t ∈ V , their minimum cut in the
tree is also their minimum cut in the graph.3 This essentially
reduces the problem from arbitrary graphs to trees, for which
queries are much easier — the minimum st-cut is attained
by cutting a single edge, the edge of minimum weight along
the unique st-path, which can be reported in logarithmic
time.4 Cut-equivalent trees have other attractive properties
beyond making queries faster, as they also provide a deep
structural understanding of the graph by compressing all its
minimum cut information into O(n) machine words, and in
particular they give a data structure which is space-optimal,
as Ω(n) words are clearly necessary. Let us clarify that a
cut-equivalent tree guarantees that for all s, t ∈ V , every
edge est that has minimum weight along the tree’s unique
st-path, not only has the same weight as a minimum st-cut
in G, but this edge also bipartitions the nodes into V = StT
(the two connected components when est is removed from
the tree), such that (S, T ) is a minimum cut in the graph

1This terminology is common in the literature, although some recent
papers [1], [2] use other names.

2The notation Õ(·) hides poly logn factors (and also poly logU factors
in our case of U = poly(n)).

3If G has a unique minimum st-cut then the reverse direction clearly
holds as well.

4This immediately answers Max-Flow queries in logarithmic time. For
Min-Cut queries extra work is required to output the edges in amortized
logarithmic time; one simple way for doing it is shown in the full version.



G. Without this additional property we would only have a
weaker notion called a flow-equivalent tree.

Gomory and Hu’s solution ticks all the boxes, except
for the preprocessing time. Using current offline algorithms
for each query [3], the total time for computing the tree
is Õ(mn3/2), and no matter how much the offline upper
bound is improved, this strategy has a barrier of Ω(mn).
While this barrier was not attained (let alone broken) for
general inputs, there has been substantial progress on special
cases of the problem. If the largest weight U is small,
one can use offline algorithms [5], [6] that run in time
Õ(min{m10/7U1/7,m11/8U1/4}) to get even closer to the
barrier. In the unweighted case (i.e., unit-capacity U = 1),
Bhalgat, Hariharan, Kavitha, and Panigrahi [7] (see also [8])
achieved the bound Õ(mn) without relying on a fast offline
algorithm, and this barrier was partially broken recently
with a time bound of Õ(m3/2n1/6) [9]. Near-linear time
algorithms were successfully designed for planar graphs
[1] and surface-embedded graphs [2]. See also [10] for an
experimental study, and the Encyclopedia of Algorithms [11]
for more background.

Meanwhile, on the hardness side, the only related lower
bounds are for the online problem in the harder settings
of directed graphs [12], [13], [14] or undirected graphs with
node weights [9], where Gomory-Hu trees cannot even exist,
because the Ω(n2) minimum cuts might all be different [15].
However, no nontrivial lower bound, i.e., of time Ω(m1+ε),
is known for computing cut-equivalent trees, and there is
even a barrier for proving such a lower bound under the
popular Strong Exponential-Time Hypothesis (SETH) at
least in the case of unweighted graphs, due to the existence
of a near-linear time nondeterministic algorithm [9]. Thus,
the following central question remains open.

Open Question 1. Can one compute a cut-equivalent tree
of a graph in near-linear time?

A seemingly easier question is to design a data structure
with near-linear time preprocessing that can answer queries
in near-constant (which means Õ(1), i.e., polylogarithmic)
time. We should clarify that we are interested in near-
constant amortized time; that is, if the output minimum
st-cut has ks,t edges then it is reported in time Õ(ks,t).
Building cut-equivalent trees is one approach, but since
they are so structured they might be limiting the space of
algorithms severely.

Open Question 2. Can one preprocess a graph in near-
linear time to answer Min-Cut queries in near-constant
amortized time?

An even simpler question is the single-source version,
where the data structure answers only queries s, t ∈ V where
s is a fixed source (i.e., known at preprocessing stage) and
t can be any target node. This restriction seems substantial,
as the number of possible queries goes down from O(n2)

to O(n), and in several contexts the known single-source
algorithms are much faster than the all-pairs ones. One
such context is shortest-path queries, where single-source is
solved in near-linear time via Dijkstra’s algorithm, while the
all-pairs problem is conjectured to be cubic. Another context
is Max-Flow queries in directed graphs(digraphs), where
single-source is trivially solved by n−1 applications of Max-
Flow, while based on some conjectures, all-pairs requires
at least Ω(n3/2) such applications [13], [14]. Single-source
Max-Flow queries is currently faster than all-pairs also in
the special case of unit-capacity DAGs [16]. However, this
is still open for undirected Min-Cut queries.

Open Question 3. Can one preprocess a graph in near-
linear time to answer Min-Cut queries from a single source
s to any target t ∈ V in near-constant amortized time?

It is natural to suspect that each of these questions is
strictly easier than the preceding one. The case of bounded-
treewidth graphs gives one point of evidence since a positive
solution to Question 2 (and thus 3) was found over two
decades ago [17], but Question 1 remained open to this day.

A. Our Results

Our first main contribution is to prove that all three
open questions above are equivalent. We can extract a cut-
equivalent tree from any data structure, even if it only
answers single-source queries, without increasing the con-
struction time by more than logarithmic factors. Thus, the
appealingly simple trees are near-optimal as data structures
for Min-Cut queries in all efficiency parameters; we find this
conclusion quite remarkable.

Informal Theorem 1. Cut-equivalent trees can be con-
structed in near-linear time if and only if there is a data
structure with near-linear time preprocessing and Õ(1)
amortized time for Min-Cut queries, and even if the queries
are restricted to a fixed source.

The main new link that we establish in this paper is to
reduce Question 1 to Question 3, by essentially designing
an entirely new algorithm for constructing cut-equivalent
trees. The precise statement is given in Theorem III.1.
The two other links required for the equivalence are from
Question 3 to Question 2, which holds by definition, and
from Question 2 to Question 1. The latter link is to be
expected, and was shown before in specific settings; for
completeness, we give a simple proof via 2D range-reporting
in the full version. Thus, we get the reduction from all-pairs
to single-source indirectly by going through the trees, and we
are not aware of another way to prove this counter-intuitive
link.

Notably, our result holds not only for general graphs
but also for every graph family closed under minors. It is
particularly useful for bounded-treewidth graphs, for which



the two-decades-old results of Arikati, Chaudhuri, and Zaro-
liagis [17] now imply the construction of a cut-equivalent
tree in near-linear time, as stated below. We do not see an
alternative way to compute a cut-equivalent tree, e.g., using
directly the techniques of [17], where parts of the graph G
are replaced by constant-size mimicking networks [18].

Corollary I.1 (see Corollary III.2). A cut-equivalent tree
for a bounded-treewidth graph G can be constructed in
randomized time Õ(m).

In planar graphs, combining our reduction with the single-
source algorithm of [19] gives an alternative to the all-pairs
algorithm of [1] that used a very different technique.5

To evaluate our results, consider how much other existing
techniques for constructing cut-equivalent trees would bene-
fit from a (hypothetical) data structure for Min-Cut queries.
The classical Gomory-Hu algorithm would have two main
issues. First, it modifies the graph (merging some nodes)
after each Min-Cut query, hence preprocessing a single
graph (or a few ones) cannot answer all the n − 1 queries.
This issue was alleviated by Gusfield [20], who modified
the Gomory-Hu algorithm so that all the n − 1 queries are
made on the original graph G. A second issue is that the
answer to each query might have Ω(m) edges, hence the
total time Ω(mn) would far exceed Õ(m). Optimistically, a
more careful analysis could give an upper bound of O(φ),
where φ is the total number of edges (in the original graph)
in the n − 1 cuts corresponding to the final tree’s edges.
Clearly, any such algorithm that does not merge edges must
take Ω(φ) time. Still, in weighted graphs φ could be Ω(mn),
and even bounded-treewidth graphs could have φ = Ω(n2)
even though m = O(n) (e.g., a path with an extra node
connected to all others). Therefore, our approach, which is
very different from Gusfield’s, shaves a factor of n. Notably,
our result does not apply if the data structure is available
only for unweighted graphs, because we need to perturb
the edge weights to make all minimum cuts unique; but in
this unweighted setting φ = O(m) [7, Lemma 5], hence it
is plausible that other techniques, e.g. [20], [8], would be
capable of showing the equivalence.

It is worth mentioning in this context a somewhat re-
stricted form of the equivalence in unweighted graphs. In this
case, the known Õ(mn) time algorithm [7] for constructing
a cut-equivalent tree actually runs in time Õ(φ · c) where
c = maxu,v∈V Max-Flow(u, v) is at most n in unweighted
graphs, utilizes a tree-packing approach [21], [22] to find
minimal Min-Cuts between a single source and multiple
targets, meaning that the side not containing the source is
minimal with respect to containment. Their method crucially
relies on this minimality property to bypass the well-known
barrier of uncrossing multiple cuts found in the same graph

5The conference paper of [1] appeared in FOCS 2010, before [19]
appeared in FOCS 2012. While the latter solves an easier task (single-
source), it does so for the harder setting of directed planar graphs.

(which could be an auxiliary graph or the input G). This
tree-packing approach is the basis of a few algorithms for
cut-equivalent trees [23], [24], [9], and it does not seem
useful for weighted graphs.

While the equivalence for flows is incomparable to that
for cuts, our techniques are robust enough to prove it. In par-
ticular, we show that Õ(n) Max-Flow queries are sufficient
to construct a flow-equivalent tree. Currently, this relaxation
(flow-equivalent instead of cut-equivalent tree) is not known
to make the problem easier in any setting, although Max-
Flow queries could potentially be computed faster than Min-
Cut queries. Our proof follows from a lemma that an n-
point ultrametric can be reconstructed from Õ(n) distance
queries, under the assumption that it contains at least (and
thus exactly) n−1 distinct distances (a discussion is deferred
to the full version). Interestingly, it is easy to show that
without this extra assumption, Ω(n2) queries are needed.
To our knowledge, this is the first efficient construction of
flow-equivalent trees only from Max-Flow queries (without
looking at the cuts themselves). A well-known non-efficient
construction (see [4]) is to make Max-Flow queries for all
O(n2) pairs, view it as a complete graph with edge weights,
and take a maximum-weight spanning tree.

Informal Theorem 2. Flow-equivalent trees can be con-
structed in near-linear time if and only if there is a data
structure with near-linear time preprocessing and Õ(1) time
for Max-Flow queries.

(1 + ε)-Approximations: Our first result offers a quan-
titative improvement over the Gomory-Hu reduction from
cut-equivalent trees to Min-Cut queries. It turns out that
our technique also gives a qualitative improvement. A well-
known open question among the experts, see e.g. [11], is
to utilize approximate Min-Cut queries (to construct an
approximate cut-equivalent tree). An obvious candidate is
an algorithm of Kelner et al. [25] for the offline setting
(i.e., a single query), that achieves (1 + ε)-approximation
and runs in near-linear time. It beats the time-bound of all
known exact algorithms, however no one has managed to
utilize it for the online setting, or for constructing equivalent
trees. It is not difficult to come up with counter-examples
(see Section II-A) that show that following the Gomory-Hu
algorithm but using at each iteration a (1 + ε)-approximate
(instead of exact) minimum cut, results with a tree whose
quality (approximation of the graph’s cut values) is arbi-
trarily large. Our second main contribution is an efficient
reduction from approximate equivalent trees to approximate
Min-Cut queries. Previously, no such reductions were known
(the aforementioned maximum-weight spanning tree would
again give a non-efficient solution).

Informal Theorem 3 (see Theorem II.1). Assume there is
an oracle that can answer Min-Cut queries within (1 + ε)-
approximation. Then one can compute, using Õ(n) queries



to the oracle and an additional processing in time Õ(n2):

1) a (1 + ε)-approximate flow-equivalent tree; and
2) a tree-like data structure that stores Õ(n) cuts and

can answer a Min-Cut query in time Õ(1) and with
approximation 1 + ε by reporting (a pointer to) one
of these stored cuts.

For unweighted graphs, we can improve the Õ(n2) term
to Õ(m) which could be significant. While it may not be
obvious why our new data structure is better than the oracle
we start with, there are a few benefits (see Section II-B).
Most importantly, since it only uses Õ(n) queries, we
can combine our reduction with the algorithm of Kelner
et al. [25] (even though it is for the offline problem, we
essentially plug it into our reduction), and obtain three new
approximate algorithms that are faster than state-of-the-art
exact algorithms! We discuss these results next.

Corollary I.2 (Section II-B). Given a capacitated graph G
on n nodes, one can construct a (1 + ε)-approximate flow
equivalent tree of G in randomized time ε−4 · n2+o(1).

It follows that the All-Pairs Max-Flow problem in undi-
rected graphs can be solved within (1+ε)-approximation in
time n2+o(1), which is optimal up to sub-polynomial factors
since the output size is Ω(n2). This problem is also well-
studied in directed graphs [26], [27], [15], [19], [16], [28],
where it is known that exact solution in sub-cubic time
is conditionally impossible [13], [14], but it is open for
approximated solutions.

Corollary I.3 (Section II-B). Given a capacitated graph G
on n nodes, one can construct in ε−4 · n2+o(1) randomized
time, a data structure of size Õ(n2), that stores a set C of
Õ(n) cuts, and can answer a Min-Cut query in time Õ(1)
and with approximation 1 + ε by reporting a cut from C.

Altogether, we provide for all three problems above (flow-
equivalent tree, All-Pairs Max-Flow, and data structure for
Max-Flow) randomized algorithms that run in time n2+o(1).
Previously, the best approximation algorithm known for
these three problems was to sparsify G into m′ = Õ(ε−2n)
edges in randomized time Õ(m) using [29] (or its general-
izations), and then execute on the sparsifier the Gomory-Hu
algorithm, which takes time Õ(n · m′

√
n) = Õ(ε−2n2.5).

The best exact algorithms previously known for these prob-
lems was essentially to compute a cut-equivalent tree runs
in time O(mn1.5). An alternative way to approximate Max-
Flow queries without the Gomory-Hu algorithm is to use
Räcke’s approach of a cut-sparsifier tree [30]. This is a
much stronger requirement (it approximates all cuts of G)
and can only give polylogarithmic approximation factors. Its
fastest version runs in near-linear time m1+o(1) and achieves
approximation factor O(log4 n) [31].

Unfortunately, we could not prove the same results for
(1+ε)-cut-equivalent trees and more new ideas are required;

in Section II-A we show an example where our approach
fails. Interestingly, this is the first setting where we see
different time bounds showing that the extra requirements
of cuts indeed make the equivalent trees harder to construct.

Besides the inherent interest in the equivalence result and
its applications, we believe that our results make progress to-
wards the longstanding goal of designing optimal algorithms
for cut-equivalent trees. It is likely that such algorithms will
be achieved via a fast algorithm for online queries, as was
the case for bounded-treewidth graphs.

B. Preliminaries

A Min-Cut data structure for a graph family F is a
data structure that after preprocessing of a capacitated graph
G ∈ F in time tp(m), can answer Min-Cut queries for
any two nodes s, t ∈ V in amortized query time (or output
sensitive time) tmc(kst), where kst denotes the output size
(number of edges in this cut). This means that the actual
query time is O(kst · tmc(kst)). A (1 + ε)-approximate
Min-Cut data structure is defined similarly but for (1 + ε)-
approximate minimum st-cut whose total capacity is at most
(1 + ε) times that of the minimum st-cut in G. We denote
by Max-FlowG(s, t) the value of the minimum-cut between
s and t, and we might omit the graph G subscript when it is
clear from the context. Throughout, we restrict our attention
to connected graphs and thus assume that m ≥ n − 1, and
additionally we assume that the edge-capacities are integers
(by scaling).

II. OUR APPROXIMATION ALGORITHMS

In this section we present the high level ideas in our
approximation algorithms, where the complete details are
in the full version.

A. Overview

Here we discuss the obstacles to speeding up Gomory-
Hu’s approach, and why plugging in approximate Min-Cut
queries fails to produce an approximate cut-equivalent tree.
To explain how our approach overcomes these issues, we
present the key ingredients in our approximation algorithm
from Section II-B. This overview also prepares the reader
for Section III, which is the most complicated part of the
paper and proves our main result (Theorem III.1).

Overview of the Gomory-Hu method: Start with all
nodes forming one super-node V . Then, pick an arbitrary
pair of nodes s, t from the super-node, find a minimum
st-cut (S, V \ S), and split the super-node into two super-
nodes S and V \ S. Then connect the two new super-nodes
by an edge of weight w(S, V \ S), and recurse on each
of them. In each recursive call (which we also view as
an iteration), say on a super-node V ′, the Min-Cut query
is performed on an auxiliary graph GV ′ that is obtained
from G by contracting every super-node other than V ′.
These contractions prevent the other super-nodes from being



split by the cut, which is crucial for the consistency of
the constructed tree, and by a key lemma about uncrossing
cuts (proved using submodularity of cuts), these contractions
(viewed as imposing restrictions on the feasible cuts in GV ′)
do not increase the value of the minimum st-cut. The cut
found in GV ′ is then used to split V ′ into two new super-
nodes, and every edge that was incident to V ′ is “rewired”
to exactly one of the new super-nodes. The process stops
when every super-node contains a single node, which takes
exactly n−1 iterations and results in a tree on n super-nodes,
giving us a tree on V .

Why Gomory-Hu fails when using approximations:
There are two well-known issues (see [11]) for employing
this approach using approximate (rather than exact) Min-Cut
queries, even if the approximation factor is as good as 1+ε.
The first issue is that errors of this sort multiply, and thus
a (1 + ε)-factor at each iteration accumulates in the final
tree to (1 + ε)d, where d is the depth of the recursion. The
second issue is even more dramatic; without the uncrossing-
cuts property, the error could increase faster than multiplying
and might be unbounded even after a single iteration. The
reason is that when we find in super-node V ′ a cut (S, V ′\S)
that is (approximately) optimal for a pair s, t ∈ V ′, we
essentially assume that for all pairs s′ ∈ S, t′ ∈ V \ S there
is an (approximately) optimal cut that splits at most one of
S and V ′ \ S (not both). While true for exact optimality,
it completely fails in the approximate case, and there are
simple examples, see e.g. Figure 1, where allowing (1 + ε)-
approximation in the very first iteration makes the error of
the final tree unboundedly large. We will refer to this issue
as the main issue.
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Figure 1: An example of the main issue with using (1 + ε)-
approximate minimum cuts in the Gomory-Hu algorithm.
The input graph G is at the top left; the intermediate trees
are at the bottom, from left to right; and the auxiliary graphs
GV ′ are at the top. Each iteration uses a (1 + ε) Min-
Cut for the node pair shown in bold. In the input graph
Max-Flow(b, c) = 2 but in the tree it is Ω(U); thus the
error can be as bad as poly(n).

Our strategy: Our approach is different and simultane-
ously resolves both issues for flow-equivalent trees; for cut-

equivalent trees, as we show below, the first issue remains
(but not the second).

Our main insight is to identify a property of the cut
(S, V ′ \ S), that is sufficient to resolve the main issue:
This property is stronger than being a minimum st-cut, and
requires that for all pairs s′ ∈ S, t′ ∈ V ′ \S, this same cut is
an (approximate) minimum s′t′-cut, i.e., it works for them
as well. Thus, the error for every pair s′, t′ from this split of
V ′ is bounded by (1 + ε)-factor, and we can recursively
deal with pairs inside the same super-node. While this
property may seem too strong, notice that it holds whenever
(S, V ′ \ S) is an (approximate) global minimum cut (i.e.,
achieves the minimum over all pairs s′, t′ ∈ V ′). While our
algorithm builds on this intuition, it does not compute a
global minimum cut at each iteration, but rather employs
a more complicated strategy that it is substantially more
efficient. For example, its recursion depth is bounded by
O(log n), which is important to bound the overall running
time, and also to control the approximation factor.

Bounding the depth of the recursion: The foremost idea
is that the recursion depth should be bounded by O(log n).
This does not happen in the Gomory-Hu algorithm, nor
in the aforementioned strategy of using an (approximate)
global minimum cut, where splits could be unbalanced and
recursion depth might be Ω(n). Assuming – by way of
wishful thinking – that the total time spent in all recursive
calls of the same level is Õ(m),6 the challenge is to dictate
how to (quickly) choose cuts so that the recursion depth is
small.

Instead of insisting on a balanced cut, we partition the
super-node V ′ into multiple sets at once, which can be
viewed as performing a batch of consecutive Gomory-Hu
iterations at the cost of one iteration (up to logarithmic
factors). This approach was previously used in a few other
algorithmic settings, however, none of their methods is appli-
cable in our context.7 Before explaining how our algorithm
computes a partition, let us explain which properties it
needs to satisfy. A partition of super-node V ′ into r sets
S1, . . . , Sr (that will be processed recursively) should satisfy
the following strong property:
(*) For every pair s′ ∈ Si, t′ ∈ Sj for i 6= j, at least one

of (Si, V
′ \Si) or (Sj , V

′ \Sj) corresponds in GV ′ to
a (1 + ε)-approximate minimum s′t′-cut.

6One moral justification is that super-nodes V ′ of the same recursion
level are disjoint, as they form a partition of V . However, the real challenge
is to process their auxiliary graphs GV ′ . This may be possible in the special
case where G is unweighted, becuase the total size (number of edges) of
these auxiliary graphs (from one level) is O(m) [7], [32], [8], [9], but for a
general graph G the total size of these auxiliary graphs might easily exceed
Õ(m).

7This approach was used in three different algorithmic settings: (1)
in the special case of an unweighted graph G [7], [32]; (2) in parallel
algorithms [33], which can compute in parallel polynomially-many cuts
(e.g., for all s′, t′ ∈ V ′) to find a partition; or (3) in non-deterministic
algorithms [9], which can “guess” a good partition but have to verify it
quickly (achieved in [9] for an unweighted graph G).



(We will actually allow an exception of one set S0 that
does not satisfy this property, and must be handled in a
special way; this is the set V ′′big in Section II-C.) In addition,
the sizes of these sets should be bounded by |V ′|/2 (with
the exception of the set S0, which is bounded by 3

4 |V
′|)

which guarantees recursion depth O(log n), unlike a global
minimum cut.

Our algorithm to partition V ′ picks a pivot node p ∈ V ′
and queries a data structure built for GV ′ for an (approxi-
mate) minimum cut between p and every other node u ∈ V ′;
let Su ⊂ V ′ be the side of u in the returned cut. To form a
partition out of these |V ′| − 1 sets Su, reassign each node
u to a set Su′ that contains u, which naturally defines a
partition (by grouping nodes reassigned to the same Su′ ).
The reassignment process is elaborate and subtle, aiming to
preserve property (*) while reassigning nodes only to sets
Su′ of size at most |V ′|/2.

Choosing effective pivots: The above technique is not
sufficient for bounding the depth of the recursion, because
a poorly chosen pivot p might result in many unbalanced
cuts (sets Su of size larger than 3

4 |V
′|), in which case this

pivot is ineffective. Our next idea is that for a randomly
chosen pivot p ∈ V ′ this will not happen with high
probability.8 We analyze the performance of a random pivot
using a simple lemma about tournaments that works as
follows. Assume for now that the Min-Cut data structure is
deterministic (we show how to lift this assumption in the full
version), then every query {x, y} (described as an unordered
pair) is answered with some cut (Sx, Sy), and obviously
|Sx| ≤ |V ′|/2 or |Sy| ≤ |V ′|/2 (or both). It follows by
symmetry that a query for {u, p} has a chance of at least
1/2 of having |Su| ≤ |V ′|/2, in which case we say that
node u is “good” (in Section II-B we call these Vsmall).
But we need a stronger property, that at least 1/4 of the
nodes in V ′ are good in this sense; we thus define on the
nodes V ′ a tournament, with an edge directed from x to y
whenever |Sx| ≤ |Sy|, and prove that most nodes have a
large out-degree, and will thus be effective pivots.

With constant probability, such an effective pivot is cho-
sen, hence the number of nodes that are not good is bounded
by 3

4 |V
′|, and we must handle them with a separate recursive

call (this is the problematic set V ′′big in Section II-C). A
related but different issue that arises in Section III is that we
cannot afford a Min-Cut query from p to all other u ∈ V ′. To
handle this we utilize the mentioned tournament properties
by making Min-Cut queries from a random pivot p to only
a small sample of targets.

Using dynamic-connectivity algorithms: Even if the
recursion depth is bounded by O(log n), it is not clear how
to execute the entire algorithm in near-linear time, as each

8A random pivot was previously used in [32] in the special case of
an unweighted graph G, and their proof relies heavily on this restriction.
Moreover, the cuts Su in their algorithm form a laminar family, hence their
reassignment process is straightforward.

iteration computes |V ′|−1 cuts followed by a reassignment
process. A straightforward implementation could require
quadratic time Ω(n2) even in the first iteration (on super-
node V ), which appears to be necessary because in some in-
stances the total size of all good sets Su (where |Su| ≤ n/2)
is indeed Ω(n2). For unweighted graphs, however, the total
number of edges in these cuts (all minimum cuts from a
fixed source to all targets) can be bounded by O(m) (proof
appears in the full version), and indeed in this case our
entire algorithm can be executed in time Õ(m). The key
is to only spend time proportional to the number of edges
in each cut, rather than to the number of nodes |Su|. In
unweighted graphs, and also in the “capacitated auxiliary
graphs” that we construct in Section III, the total number
of nodes and edges our algorithm observes is bounded
by Õ(m). The reassignment process poses an additional
challenge. For example, can one decide whether u ∈ Su′

in time that is proportional to the number of edges (rather
than nodes) in the cut Su′ (more precisely, the reported
cut between p and u′ in GV ′ )? Our solution utilizes an
efficient dynamic-connectivity algorithm (we use a simple
modification of [34]), that preprocesses a graph in near-
linear time, and support edge updates and connectivity
queries in polylogarithmic time — we simply delete the
edges of the cut Sv and then ask if u and u′ are connected.

B. Approximate Min-Cut Queries and Flow-Equivalent
Trees

In this section we expand on our results for using approx-
imate Min-Cut queries that were presented in Section I and
a technical overview for them was given in Section II-A,
where the details are in deferred to the full version.

The following theorems formalize Informal Theorem 3
and give Corollaries I.2 and I.3 from Section I.

Theorem II.1. There is a randomized algorithm such that
given a capacitated graph G = (V,E, c) on n nodes, m
edges, and using Õ(n) queries to a deterministic (1 + ε)-
approximate Min-Cut data structure for G with a running
time tp and amortized time tmc, can with high probability:
• construct in time O(tp(n)) + Õ(n2) a (1 + ε)-

approximate flow-equivalent tree T of G, and
• construct in time O(tp(n)) + Õ(n2) a data structure
D of size Õ(n2) that stores a set C of Õ(n) cuts, such
that given a queried pair s, t ∈ V returns in time Õ(1)
a pointer to a cut in C that is a (1 + ε)-approximate
minimum st-cut.

While the significance of the first item of the theorem
is clear (the flow-equivalent tree) let us say a few words
about why the second item is interesting compared to the
assumption. The first benefit of our data structure is that it
only stores Õ(n) cuts and therefore it will only have Õ(n)
different answers to the

(
n
2

)
possible queries it can receive.

This makes it more similar to a cut-equivalent tree. Second,



the space complexity of our data structure is upper bounded
by Õ(n2) in weighted or Õ(m) in unweighted graphs, while
the oracle could have used larger space; thus we could save
space without incurring loss to the preprocessing and query
times by more than log factors. The third benefit is that it
only uses Õ(n) queries to the assumed oracle, which allows
us to obtain consequences even from an oracle with larger
query times and even from offline algorithms. If rather than
a (1 + ε) Min-Cut data structure we have an offline (1 +
ε)-approximate minimum st-cut algorithm such as [25], by
simply computing it every time there is a query, we get the
following theorem.

Theorem II.2. If in Theorem II.1 instead of a (1 + ε)-
approximate Min-Cut data structure we have an offline (1+
ε)-approximation algorithm with running time toffline(m),
the time bounds for constructing P and D become Õ(n ·
toffline(n)).

We also remark that the above theorems only deal with
deterministic data structures and algorithms. The reason will
be clarified during the proof. However, this restriction can
be removed, and due to space constraints, we expand on that
in the full version.

To conclude Corollaries I.2 and I.3 from Section I, given a
graph we begin by applying a sparsification due to Benczur
and Karger [35], where a near-linear-time construction trans-
forms any graph on n nodes into an O(n log n/ε2)-edge
graph on the same set of nodes whose cuts (1 + ε)-
approximate the values in the original graph. This incurs
a (1 + ε) approximation factor to the result. By utilizing a
(1 + ε)-approximate minimum st-cut algorithm for general
capacities by [25] with toffline(m) = m1+o(1)/ε2 we get the
n2+o(1)/ε4 upper bound for constructing (1+ε)-approximate
flow-equivalent trees and the tree-like data structure. The
main previously known method for constructing a data struc-
ture that can answer (1 + ε)-approximate minimum st-cuts
is to construct an exact cut equivalent tree of a sparsification
of the input graph using, e.g., Benczur-Karger [29]. For
general capacities, this gives a total running time of Õ(n5/2).
For unit-capacities, since this sparsification introduces edge
weights, it is not clear how to do anything better for the
approximation version than the exact bounds.

In the unit-capacity case, using the same techniques as
in Theorem II.1 (but with extra care), our bounds are
better: we replace the Õ(n2) term with Õ(m). While we do
not currently have an application for this improved bound,
it will be significant in the likely event that a (1 + ε)-
approximate Min-Cut data structure can be designed for
sparse unweighted graphs that will have near-linear or even
O(n1.5−δ) preprocessing time. Then, our improved theorem
would give an approximate flow-equivalent tree construction
that improves on the n1.5 barrier that currently exists for
exact [9]. We remark that, since the results of this section

do not use any edge contractions and only ask queries about
the original graph, they hold for any graph family even if
it is not minor-closed. This is important since the family of
sparse graphs is not minor closed. This is further discussed
in the full version.

C. Our Tree-Like Data Structure

Here, we give a brief description of the proof of the
second item in Theorem II.1.

Let G be the input graph with node set V , we show how
to construct a data structure D that utilizes a tree structure
T , and we will also construct a graph H which we will
call flow-emulator on the same node set V that will only be
used for our flow-equivalent tree construction. We assume
we are given an arbitrary data structure for answering (1+ε)-
approximate Min-Cut queries, and give a new data structure
or flow-equivalent tree with error (1 + ε)2. Thus, to get
the theorem we could use a data structure with parameter
ε′ = ε/3.

Preprocessing: To construct our data structure we re-
cursively perform expansion operations. Each such operation
takes a subset V ′ ⊂ V and partitions it into a few sets
Si ⊆ V ′ on which the operation will be applied recursively
until they have size 1 (V ′ can be thought of as a super-node
as in Gomory-Hu but here we do not have auxiliary graphs
and contractions). The partition Si will (almost) satisfy the
strong property (*) that we discussed in Section II-A. In the
beginning we apply the expansion on V ′ := V . It will be
helpful to maintain the recursion-tree T that has a node tV ′

for each expansion operation that stores V ′ as well as some
auxiliary information such as cuts and a mapping from each
node v ∈ V ′ to a cut Sf(v). To perform a query on a pair
u, v we will go to the recursion-node in T that separated
them, i.e. the last V ′ that contains both of them, and we
will return one of the cuts stored in that node.

We will prove that, because of how we build the partition,
the depth of the recursion will be O(log n). For each level
of the recursion, the expansion operations are performed on
disjoint subsets V ′i . All the work that goes into the expansion
operations in one level can be done in O(n2) time in a
straightforward way. In unweighted graphs, it can even be
done in Õ(m) time by adapting known dynamic connectivity
algorithms; the full details are deferred to the full version.

III. ALGORITHM FOR A CUT-EQUIVALENT TREE

In this section we show a new algorithm for constructing a
cut-equivalent tree for graphs from a minor-closed family F
(for example all graphs), given a Min-Cut data structure for
this family F . For ease of exposition, we first assume that
the data structure supports also Max-Flow queries (reporting
the value of the cut) in time tmf (m); we will later show that
Min-Cut queries suffice.



Theorem III.1. Given a capacitated graph G ∈ F on n
nodes and m edges, and access to a deterministic Min-
Cut data structure for F with preprocessing time tp(·) and
output sensitive time tmc(·), one can construct, with high
probability, a cut-equivalent tree for G in time Õ(tp(m) +
m·tmc(m)). Furthermore, it suffices that the data structure’s
queries are restricted to a fixed source.

By combining our algorithm with the Min-Cut data struc-
ture of Arikati, Chaudhuri, and Zaroliagis [17] for graphs
with treewidth bounded by (a parameter) t, which attains
tp = n log n · 22

O(t)

and tmc = tmf = 22
O(t)

, we
immediately get the first near-linear time construction of a
cut-equivalent tree for graphs with bounded treewidth, as
follows.

Corollary III.2 (Expanded Corollary I.1). Given a graph
G with n nodes and treewidth at most t, one can construct,
with high probability, a cut-equivalent tree for G in time
Õ(22

O(t)

n).

The rest of this section is devoted to proving Theo-
rem III.1. Our analysis relies on the classical Gomory-Hu
algorithm [4], hence we start by briefly reviewing it (largely
following [9]) with a bit more details than in Section II-A.

The Gomory-Hu algorithm.: This algorithm constructs
a cut-equivalent tree T in iterations. Initially, T is a single
node associated with V (the node set of G), and the
execution maintains the invariant that T is a tree; each tree
node i is a super-node, which means that it is associated with
a subset Vi ⊆ V ; and these super-nodes form a partition
V = V1 t · · · t Vl. Each iteration works as follows: pick
arbitrarily two graph nodes s, t that lie in the same tree
super-node i, i.e., s 6= t ∈ Vi, then construct from G an
auxiliary graph G′ by merging nodes that lie in the same
connected component of T \ {i}, and invoke a Max-Flow
algorithm to compute in G′ a minimum st-cut, denoted
C ′. (For example, if the current tree is a path on super-
nodes 1, . . . , l, then G′ is obtained from G by merging
V1∪· · ·∪Vi−1 into one node and Vi+1∪· · ·∪Vl into another
node.) The submodularity of cuts ensures that this cut is also
a minimum st-cut in the original graph G, and it clearly
induces a partition Vi = S t T with s ∈ S and t ∈ T . The
algorithm then modifies T by splitting super-node i into two
super-nodes, one associated with S and one with T , that are
connected by an edge whose weight is the value of the cut
C ′, and further reconnecting each j which was a neighbor
of i in T to either super-node S or T , depending on which
side of the minimum st-cut C ′ contains Vj .

The algorithm performs these iterations until all super-
nodes are singletons, and then T is a weighted tree with
effectively the same node set as G. It is proved in [4] that
for every s, t ∈ V , the minimum st-cut in T , viewed as a
bipartition of V , is also a minimum st-cut in G, and of the
same cut value. We stress that this property holds regardless

of the choices, made at each iteration, of two nodes s 6= t ∈
Vi.

A. The Algorithm for General Capacities

We turn out attention to proving Theorem III.1. Let
G = (V,E, c) be the input graph. We shall make the follow-
ing assumption, justified by a standard random-perturbation
argument.

Assumption III.3. The input graph G has a single cut-
equivalent tree T ∗, with n− 1 distinct edge weights.9

B. Overview of the Algorithm

At a very high level, our algorithm accelerates the
Gomory-Hu algorithm by performing every time a batch of
Gomory-Hu steps instead of only one step. Similarly to the
actual Gomory-Hu algorithm, our algorithm is iterative and
maintains a tree T of super-nodes, which means that every
tree node i is associated with Vi ⊆ V , and these super-nodes
form a partition V = V1t · · ·tVl. This tree T is initialized
to have a single super-node corresponding to V , and since it
is modified iteratively, we shall call T the intermediate tree.
Eventually, every super-node is a singleton and the tree T
corresponds to T ∗.

In a true Gomory-Hu execution, every iteration partitions
some super-node i into exactly two super-nodes, say Vi =
S t T , which are connected by an edge according to the
minimum cut between a pair s ∈ S, t ∈ T that is computed
in an auxiliary graph. In contrast, our algorithm partitions
a super-node i into multiple super-nodes, say Vi = Up t
Vi,1t · · ·tVi,d, that are connected in a tree topology where
the last edge in the path from Up to each Vi,j , j ∈ [d],
is set according to the minimum cut between a pivot p ∈
Up and a corresponding ui,j ∈ Vi,j , where all these cuts
are computed in the same auxiliary graph. We call this an
expansion step and super-node Up is called the expansion
center; see Figure 2 for illustration. Each iteration of our
algorithm applies such an expansion step to every super-
node in the intermediate tree T . These iterations can also
be viewed as recursion, and thus each expansion step occurs
at a certain recursion depth, which will be bounded by our
construction.

To prove that our algorithm is correct, we will show that
every expansion step corresponds to a valid sequence of
Gomory-Hu steps. Just like in the Gomory-Hu algorithm,
our algorithm relies on minimum-cut computations in aux-
iliary graphs, although it will make multiple queries on the
same auxiliary graph. This alone does not guarantee overall
running time Õ(m), because in some scenarios the total size
of all auxiliary graphs at a single depth is much bigger than
m. For example, if T ∗ consists of two stars of size n/3

9Even though the perturbation algorithm is Monte Carlo, our algorithm
can still be made Las Vegas since if a random perturbation fails Assump-
tion III.3, then our algorithm could encounter two crossing cuts, but it can
identify this situation and restart the algorithm with another perturbation.



connected by a path of length n/3, and G is similar but
has in addition all possible edges between the stars (with
low weight), the total size of all auxiliary graphs would
be Ω(n3). We overcome this obstacle using a capacitated
auxiliary graph (CAG), which is the same auxiliary graph as
in the Gomory-Hu algorithm, but with parallel edges merged
into a single edge with their total capacity. We will show
(in Lemma III.13) that the total size of all CAGs at a single
depth is linear in m.

Another challenge is to bound the recursion depth by
O(log n). A partition in the Gomory-Hu algorithm might
be unbalanced, where in our algorithm, this issue comes
into play by a poor choice of a pivot; for example, in a
star graph with edge-capacities 1, . . . , n − 1, if the pivot
p is the leaf incident to the edge of capacity 1, then the
minimum cut between p and any other node is the same
({p}, V \ {p}), giving little information on how to partition
V and make significant progress. Observe however that a
random pivot would work much better in this example; more
precisely, a set of O(log n) random pivots contains, with
high probability, at least one pivot p for which the minimum
cuts between p and each of the other nodes will partition
V into super-nodes that are all constant-factor smaller, thus
our expansion step will decrease the super-node size by a
constant factor. But notice that even if a pivot p is given,
we still need to bound the time it takes to partition the
super-node. Our algorithm repeatedly computes a minimum
cut between p and some other node, such that the time
spent on computing this minimum cut is proportional to its
progress in reducing |Vi|, until Ω(|Vi|) nodes are separated
away from Vi. Altogether, all these minimum cuts (from a
single pivot p) take time that is near-linear in the size of
the corresponding CAG. It will then follow that the total
time of all expansion steps at a single depth is near-linear
in the total size of their CAGs, which as mentioned above
is linear in m, and finally since the depth is O(log n), the
overall time bound is Õ(m).

C. Full Algorithm

To better illustrate our main ideas, we now present our
algorithm with a slight technical simplification of employing
both Min-Cut and Max-Flow queries. After analyzing its
correctness and running time in Section III-D, we will show
(in the full version) that Max-Flow queries are not necessary.

The algorithm initializes T as a single super-node asso-
ciated with the entire node set V , and ends when all super-
nodes in T are singletons, supposedly corresponding to the
cut-equivalent tree T ∗. At every recursion depth in between,
the algorithm performs an expansion step in every non-
singleton super-node. The expansion of super-node i ∈ T
of size ni = |Vi| ≥ 2, whose CAG is denoted Gi, works
as follows. Pick a pivot node p ∈ Vi uniformly at random,
and for every node u ∈ Vi \{p} let (Su, V (Gi)\Su) be the
minimum up-cut in Gi, and let S′u = Vi ∩ Su. In order to

compute |S′u|, create in a preprocessing step a copy G̃i of Gi,
and assuming its edge-capacities are integers (by scaling),
connect (in G̃i) the pivot p to all other nodes u ∈ Vi \ {p}
by new edges of small capacity δ = 1/n3. Note that G̃
depends on p but not on u, hence it is preprocessed once
per pivot p then used for multiple nodes u. Then for every
node u ∈ Vi \ {p} compute

hp(u) := [Max-FlowG̃i
(u, p)−Max-FlowGi

(u, p)]/δ,

which clearly satisfies hp(u) = |S′u|, and then compute the
set

V
≤1/2
i (p) := {u ∈ Vi \ {p} : hp(u) ≤ ni/2}.

Now repeat picking random pivots until finding a pivot p
for which |V ≤1/2i (p)| ≥ ni/4.

Next, initialize Up := Vi, pick uniformly at random a
node u ∈ Up ∩ V ≤1/2i (p), and enumerate the edges in the
cut (Su, V (Gi) \ Su). Partition Up into two super-nodes,
Up ∩ Su and Up \ Su, connected by an edge of capacity
Max-Flow(u, p), then reconnect every edge previously con-
nected to Up in T to either Up ∩ Su or Up \ Su according
to the cut (V (Gi) \ Su, Su). Repeat the above, i.e., pick
another node u ∈ Up ∩ V ≤1/2i (p) and so forth, as long as
|Up| > 7ni/8 (we shall prove that such a node u always
exists), calling these nodes u1, . . . , ud in the order they are
picked by the algorithm; when |Up| ≤ 7ni/8 is reached,
conclude the current expansion step.

Recall that the algorithm performs such an expansion
step to every non-singleton super-node (i.e., ni ≥ 2) at the
current depth, and only then proceeds to the next depth. The
base case ni = 1 can be viewed as returning a trivial tree
on Vi.
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Figure 2: The changes to T by our algorithm. Left: before
expansion step of Vi. Middle: after expansion step with
expansion center Up (dashed), and the subtree of T cor-
responds to partition Vi =

⊔7
j=1 Uj t Up. Right: when the

algorithm terminates.

D. Analysis

We start with a lemma, whose proof is deferred to the full
version, showing that whenever our algorithm reports a tree,
there exists a Gomory-Hu execution that produces the same
tree. Notice that super-nodes at the same depth are disjoint,



hence an expansion of one of them does not affect the other
super-nodes, and the result of these expansion steps is the
same regardless of whether they are executed in parallel or
sequentially in any order.

Lemma III.4 (Simulation by Gomory-Hu Steps). Suppose
there is a sequence of Gomory-Hu steps producing tree T (j),
and that an expansion step performed to Vi ∈ T (j) produces
T (j+1). Then there is a sequence of Gomory-Hu steps that
simulates also this expansion step and produces T (j+1).

The next corollary follows from Lemma III.4 immediately
by induction.

Corollary III.5. There is a Gomory-Hu execution that out-
puts the same tree as our algorithm, which by the correctness
of the Gomory-Hu algorithm and Assumption III.3, is the
cut-equivalent tree T ∗.

We proceed to prove the time bound stated in Theo-
rem III.1. Our strategy is to bound the running time of
a single expansion step in proportion to the size of the
corresponding CAG, and then bound the total size, as well
as the construction time, of all CAGs at a single depth of
the recursion. Finally, we will bound the recursion depth
by O(log n), to conclude the overall time bound stated in
Theorem III.1.

Lemma III.6. Assuming tp(m) = Õ(m) and tmc(m) =
Õ(1), the (randomized) running time of a single expansion
step on Vi, including constructing the children CAGs, and
preprocessing it for queries, is near-linear in the size of Gi
with probability at least 1− 1/n3.

Proof: We start with bounding the number of pivot
choices. To do that, we use the following general corollary,
whose proof is deferred to the full version, about cuts
between every pair of nodes.

Corollary III.7. Let F = (VF , EF ) be a graph where each
pair of nodes u, v ∈ VF is associated with a cut (Suv, Svu =
VF \ Suv) where u ∈ Suv, v ∈ Svu (possibly more than
one pair of nodes are associated with each cut), and let
V ′F ⊆ VF . Then there exist |V ′F |/2 nodes p′ in V ′F such
that at least |V ′F |/4 of the other nodes w ∈ V ′F \{p′} satisfy
|Sp′w ∩ V ′F | > |Swp′ ∩ V ′F |.

We apply Corollary III.7 with VF = V (Gi), V ′F = Vi,
and HGi(Vi) as the helper graph of Gi on Vi, where the
corresponding cuts are the minimum cuts between pairs in
Vi, to get that the probability that at least 4 log n random
pivots p all satisfy |V ≤1/2i (p)| < ni/4, which we call an
unsuccessful choice of pivot p, is bounded by 1/n4. The
number of expansion steps is at most n−1, because the final
tree T contains n−1 edges, and each expansion step creates
at least one such edge. By a union bound we conclude that
with probability at least 1 − 1/n3, every expansion step
picks a successful pivot within 4 log n trials. Observe that

for every choice of p we compute hp(u) for all u ∈ Vi,
which takes time Õ(|Vi|+ |Gi|) for all pivots. We can thus
focus henceforth on the execution with a successful pivot p.

We now turn to bound the total time spent on queries in
Gi. Let T ∗i be the subgraph of T ∗ induced on Vi. Observe
that T ∗i must be connected, because Vi is a super-node
in an intermediate tree of the Gomory-Hu algorithm (see
Lemma III.4). Define a function ` : V (T ∗i )\{p} → E(T ∗i ),
where `(u) is the lightest edge in the path between u and
p in T ∗i , and `(p) = ∅ (see Figure 3 for illustration); it is
well-defined because Assumption III.3 guarantees there are
no ties. For an edge e ∈ T ∗i , we say that e is hit if the
targets ui,1, . . . , ui,d picked by the expansion step include a
node u such that `(u) = e. Let He be an indicator for the
event that edge e is hit. In order to bound the total number
of nodes and edges in the CAG that participate in minimum-
cut queries performed by the expansion step, we first bound
the number of edges that are hit along any single path.

Claim III.8. With high probability, for every path P between
a leaf and p in T ∗i , the number of edges in P that are hit
is
∑
e∈P He ≤ O(log n).

Proof: Let T ∗i,` be the graph constructed from T ∗i by
merging nodes whose image under ` is the same. Observe
that nodes that are merged together, namely, `−1(e) for e ∈
E(T ∗i ), are connected in T ∗i , and therefore the resulting
T ∗i,` is a tree. See Figure 3 for illustration. We shall refer
to nodes of T ∗i,` as vertices to distinguish them from nodes
in the other graphs. For example, p is not merged with any
other node, and thus forms its own vertex.

For sake of analysis, fix a leaf in T ∗i,`, which determines
a path to the root p, denoted P`, and let us now bound
the number of nodes picked (by the expansion step) from
vertices in P`.

Claim III.9. With high probability, the total number of
nodes u picked by the algorithm from vertices in P` is at
most O(log n).

Proof: We will need the following two observations.

Observation III.10. No vertex in T ∗i,` contains nodes from
both V ≤1/2i (p) and Vi \ V ≤1/2i (p).

This is true because all nodes u in the same vertex `−1(e)
have the same minimum up-cut in G, which is a basic
property of the cut-equivalent tree T ∗, and thus all these
nodes will have the same Su and the same S′u computed in
the CAG Gi.

Observation III.11. The vertices that contain nodes in
V
≤1/2
i (p) form a prefix of the path P`.

This is true by monotonicity of |Sx| as a function of the
hop-distance of x from p in P`, denoted P ′` .

The algorithm only picks nodes from V
≤1/2
i (p), thus it

suffices to bound the nodes picked from (the vertices along)
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Figure 3: An illustration showing T ∗i with solid blue lines,
while the corresponding graph T ∗i,` with dashed gray lines.
For example, e1 = `(a) = `(b) = `(c) = `(d). The nodes in
`−1(e2) are not in V ≤1/2i (p), and so the expansion step never
picks any of them as a sink. After picking any node from
`−1(e3), a new super-node containing `(e3) (and possibly
the vertex below as well) is formed.

the prefix P ′` . Fix a list π of the nodes in (vertices in) P ′`
in increasing order of their hop-distance from p in P`, Now
recall that the targets ui,1, . . . , ui,d are chosen sequentially,
each time uniformly at random from Up ∩V ≤1/2i (p) for the
current Up. Initially, Up contains all the nodes in π (but may
contain also nodes outside the path P`). Now each time a
target u is chosen, some nodes are separated away from Up.
Define the list π′ to be the restriction of π to nodes currently
in Up; notice that Up and π′ change during the random target
choices, but π is fixed. We can classify the randomly chosen
target u into three types.

1. u is not from the current list π′: In this case π′ does
not change. We call this a “don’t care” event, because
we shall ignore this choice.

2. u is from the current list π′: In this case π′ is shortened
into a prefix of π′ that does not contain u. We now
have two subcases:

2.a. u is from the first half of π′: Then π′ is shortened
by factor at least 2. We call this event “big
progress”.

2.b. u is from the second half of π′: We call this event
“small progress”.

Now to complete the proof of Claim III.9, consider the
random process of choosing the targets u. To count the
number of targets u from P`, we can ignore targets of type 1
and focus on targets of type 2, in which case type 2a occurs
with probability at least 1/2. As the initial list π has length at

most n, with high probability the random process terminates
within 16 log n steps (counting only targets of type 2).10

Proceeding with the proof of Claim III.8, suppose the path
P consists of nodes v1, . . . , vk = p where v1 is the leaf.
Then the path P` consists of `−1(`(v1)), . . . , `−1(`(vk))
restricted to distinct vertices. Note that whenever an edge
e in P that is hit, some target u is picked from `−1(e) and
in particular from P`. By Claim III.9, with high probability
the number of target nodes picked from P` is bounded by
O(log n), implying that also the number of hit edges in
P is bounded by O(log n). Finally, Claim III.8 follows by
applying a union bound over all (at most n) leaves.

Next, we use Claim III.8 to bound the total running time
of an expansion step (proof is deferred to the full version).

Claim III.12. An internal iteration in the expansion step,
that partitions a super-node Up into Up \ Su and Up ∩ Su,
takes time Õ(|Su|+kiup), where kiup is the number of edges
in the minimum up-cut (V (Gi) \ Su, Su).

We continue with the proof of Lemma III.6, that the total
time for an expansion step is bounded. We may assume
henceforth that the O(log n) bound in Claim III.8 holds,
as it occurs with high probability. The number of times a
node u ∈ V (Gi) is queried (when it belongs to some Sv) is
equal to the number of hit edges in its path to the pivot p in
T ∗i , which we just assumed to be bounded by O(log n).
The number of times an edge e ∈ E(Gi) is queried is
equal to the number of hit edges in T ∗i along the two paths
from e’s ends to the pivot p, which we just assumed to be
bounded by O(log n). Altogether, the time it takes to scan
the cuts Sui,1

, . . . , Sui,d
and the corresponding super-nodes

Vi,1, . . . , Vi,d that are separated away from Vi is bounded,
by Claim III.12, by

Õ
( d∑
j=1

|Sui,j
|+ kiui,jp

)
≤ Õ

(
|V (Gi)|+ |E(Gi)|

)
.

Finally, observe that the total time it takes to construct the
CAGs of any super-node Vi’s children in a single expansion
step is linear in the size of Vi’s CAG. This completes the
proof of Lemma III.6.

Next, we show that the total size of all CAGs at a certain
depth is bounded by O(m). In fact, we show it for partition
trees, which generalize the intermediate trees produced by
our algorithm. A partition tree T of a graph G = (V,E)
is a tree whose nodes V1, . . . , Vl are super-nodes of G and
form a partition V = V1t· · ·tVl. Clearly, our intermediate
tree T is a partition tree, and so we are left with proving
the following lemma, whose proof is in the full version.

10The similar but different idea that the minimum cuts from a uniformly
random node p partition the auxiliary graph in a balanced way with high
probability, which allows bounding the recursion depth by analyzing the
maximal length of paths in the recursion tree, appears in Lemma 35 and
Theorem 11 in [32].



Lemma III.13. Let G = (V,E) be an input graph, and let
T be a partition tree on super-nodes V1, . . . , Vl. Then the
total size of the corresponding CAGs G1, . . . , Gl is at most
2n+ 3m = O(m).

We are now ready to prove the main Theorem.
Proof of Theorem III.1 under the assumption on Max-

Flow queries: To simplify matters, let us assume henceforth
that tp(m) = Õ(m) and tmc(m) = Õ(1). The general
case is analyzed similarly and results in the time bound
Õ(tp(m) + m · tmc(m)) stated in Theorem III.1 for the
following reasons. The preprocessing time is performed
Õ(1) times per CAG, hence the total preprocessing time over
all CAGs that the algorithm constructs is at most Õ(tp(m)),
the first summand above. The total size of all answers to all
queries at a single depth is near-linear in the total size of all
CAGs at this depth; hence over all depths it is bounded by
Õ(m · tmc(m)), the second summand above.

First, assume the perturbation attempt is successful. By
Lemma III.6 the total time spent at each super-node Vi is
near-linear in the size of Gi, and thus by Lemma III.13,
the total time spent at each recursion depth is bounded by
O(m). By the definition of the algorithm, at each super-
node Vi during the recursion, Θ(|Vi|) nodes are partitioned
away from Vi, and so by Lemma III.13, Θ(n) nodes are
partitioned away from all CAGs at this depth, thus after
the O(log n) depth, each super-node Vi is a singleton,
concluding Theorem III.1 in this case.

Second, if the perturbation attempt is unsuccessful, which
happens with probability at most 1/n3, and two cuts are
crossing each other, then we would identify that and restart
the algorithm. By Lemma III.6, with probability at most
1/n3 the number of incorrect pivots exceeds O(log n), and
by a union bound with the probability of a failed perturbation
attempt, the running time of the algorithm is bounded by
Õ(m) with high probability.

E. Lifting the Assumption on Max-Flow Queries
Recall that our goal is to construct a cut-equivalent tree

using access to Min-Cut queries. So far we have assumed
that we also have access to Max-Flow queries. In this
subsection we show how to lift this additional assumption.
We will change the algorithm and the analysis slightly.

First, at each expansion step, run the algorithm on 4 log n
preprocessed copies of Gi, each on one of the randomly
picked pivots. Similar to our calculation from the origi-
nal proof, with high probability, for every expansion step
throughout the execution, at least one of the corresponding
graphs will have a successful pivot. We will make sure that
an unsuccessful pivot will never output a wrong tree; it may
only keep running indefinitely (until we halt it). Since with
high probability at least one of the graphs is of a successful
pivot, this only incurs a factor of Õ(1) to the running time.

Second, instead of picking a node u ∈ Up ∩ V ≤1/2i (p) at
random as in the original algorithm, pick 4 log8/7 n nodes

from Up and using arguments from dynamic connectivity
(which are deferred to the full version), check for 4 log8/7 n
copies of Gi, simultaneously, each for one of the chosen
nodes u, if |S′u| ≤ ni/2. If all nodes were unsuccessful
choices, draw another set of 4 log8/7 n nodes. Continue to
draw batches until at least one node is successful. Then, for
an arbitrary successful node u, use dynamic connectivity
arguments to find the kiup edges in the minimum up-cut,
and the nodes in S′u.

Since the probability for a single node u chosen at random
to satisfy |S′u| ≤ ni/2 is always at least 1/8, and as we
pick 4 log8/7 n nodes uniformly at random each time, we get
that: with probability at least 1− (7/8)4 log8/7 n = 1−1/n4,
at least one of the 4 log8/7 n chosen nodes is successful.
By a union bound over the maximal number of partitions
in expansion steps throughout the execution, i.e. internal
iterations of expansion steps (at most n), we get that with
probability at least 1− 1/n3 each one of the batches results
in at least one of the 4 log8/7 n nodes in the batch is
successful. Hence, the only part of the proof that needs to
be further addressed is Claim III.8. In particular, we prove
the following variant of the claim.

Claim III.14. With high probability, for every path P
between a leaf and p in T ∗i , the total number of edges in P
that are hit is at most O(log2 n).

Proof: We mention the differences from the proof of
the original Claim III.8. The classification of the choice of
a random target u into three types, where only the following
items are different from the ones in Claim III.8.

2.a u is from the first 1 − 1/(3 log8/7 n) fraction of π′:
Then π′ is shortened by factor at least 1/(3 log8/7 n).
We call this event “big progress”.

2.b u is from the complement part of π′: We call this event
“small progress”.

Here, we have a random process in which type III-E oc-
curs with probability at least 1−1/(3 log8/7 n), and therefore
with high probability it terminates within 64 log8/7 n lnn
steps (these steps count only targets of type 2). We conclude
that with high probability, every such path has at most
64 log8/7 n lnn = O(log2 n) nodes chosen from its vertices.

We proceed to the proof of Theorem III.1, highlighting
the differences.

Proof of Theorem III.1: With high probability, at each
expansion step at most O(log n) unsuccessful pivots are
chosen before picking a successful one. At each level, we
spend at most tp(m) time for the preprocessing of the min-
cut data structures for fixed sources, and so unsuccessful
pivots only incur a factor Õ(1) on the running time.
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