
Friendly Cut Sparsifiers and Faster Gomory-Hu Trees

Amir Abboud*

Weizmann Institute of Science
Israel

Robert Krauthgamer�

Weizmann Institute of Science
Israel

Ohad Trabelsi�

University of Michigan
USA

Abstract

We devise new cut sparsifiers that are related to the classical sparsification of Nagamochi and Ibaraki
[Algorithmica, 1992], which is an algorithm that, given an unweighted graph G on n nodes and a parameter
k, computes a subgraph with O(nk) edges that preserves all cuts of value up to k. We put forward the notion
of a friendly cut sparsifier, which is a minor of G that preserves all friendly cuts of value up to k, where a cut
in G is called friendly if every node has more edges connecting it to its own side of the cut than to the other
side. We present an algorithm that, given a simple graph G, computes in almost-linear time a friendly cut
sparsifier with Õ(n

√
k) edges. Using similar techniques, we also show how, given in addition a terminal set

T , one can compute in almost-linear time a terminal sparsifier, which preserves the minimum st-cut between
every pair of terminals, with Õ(n

√
k + |T |k) edges.

Plugging these sparsifiers into the recent n2+o(1)-time algorithms for constructing a Gomory-Hu tree
of simple graphs, along with a relatively simple procedure for handling the unfriendly minimum cuts, we
improve the running time for moderately dense graphs (e.g., with m = n1.75 edges). In particular, assuming
a linear-time Max-Flow algorithm, the new state-of-the-art for Gomory-Hu tree is the minimum between our
(m+ n1.75)1+o(1) and the known mn1/2+o(1).

We further investigate the limits of this approach and the possibility of better sparsification. Under the
hypothesis that an Õ(n)-edge sparsifier that preserves all friendly minimum st-cuts can be computed efficiently,
our upper bound improves to Õ(m + n1.5) which is the best possible without breaking the cubic barrier for
constructing Gomory-Hu trees in non-simple graphs.

1 Introduction

This paper is on the rich and vibrant topic of graph sparsification, where the aim is to reduce the size of the
graph, typically measured by the number of edges, while preserving the graph’s properties as much as possible.
This notion is appealing in computer science due to the gains in efficiency, across all metrics, both in theory and
in practice, that come from working with smaller objects. In particular, it is a critical step inside state-of-the-art
algorithms for many fundamental problems.

One of the most influential results on sparsification, due to Nagamochi and Ibaraki [NI92], essentially says that
a set of w maximally spanning forests of a graph preserves all cuts with ≤ w edges. Its applications for speeding up
algorithms are far-reaching and include problems like minimum cut [SW97], traveling salesman [JRR95], disjoint
paths [KKR12], and most importantly for this paper, cut-equivalent (aka Gomory-Hu) trees.

Theorem 1.1. (Nagamochi-Ibaraki Sparsification [NI92]) Given an unweighted graph G on n nodes and
m edges, one can compute in O(m)-time a subgraph with O(nw) edges that preserves all cuts of value ≤ w.

This sparsification tool is indispensable for the recent algorithms that break the longstanding cubic barrier for
the classical Gomory-Hu tree problem. Gomory and Hu [GH61] discovered that every graph G has a cut-equivalent
(weighted) tree T on the same set of nodes, such that for all s, t ∈ V (G) the minimum s, t-cut in T is also the

*Work partially supported by an Alon scholarship and a research grant from the Center for New Scientists at the Weizmann
Institute of Science. Email: amir.abboud@weizmann.ac.il

�Work partially supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18, and a Minerva
Foundation grant. Email: robert.krauthgamer@weizmann.ac.il

�Work partially done at Weizmann Institute of Science and partially supported by the NSF Grant CCF-1815316. Email:
ohadt@umich.edu

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

minimum in G. Moreover, they showed that this tree can be computed using n−1 calls to a Max-Flow algorithm,
and a major open question since then has been to determine the time complexity of computing such a tree. The
quest for faster algorithms for Gomory-Hu tree is further motivated by the fact that it is a near-optimal data
structure for answering minimum s, t-cut queries [AKT20b]. Only last year, a subcubic Gomory-Hu tree algorithm
for unweighted (simple) graphs was discovered by Abboud, Krauthgamer, and Trabelsi [AKT21b]. And then in
three independent follow-up papers, by those same authors [AKT21a], by Li, Panigrahi, and Saranurak [LPS21],
and by Zhang [Zha21], the bound was brought down from n2.5+o(1) to n2+o(1), which is clearly almost-optimal
for dense graphs.1

At a very high level, the way that Nagamochi-Ibaraki sparsification fits into the Gomory-Hu tree algorithms
is as follows. These algorithms reduce the problem to (n/w)1+o(1) calls to a Max-Flow algorithm on graphs where
only cuts of value in the range [w, 2w] are of interest, for w = 20, 21, . . . , 2logn. Instead of making these calls on
the input graph, which might require n/w ·Ω(n2) = Ω(n3) time, the algorithms operate on a Nagamochi-Ibaraki
sparsifier that has only O(nw) edges, resulting in a time bound of (n/w)1+o(1) · (nw)1+o(1) = n2+o(1), if Max-Flow
is solvable in almost-linear time (and it turns out that the existing algorithms, due to [vdBLL+21], are sufficient).

We aim to investigate the possibility of better sparsification methods for the Gomory-Hu tree problem and
(hopefully) beyond. While the most outstanding open question in this context is whether subcubic time is possible
for weighted graphs, the story for unweighted (simple) graphs remains unfinished: What is the time complexity
if the number of edges m is taken into account? The state of the art is min{n2+o(1),mn1/2+o(1)} [LPS21], and
the only lower bound other than Ω(m) is the observation in [AKT21a] that Ω(n1.5) time is required, even when
m = n, unless the cubic barrier can be broken for multigraphs (which seems to be the main roadblock towards
weighted graphs). This leaves a gap of up to

√
n and lets one hope for the conditionally-best-possible O(m+n1.5)

bound; can we achieve it with better sparsifiers?
Better sparsification? Alas, it is easy to see that Ω(nw) is a lower bound on any sparsifier that preserves

all cuts with ≤ w edges. And even though we are only interested in minimum s, t-cuts of value ≤ w rather than
all cuts, the Ω(nw) barrier remains. This would even be the case if the sparsifier is allowed to contract vertices
(which makes sense if there is no cut of value ≤ w separating them) in addition to deleting edges.

Definition 1.1. (Sparsifiers) A sparsifier of G is a graph H obtained from it by deleting edges and contracting
subsets of the nodes. A contracted graph is a special case of a sparsifier that is obtained only by contracting subsets
of the nodes (and then removing any self-loops).2 We say that H is a w-cut sparsifier of G if it preserves all cuts
with ≤ w edges in G, meaning that none of their edges is deleted and nodes from different sides of such a cut are
not contracted together.

We usually refer to the size of a sparsifier as the number of edges in it, counting parallel edges separately.
For many applications it makes sense to combine parallel edges into one weighted edge and count it only once,
but this will not be used in this paper.

Observation 1.1. (Optimality of Nagamochi-Ibaraki) For every n ≥ w ≥ 1, there exists a simple graph
on n nodes where every w-cut sparsifier must have Ω(nw) edges.

Proof. For simplicity, consider w = n and take a clique on n nodes. (The proof generalizes for all w by taking
n/w disjoint w-cliques.) The minimum s, t-cut for any pair s, t is {s} or {t} and it has n− 1 < w edges, so they
must all be preserved. Deleting any edge {u, v} decreases the value of the minimum u, v-cut, and contracting it
increases their minimum cut (to infinity).

Fortunately, in many contexts, cliques and other structures that prevent us from beating the O(nw) bound
actually make the downstream problem easy. Conceptually, our message is that better sparsification may be
possible if the goal is relaxed to preserving only the “hard” cuts. In the context of Gomory-Hu tree (and perhaps
elsewhere), the hard cuts are friendly cuts, as discussed next, and our main point is that these can be preserved
using o(nw) edges.

1Zhang’s algorithm has better running time Õ(n2), but requires a (hypothetical) Õ(m)-time Max-Flow algorithm.
2Recall that a minor is obtained by deleting edges and contracting connected subsets of nodes. This distinction is not relevant to

our results, which extend immediately to minors. Indeed, the number of edges in our sparsifiers would not change if a contraction of
a set S would be replaced by contracting every connected subset of S.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

1.1 Friendly Cut Sparsifiers Given a cut, a node is called friendly if it has more neighbors to its own side
than to the other side of the cut. The definition can be generalized so that α-friendly means that more than(or at
least) an α-fraction of the neighbors are on the same side, for α that is not necessarily 1/2. The cut is then called
α-friendly if all nodes are α-friendly. Throughout this paper, we use α = 0.4 for simplicity; our sparsification
results will actually hold for any α but the application to Gomory-Hu tree algorithms will require a fixed α < 0.5.
Thus, for a cut to be unfriendly, there needs to be a node with > 60% of its edges going to the other side.
Throughout, for a node v in a graph G we denote by degG(v) the total degree of v in G counting multiple edges
accordingly, and omitting the subscript when it is clear from the context.

Definition 1.2. (Friendly and Unfriendly Cuts) A cut S in a graph G = (V,E) is called unfriendly if
there exists a node s ∈ S such that |E({s}, V \ S)| > 0.6 deg(s) or there exists a node t /∈ S such that
|E({t}, S)| > 0.6 deg(t). Otherwise, the cut is called friendly.

Questions involving friendly cuts are extensively studied in combinatorics (see [BL16, FKN+21] and references
therein). They actually arise in various contexts, including social learning, set theory, and statistical physics, and
under different names, such as internal partitions [BL16], satisfactory partitions [GK00, BTV06, GMT20], and
q-cohesive sets [Mor00].

Unfriendly cuts can be viewed as a generalization of the trivial cuts ({v}, V \ {v}), also known as singleton-
or degree-cuts, that happen to be the minimum s, t-cuts in a clique. Observe that a trivial cut is not α-friendly
for any α > 0. So perhaps the lower bound of Observation 1.1 can be bypassed if one only wishes to preserve the
friendly cuts?

Definition 1.3. (Friendly Cut Sparsifiers) A friendly w-cut sparsifier of G is a graph H that preserves all
the friendly cuts with ≤ w edges in G.

Indeed, the main result of this paper is a friendly cut sparsifier giving a polynomial improvement over the
Nagamochi-Ibaraki bound. The proof is in Section 2.

Theorem 1.2. (Friendly Cut Sparsifiers) There is a randomized m1+o(1)-time algorithm that, given a
simple graph on n nodes and m edges and a parameter w, produces a friendly w-cut sparsifier with m′ =
O(n

√
w log4 n) edges. There is also a deterministic m1+o(1)-time algorithm achieving m′ = (n

√
w)1+o(1).

Furthermore, the sparsifier is a contracted graph (and a minor).

Technically, the result is very different from Nagamochi and Ibaraki’s, and is based on an expander
decomposition of the graph rather than on removing spanning forests. Perhaps the most similar result of this
kind is by Kawarabayashi and Thorup [KT19], who study deterministic algorithms for edge connectivity. They
show that all non-trivial minimum cuts in a simple graph of minimum degree δ can be preserved by a contracted
graph on Õ(m/δ) edges. Our context is different because we do not have a lower bound on the minimum degree
δ and we want to preserve cuts whose values is not necessarily close to the minimum; and for this reason we can
only preserve cuts that are friendly rather than merely non-trivial.

Before proceeding to discuss the limits of friendly cuts sparsifiers in Section 1.3 let us motivate them further
by presenting our main application.

1.2 Application: Faster Gomory-Hu tree The question whether the time bound min{n2+o(1),mn1/2+o(1)}
can be improved is particularly interesting from the perspective of fine-grained complexity when comparing
constructing a Gomory-Hu tree to two other basic graph problems : triangle and 4-cycle detection. In the
regime of moderately dense graphs where m = n1.5, it is often conjectured that the quadratic barrier cannot be
broken for these problems [YZ97, AW14, DG19] (and reporting triangles in subquadratic time is 3-SUM hard
[Pat10, KPP16, BPWZ14]). An application of our friendly cut sparsifiers is a (conditional) separation: Gomory-
Hu tree is subquadratic in this regime.

Theorem 1.3. (Faster Gomory-Hu tree) There is a randomized algorithm that constructs a Gomory-Hu
Tree of a simple graph on n nodes and m edges in time (m + n1.9)1+o(1). Assuming an almost-linear time
Max-Flow algorithm for undirected graphs with polynomially bounded edge weights, the running time becomes
(m+ n1.75)1+o(1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

This theorem is achieved by taking the recent n2+o(1)-time algorithms [LPS21, AKT21a, Zha21] and replacing
the Nagamochi-Ibaraki w-cut sparsifier with our new friendly w-cut sparsifier from Theorem 1.2. Notably,
expander-decompositions are now used twice in the state-of-the-art algorithms: once for sparsification and once
for reducing the number of queries.

But why is it enough to preserve the friendly cuts? It is because there is an alternative, more efficient (and
simpler) way to compute the unfriendly minimum s, t-cuts. This is stated in the next algorithm, which relies on the
recent Isolating-Cuts procedure [LP20, AKT21b] and works even for weighted graphs. It solves a single-source
version of Gomory-Hu tree, which is known to be essentially as hard as Gomory-Hu tree [AKT20b, LP21].

Theorem 1.4. (Single-Source Unfriendly Minimum-Cuts) There is an algorithm that, given an undirected
graph G on n nodes and m edges with polynomially bounded weights, and a source node p ∈ V , outputs for every
v ∈ V (G) \ {p} a p, v-cut Sv such that: if there is a minimum p, v-cut that is unfriendly then the output Sv

is a minimum p, v-cut. The running time is Õ(m) plus the time of poly log n calls to a Max-Flow algorithm on
O(n)-node O(m)-edge graphs.

This algorithm for unfriendly cuts is given in Section 4. A technical overview of the issues that arise when
plugging the friendly sparsifier and this algorithm into the recent Gomory-Hu tree algorithms is given in Section 5,
and the actual details for proving Theorem 1.3 are in Section 5.

Could this approach lead us all the way to the conditionally optimal m+n1.5 bound? At a high-level, the n1.75

upper bound follows from the following calculation. Each of the n/w calls to Max-Flow in the recent algorithms
[LPS21, AKT21a, Zha21] is performed on a sparsifier with n

√
w edges, making the time bound n2/

√
w. An

alternative method (better for small w) is to use a w-partial tree [BHKP07] on the sparsifier, which has time
bound nw1.5. Thus the worst-case of min{n2/

√
w, nw1.5} over all possible w is n1.75. So all we need is a friendly

w-cut sparsifier on Õ(n) edges, for all w, as that would lead to a bound min{n2/w, nw} = O(n1.5). Is that
possible?

1.3 The Limits of Friendly Sparsification Unfortunately, it is not hard to see that n
√
w is also a lower

bound for friendly w-cut sparsifiers.

Observation 1.2. (Optimality of our Bound) For every n ≥ w ≥ 1, there exists a simple graph on n nodes
such that every friendly w-cut sparsifier must have Ω(n

√
w) edges.

Proof. For simplicity, we consider only w = n (the proof generalizes easily). Take a clique on n nodes and replace
each node with a 10

√
n-clique, connecting the original n − 1 edges incident at a node, to arbitrary nodes in its

10
√
n-clique, but such that no new node gets more than

√
n original edges. The new graph has n1.5 nodes and

all of the Ω(n2) edges of the original clique must remain in every friendly w-cut sparsifier: Each trivial cut of the
original clique corresponds to a cut with n − 1 edges that is friendly in the new graph, because each node has
10
√
n− 1 edges to its side but only

√
n edges across.

However, the above proof leaves a bit of hope: the lower bound is because of friendly cuts that are not
minimum s, t-cuts for any pair s, t. Indeed, all minimum s, t-cuts in this construction are trivial with ≤ 11

√
n

edges. So a friendly minimum s, t-cut sparsifier could contract the entire graph.

Definition 1.4. (Friendly Minimum s, t-Cut Sparsifier) We say that H is a friendly minimum s, t-cut
sparsifier for G if for every pair s, t for which all the minimum s, t-cuts in G are friendly, at least one minimum
s, t-cut is preserved in H.

For the Gomory-Hu tree application, and perhaps others, this is all we need. Perhaps surprisingly, it turns
out that the desired Õ(n) bound can indeed be achieved, albeit we do not know how to achieve it in time that
is faster than computing a Gomory-Hu tree. We prove the following theorem in Section 3, using a structural
analysis of the Gomory-Hu tree when the graph is simple.

Theorem 1.5. (Near-Linear Upper Bound) Every simple graph on n nodes has a friendly minimum s, t-cut
sparsifier with O(n log n) edges. Moreover, it can be computed in linear time from a Gomory-Hu tree of the graph.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

We have thus reached a computational equivalence between Gomory-Hu tree and friendly sparsification: faster
algorithms exist for one if and only if they exist for the other.

Theorem 1.6. (Computational Equivalence) Let T (n,m) = Ω(m + n1.5). An O(n log n)-edge friendly
minimum s, t-cut sparsifier of a simple graph can be computed in time T (n,m) · no(1) if and only if a GHT
can be computed in time T (n,m) · no(1).

In other words, the only remaining question in the context of Gomory-Hu tree algorithms for simple graphs
(without breaking the cubic barrier for multigraphs) is whether an Õ(n)-edge friendly minimum s, t-cut sparsifier
can be computed in (m+ n1.5)1+o(1) time.

Finally, we ask whether the Õ(n) upper bound can be obtained for (non-simple) multigraphs, and discover
that there is an Ω(n2) lower bound.

Observation 1.3. For every n, there exists a multigraph on n nodes and O(n2) edges, for which every friendly
minimum s, t-cut sparsifier has Ω(n2) edges.

Proof. Take a cycle on n nodes v1, . . . , vn where the weight of each edge (i.e. the number of parallel edges
between the pair) is defined in the following alternating manner. Set w(vi, vi+1) = εn if i is even, and set
w(vi, vi+1) = n if i is odd, and finally set w(v1, vn) = εn − 1. (The parameter ε can be chosen based on the
friendliness parameter, in our case ε = 0.4 suffices.) The (only) minimum vi, vi+1-cut, when i is even, is the
friendly cut ({v1, . . . , vi}, {vi+1, . . . , vn}). Any sparsifier must preserve all the edges of these n/2 cuts, whose
total number of edges is ≥ n/2 · εn = Ω(n2).

Therefore, a different notion of sparsification seems to be required for breaking the cubic barrier for weighted
graphs. Perhaps terminal sparsification, discussed next.

1.4 Terminal Sparsification The techniques of this paper also lead to new terminal minimum s, t-cut
sparsifiers.

Definition 1.5. (Terminal Minimum s, t-Cut w-Sparsifier) We say that H is a terminal minimum s, t-cut
w-sparsifier of a graph G and terminal set T if it preserves all cuts with ≤ w edges that are a minimum s, t-cut
for some pair of terminals s, t ∈ T in G.

An ideal analogue of Nagamochi-Ibaraki sparsification would be a terminal minimum s, t-cut sparsifier with
O(|T |w) edges. It is not hard to see that such a bound is existentially possible, even for multigraphs, and that
it can be constructed from a Gomory-Hu tree.3 We show that in almost-linear time we can get a bound that is
worse by an additive +n

√
w term; improving on the O(nw) Nagamochi-Ibaraki bound. The proof is in Section 6.

Theorem 1.7. There is an m1+o(1) time algorithm that, given a simple graph on n nodes, m edges, and terminal
set T , computes a terminal minimum s, t-cut w-sparsifier on (n

√
w + |T |w)1+o(1) edges.

We remark that it would have been possible to achieve our (n1.75 + m)1+o(1) upper bound for Gomory-Hu
tree using this terminal sparsifier rather than the friendly sparsifier, although in a less elegant way (in our view).
Therefore, we expect the equivalence of Theorem 1.6 to be extendible to terminal sparsification with Õ(|T |w)
edges as well. But can the O(nw) bound be beaten algorithmically for multigraphs?

1.5 Related Work We consider graph sparsification that preserves (certain) cut values. This topic has been
extremely influential, and perhaps the first such result is the work of Gomory and Hu [GH61], because a Gomory-
Hu tree is just a sparsifier for all minimum st-cuts in the graph. This line of research has generated several other
influential notions, including for cut values up to a threshold [NI92], for directed rooted connectivity [Gab95], for
minimum cuts between subsets of terminals [HKNR98], for global minimum cut [Kar99], and for all cuts up to
some approximation [BK15].

3Take the terminal Gomory-Hu tree, which is a cut-equivalent tree on super-nodes where each super-node contains exactly one

terminal. Contract each super-node. Sparsify the resulting |T |-node graph with Nagamochi-Ibaraki sparsification to get O(|T |k)
edges.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

More broadly, graph sparsification covers many other useful graph quantities, including directed reacha-
bility [AGU72], shortest-path distance [PS89, KNZ14, Gup01], resistance distance (i.e., effective resistance)
[DKW15], potential energy of the Laplacian (called spectral sparsification) [ST11], and multicommodity flows
(including routings) [R0̈2, Moi09]. There are some connections between these quantities, e.g., spectral sparsifica-
tion always preserves all the resistances and also all the cuts.

The literature usually makes a distinction between edge sparsification (which decreases the number of edges
by taking a subgraph, possibly with reweighted edges), and vertex sparsification (which decreases the number of
vertices by merging or removing vertices, which in some cases produces a minor). In the latter context, the input
graph usually comes with a set of terminals, whose properties (distances, cuts, etc.) must be preserved.

Graph sparsification (for cuts and in general) has many downstream applications. The original motivation
for many of the abovementioned results is to speed up algorithms. Other uses include reducing storage and/or
communication requirement in streaming and distributed settings, or to improve the approximation factor (to
depend on the number of terminals). For a more empirical perspective, which addresses a range of objectives
under the names graph summarization and graph coarsening, see the survey [LSDK18].

2 Friendly Sparsification

This section proves Theorem 1.2, the main sparsification result of this paper. The main workhorse of our
construction is an efficient procedure that decomposes a graph into (node-disjoint) expanders, such that the
number of edges between these expanders is small. We thus start with describing the relevant definitions and
known algorithms in Section 2.1. We then present our deterministic algorithm, which is simpler, in Section 2.2.
At a high level, its idea is very simple – compute an expander decomposition and then contract the nodes of each
expander. The intuition is that it is safe to contract the nodes of an expander, because it should not be “split” by
the low-weight cuts we are interested in. However, the actual procedure must be refined by “shaving” some nodes
from each expander before contracting it. Moreover, we need a stronger version of the expander decomposition,
that can handle demands.

Our randomized algorithm, which is faster and computes a slightly smaller sparsifier, is presented in
Section 2.3. It is based on the same techniques but uses a more elementary version of expander decomposition
(without demands). This limitation forces us to work in iterations that sparsify the graph gradually, but
the advantage is that this version admits a (randomized) algorithm that is faster, replacing no(1) terms with
polylogarithmic factors.

2.1 Preliminaries: Expander Decomposition We mostly follow notations and definition from [SW19].
Let G = (V,E) be an undirected graph with edge capacities. Define the volume of C ⊆ V as volG(C) :=∑

v∈C degG(v), where the subscripts referring to the graph are omitted if clear from the context. The conductance

of a cut S in G is ΦG(S) :=
δ(S)

min(volG(S),volG(V \S)) . The expansion of a graph G is ΦG := minS⊂V ΦG(S). If G

is a singleton then ΦG := 1 by convention. Let G[S] be the subgraph induced by S ⊂ V , and let G{S} denote
the induced subgraph G[S] but with an added self-loop e = (v, v) for each edge e′ = {v, u} where v ∈ S, u /∈ S
(where each self-loop contributes 1 to the degree of a node), so that every node in S has the same degree as its
degree in G. Observe that for all S ⊂ V , ΦG[S] ≥ ΦG{S}, because the self-loops increase the volumes but not the
values of cuts. We say that a graph G is a ϕ-expander if ΦG ≥ ϕ, and we call a partition V = V1 ⊔ · · · ⊔ Vh a
ϕ-expander-decomposition if mini ΦG[Vi] ≥ ϕ.

Theorem 2.1. (Theorem 1.2 in [SW19]) Given a graph G = (V,E) of m edges and a parameter ϕ, one can
compute with high probability a partition V = V1⊔· · ·⊔Vh such that mini ΦG[Vi] ≥ ϕ and

∑
i δ(Vi) = O(ϕm log3 m).

In fact, the algorithm has a stronger guarantee that mini ΦG{Vi} ≥ ϕ. The running time of the algorithm is

O(m log4 m/ϕ).

For our deterministic upper bound we will need a deterministic version of Theorem 2.1, which exists, albeit
with worse bounds [CGL+20]. If one is paying the extra bounds anyway, it is possible to introduce additional
power to the decomposition by introducing demands on the nodes (to be used instead of the degrees when
computing the volume) which greatly simplifies the proof that uses them (as a black box). Suppose that
we are also given a demand vector d ∈ RV

≥0, the graph G = (V,E) is a (ϕ,d)-expander if for all subsets

S ⊆ V , Φd
G(S) := δ(S)

min(d(S),d(V \S)) ≥ ϕ. The following theorem statement from [LP20, Theorem III.8] gives

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

a deterministic algorithm. It is actually proved in [LS21, Corollary 2.5], by extending techniques from [CGL+20].

Theorem 2.2. ([LS21]) Fix ε > 0 and any parameter ϕ > 0. Given an edge-weighted, undirected graph
G = (V,E,w) and a demand vector d ∈ RV

≥0, there is a deterministic algorithm running in time O(m1+ε)
that computes a partition V = V1 ⊔ · · · ⊔ Vh such that

1. For each i ∈ [h], define a demand vector di ∈ RVi

≥0 given by di(v) = d(v) + w(E(v, V \ Vi)) for all v ∈ Vi.
Then, the graph G[Vi] is a (ϕ,di)-expander.

2. The total weight of inter-cluster edges is w(E(V1, . . . , Vh)) =
∑

i w(E(Vi, V \ Vi)) ≤ B · ϕd(V) for

B = (log n)O(1/ε4).

2.2 Deterministic Algorithm

Proof. [Proof of Theorem 1.2 (deterministic algorithm)] Given a simple graph G = (V,E) and a parameter w,
the algorithm first computes an expander decomposition of G into expanders H1, . . . ,Hℓ, using Theorem 2.2

with parameter ϕ = 2− log1/2 n = n−o(1) and demand function d(v) = ϕ−1
√
w for all v ∈ V . By setting the

parameter ε = (log n)−1/9 = o(1), the running time is m1+ε and the outer-edges depend on B = (log n)O(1/ε4) ≤
O(ϕ−1/ log n) ≤ no(1). Then each expander Hi is a (ϕ,di)-expander where di(v) = d(v) + |E(v, V \Hi)| for all
v ∈ Hi. And since the total demand is d(V) = n · ϕ−1

√
w, the total number of outer-edges is

m0 :=
∑
i

|E(Hi, V \Hi)| ≤ B · ϕd(V) = Bn
√
w ≤ n1+o(1)

√
w.

Second, the algorithm computes for each expander Hi its shaved expander H ′
i, obtained by removing from Hi

(simultaneously) all nodes v ∈ Hi that satisfy at least one of these two conditions:

� it has a low degree degG(v) < 10
√
w; or

� more than 10% of its degree goes outside of the expander, i.e., |E({v}, V \Hi)| > 0.1 degG(v).

Finally, the algorithm contracts every shaved expander H ′
i, and return the resulting contracted graph G′.

The running time is dominated by m1+o(1) the complexity of the expander decomposition procedure; the
other operations take linear time. The following two claims conclude the proof.

Claim 2.1. Let S ⊆ V be a friendly cut in G that has weight δ(S) ≤ w. Then G′ preserves this cut S (i.e., never
contracts two nodes that are on different sides).

Proof. Assume for contradiction that two nodes x ∈ S, y /∈ S are contracted into the same node in G′, i.e., they
belong to the same shaved expander H ′

i. Consider the projection of the cut S on the expander Hi, given by
L := Hi ∩ S and R := Hi ∩ (V \ S) = Hi \L, which are both non-empty because x ∈ L and y ∈ R. Now since Hi

is a (ϕ,di)-expander, we must have |E(L,R)|
min {di(L),di(R)} ≥ ϕ. Clearly, |E(L,R)| ≤ |E(S, V \ S)| ≤ w, and thus

min {d(L),d(R)} ≤ min {di(L),di(R)} ≤ |E(L,R)|
ϕ

≤ ϕ−1w.

We will now show a lower bound on d(L). Since the cut S is friendly, |E({x}, S)| ≥ 0.4 degG(x). Moreover,
since x was not shaved, we know that degG(x) ≥ 10

√
w and that at most 10% of its degree goes outside of the

expander, i.e., |E({x}, V \Hi)| ≤ 0.1 degG(x). Combining these three inequalities,

|E({x}, L)| = |E({x}, S ∩Hi)| ≥ (0.4− 0.1) degG(x) ≥ 3
√
w.

Relying on the key property that the graph is simple, the number of nodes in this set L must be |L| ≥ 3
√
w. By

the definition of our demand function, all nodes v ∈ V have d(v) = ϕ−1
√
w, and therefore d(L) = ϕ−1

√
w · |L| ≥

3ϕ−1w. The argument for d(R) is symmetric, and we arrive at min {d(L),d(R)} ≥ 3ϕ−1w, in contradiction to
the above.

Claim 2.2. The number of edges in G′ is n1+o(1)
√
w.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. G′ has three kinds of edges, all originating from G:

1. The outer-edges of the expander decomposition. Their number is m0 ≤ Bn
√
w ≤ n1+o(1)

√
w.

2. Edges incident to nodes that were shaved due to having low degree. Their number can be upper bounded
by n · 10

√
w = O(n

√
w).

3. Edges incident to nodes that were shaved due to having more than 10% of their degree going outside their
expander. We upper bound the number of these edges by 20m0 as follows. Let X ⊆ Vj−1 be the set of these
shaved nodes, and let dout(v) be the number of edges from v to nodes outside its expander. Observe that
m0 = 1/2 ·

∑
v∈V dout(v), and by definition, every v ∈ X satisfies dout(v) > 0.1 degG(v). Altogether,∑

v∈X

degG(v) ≤
∑
v∈X

10 · dout(v) ≤ 10
∑
v∈V

dout(v) = 20m0.

Altogether, the total number of edges is O(m0 + n
√
w) ≤ n1+o(1)

√
w, proving the claim.

This completes the proof of the deterministic algorithm in Theorem 1.2.

The more efficient bound with polylogarithmic factors instead of no(1), using randomized expander-
decomposition algorithms, is given next.

2.3 Randomized Algorithm Here, we prove the improved bound in Theorem 1.2 that uses a randomized
expander-decomposition algorithm. The arguments are similar to those in the deterministic algorithm section
above, but they are applied in a recursive manner.

Proof. [Proof of Theorem 1.2 (randomized algorithm)] Given a simple graph G = (V,E) and a parameter w, the
algorithm proceeds in iterations, where each iteration j = 0, 1, 2, . . . produces a friendly wj-cut sparsifier Gj of

G with mj ≤ Kn
√
wj edges, for wj = 4−j(m/n)2 and K = logO(1) n to be determined later. The iterations

continue as long as wj ≥ w, hence the last iteration j satisfies wj < 4w and its sparsifier Gj is reported as the
final sparsifier. Iteration 0 produces G0 = G itself which is trivially a sparsifier.

Each iteration j ≥ 1 uses the sparsifier Gj−1 = (Vj−1, Ej−1) produced in the previous iteration, as follows.
The first step (of iteration j) uses Theorem 2.1 with parameter ϕ = 0.01/B, where B = O(log3 n) denotes the
factor in its out-edges gurantee. It is used to decompose the graph Gj−1 into expanders H1, . . . ,Hℓ, but only after
adding ϕ−1√wj self-loops to each node in Gj−1, to increase its volume (but not counting them in the degree).

Then each expander Hi is a ϕ-expander, and the total number of outer-edges is

m′
j :=

ℓ∑
i=1

|EGj−1[V ′](Hi, V
′ \Hi)| ≤ B · ϕ(mj−1 + nϕ−1√wj).

The second step (of iteration j) is to compute for each expander Hi its shaved expander H ′
i, obtained by

removing from Hi (simultaneously) every node v ∈ Hi that satisfies at least one of these two conditions:

� it has a low degree degGj−1
(v) < 10

√
wj · sizeG(v); or

� more than 10% of its degree goes outside of the expander, i.e., |EGj−1({v}, Vj−1 \Hi)| > 0.1 degGj−1
(v).

The third and final step (of iteration j) produces the sparsifier Gj by contracting in the sparsifier Gj−1 every
shaved expander H ′

i, and removing self-loops (but keeping parallel edges). The resulting Gj is a contracted graph
of G, because a node in a shaved expander is itself a contraction of nodes from V .

The running time of each iteration j is dominated by the complexity of the expander decomposition procedure,
which is O(mj−1 ·Bϕ−1 log n) = O(mj−1B

2 log n); the other operations take linear time. The number of iterations

is O(log (m/n)2

w) = O(log n), and in fact
∑

j mj−1 = O(m), and therefore the overall running time is Õ(m).
The correctness is proved in the following two claims.

Claim 2.3. Let S ⊆ V be a friendly cut in G that has weight δG(S) ≤ w. Then every Gj preserves this cut S
(i.e., never contracts two nodes that are on different sides).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. We prove this by induction on j. The case j = 0 holds trivially, because G0 = G. Consider then j ≥ 1, and
observe that δG(S) ≤ w ≤ wj . By the induction hypothesis, S is preserved in Gj−1; hence, every node in Vj−1 is
the contraction of nodes either only from S or nodes only from V \ S. With a slight abuse of notation, we can
thus think of S as a subset of Vj−1, and thus also a cut in Gj−1 with δG(S) ≤ w edges. Assume for contradiction
that two nodes x ∈ S, y /∈ S are contracted into the same node in Gj . This must happen because some shaved
expander H ′

i contracts them together, more precisely, x is in a contracted node x̄ ∈ H ′
i, and y is in a contracted

node ȳ ∈ H ′
i. Consider now the projection of the cut S on the expander Hi, given by

L := Hi ∩ S and R := Hi \ S = Hi \ L,

which are both non-empty because x̄ ∈ L and ȳ ∈ R. Now since Hi is a ϕ-expander, we must have
|EGj−1

(L,R)|
min {vol(L),vol(R)} ≥ ϕ. Clearly, |EGj−1

(L,R)| ≤ |δG(S)| ≤ w, and thus

min {vol(L), vol(R)} ≤
|EGj−1

(L,R)|
ϕ

≤ ϕ−1w.

We now show a lower bound on vol(L), and a symmetric argument applies to vol(R). Since the cut S is
friendly, |EG({x}, S)| ≥ 0.4 degG(x). This inequality in fact holds for every node x′ ∈ V in the same contracted
node x̄, and summing all these inequalities we get

|EGj−1({x̄}, S)| =
∑
x′∈x̄

|EG({x′}, S)| ≥
∑
x′∈x̄

0.4 degG(x
′) = 0.4 degGj−1

(x̄).

In addition, since x̄ was not shaved, we know that at most 10% of its degree goes outside of the expander, i.e.,

|EGj−1
({x̄}, Vj−1 \Hi)| ≤ 0.1 degGj−1

(x̄),

and that its degree is

degGj−1
(x̄) ≥ 10

√
wj · sizeG(x̄).

Combining the last three inequalities and recalling that L = S ∩Hi,

|EGj−1
({x̄}, L)| ≥ (0.4− 0.1) degGj−1

(x) ≥ 3
√
wj · sizeG(x̄).

Relying on the key property that Gj−1 is obtained from a simple G (by contractions), we also have
|EGj−1

({ȳ}, L)| ≤ sizeG(x̄) · |L|, and altogether |L| ≥ 3
√
wj . Moreover, all nodes v ∈ L have, because of the

added self-loops, vol(v) ≥ ϕ−1√wj , and therefore vol(L) ≥ |L| · ϕ−1√wj ≥ 3ϕ−1wj . By a symmetric argument
for vol(R), we arrive at the contradiction that min {vol(L), vol(R)} ≥ 3ϕ−1w.

Claim 2.4. The number of edges in Gj is at most Kn
√
wj.

Proof. Each sparsifier Gj has three kinds of edges, all originating from Gj−1:

1. The outer-edges of the expander decomposition. Their number is m′
j ≤ B · ϕ(mj−1 + nϕ−1√wj).

2. Edges incident to nodes that are shaved due to having low degree. Their number can be upper bounded by∑
v∈Vj−1

10
√
wj · sizeG(ȳ) ≤ 10n

√
wj .

3. Edges incident to nodes that are shaved since more than 10% of their degree goes outside their expander.
We upper bound the number of these edges by 20m′

j as follows. Let X ⊆ Vj−1 be the set of these shaved
nodes, and let dout(v) be the number of edges (in Gj−1) from v ∈ Vj−1 to nodes outside its expander.
Observe that m′

j = 1/2 ·
∑

v∈Vj−1
dout(v), and by definition every v ∈ X satisfies dout(v) > 0.1 degGj−1

(v).
Altogether, ∑

v∈X

degGj−1
(v) ≤

∑
v∈X

10 · dout(v) ≤ 10
∑
v∈V

dout(v) = 20m′
j .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Altogether, the total number of edges in Gj is

mj ≤ 21m′
j + 10n

√
wj ≤ 21Bϕmj−1 + (21B + 10)n

√
wj .

Using the induction hypothesis and plugging our parameters choice ϕ = 0.01/B and K = 100B, we get
Bϕmj−1 ≤ 0.01Kn

√
wj−1 = 0.02Kn

√
wj−1 and (21B + 10) ≤ 0.5K, and the claim follows.

This completes the proof of the randomized algorithm in Theorem 1.2, because the for the final Gj is a
friendly wj-cut sparsifier for w ≤ wj < 4w.

3 An O(n log n)-Size Sparsifier for Friendly Minimum Cuts

In this section we show that in order to preserve friendly minimum cuts, the total number of edges in the most
succinct sparsifier is always at most Õ(n), proving Theorem 1.5 and the reduction from sparsification to Gomory-
Hu tree in the equivalence of Theorem 1.6. Unlike the upper bounds of the previous section, we do not know
of a fast algorithm for computing these more efficient sparsifiers, unless we are given a Gomory-Hu tree of the
graph. Recall that a friendly minimum s, t-cut sparsifier (Definition 1.4 in Section 1) is only required to preserve
a minimum s, t-cut for pairs that do not have any unfriendly minimum s, t-cut.

Proof. [Proof of Theorem 1.5] Let T be a Gomory-Hu tree of G. Call an edge of T that correspond to an unfriendly
minimum cut an unfriendly edge. Define the sparsifier H to be G after contracting the nodes of each connected
component in T comprised only of unfriendly edges. The contracted graph H satisfies the requirement for a
friendly minimum s, t-cut sparsifier because for any pair u, v, such that the only minimum u, v-cut is friendly, at
least one minimum u, v-cut (the one in T) has survived the contractions.

Next, we show that |E(H)| ≤ O(n log n); observe that |E(H)| is at most the total weight of friendly edges
in T . Indeed, each edge in H (where parallel edges are counted separately) contributes to the weight of at least
one friendly edge in the Gomory-Hu tree. Root T by an arbitrary node r. We first show that the total weight of
friendly edges on any path in T from a node to an ancestor of it on the tree is bounded, up to constant factors, by
the total number of nodes of the tree that descend from this path (that is, below it in the rooted tree). This lets
us “charge” a path of weight w to Ω(w) descendants. Then, we will decompose T into paths (via a light/heavy
decomposition) such that a node is a descendant of O(log n) paths, giving an upper bound of O(n log n) on the
total weight.

Let P be any path in T , and let e1 be a friendly edge on this path, and consider the subpath of P that contains
the next 100 friendly edges e2, . . . , e101 below e1. Our goal is to bound w(e1), up to constant factors, by the total
number of nodes that are private descendants of this subpath, in a sense that will become clear. Suppose that
there indeed are 100 friendly edges in P below e1; otherwise, we will handle e1 by a different, simpler argument.
In between each pair of friendly edges ei, ei+1 there could be a subpath of unfriendly edges. Denote the endpoints
of the friendly edges by e1 = (v′1, v1), . . . , e101 = (v′101, v101) and note that vi is equal to v′i+1 if and only if there
are no unfriendly edges between ei and ei+1. Define the private set of node vi, denoted private(vi), to be the
descendants of all nodes on the subpath of P that are between vi and v′i+1, except for the descendants of vi+1.

4

This partitions the descendants of our subpath so that each descendant is assigned to one of the nodes vi. The
key claim is the following; it is reminiscent of [AKT21a, Claim 3.3] but uses the friendliness of cuts rather than
their w-largeness and non-easiness.

Claim 3.1. There exists an 1 ≤ i ≤ 100 such that private(vi) ≥ w(e1)/1000.

Proof. Denote w := w(e1) and suppose for contradiction that private(vi) < w/1000 for all i ∈ [100]. Since
e1 is friendly, we know that v1 must send > 0.4 deg(vi) ≥ 0.4w edges to its descendants in the tree. By our
assumption, the number of descendants of the nodes between v1 and v′101 is < 100 · w/1000 = w/10, and since
our graph G is simple, only w/10 edges can go to these nodes. Therefore, there are > 0.3w edges between v1
and the descendants of v101, which implies that w(ei) > 0.3w for all i ∈ [101]. The same argument above can
be repeated for each ei where i ∈ [100] since they are all friendly edges, and we get that for all i ∈ [100] there
are at least 0.3w · 0.4 − w/100 = 0.11w edges between the node vi and the descendants of v101. Consequently,
w(e101) ≥ 100 · 0.11w = 11w. Now, looking up instead of down, and using the fact that e11 is also friendly, we

4We assume that a node is a descendant of itself.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

conclude that there are at least 0.4 · 11 · w = 4.4w edges between v′101 and all nodes above v′101 in the tree. But
since there are only < w/100 nodes above v′101 that are not also above v1, we conclude that there are at least
4.4w− 0.01w > w edges between v′101 and the nodes above v1, meaning that w(e1) must be > w, a contradiction.

Therefore, if each edge e1 charges its weight to the private nodes on this subpath (letting each node pay
≤ 1000 times), the total charge received by any node (over all edges of P) is at most 100 · 1000 = O(1); because
each node is in the subpath of at most 100 friendly edges.

For the corner case where there are only < 100 friendly edges in P below e1 = (v′1, v1) we can simply charge
w(e1) to all descendants of v1. Since e1 is friendly, there are at least 0.4w(e1) edges between v1 and its descendants,
and due to the simplicity of G, the number of descendants must also be ≥ 0.4w(e1); therefore, each node receives
a charge of ≤ 1/0.4. And since a node may only be charged < 100 times in this way, the total additional charge
for each node is O(1).

Finally, we use the heavy-light path-decomposition of T (see [ST83]). In this decomposition of the rooted tree
T , each node uh picks the edge uhul neighboring it from below if |V (Tul

)| > |V (Tuh
)|/2, and makes it a heavy

edge (the rest are light edges). As explained above, the weights on each path of heavy edges can be bounded
by the total amount of nodes descending from it. Any leaf-root path can contain at most log n light edges, and
so also at most log n heavy paths. Finally, each light edge is treated as its own path, and so each node can be
charged at most 2 log n times (number of heavy paths and light edges in the path above it to the root), concluding
the proof.

To obtain the reduction of Theorem 1.6 observe that the sparsifier H in the proof can be obtained from the
Gomory-Hu tree T in O(m) time.

4 Single-Source Unfriendly Cuts in Õ(m) Time

The main result of this section is an algorithm for computing all minimum p, v-cuts for a single source p that
are unfriendly. The main tool that we use is the Isolating-Cuts procedure discovered independently by Li
and Panigrahi [LP20] (for global minimum cut algorithm in weighted graphs) and by Abboud, Krauthgamer,
and Trabelsi [AKT21b] (for the first subcubic Gomory-Hu tree algorithm for simple graphs), and within a short
time span has found several interesting applications [LP21, CQ21, MN21, LNP+21, LPS21, AKT21a, Zha21]. In
particular, it was used by Li and Panigrahi [LP21] along with randomized sampling to solve the (1+ε)-approximate
single-source minimum cuts problem using Õ(1) queries to Max-Flow.

Definition 4.1. (Minimum Isolating Cuts) Consider a weighted, undirected graph G = (V,E) and a subset
R ⊆ V (|R| ≥ 2). The minimum isolating cuts for R is a collection of sets {Sv : v ∈ R} such that for each
node v ∈ R, the set Sv is the side containing v of a minimum cut separating {v} and R \ {v}, i.e. for any set S
satisfying v ∈ S and S ∩ (R \ {v}) = ∅, we have δ(Sv) ≤ δ(S).

Lemma 4.1. (The Isolating-Cuts Procedure ([LP20, AKT21b])) There is an algorithm that, given an
undirected graph G = (V,E, c) on n nodes and m edges of total weight c(E) and a subset R ⊆ V , computes
the minimum isolating cuts {Sv : v ∈ R} for R in G using O(log |R|) calls to Max-Flow on graphs with O(n)
nodes, O(m) edges, and O(c(E)) total weight, and takes Õ(m) deterministic time outside of these calls.

Theorem 4.1. (Approximate Single-Source Min-Cuts ([LP21])) Let G be an undirected graph on n nodes
and m edges, with polynomially bounded weights, and let p ∈ V . There is an algorithm that outputs, for each node
v ∈ V \ {p}, a (1 + ε)-approximation of Min-Cut(p, v), and runs in Õ(m) time plus poly log n calls to Max-Flow
on O(n)-nodes, O(m)-edge graphs.

The following two similar lemmas about unfriendly cuts are the keys for utilizing the Isolating-Cuts
procedure (with the help of an approximation algorithm) to compute the exact minimum cuts. The idea is that if
v’s minimum p, v-cut is unfriendly, e.g. due to v having too many edges to p’s side (observe that no other node x
in v’s side could have more than half of its edges to p’s or else the minimum p, v-cut is better off by putting x on
the other side), then all other nodes u in the cut must have a minimum p, u-cut whose value is smaller than v’s
cut by a constant factor. This happens because moving v to the other side gives a p, u-cut of much smaller value.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Therefore, a (1 + ε)-approximation to the maximum-flow values to p allows us to distinguish between v and its
cut members u, and thus to only pick v as terminal out of the nodes in the cut when using the Isolating-Cuts
procedure, which isolates v.

Lemma 4.2. If the minimum p, v-cut S, v ∈ S satisfies |E({v}, V \ S)| > 0.6 · deg(v), then for all v′ ∈ S \ {s}
λp,v′ ≤ 0.8 · λp,v.

Proof. Our goal is to show that the cut S \ {v} has value ≤ 0.8λp,v, which establishes the upper bound on λp,u

for all u ∈ S \ {v}. First, notice that λp,v = δ(S) ≤ deg(v) because the degree is always an upper bound on the
minimum cut. Since δ(S) = |E({v}, V \ S)|+ |E(S \ {v}, V \ S)| and |E({v}, V \ S)| > 0.6 · deg(v) we know that
|E(S \ {v}, V \ S)| < λp,v − 0.4 · deg(v). Moreover, |E(S \ {v}, {v})| < 0.4 · deg(v) because > 0.6 deg(v) of v’s
edges leave S. Thus, δ(S \ {v}) = |E(S \ {v}, {v})| + |E(S \ {v}, V \ S)| < λp,v − 0.6 · deg(v) + 0.4 · deg(v) <
λp,v − 0.2 · deg(v) ≤ 0.8 · λp,v.

Lemma 4.3. If the minimum p, v-cut S, v ∈ S satisfies |E({p}, S)| > 0.6 · deg(p), then for all v′ ∈ (V \ S) \ {p}
λp,v′ ≤ 0.8 · λp,v.

Proof. The goal is to show that the cut (V \ S) \ {p} has value ≤ 0.8λp,v; the proof is similar to the one above.
First, λp,v ≤ deg(p). Then, since δ(S) = |E({p}, S)|+ |E((V \S) \ {p}, S)| and |E({p}, S)| > 0.6 ·deg(p) we know
that |E((V \ S) \ {p}, S)| < λp,v − 0.6 · deg(p). Moreover, |E({p}, (V \ S) \ {p}) < 0.4 · deg(p), implying that
δ((V \S)\{p}) = |E({p}, (V \S)\{p})+|E((V \S)\{p}, S)| < 0.4·deg(p)+λp,v−0.6·deg(p) < λp,v−0.2·deg(p) ≤
0.8 · λp,v.

We are ready to prove the main result of this section.

Proof. [Proof of Theorem 1.4] The algorithm is as follows. Let ε = δ = 0.01.

1. Use the algorithm of Theorem 4.1 to get an estimate c′(v) for all nodes v ∈ V \ {p} such that
λp,v ≤ c′(v) ≤ (1 + ε) · λp,v.

2. For each i ∈ {0, . . . , log(1+δ) n} compute the set Ti = {v ∈ V | c′(v) ≥ (1 + δ)i} ∪ {p} of nodes whose

estimate is at least (1 + δ)i.

3. For each of the O(log n) sets Ti make a call to the Isolating-Cuts procedure of Lemma 4.1 on G where
the set of terminals is Ti. For each v ∈ Ti let Sv be the returned isolating cut of v. Update the estimate
c′(v) to be the minimum between c′(v), the value of Sv, and the value of Sp (the returned isolating cut for
p).

4. Return the estimates of all nodes.

The running time of the algorithm is the time of the approximate single-source algorithm plus the time for
O(log n) calls to the Isolating-Cuts procedure.

For the correctness, let v be any node v ∈ V such that the minimum v, p-cut Cv is unfriendly and it has value
w := λp,v. We will show that c′(v) = w by the end of the algorithm. Let i be such that (1+ δ)i ≤ w ≤ (1+ δ)i+1.
There are two cases:

� Cv is unfriendly because |E({v}, V \ Cv)| > 0.6 · deg(v): In this case, Lemma 4.2 implies that for all
u ∈ Cv \ {v} we have λp,u < 0.8 · w and therefore c′(u) < 0.8 · (1 + ε) · w = 0.9w < w/(1 + δ) ≤ (1 + δ)i,
implying that u /∈ Ti. Thus, Ti ∩Cv = {v} and the minimum isolating cut for v with respect to Ti has value
at most δ(Cv) = w, which means that the Isolating-Cuts procedure will return a minimum p, v-cut (the
cut Sv).

� Cv is unfriendly because |E({p}, Cv)| > 0.6 · deg(p): In this case, Lemma 4.3 implies that for all
u ∈ (V \Cv)\{p} we have λp,u < 0.8 ·w and therefore c′(u) < (1+δ)i and u /∈ Ti. Thus, (V \Cv)∩Ti = {p}
and thus the minimum isolating cut for p with respect to Ti has value at most δ(Cv) = w, which means
that the Isolating-Cuts procedure will return a minimum p, v-cut (the cut Sp).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

5 The Gomory-Hu Tree Algorithm

In this section we explain how to embed our new friendly cut sparsifiers (and the complementary algorithm for
unfriendly cuts) into the recent algorithms for Gomory-Hu tree. We first present an overview of our methods,
following by the technical details required to prove Theorem 1.3 and the reduction from Gomory-Hu tree to
friendly minimum cut sparsifiers in Theorem 1.6.

5.1 Technical Overview. It is likely that each of the recent n2+o(1) algorithms for Gomory-Hu tree
[LPS21, AKT21a, Zha21] can be sped up by using our sparsifier instead of Nagamochi-Ibaraki. However, as
we attempt to explain next, due to the subtle combination of several ingredients in each of these algorithms, it
has to be done in just the right way. The order in which the different ingredients is invoked is different in each
of the three algorithms; we have found the presentation of Abboud, Krauthgamer, and Trabelsi [AKT21a] to be
the easiest to modify. Let us now explain the issues that arise in this process.

All of these algorithms follow the paradigm of the Gomory-Hu algorithm where there is an intermediate tree
T that gets iteratively refined until it becomes the full Gomory-Hu tree. A refinement step splits one of the
super-nodes Vi of T into two or more super-nodes, using minimum s, t-cuts that are computed in the auxiliary
graph Gi of the super-node Vi. The most expensive (and interesting) part of all three algorithms is to compute
single-source minimum cuts from a pivot p ∈ Vi to the other nodes in Vi. Importantly, even though there are Ω(n)
refinement steps throughout the algorithm, the total size of all auxiliary can be upper bounded by O(m log n).
Therefore, when refining a super-node on ni nodes and mi edges, it is important to only spend time proportional
to ni and mi, not n and m.

Our friendly sparsification result of Theorem 1.2 and the algorithm of Theorem 1.4 are easy to adapt when
solving the single-source problem in (m + n1.75)1+o(1) time (assuming linear-time Max-Flow). However, the
sparsification result only works for simple graphs, and although our input graph is simple, its auxiliary graphs
are not. This is the source of all troubles. We need to be able to solve the single-source problem in Gi while
only paying (mi+n1.75

i)1+o(1) time, not (m+n1.75)1+o(1), but this seems impossible because we can only sparsify
the auxiliary graph directly down to n

√
w edges, not ni

√
w. This was not an issue with Nagamochi-Ibaraki

sparsification because it can sparsify the auxiliary graph down to O(niw) edges.
One approach for resolving this issue (that we were unable to make work) is to first compute a friendly w-cut

sparsifier Hw, for all w ∈ {2i}logn
i=0 , then compute the Gomory-Hu tree of each Hw, and then use them to answer

queries efficiently when computing the Gomory-Hu tree of G. However this approach is not efficient enough
because it is unclear how to compute the Gomory-Hu tree of Hw faster than using the (m

√
n)1+o(1) bound for

Gomory-Hu tree [LPS21] which gives n
√
w ·

√
n = Ω(n2). We need to be able to sparsify each auxiliary graph

inside the Gomory-Hu tree algorithm.
The approach that does work for us is to sparsify each auxiliary graph using the same original sparsifier of

the input graph. We first compute a friendly w-cut sparsifier Hw of the simple graph G, for all w ∈ {2i}logn
i=0 , and

then whenever we have an auxiliary graph Gi we compute the “projection” of each sparsifier on the auxiliary
graph. The resulting sparsified auxiliary graphs (defined in Section 5.2) may have mw,i > ni

√
w edges each, but

we can prove that the total number of edges in all of these sparsified auxiliary graphs is upper bounded (up to
log factors) by the number of edges in the sparsifier

∑
i mw,i = n

√
w, for each w.

5.2 Preliminaries Since the result of this section is obtained by modifying specific theorems in [AKT21a],
we will follow their notation and framework. The reader is referred to [AKT21a, Section 2.1] for the necessary
preliminaries on the Gomory-Hu tree algorithmic paradigm, intermediate trees, partition trees, GH-equivalent
partition trees, auxiliary graphs, and k-partial trees. On top of these definitions, we will use the following notion
of sparsified capacitated auxiliary graph that will be used in our modified analysis (similar to previous used
notions [AKT20a, Section 3.2] and [LPS21, Section 3]).

Capacitated Auxiliary Graphs Recall that an auxiliary graph (in the Gomory-Hu algorithm) of a super-
node Vi in a GH-Equivalent Partition Tree T of a graph is obtained by contracting all connected components in
T \ Vi. A CAG is constructed the same way as an auxiliary graph, but with parallel edges merged into a single
edge that is weighted by their total capacity.

Sparsified CAGs Suppose that T is a GH-Equivalent Partition Tree of a simple graph G and let V ′ be one
of its super-nodes and G′ be the corresponding auxiliary graph. Let H be a sparsifier of G (that may contract
subsets of the nodes). The sparsified CAG H ′ of G′ is obtained from H by contracting each connected component

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

of T \{V ′}, i.e. in the same way that G′ was obtained from G. Observe that if two nodes x, y of G were contracted
in the sparsifier H even though they belong to two different connected components X and Y of T \ {V ′}, then
they will cause the two components X and Y to be contracted together in the sparsified CAG H ′. The next lemma
shows that this (rather dramatic) consistency enforcement makes sense.

Lemma 5.1. Let H be a friendly w-sparsifier of G and let G′ be an auxiliary graph of G obtained from super-node
V ′ in a GH-Equivalent Partition Tree T of G. Then the sparsified CAG H ′ preserves all friendly minimum s, t-cuts
of value up to w in G′ for any pair s, t ∈ V ′.

Proof. Suppose that (S, T) is a minimum s, t-cut in G′ (and therefore also in G) of value ≤ w, and moreover
suppose that it is friendly. The friendly w-sparsifier H must preserve (S, T) and therefore only contracts nodes
from within S and from within T . This implies that none of the contractions performed on H in order to obtain
the sparsified auxiliary graph H ′ may contract any node from S with any node from T . Therefore, (S, T) is also
preserved in H ′.

Next, we bound the total running time in the recursive algorithm. In order to be more general, we phrase
it for a Partition Tree. Clearly, any GH-Equivalent Partition Tree is also a Partition Tree, and so we are left with
proving the following lemma.

Lemma 5.2. Let H be a sparsifier of G and let T be any GH-Equivalent Partition Tree of G with super-nodes
V1, . . . , Vk and let Hi be the sparsified CAG corresponding to Vi. Then,

∑k
i=1 |E(Hi)| = O(|E(H)|) and∑k

i=1 |V (Hi)| = O(|V (G)|).5

To prove the edges part of Lemma 5.2, one might first think to apply Lemma 3.12 [AKT20a] that is used
to bound the total sizes of all CAGs of a GH-Equivalent Partition Tree T for an input graph G. However, the
sparsified CAGs in our context might not be consistent with the tree, leading to contractions that make this
direction problematic. Our strategy in overcoming this issue is to construct a new sparsifier H ′ from H with
precisely the same number of edges, such that the CAG and the sparsified CAG of each super-node Vi ∈ T for H ′

are the same. This way, we could directly apply Lemma 3.12.

Proof. [Proof of Lemma 5.2] First, in order to bound the total number of nodes in all CAGs
∑k

i=1 V (Hi), we
sum in a way similar to Lemma 4.1 in [AKT21b]. Observe that also here, each sparsified CAG Hi has at most
|Vi|+ degT (Vi) nodes, which sums up to O(|V (G)|), as claimed.

Second, for the edge bound, construct a graph H ′ from H by partitioning each node u of H into the parts
intersecting each super-node of T , connecting each edge previously connected to u to an arbitrary new part of u.
Observe that H ′ has the same number of edges as H ′ (but maybe a higher number of nodes), and that no node
of H ′ intersects with more than one super-nodes of T . By Lemma 3.12 in [AKT20a], the total number of edges

in all CAGs satisfies
∑k

i=1 |E(H ′
i)| ≤ |E(H ′)| which equals |E(H)|.

It remains to bound the total number of edges in each sparsified CAG Hi of H by its corresponding number
in the CAG H ′

i of H ′. This is correct because each edge in Hi can be identified with an edge in H ′
i, as follows.

Let e = uw be an edge in H that contributes to Hi. Let u′, w′ be the new parts of u,w, respectively, such that
the edge uw in H became u′w′ in H ′. The only way the edge u′w′ ∈ H ′ would not contribute one to the total
number of edges in H ′

i is if both u′ and w′ belong to the same subtree in T neighboring Vi. However, this would
imply that u,w were merged together in Hi, in contradiction to the edge u,w showing in Hi.

5.3 The Single-Source Algorithm This is the main algorithmic result that uses all the ingredients in order
to solve the single-source problem in an auxiliary graph. It augments and improves Theorem 4.2 in [AKT21a]
using the new sparsifiers and by using an additional procedure for the unfriendly cuts.

Theorem 5.1. Suppose there is an algorithm solving Max-Flow on undirected graphs with m edges of polynomially
bounded weight in m1+o(1) time. Given a simple graph G = (V,E) on N = |V | nodes with a designated pivot

5Just like Lemma 3.12 [AKT20a] and Lemma 4.1 [AKT21b] that are used in the proof, this lemma holds even if T is any Partition
Tree that is not necessarily a GH-Equivalent Partition Tree.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

p ∈ V , an auxiliary graph G′ on the graph nodes V ′ ⊆ V (G) with n = |V (G′)|,m = |E(G′)|, a 2w-friendly-

sparsified CAG Hw of G′ with nw nodes and mw edges for each w ∈ {2i}logN
i=0 , and a perturbed version G̃ of G′

with unique minimum cuts, one can compute the minimum (p, v)-cut in G̃ for all nodes v ∈ V ′ in total time

m1+o(1) +
∑

w∈{2i}log N
i=0

min{Õ(mww),
N1+o(1)

w
·mw}.

Using the existing Max-Flow algorithms, the time bound ism+ n1.5 +
∑

w∈{2i}log N
i=0

min

{
mww,

N

w
· (mw + n1.5

w)

}1+o(1)

.

Proof. The algorithm that was used to prove Theorem 4.2 in [AKT21a] suffices, if we make the following three
changes.

� In the algorithm of [AKT21a] there is an estimate c′(v) for each node v ∈ V that is always an upper bound on
the minimum p, v-cut value λp,v and each estimate is witnessed by a p, v-cut of the same value. Throughout
the algorithm, when cuts are found, the estimates decrease until, in the end, they are guaranteed to equal
the minimal values. In [AKT21a] the estimates were initialized using the trivial cuts ({v}, V \ {v}).
In this paper, instead, we use the algorithm of Theorem 1.4 to compute the minimum p, v-cuts that are
unfriendly for all v ∈ V and use them as the initial estimates c′(v) and witness cuts Cv. After this
initialization, the algorithm will only use Max-Flow calls on friendly sparsifiers but not on G and therefore
it will only be guaranteed to find minimum friendly cuts. But since whenever we find a cut we only use it if
it is better than the estimate, and the optimal cuts that are unfriendly are at hand from the beginning, the
rest of the algorithm can operate as if the sparsifiers preserved all cuts of value ≤ 2w (as was actually the
case when the Nagamochi-Ibaraki sparsifier Gw was used in [AKT21a]). The additional running time for
this stage is m1+o(1) assuming an almost-linear time Max-Flow algorithm, and is Õ(m+ n1.5) with existing
algorithms.

� The second change is that we use the 2w-friendly-sparsified auxiliary graph Hw instead of the Nagamochi-
Ibaraki sparsifier Gw, in every stage w for all w ∈ {2i}logN

i=0 . As discussed above, this does not affect
the correctness. One subtlety is that the algorithm is also working with a perturbed version G̃ of G (for
rather technical reasons6) and so, just like in Lemma 2.7 in [AKT21a] the sparsifier can have the same
perturbation as G by simply adding the same amount ε(e) to each edge e in H that was added to it in G.
As a result, the running time bound for each query or each call to the Isolating-Cuts procedure improves
from Õ(nw) to Õ(mw), and the upper bound on the time of stage w improves from N1+o(1)/w · T (n, nw)
to N1+o(1)/w · T (nw,mw), where T (n,m) is Max-Flow time.

� Finally, in [AKT21a] the single-source algorithm assumes that the auxiliary graph has connectivity ≥
√
N

and therefore it can avoid any stage with w <
√
N . This was useful because the existing Max-Flow algorithms

have running time Õ(m + n1.5) rather than m1+o(1) and so when they had m = O(nw) from Nagamochi-
Ibaraki and w >

√
n they could assume that the extra n1.5 is negligible. And the way they enforce that the

theorem is always used (inside their full Gomory-Hu tree algorithm) with auxiliary graphs with connectivity
at least

√
N is by having a preliminary stage where they compute a

√
N -partial tree [BHKP07].

Here, we do not assume a lower bound on the connectivity of the auxiliary graph and therefore have to
handle stages where w is very small. We handle them by computing a w-partial tree [BHKP07] on the
sparsifier Hw, giving an upper bound of Õ(mww) on the time of stage w which could be better than the
N/w · T (nw,mw) bound, where T (n,m) is Max-Flow time.

6The purpose was to enforce unique minimum cuts. An alternative approach is to work with minimal (also known as latest) cuts
from the source p.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

To summarize, the correctness of the algorithm is preserved after making these changes, and the time
complexity improves. The time for stage w becomes min{Õ(mww), N

1+o(1)T (nw,mw)/w} and the time bounds
in the theorem are obtained by adding the m1+o(1) cost of the expander decompositions (that are done in exactly
the same way as in [AKT21a], i.e. on G′) and the Õ(T (n,m)) cost for the unfriendly single-source cuts algorithm.

5.4 The Full Gomory-Hu Tree Algorithm We are now ready to prove the main theorem of this paper,
Theorem 1.3 (as well as the reduction from Gomory-Hu tree to sparsification in Theorem 1.6).

The algorithm uses a randomized pivot strategy to compute the Gomory-Hu tree recursively using calls to
the single-source algorithm of Theorem 5.1. It is very similar to the algorithm in Section 4.2 in [AKT21a] with
the following two differences:

� The step (Step 1) that computes a
√
N -partial tree is removed, since our single-source algorithm no longer

needs the lower bound on the connectivity of an auxiliary graph.

� Instead, the first step of the algorithm (the new Step 1) computes a 2w-friendly-sparsifier Hw for each

w ∈ {2i}logN
i=0 using Theorem 1.2.

� When using the single-source algorithm (in Step 2(c)) we use the algorithm of the new Theorem 5.1 rather
than Theorem 4.2 of [AKT21a]. And thus in Step 2(b) when computing the auxiliary graph Gi and its
perturbed version, the algorithm also prepares the 2w-friendly-sparsified auxiliary graph Hw,i of Gi for each

w ∈ {2i}logN
i=0 .

The proof of correctness remains unchanged. The running time analysis is a bit more subtle and it uses
Lemma 5.2. We still have a recursive algorithm with O(logN) levels and the goal is to bound the total time
of a single level. Suppose that the GH-Equivalent Partition Tree that corresponds to a level has k super-nodes
V1, . . . , Vk. Denote the number of nodes and edges in the auxiliary graph Gi of super-node Vi by ni and mi, and
denote the number of nodes and edges in the 2w-friendly-sparsified auxiliary graph Hw,i of Gi by nw,i and mw,i.
Then, by Theorem 5.1, and assuming an almost-linear time Max-Flow algorithm, the total time for the level is:

k∑
i=1

m
1+o(1)
i +

∑
w∈{2i}log N

i=0

min{Õ(mw,iw),
N1+o(1)

w
·mw,i}

 .

By Lemma 3.12 in [AKT20a] we have that
∑k

i=1 mi = O(M) and by Lemma 5.2 we have that
∑k

i=1 mw,i =

O(|E(Hw)|) = Õ(N
√
w). Therefore, the total time of a level can be upper bounded by:

M1+o(1) +

k∑
i=1

∑
w∈{2i}log N

i=0

mw,i ·min{w, N
w
} ·No(1)

≤ M1+o(1) +
∑

w∈{2i}log N
i=0

N
√
w ·min{w, N

w
} ·No(1).

Since min{w1.5, N/w0.5} ≤ N0.75 for all w ≤ N , with w =
√
N achieving the maximum, we obtain the

M1+o(1) + N1.75+o(1) upper bound. To prove the reduction from Gomory-Hu tree to fast sparsification in
Theorem 1.6 observe that if the edge bound on the sparsifiers was Õ(N) instead of Õ(N

√
w) then the above

expression would result in an M1+o(1) +N1.5+o(1) upper bound. Finally, using the existing Max-Flow algorithms
the upper bound on a level becomes:

k∑
i=1


mi + n1.5

i +
∑

w∈{2i}log N
i=0

min

{
mw,iw,

N

w
· (mw,i + n1.5

w,i)

}1+o(1)
 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

By Lemma 4.1 in [AKT21b] we have that
∑k

i=1 ni = O(N) and by Lemma 5.2 we have that
∑k

i=1 nw,i = O(N),
thus we can upper bound the above by:M +N1.5 +

∑
w∈{2i}log N

i=0

k∑
i=1

min

{
mw,iw,

N

w
· (mw,i + n1.5

w,i)

}1+o(1)

≤

M +N1.5 +
∑

w∈{2i}log N
i=0

min

{
(

k∑
i=1

mw,i)w,
N

w
·

k∑
i=1

(mw,i + n1.5
w,i)

}1+o(1)

,

because
∑

i min{xi, yi} ≤ min{
∑

i xi,
∑

i yi}, which now gives:

≤

M +N1.5 +
∑

w∈{2i}log N
i=0

min

{
N
√
w · w, N

w
· (N

√
w +N1.5)

}1+o(1)

,

and since min{Nw1.5, N2/w0.5 + N2.5/w} ≤ N1.9 for all w ≤ N , with w = N3/5 achieving the maximum, the
upper bound becomes M1+o(1) +N1.9+o(1).

6 Terminal Sparsification

In this section we use the proof of Theorem 1.2 in Section 2.2, our deterministic algorithm for friendly sparsification
using an expander decomposition with node-demands, in order to obtain terminal sparsifiers (Definition 1.5 in
Section 1.4). Our goal is to prove Theorem 1.7.

Proof. [Proof of Theorem 1.7] Let us only explain the differences from the proof of Theorem 1.2 in Section 2.2.
The demand function is defined a bit differently: we still set d(v) = ϕ−1

√
w for all non-terminals v ∈ V \ T ,

but the demand of terminals is larger, we set d(v) = 3ϕ−1w for all v ∈ T . This changes the total demand to
d(V) = n · ϕ−1

√
w + 3|T | · ϕ−1w, and the total number of outer-edges to

m0 :=
∑
i

|E(Hi, V \Hi)| ≤ B · ϕd(V) = Bn
√
w + 3B|T |w ≤ no(1) · (n

√
w + |T |w).

This causes the upper bound of Claim 2.2 on the number of edges in the sparsifier to change to
no(1) · (n

√
w + |T |w), simply by plugging in the new value of m0.

The only interesting change is in the correctness proof of Claim 2.1, which becomes the following.

Claim 6.1. Let S ⊆ V be a minimum s, t-cut in G where s, t ∈ T that has weight δ(S) ≤ w. Then G′ preserves
this cut S (i.e., never contracts two nodes that are on different sides).

The proof is similar to that of Claim 2.1, but the argument for lower bounding d(L) is different (and does
not rely on the friendliness of S anymore). There are two cases: either x ∈ T or x /∈ T . If x ∈ T we are in an
easy case because d(L) ≥ d(x) = 3ϕ−1w. If x /∈ T then, since S is a minimum s, t-cut for some pair of nodes
where x ̸= s, x ̸= t then |E({x}, S)| ≥ 0.5 degG(x) ≥ 0.4 degG(x) or else moving x to the other side gives a better
s, t-cut. From this, the proof can be carried on in the same way.

7 Conclusions

In this paper we have put forward the notion of friendly cut sparsification and proved that all friendly cuts
with ≤ w edges in a simple graph can be preserved with a contracted graph on only Õ(n

√
w) edges. This edge

bound is tight up to log factors, and moreover, the sparsifier can be computed algorithmically in near-linear
time. Plugging this sparsification result instead of Nagamochi-Ibaraki’s O(nw)-edge sparsifiers into the recent
algorithms for Gomory-Hu tree (along with a new subroutine for single-source unfriendly minimum cuts) leads
to the new state-of-the-art bound of min{m + n1.75,m

√
n} · no(1) for computing a Gomory-Hu tree of a simple

graph.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Furthermore, we have shown that an O(n log n) edge bound is possible (for all w) if we only want to preserve
friendly minimum s, t-cuts in a simple graph, and that such a sparsifier can be computed in (m+n1.5)1+o(1) time
if and only if a Gomory-Hu tree can be computed in that time. Since Ω(m + n1.5) is also a conditional lower
bound for Gomory-Hu tree in simple graphs, unless the cubic barrier for multigraphs can be broken, this shows
that better sparsification is the way towards tight bounds. In a sense, the only remaining question for Gomory-Hu
tree in simple graphs is that of computing better friendly sparsifiers.

It is plausible that the “dynamic pivot” derandomization technique of Abboud, Krauthgamer, and Trabelsi
[AKT21a] can also be combined with our sparsifiers, leading to a deterministic (m + n1.75)1+o(1) upper bound,
assuming deterministic m1+o(1)-time Max-Flow. And it is also plausible that the technique of Zhang [Zha21] for
avoiding the no(1) factors from using expander decomposition with node-demands could be incorporated to give
a randomized Õ(m+ n1.75) algorithm, assuming Õ(m)-time Max-Flow.

A side corollary of our results is a subcubic n2.5+o(1) algorihtm for single-source minimum-cuts in simple gaphs
(and therefore also Gomory-Hu tree), that is considerably simpler than existing methods [AKT21b, AKT21a,
LPS21, Zha21]: execute the classical Gomory-Hu n · Max-Flow(m) algorithm on the friendly n-cut sparsifier of
Theorem 1.2 with m = Õ(n1.5) and use the algorithm of Theorem 1.4 for the unfriendly cuts.

References

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed graph. SIAM Journal on
Computing, 1(2):131–137, 1972. doi:10.1137/0201008.

[AKT20a] A. Abboud, R. Krauthgamer, and O. Trabelsi. Cut-equivalent trees are optimal for min-cut queries. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS’20, pages 105–118, 2020. doi:10.1109/

FOCS46700.2020.00019.
[AKT20b] A. Abboud, R. Krauthgamer, and O. Trabelsi. New algorithms and lower bounds for all-pairs max-flow

in undirected graphs. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’20, page 48–61, 2020. doi:10.1137/1.9781611975994.4.

[AKT21a] A. Abboud, R. Krauthgamer, and O. Trabelsi. APMF < APSP? Gomory-Hu tree for unweighted graphs in
almost-quadratic time. Accepted to FOCS’21, 2021.

[AKT21b] A. Abboud, R. Krauthgamer, and O. Trabelsi. Subcubic algorithms for Gomory–Hu tree in unweighted graphs.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1725–1737, 2021.
doi:10.1145/3406325.3451073.

[AW14] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic problems.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS’14, pages 434–443, 2014. doi:

10.1109/FOCS.2014.53.
[BHKP07] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) Gomory-Hu tree construction algorithm

for unweighted graphs. In 39th Annual ACM Symposium on Theory of Computing, STOC’07, pages 605–614, 2007.
doi:10.1145/1250790.1250879.

[BK15] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows in capacitated graphs.
SIAM J. Comput., 44(2):290–319, 2015. doi:10.1137/070705970.

[BL16] A. Ban and N. Linial. Internal partitions of regular graphs. Journal of Graph Theory, 83(1):5–18, 2016.
[BPWZ14] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In 41st International Colloquium on

Automata, Languages, and Programming, ICALP 2014, volume 8572 of Lecture Notes in Computer Science, pages
223–234. Springer, 2014. doi:10.1007/978-3-662-43948-7_19.

[BTV06] C. Bazgan, Z. Tuza, and D. Vanderpooten. The satisfactory partition problem. Discrete Applied Mathematics,
154(8):1236–1245, 2006.

[CGL+20] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranurak. A deterministic algorithm for balanced
cut with applications to dynamic connectivity, flows, and beyond. In IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 1158–1167, 2020. doi:10.1109/FOCS46700.2020.00111.

[CQ21] C. Chekuri and K. Quanrud. Isolating cuts,(bi-)submodularity, and faster algorithms for connectivity. In 48th
International Colloquium on Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

[DG19] B. Dudek and P. Gawrychowski. Computing quartet distance is equivalent to counting 4-cycles. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC’19, pages 733–743. ACM, 2019.
doi:10.1145/3313276.3316390.

[DKW15] M. Dinitz, R. Krauthgamer, and T. Wagner. Towards resistance sparsifiers. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

http://dx.doi.org/10.1137/0201008
http://dx.doi.org/10.1109/FOCS46700.2020.00019
http://dx.doi.org/10.1109/FOCS46700.2020.00019
http://dx.doi.org/10.1137/1.9781611975994.4
http://dx.doi.org/10.1145/3406325.3451073
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/1250790.1250879
http://dx.doi.org/10.1137/070705970
http://dx.doi.org/10.1007/978-3-662-43948-7_19
http://dx.doi.org/10.1109/FOCS46700.2020.00111
http://dx.doi.org/10.1145/3313276.3316390

International Proceedings in Informatics (LIPIcs), pages 738–755. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.738.

[FKN+21] A. Ferber, M. Kwan, B. Narayanan, A. Sah, and M. Sawhney. Friendly bisections of random graphs. arXiv
preprint arXiv:2105.13337, 2021.

[Gab95] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer
and System Sciences, 50(2):259–273, 1995.

[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and Applied
Mathematics, 9:551–570, 1961. Available from: http://www.jstor.org/stable/2098881.

[GK00] M. U. Gerber and D. Kobler. Algorithmic approach to the satisfactory graph partitioning problem. European
Journal of Operational Research, 125(2):283–291, 2000.

[GMT20] A. Gaikwad, S. Maity, and S. K. Tripathi. The satisfactory partition problem. arXiv preprint arXiv:2007.14339,
2020.

[Gup01] A. Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the 12th Annual Symposium on
Discrete Algorithms, pages 220–227, 2001. Available from: http://dl.acm.org/citation.cfm?id=365411.365448.

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing multiterminal flow networks and
computing flows in networks of small treewidth. J. Comput. Syst. Sci., 57:366–375, 1998. doi:10.1006/jcss.1998.
1592.

[JRR95] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. Handbooks in Operations Research and
Management Science, 7:225–330, 1995.

[Kar99] D. R. Karger. Random sampling in cut, flow, and network design problems. Mathematics of Operations Research,
24(2):383–413, 1999. doi:10.1287/moor.24.2.383.

[KKR12] K.-i. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time. Journal of
Combinatorial Theory, Series B, 102(2):424–435, 2012.

[KNZ14] R. Krauthgamer, H. Nguyen, and T. Zondiner. Preserving terminal distances using minors. SIAM Journal on
Discrete Mathematics, 28(1):127–141, 2014. doi:10.1137/120888843.

[KPP16] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1272–1287. SIAM, 2016.

[KT19] K. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear time. J. ACM, 66(1):4:1–4:50,
2019. doi:10.1145/3274663.

[LNP+21] J. Li, D. Nanongkai, D. Panigrahi, T. Saranurak, and S. Yingchareonthawornchai. Vertex connectivity in poly-
logarithmic max-flows. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
317–329, 2021.

[LP20] J. Li and D. Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS’20, pages 85–92, 2020. doi:10.1109/FOCS46700.2020.00017.

[LP21] J. Li and D. Panigrahi. Approximate Gomory-Hu tree is faster than n−1 max-flows. In 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC’21, pages 1738–1748. ACM, 2021. doi:10.1145/3406325.3451112.

[LPS21] J. Li, D. Panigrahi, and T. Saranurak. A nearly optimal all-pairs min-cuts algorithm in simple graphs. Accepted
to FOCS’21, 2021.

[LS21] J. Li and T. Saranurak. Deterministic weighted expander decomposition in almost-linear time. CoRR,
abs/2106.01567, 2021. arXiv:2106.01567.

[LSDK18] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods and applications: A survey. ACM
Comput. Surv., 51(3), 2018. doi:10.1145/3186727.

[MN21] S. Mukhopadhyay and D. Nanongkai. A note on isolating cut lemma for submodular function minimization. arXiv
preprint arXiv:2103.15724, 2021.

[Moi09] A. Moitra. Approximation algorithms for multicommodity-type problems with guarantees independent of the
graph size. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS’09, page
3–12. IEEE Computer Society, 2009. doi:10.1109/FOCS.2009.28.

[Mor00] S. Morris. Contagion. The Review of Economic Studies, 67(1):57–78, 2000.
[NI92] H. Nagamochi and T. Ibaraki. Linear time algorithms for finding k-edge connected and k-node connected spanning

subgraphs. Algorithmica, 7:583–596, 1992. doi:10.1007/BF01758778.
[Pat10] M. Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of the forty-second ACM

symposium on Theory of computing, pages 603–610, 2010.
[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989. doi:10.1002/jgt.3190130114.
[R0̈2] H. Räcke. Minimizing congestion in general networks. In 43rd Symposium on Foundations of Computer Science,

pages 43–52. IEEE Computer Society, 2002. doi:10.1109/SFCS.2002.1181881.
[ST83] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362–391, 1983.

doi:10.1016/0022-0000(83)90006-5.
[ST11] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981–1025, 2011.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.738
http://www.jstor.org/stable/2098881
http://dl.acm.org/citation.cfm?id=365411.365448
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1287/moor.24.2.383
http://dx.doi.org/10.1137/120888843
http://dx.doi.org/10.1145/3274663
http://dx.doi.org/10.1109/FOCS46700.2020.00017
http://dx.doi.org/10.1145/3406325.3451112
http://arxiv.org/abs/2106.01567
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1007/BF01758778
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1109/SFCS.2002.1181881
http://dx.doi.org/10.1016/0022-0000(83)90006-5

doi:10.1137/08074489X.
[SW97] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM (JACM), 44(4):585–591, 1997.
[SW19] T. Saranurak and D. Wang. Expander decomposition and pruning: Faster, stronger, and simpler. In

Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’19, pages 2616–2635, 2019.
doi:10.1137/1.9781611975482.162.

[vdBLL+21] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang. Minimum cost
flows, MDPs, and ℓ1-regression in nearly linear time for dense instances. In 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC’21, page 859–869. ACM, 2021. doi:10.1145/3406325.3451108.

[YZ97] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM Journal on Discrete Mathematics, 10(2):209–222,
1997.

[Zha21] T. Zhang. Faster cut-equivalent trees in simple graphs. arXiv preprint arXiv:2106.03305, 2021.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

http://dx.doi.org/10.1137/08074489X
http://dx.doi.org/10.1137/1.9781611975482.162
http://dx.doi.org/10.1145/3406325.3451108

	Introduction
	Friendly Cut Sparsifiers
	Application: Faster Gomory-Hu tree
	The Limits of Friendly Sparsification
	Terminal Sparsification
	Related Work

	Friendly Sparsification
	Preliminaries: Expander Decomposition
	Deterministic Algorithm
	Randomized Algorithm

	An O(n logn)-Size Sparsifier for Friendly Minimum Cuts
	Single-Source Unfriendly Cuts in (m) Time
	The Gomory-Hu Tree Algorithm
	Technical Overview.
	Preliminaries
	The Single-Source Algorithm
	The Full Gomory-Hu Tree Algorithm

	Terminal Sparsification
	Conclusions

