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Abstract—We design an n2+o(1)-time algorithm that con-
structs a cut-equivalent (Gomory-Hu) tree of a simple graph
on n nodes. This bound is almost-optimal in terms of n,
and it improves on the recent Õ(n2.5) bound by the authors
(STOC 2021), which was the first to break the cubic barrier.
Consequently, the All-Pairs Maximum-Flow (APMF) problem
has time complexity n2+o(1), and for the first time in history,
this problem can be solved faster than All-Pairs Shortest
Paths (APSP). We further observe that an almost-linear time
algorithm (in terms of the number of edges m) is not possible
without first obtaining a subcubic algorithm for multigraphs.

Finally, we derandomize our algorithm, obtaining the first
subcubic deterministic algorithm for Gomory-Hu Tree in
simple graphs, showing that randomness is not necessary for
beating the n−1 times max-flow bound from 1961. The upper
bound is Õ(n2 2

3 ) and it would improve to n2+o(1) if there
is a deterministic single-pair maximum-flow algorithm that is
almost-linear. The key novelty is in using a “dynamic pivot”
technique instead of the randomized pivot selection that was
central in recent works.

Keywords-Gomory-Hu; all-pairs max-flow; cut-equivalent
tree; simple graphs

I. INTRODUCTION

Connectivities (minimum-cut or maximum-flow) and dis-
tances (or shortest path) are perhaps the two most funda-
mental measures in graphs. Their computational complexity
is a central object of study in algorithms and discrete
optimization, and both have been extensively investigated
in almost any setting of interest. Researchers often ponder
the question: at a high-level, which of the two is harder?

The focus of this paper is on simple graphs (undirected,
unweighted, no parallel edges or self-loops), denoting the in-
put graph by G and its number of nodes by n = |V (G)|. For
a single-pair s, t ∈ V (G) both measures can be computed in
Õ(n2) time, albeit using very different algorithms. For short-
est path, Dijkstra’s algorithm [15] from 1956 is sufficient,
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while either continuous optimization [38] or randomized
contractions [24] are needed for maximum-flow. For the
more demanding task of computing these measures for all-
pairs in a given graph, the complexities appear to differ.
Seidel’s algorithm [36] solves all-pairs shortest paths in time
nω+o(1), where ω ≤ 2.37286 is the fast matrix multiplication
exponent [6]; whether faster algorithms are possible is one
of the most well-known open questions in Algorithms. The
key breakthrough for all-pairs maximum-flow came in 1961
with the fundamental discovery of Gomory and Hu [21] that
any graph can be turned into a tree while preserving the
minimum cuts for all pairs. Once the tree is obtained, all
pairwise connectivities can be extracted in Õ(n2) time.

Theorem I.1 (Gomory and Hu [21]). Every undirected
graph G (even with edge weights) has an edge-weighted
tree T on the same set of vertices V (G) such that:

• for all pairs s, t ∈ V (G) the minimum (s, t)-cut in T
is also a minimum (s, t)-cut in G, and their values are
the same.

Such a tree is called a cut-equivalent tree, aka Gomory-Hu
Tree. Moreover, the tree can be constructed in the time of
n− 1 calls to a Max-Flow algorithm.1

Such a strong structural result is not possible for shortest
paths (e.g., because any compression to Õ(n) bits must incur
large error [37], [1]). Still, up until now, it has not lead to
an algorithm solving the all-pairs maximum-flow problem
(denoted All-Pairs Max-Flow) faster than all-pairs shortest
path (All-Pairs Shortest-Paths). The original algorithm of
Gomory and Hu for getting such a tree has time complexity
Ω(n3), and only very recently a subcubic Õ(n2.5)-time
algorithm was found [5]. The immediate open question is
whether the bound can be pushed all the way down to n2,
or perhaps the tools of fine-grained complexity could come
in the way and establish a conditional lower bound.

1The notation Max-Flow refers to the maximum (s, t)-flow problem,
which clearly has the same value as minimum (s, t)-cut. In fact, we often
need algorithms that find an optimal cut (not only its value), which is clearly
different (and usually harder) than Global-Min-Cut.



Open Question I.2. Can one construct a Gomory-Hu Tree
of a simple graph G and solve all-pairs maximum-flow in
Õ(n2)-time?

Positive answers were obtained recently [3], [28], but
only for (1 + ε)-approximate cuts. On the negative side,
the Strong Exponential Time Hypothesis (SETH) gives an
n3−o(1) lower bound for the harder setting of directed graphs
[26] (see also [2] for a higher lower bound), but probably not
for undirected graphs [4]. Recent work has identified a class
of problems that are conjectured to have n2.5 complexity
[30] (including all-pairs shortest paths in directed graphs
[12]); could our problem be one of them?

Main Result: For unweighted simple graphs, our main
result resolves (up to no(1) factors) the complexity of all-
pairs maximum-flow and of the Gomory-Hu Tree problem
in dense graphs, where Ω(n2) is a lower bound due to the
input size (and for the former problem also output size).

Theorem I.3. There is a randomized algorithm, with success
probability 1 − 1/ poly(n), that constructs a Gomory-Hu
Tree of a simple graph G and solves All-Pairs Max-Flow
in time n2+o(1).

Note added in proof: The same theorem was obtained
independently by Li, Panigrahi, and Saranurak in a paper
published in the same conference [29]. The two algorithms
use similar ingredients, but they are invoked and analyzed
in a different way. Perhaps the most significant technical
difference is that one of the main procedures is implemented
in a simpler way in their paper compared to ours; we have
added a remark (footnote 6) to Section I-B pointing out how
to use their idea to simplify our algorithm as well. Moreover,
a third independent paper with a slightly higher time bound
of Õ(n2+1/8) was announced by Zhang [40]; interestingly,
the technique in this algorithm is further away from ours
and assuming a near-linear time Max-Flow algorithm the
running time becomes Õ(n2) which improves on both this
paper and the one by Li et al. [29]. Finally, we remark that
the new results in the rest of this section are exclusive to
our paper and do not appear in the other papers.

We find Theorem I.3 surprising for multiple reasons.
First, it shows that all n2 answers can be computed in
the same time, up to lower-order factors, as it takes to
compute a single-pair maximum-flow. Second, for the first
time in history, the time complexity of All-Pairs Max-Flow
goes below that of All-Pairs Shortest-Paths. This might
be counter-intuitive because of the apparent unruliness of
flows compared to paths, e.g., the n2+o(1)-time single-source
algorithm was much more difficult to obtain. Perhaps the
only indication for the plausibility of this outcome was
given in our previous paper, where it was shown that truly
subcubic time is possible for All-Pairs Max-Flow by only
using combinatorial methods, whereas it is conjectured to
be impossible for All-Pairs Shortest-Paths [5]. Third, the

algorithm not only solves All-Pairs Max-Flow but also
produces a Gomory-Hu Tree that, among other things, is
a space-optimal data structure for answering minimum cut
invocations in Õ(1) time. While the Gomory-Hu algorithm
reduces the problem to n− 1 Max-Flow computations, our
new algorithm can be viewed as a reduction to only Õ(1)
computations on graphs with n2+o(1) edges (but possibly
more than n nodes).2

Gomory-Hu Tree in Õ(m) Time?: Looking ahead, after
achieving the optimal exponent for the number of nodes
n, the next outstanding question is a bound in terms of
the number of edges m = |E(G)|: Is there an almost-
linear time algorithm? Such a bound is known for planar
graphs [11], surface-embedded graphs [10], and bounded-
treewidth graphs [7], [3]. It is also known in simple graphs
if the algorithm is allowed to make nondeterministic guesses
[4].

Open Question I.4. Can one construct a Gomory-Hu Tree
of a simple graph G in m1+o(1)-time?

One issue when studying this question is that even single-
pair Max-Flow is not known to be in almost-linear time
when m = O(n1.5−ε). If our goal is to understand the
complexity of constructing a Gomory-Hu Tree, it is natural
(and common) to assume the following plausible hypothesis.

Hypothesis I.5. Single-Pair Max-Flow on m-edge weighted
graphs can be solved in time m1+o(1).

This hypothesis does resolve Open Question I.4 positively,
even for general (weighted) graphs, if we are only interested
in a (1 + ε)-approximate Gomory-Hu Tree [28], but not in
the exact case. In the regime of sparse simple graphs, m =
O(n), even under this hypothesis, the fastest algorithm for
Gomory-Hu Tree [4] has complexity Õ(n1.5), leaving a gap
of about

√
n. For general m, the state of the art would be

(min(n2,m1.5))1+o(1), due to Theorem I.3 and [4].
Our next observation is a reduction showing that improv-

ing the n1.5-bound for simple graphs requires a breakthrough
subcubic algorithm for Gomory-Hu Tree in more general
settings. However, the recent advances in algorithms for
Gomory-Hu Tree have been insufficient for breaking the
cubic barrier even in unweighted non-simple graphs (multi-
graphs), which seem to be the main step towards weighted
graphs; indeed, the known bound is Õ(mn) [9], [24], which
is Õ(n3) in the worst-case.

Hypothesis I.6. No algorithm can construct a Gomory-Hu
Tree of an unweighted multigraph with n nodes and O(n2)
possibly parallel edges in time O(n3−ε) for a fixed ε > 0.

2However, viewing it this way is not sufficient for getting an almost-
quadratic algorithm because the current Max-Flow algorithms are not
linear-time for all edge densities. Our algorithm actually uses a subroutine
due to [9] that cannot be reduced to Max-Flow computations.



Theorem I.7. Assuming Hypothesis I.6, no algorithm can
construct a Gomory-Hu Tree of a simple graph on n nodes
and m = O(n) edges in time n1.5−ε for a fixed ε > 0.

Derandomization: Taking a step back, we ask whether
the developments in recent years [9], [4], [3], [5] can give
faster deterministic algorithms for Gomory-Hu Tree. In fact,
no deterministic algorithm (in any density regime) faster
than Gomory-Hu’s deterministic n ·MF (n,m) = Ω(nm)
algorithm is known. In fact, to our knowledge, the best upper
bound in terms of n is O(n3 2

3 ) using Goldberg and Rao’s
deterministic Max-Flow algorithm [20]. The main difficulty
is due to the fact that all these new algorithms solve the
single-source minimum-cut problem in some clever way, and
then use a randomized pivot technique, in which a uniformly
random source serves as a pivot in a recursive process of
logarithmic depth. The algorithm in Theorem I.3 (and in [5])
uses randomization also in other steps, such as expander
decompositions and randomized hitting sets, but these can
already be derandomized with existing methods.

A central contribution of our work is a new dynamic
pivot technique that can (sometimes) derandomize the
randomized-pivot technique at no extra cost.The main result
in this context is the first subcubic algorithm for Gomory-Hu
Tree.

Theorem I.8. There is a deterministic algorithm that con-
structs a Gomory-Hu Tree of a simple graph and solves All-
Pairs Max-Flow in time Õ(n2 2

3 ). The time bound improves
to n2+o(1) assuming that single-pair Max-Flow can be
computed in deterministic time m1+o(1) in m-edge weighted
graphs.

A. Prior Work

The literature on cut-equivalent (Gomory-Hu) trees is
quite vast. They have found many important applications
in several fields (see [5, Section 1.4]), and have been
generalized in several ways. See the full version for more
details and pointers.

Previous Algorithms for Gomory-Hu Tree: Over the
years, the time complexity of constructing a Gomory-Hu
Tree has decreased several times due to improvements in
Max-Flow algorithms, but there have also been conceptually
new algorithms. Gusfield [22] presented a modification of
the Gomory–Hu algorithm in which all the n − 1 calls
to Max-Flow are made on the original graph G (instead
of on contracted graphs). Bhalgat, Hariharan, Kavitha, and
Panigrahi [9] designed an Õ(mn)-time algorithm utilizing a
tree packing approach [18], [16] that has also been used in
other algorithms for cut-equivalent trees [14], [23], [4], [5].
In particular, they designed an O(mk)-time algorithm for
constructing a k-partial Gomory-Hu Tree, which preserves
the minimum cuts if their size is up to k (see [34] and the
full version [8]). A simple high-degree/low-degree strategy
is helpful in sparse graphs: only

√
m nodes can have degree

(and therefore outgoing flow) above
√
m, thus a

√
m-partial

tree plus
√
m Max-Flow queries are sufficient, which takes

O(m3/2) time if Max-Flow is solved in linear time. Using
the current Max-Flow algorithms, this strategy results in
the time bound Õ(min {m3/2n1/6,max {mn3/4,m3/2}})
[4]. Combined with [5], the state of the art before this
work was Õ(min {m3/2n1/6,mn3/4, n3/2m1/2}) and now
it is min(n2+o(1), Õ(m3/2n1/6), Õ(mn3/4)). Additionally,
two recent algorithms accelerate the Gomory–Hu algorithm
by making multiple steps at once to achieve Õ(m) time,
one requires nondeterminism [4] and the other requires a
(currently non-existent) fast minimum-cut data structure [3].

In weighted graphs, the bound for Gomory-Hu Tree is still
n times Max-Flow and therefore cubic using the very recent
Õ(m + n1.5) algorithm for Max-Flow [38]. If the graph
is sparse enough, one can use the recent Õ(m3/2−1/328)
time algorithm [19]. If additionally the largest weight U is
small, a series of algorithms exist [32], [31], [25] that run
in time Õ(min{m10/7U1/7,m11/8U1/4, m4/3U1/3}) and
might give a better time bound. The main open question left
by this work is whether the ideas behind the drastic speed
ups for unweighted graphs will lead to faster algorithms for
weighted graphs as well.

Due to space constraints, this version omits further dis-
cussion of prior work. See the full version for details and
pointers about (i) practice-oriented algorithms; (ii) approxi-
mation algorithms for Gomory-Hu Tree; and (iii) the use of
expander decomposition in recent algorithms for problems
other than Gomory-Hu Tree.

B. Technical Overview

In this section we distill and highlight the novel technical
ideas of this work, instead of providing an overview of the
actual algorithms. The overview below is a considerable
over-simplification, because the algorithms in both the work
we improve upon [5] and (to a lesser extent) this paper
combine intricately many ingredients, and they cannot be
truly explained without many preliminaries that may only
be known to experts. Nevertheless, the standard/advanced
terminology and algorithms mentioned below without ex-
planation can all be found in the Preliminaries (Section II,
and Section 5.1 in the full version).

The plan is to first motivate and explain the three new
ideas that are the key to the new results. We hope that
they can be appreciated on their own even if it is not
possible to see exactly how they fit into the actual algorithm.
Afterwards, we will discuss some of the complications that
arise when using these ideas inside the algorithm.

1) The Simplest Hard Tree: Breaking the n2.5 Barrier us-
ing Expander-Decomposition with Demands: The simplest
hard case for constructing a Gomory-Hu Tree appears to be



the following.3 Given a graph G distinguish between the
case where its only Gomory-Hu Tree is a star from the case
where it is a cℓ-cr tree; i.e. two stars connected by an edge
between the two centers cℓ and cr. In the first case, the graph
has the property that the minimum u, v-cut for all nodes
u, v ∈ V is one of the two trivial cuts {u} or {v}, and in
the second case there is a single non-trivial minimum cut
(Cℓ, Cr), the cut between cℓ and cr, while almost all others
are trivial. This is a hard case even if we are given the node
cr in advance; it is helpful to think of it as the pivot or
source from which we want to compute single-source cuts.
The difficulty is in finding cℓ (if it exists at all). To make it
more concrete (and still hard) suppose that both stars have
Ω(n) nodes and the minimum cℓ, cr-cut has value w = Θ(n)
which in turn implies that both cℓ, cr must have degree Ω(n).
See Figure 1.

𝑤

𝑪𝒍 𝑪𝒓

𝑤 << 𝑤

𝑐𝑙 𝑐𝑟

Figure 1: The cut-equivalent tree T of a hard case, where
cr is given and the goal is to identify cℓ, the only node
with a non-trivial minimum cut to cr. The weight of the cut
(Cℓ, Cr) is λcl,cr = w, illustrated by the dashed edge at the
center; tree edges of weight > w are thick, and tree edges
of weight < w are thin. The minimum cut between any pair
of leaves u, v is trivial unless u is incident to a bold edge
on the left and v is incident to a bold edge on the right.

It is instructive to observe that random sampling does not
help, even if the cut we are searching for (the minimum
cℓ, cr-cut) is balanced. Even if we sample a node ℓ from cℓ’s
star and a node r from cr’s star (or cr itself), their minimum
ℓ, r-cut will not reveal the cut we are searching for; it could
even be simply {ℓ} or {r}.4 It seems that Ω(n) calls to a
Max-Flow algorithm are required with this strategy. In fact,
random sampling is one of the ways that help one see that
cℓ-cr is the “hardest tree”: if the tree had a long path it
would have been possible to shorten it with a randomized
hitting set. Another method, the powerful ISOLATING-CUTS

3It had appeared to be hard both for breaking the n2.5 bound in simple
graphs and, until today, for breaking the n3 bound in multigraphs and
weighted graphs. This is discussed in Section 3 in [5].

4This is a big difference from related problems that ask for the global
connectivity of a graph. There, finding a node from each side is the end of
the story.

procedure [27], [5], receives a subset of nodes C ⊆ V as
input, and returns the minimum isolating cut for each node
v ∈ C; meaning the minimum cut that separates v from all
other nodes in C \ {v}. This method lets one resolve trees
with many small subtrees, but it too fails against the cℓ-cr
tree where there is only one large subtree (see [5, Section
3] for more details). One important observation, that is the
first step towards a solution is that cℓ is the highest degree
node among the nodes in the left star Cℓ;5 but the right star
could have many nodes with higher or lower degree than it.

Perhaps the main idea in the subcubic algorithm of
[5] was to use an expander decomposition of G in order
to locate the node cℓ using fewer or cheaper calls to a
Max-Flow algorithm. The graph is decomposed into ϕ-
expanders H1, . . . ,Hh with expansion parameter ϕ = 1/

√
n

and the number of outer-edges (that leave an expander) is
Õ(|E|ϕ) = Õ(n1.5). Since the cut we are searching for
has only O(n) edges, no expander can contain Ω(

√
n) high

degree nodes, say at least n/10, from each side of this cut,
as that would violate the ϕ-expansion requirement, since
it would induce inside the expander a cut of conductance

O(n)
Ω(

√
n·n) < ϕ (see Section II-C for relevant definitions).

Now, a key observation that crucially relies on the fact that
G is a simple graph, is that only Õ(

√
n) nodes of high

degree, can be in small expanders Hi, i.e., of size at most
n/100; this is because such a high degree node in a small
expander must have at least n/10−n/100 ≥ Ω(n) incident
outer-edge, and there can only be Õ(n1.5) outer-edges in
the decomposition. On the other hand, there can only be
O(1) large (i.e., not small) expanders since there are only n
nodes in the graph. Consequently, it is enough to search for
cℓ inside the O(1) large expanders, using the clever methods
that follow, or among those Õ(

√
n) high-degree nodes using

direct calls to a Max-Flow algorithm. To search in large
expanders two methods are used: one is useful when there
are few nodes from the left star in the expander, and one is
useful when there are few nodes from the right star. (Recall
that no expander can contain Ω(

√
n) nodes from each star.)

In brief, the first procedure uses the fact that the expander
contains cℓ plus only few nodes from Cℓ in order to find a
set of nodes S that isolates cℓ, in the sense that Cℓ ∩ S =
{cℓ}, and then uses the ISOLATING-CUTS procedure. And
the second procedure, which will be elaborated on in the
next subsection, uses the fact that cℓ is the highest degree
node in Cℓ to conclude that it must be among the O(

√
n)

highest-degree nodes in an expander that has <
√
n nodes

from Cr. The upshot is that Õ(
√
n) calls to a Max-Flow

algorithm are enough to resolve any expander, and since this
is only done for the O(1) large expanders, the n2.5 bound
follows.

How can we beat this barrier of
√
n calls to a Max-Flow

5Suppose for contradiction that one of the leaves v ∈ Cℓ has higher
degree than cℓ. Then {cℓ} is a better cut than {v} the minimum cut in the
tree, violating the requirements of a Gomory-Hu Tree.



algorithm? It is natural to make the expansion parameter
ϕ larger, e.g. 1/ logO(1) n rather than 1/

√
n, so that each

expander is guaranteed to have fewer nodes from one of
the sides, e.g., logO(1) n rather than

√
n, and then it can be

handled more efficiently. The issue is that the upper bound
on the number of outer-edges Õ(ϕ|E|) becomes worse and
we end up with Ω(n/ logO(1) n) high-degree nodes in small
expanders that must be checked. On the other hand, making
ϕ smaller, e.g. 1/n, makes the time of handling an expander
correspond to Ω(n) Max-Flow calls. Thus,

√
n seems like

a natural sweet-spot.

The new observation is that even though ϕ = 1/ logO(1) n
may not allow us to directly find cℓ (since it may be
among the Ω(n/ logO(1) n) high-degree nodes in small ex-
panders), it does efficiently reduce the set of candidates for
being cℓ from Ω(n) to about n/ logO(1) n. If this candidate
elimination can be repeated, we will quickly, after Õ(1)
times, reach a set of only Õ(1) candidates that can be
checked directly. To make this repetition possible and to
avoid pointlessly eliminating the same set of candidates each
time, we utilize a more powerful expander-decomposition
with vertex demands, that lets us set to 0 the demand of
nodes we have already handled. These demands control
much better how the vertices of a single expander are split
between the two stars, because we can count only nodes
that have non-zero demand and are not yet handled. A
similar strategy was used by Li and Panigrahy [27] for their
deterministic global min-cut algorithm (in weighted graphs),
a related but very different problem. The two algorithms
share a certain high-level strategy, even though almost all
the details are different. These two striking applications of
expander-decomposition with vertex demands indicate that
we are likely to see additional applications of this powerful
technology.

2) From One Hard Cut to Single-Source Cuts using New
Structural Results: After resolving the hard case of the
previous section, where there was only one “candidate” cℓ
with a difficult-to-find cut, we move on to the more general
setting. Suppose we are given a source (or pivot) node p,
such as cr in the previous example, and want to compute
the minimum cut to all other nodes v ∈ V . For concreteness
and simplicity, assume that we are only interested in cuts
of value between w and 2w, where w = Θ(n). It might
seem that the strategy of the previous section simply works
because cℓ could have been any high-degree node: we take
all nodes of degree ≥ w to be candidates and the Õ(1) calls
to Max-Flow are magically supposed to find the minimum
p, v-cut for all of them.

Alas, from a closer look we see that the fact that cℓ is
the highest degree node in its cut Cℓ is crucially used in the
second of the two methods described above, and this will
not be the case for all high-degree nodes; from now on we
will call this second method Procedure LEFTY because it

handles expanders with few nodes from the right side.6 The
strategy taken in this paper and also (in a much less efficient
way) in [5] is to talk about estimates instead of degrees. The
estimate c′(v) of a node v is initially the degree of v, and
it is reduced whenever a p, v-cut of smaller value is found.
Eventually, when a node is “done” the estimate becomes
equal to the value of the minimum p, v-cut (that is always
upper bounded by the degree of v). In Procedure LEFTY in
[5], instead of taking the O(ϕ−1) highest degree nodes from
an expander, we actually take the highest estimate nodes.
This lets us compute correct cuts not only for nodes that
have the highest degree among their cut-members, but also
those whose current estimate is highest. If this (the entire
algorithm) is repeated enough times, letting the estimates
improve after each repetition, it is guaranteed that all the
minimum cuts will be found.7

But how many times should the algorithm be repeated? In
[5] it is argued that Õ(1) repetitions are sufficient because
the algorithm has the budget to make

√
n additional invoca-

tions each time Procedure LEFTY is called and because the
depth of the Gomory-Hu Tree can be upper bounded by

√
n

by taking a random hitting set of
√
n nodes. Unfortunately,

both of these things are not possible if we want n2+o(1)

time. First, we cannot spend
√
n additional invocations

and second, the depth reduction itself already has Ω(n2.5)
running time.

The approach taken in this paper is different, much more
efficient, and exploits the fact that the graph is simple in a
deeper way. We do not repeat the algorithm at all, but we
augment Procedure LEFTY so that it does not stop handling
an expander until the node with highest estimate in the
expander is done. The number of calls to Max-Flow can
no longer be upper bounded by O(ϕ−1) = Õ(1) and, in
principle, some expanders might incur a much larger number
of calls. But we can provide an upper bound on the total
number of calls using the fact that each additional call was a
result of a previously undone node becoming done, meaning
that a new minimum cut was found. In fact, the new cut is
also not “easy” in the sense that it contains at least two high-
degree nodes; this important point will not be discussed in
this overview (except briefly in Section I-B4 Item 4). Then,
using a new bound on a certain notion of depth of a Gomory-
Hu Tree of a simple graph, we can upper bound the number
of such cuts by O(n/w) which is a negligible overhead for

6Note added in proof: In the independent paper of Li et al. [29] this issue
does not arise because they simply use the first of the two procedures (that
we call Procedure RIGHTY) in a symmetric set-up to solve the second case
as well. The same can be done in our algorithm too, which would resolve
the issue discussed in this part of the overview more easily, and lead to
an overall simpler algorithm and an analysis that does not require the new
structural results discussed here (though they might still have independent
interest).

7To get intuition, observe that if a node v is the only node in its cut Cv

that is not done, then it must have a higher estimate than all other nodes
in Cv . The same cannot be said about the degree.



our algorithm. This bound is proved in the full version using
combinatorial arguments of the following flavor: Suppose
there is a set of k minimum cuts of value between w and
2w that nested (each cut is a subset of the previous one).
If most of them have “private sets” of Ω(w) nodes that do
not belong to the other cuts, then k = O(n/w), as desired.
Otherwise, there is a sequence of 10 cuts with only o(w)
private nodes each; now, because the graph is simple and
each of these cuts must contain a node of degree ≥ w, we
get that each of these cuts has (1 − o(1))w edges leaving
the entire set of 10 cuts. But then there are (10 − o(1))w
edges leaving the largest of these cuts, contradicting the
fact that its value is ≤ 2w. This structural result follows
from basic combinatorics, but when used properly (e.g., one
has to bypass complications with easy cuts), it can lead to
significant algorithmic savings.

3) Derandomization using a Dynamic Pivot: Until now,
we have described how to find the minimum cuts from a
single pivot p to all other nodes v ∈ V . Let use remark
that essentially all techniques needed for our n2+o(1) time
single-source minimum cuts algorithm can be derandomized
with standard tools.8 To fully construct a Gomory-Hu Tree,
this algorithm is used recursively in a manner that is similar
to the Gomory-Hu algorithm. There is an intermediate tree
T that starts from a single super-node containing all of V ,
and gets refined throughout the recursion until eventually
each node is in its own super-node. A refinement of the tree
T is performed by dividing a super-node into smaller super-
nodes, based on information about some minimum cuts. The
Gomory-Hu algorithm divides the super-node into two each
time, while our algorithm (since it has all the minimum cuts
from a single pivot) may divide it into many super-nodes
at once.9 For purposes of efficiency, we want to make the
recursion depth logarithmic. This is guaranteed if the cuts
from the pivot happen to divide the graph in a balanced way;
but unfortunately, it could be the case that the minimum cut
from the pivot p to all other nodes is ({p}, V \ {p}) and we
have learned very little. A popular way to circumvent this
issue ([9], [3], [5]), used also in our randomized algorithm,
is to pick the pivot at random and argue that with high
probability, many of the cuts will be balanced. But it is not
clear how a deterministic algorithm can avoid depth Ω(n)
due to a sequence of bad pivots.

One approach is to use the new structural results to argue
that, in a simple graph, if we always pick nodes of degree
≥ w as pivots, the number of calls to the single-source
algorithm will be O(n/w). This would be an improvement
over Ω(n) calls, but it will not lead to an n2+o(1) bound
(even if Max-Flow can be solved in linear time).

The approach we take is both more powerful and con-

8The only exception is the k-partial tree that is only needed as long as
the upper bound for Max-Flow is not almost-linear. For the purposes of
this overview, it is not needed.

9This is a crucial point, as discussed in our previous papers [4], [3]

ceptually simpler. We modify the single-source algorithm
so that it is guaranteed to return balanced cuts: if this is
not possible because the pivot is bad, then the single-source
algorithm may change the pivot into a better one. A good
pivot is always guaranteed to exist, e.g. the centroid p∗ of
the Gomory-Hu Tree has the property that for all v ∈ V ,
the minimum p∗, v-cut has ≤ n/2 nodes in the side of v.

In more detail, we start from the highest degree node as
the pivot p and proceed with the single-source algorithm
as usual. Whenever a cut Cq for node q ∈ V is obtained,
either via a call to Max-Flow or via the ISOLATING-CUTS
procedure (Lemma II.9), we check to see if the cut is good
in the sense that the side of q has ≤ n/2 nodes. (We work
with so-called latest cuts, see the full version and [17]) so
that if a good cut exists, it will be found.) If the cut is not
good, the algorithm runs a pivot-change protocol that makes
q the new pivot. In this protocol, the estimates and cuts of
all nodes v ∈ V are updated; fortunately, due to a triangle-
inequality-like property of cuts,10 it can all be done in O(1)
time per node v ∈ V , which is negligible compared to the
time for solving the Max-Flow leading to that pivot-change.
And that is it; the algorithm can proceed as if q was the pivot
all along.

4) Further Complications: Finally, let us mention the
complications that arise when turning the above ideas into
a full algorithm for constructing a Gomory-Hu Tree. Hap-
pily, some of the complications in our previous work [5]
were alleviated due to the recent discovery of a Max-Flow
algorithm that runs in near-linear time when m = Ω(n1.5)
[38].

1) The first reason that our actual algorithms are more
complicated than what has been described is that
the single-source algorithm must work with auxiliary
graphs of the input graph G, and these are obtained
by contracting certain nodes (as in the Gomory-Hu
framework). While the input graph is simple, the auxil-
iary graphs could have parallel edges, and so the same
arguments cannot be applied in a black-box manner.
Still, we apply them by going back and forth (in both
the algorithm and analysis) between the nodes of the
auxiliary graph and of the input graph. While this
does not introduce substantial technical difficulties, the
notation is heavier and it takes some time to get used
to.

2) When searching for cuts of value w = o(n) the
number of calls to a Max-Flow algorithm is higher.
Typically, our algorithms make Õ(n/w) calls to a Max-
Flow algorithm. Fortunately, as w gets smaller, each
call becomes cheaper because it can be applied on
a Nagamochi-Ibaraki sparsifier [33] of the graph that
only has O(nw) edges and preserves all cuts of value

10It is well-known that min(λx,y , λy,z) ≤ λx,z for all nodes x, y, z,
where λu,v denotes the minimum u, v-cut value.



≤ w. So if we had an almost-linear time Max-Flow
algorithm, all the calls together would overall take
(nw)1+o(1) ·n/w = n2+o(1) time. But using the current
Max-Flow algorithms each call takes Õ(nw + n1.5),
which is larger when w = o(

√
n), making the overall

time super-quadratic. To circumvent this issue, we start
with a preliminary step that computes a

√
n-partial

tree of the graph [9] in Õ(n2) (randomized) time,
and afterwards all cuts we are interested in will have
w >

√
n.

3) In our randomized algorithm, where we use the stan-
dard randomized pivot selection to go from a single-
source algorithm to a full tree, it is convenient to
assume that all minimum cuts are unique. Otherwise
the Max-Flow algorithm might adversarially return
bad (unbalanced) cuts with respect to whatever pivot
we choose. This can be achieved by adding a small
perturbation to each edge, which guarantees that ties
are broken in some consistent manner and does not ruin
the arguments that need the graph to be unweighted
because we can still analyze the underlying simple
graph. There are other ways to circumvent this issue;
for example, by dropping the randomized pivot strat-
egy altogether and using our dynamic pivot technique
instead. Still, we have chosen to present this method
because it may be the easiest to follow for readers who
are familiar with prior work.

4) Finally, there is a step in our single-source algorithm
that might seem unnecessary at first. We invoke the
ISOLATING-CUTS procedure to compute all easy cuts
(recall these contain only one node of degree ≥ w).
We call them easy because they are indeed easy to
compute using a single call to Max-Flow and without
any expansion-based arguments. The need for this step
is in order to bound the number of new cuts obtained
in Procedure LEFTY later on in the algorithm using our
new structural results. This result can only bound the
number of cuts that are not easy. Therefore, omitting
this step might make Procedure LEFTY prohibitively
expensive.

Note added in proof.
new paragraph should be here

II. PRELIMINARIES

A. Gomory-Hu’s Algorithm and Partial Trees

First, we give some general definitions that are often used
by algorithms for Gomory-Hu trees.

Partition Trees.: A partition tree T of a graph G =
(V,E) is a tree whose nodes 1, . . . , l are super-nodes,
which means that each node i is associated with a subset
Vi ⊆ V ; and these super-nodes form a disjoint partition
V = V1 ⊔ · · · ⊔ Vl. We will assume that the edges of a
partition tree are weighted in the natural way: each edge in

T represents a vertex bipartition in G and we can define
its weight to be the value of this cut in G. An auxiliary
graph Gi is constructed from G by merging nodes that
lie in the same connected component of T \ {i}. These
merged nodes (representing multiple nodes in G) will be
called contracted node. For example, if the partition tree is
a path on super-nodes 1, . . . , l, then Gi is obtained from G
by merging V1 ∪ · · · ∪ Vi−1 into one contracted node and
Vi+1 ∪ · · · ∪ Vl into another contracted node. We will use
the notations n′

i := |Vi|, m′
i := |E(Gi)|, and ni := |V (Gi)|.

Note that n′
i ≤ ni since V (Gi) contains Vi as well as some

other contracted nodes, with n′
i = ni only if the tree T has

a single super-node. The following is a brief description of
the classical Gomory-Hu algorithm [21] (see Figure 2).

The Gomory-Hu algorithm.: This algorithm constructs
a cut-equivalent tree T in iterations. Initially, T is a single
node associated with V (the node set of G), and the
execution maintains the invariant that T is a partition tree
of V . At each iteration, the algorithm picks arbitrarily two
graph nodes s, t that lie in the same tree super-node i, i.e.,
s, t ∈ Vi. The algorithm then constructs from G the auxiliary
graph Gi and invokes a Max-Flow algorithm to compute in
this Gi a minimum st-cut, denoted C ′.

The submodularity of cuts ensures that this cut is also
a minimum st-cut in the original graph G, and it clearly
induces a disjoint partition Vi = S ⊔ T with s ∈ S and
t ∈ T . The algorithm then modifies T by splitting super-
node i into two super-nodes, one associated with S and one
with T , that are connected by an edge whose weight is the
value of the cut C ′, and further connecting each neighbor of i
in T to either S or T (viewed as super-nodes), depending on
its side in the minimum st-cut C ′ (more precisely, neighbor
j is connected to the side containing Vj).

𝑉𝑖

𝑡

𝑠 𝑠

𝑡
Minimum-Cut 
between 𝑠 and 𝑡

𝑆

𝑇

Figure 2: An illustration of the construction of T . Left:
T right before the partition of the super-node Vi. Middle:
after the partitioning of Vi. Right: T as it unfolds after the
Gomory-Hu algorithm finishes.

The algorithm performs these iterations until all super-
nodes are singletons, which happens after n − 1 iteration.
Then, T is a weighted tree with effectively the same node
set as G. It can be shown [21] that for every s, t ∈ V , the
minimum st-cut in T , viewed as a bipartition of V , is also a
minimum st-cut in G, and of the same cut value. We stress
that this property holds regardless of the choice made at



each step of two nodes s ̸= t ∈ Vi.
A GH-Equivalent Partition Tree is a partition tree that

can be obtained by a truncated execution of the Gomory-Hu
algorithm, in the sense that there is a sequence of choices
for the pairs s ̸= t ∈ Vi that can lead to such a tree. A
basic property of partition trees and auxiliary graphs is the
following.

Lemma II.1 ([21]). Let T be a GH-Equivalent Partition
Tree of a graph G = (V,E) and let G′ be an auxiliary
graph of G on original nodes V ′ ⊆ V . For all u, v ∈ V ′ it
holds that Max-FlowG(u, v) = Max-FlowG′(u, v).

The following simple lemma describes the flexibility
in designing cut-equivalent tree algorithms based on the
Gomory-Hu framework, where the proof is deferred to the
full version.

Lemma II.2. Given a GH-Equivalent Partition Tree T ′

of an input graph G, and a cut-equivalent tree Ti of the
auxiliary graph Gi for each super-node Vi in T ′, one can
construct a full cut-equivalent tree T of G in linear time.

A simple corollary is the following natural lemma that we
will use, and is proved in the full version.

Lemma II.3. Let G be a graph and suppose that S1, . . . , Sk

are non-crossing minimum cuts between a single source p
and k targets. Then there exists a Gomory-Hu Tree of G in
which all of these k cuts are minimum cuts between p and
the respective targets.

1) k-Partial Trees: A k-partial tree, formally defined
below, can also be thought of as taking a cut-equivalent
tree of G and contracting all edges of weight greater than k.
Such a tree can obviously be constructed using the Gomory-
Hu algorithm, but as stated below (in Lemma II.5), faster
algorithms were designed in [23], [9], see also [34, Theorem
3]. It is known that such a tree is a GH-Equivalent Partition
Tree, see [4, Lemma 2.3].

Definition II.4 (k-Partial Tree [23]). A k-partial tree of a
graph G = (V,E) is a partition tree of G with the following
property: For every two nodes x, y ∈ V whose minimum
x, y-cut value in G is at most k, nodes x and y lie in different
super-nodes x ∈ X and y ∈ Y , such that the minimum
X,Y -cut in the tree defines a bipartition of V which is a
minimum x, y-cut in G and the two cuts have the same value.

Lemma II.5 ([9]). There is an algorithm that given an
undirected graph having n nodes, m edges, and unit edge-
capacities together with an integer k ∈ [n], constructs a
k-partial tree in time min{Õ(nk2), Õ(mk)}.

B. Nagamochi-Ibaraki Sparsification

We use the sparsification method by Nagamochi and
Ibaraki [33]. We will need the following simple lemma,
showing that sparsification and edge-perturbation can be

combined in a convenient way, and proved in the full
version.

Lemma II.6 (The Nagamochi-Ibaraki sparsifier of a per-
turbed graph). Given an unweighted multigraph graph G on
n nodes and m (possibly parallel) edges, an integer w ≥ 1,
and a (weighted) graph G̃ that is a perturbed version of G
with unique minimum cuts, one can compute in O(m) time
a perturbed sparsifier Gw on O(nw) edges such that:

• any cut of weight < w in G̃ has exactly the same weight
in Gw, and

• any cut of weight ≥ w in G̃ still has weight ≥ w in
Gw.

Consequently, if we restrict our attention to the cuts of
weight < w, the sparsifier still has unique minimum cuts.

C. Expander Decomposition
We mostly follow notations and definition from [35]. Let

G = (V,E) be an undirected graph with edge capacities. De-
fine the volume of C ⊆ V as volG(C) :=

∑
v∈C degG(v),

where the subscripts referring to the graph are omitted if
clear from the context, and where for a node v in a graph G
we denote by degG(v) the total degree of v in G counting
multiple edges accordingly. The conductance of a cut S in
G is ΦG(S) :=

δ(S)
min(volG(S),volG(V \S)) . The expansion of a

graph G is ΦG := minS⊂V ΦG(S). If G is a singleton then
ΦG := 1 by convention. Let G[S] be the subgraph induced
by S ⊂ V , and let G{S} denote the induced subgraph
G[S] but with an added self-loop e = (v, v) for each edge
e′ = (v, u) where v ∈ S, u /∈ S (where each self-loop
contributes 1 to the degree of a node), so that every node in
S has the same degree as its degree in G. Observe that
for all S ⊂ V , ΦG[S] ≥ ΦG{S}, because the self-loops
increase the volumes but not the values of cuts. We say
that a graph G is a ϕ-expander if ΦG ≥ ϕ, and we call a
partition V = V1 ⊔ · · · ⊔ Vh a ϕ-expander-decomposition if
mini ΦG[Vi] ≥ ϕ.

Theorem II.7 (Theorem 1.2 in [35]). Given a graph G =
(V,E) of m edges and a parameter ϕ, one can compute with
high probability a partition V = V1 ⊔ · · · ⊔ Vh such that
mini ΦG[Vi] ≥ ϕ and

∑
i δ(Vi) = O(ϕm log3 m). In fact,

the algorithm has a stronger guarantee that mini ΦG{Vi} ≥
ϕ. The running time of the algorithm is O(m log4 m/ϕ).

We will need the following strengthening of Theorem II.7,
where the input contains vertex demands (to be used instead
of vertex degrees). Given in addition a demand vector
d ∈ RV

≥0, the graph G = (V,E) is a (ϕ,d)-expander if
for all subsets S ⊆ V , Φd

G(S) := δ(S)
min(d(S),d(V \S)) ≥ ϕ.

The following theorem statement is taken from [27], but
its proof is actually a variation of a result from [13], and
gives a deterministic algorithm. We are not aware of a faster
algorithm, not even a randomized one based for instance
on [35].



Theorem II.8 (Theorem III.8 in [27]). Fix ε > 0 and
any parameter ϕ > 0. Given an edge-weighted, undirected
graph G = (V,E,w) and a demand vector d ∈ RV

≥0, there
is a deterministic algorithm running in time O(m1+ε) that
computes a partition V = V1 ⊔ · · · ⊔ Vh such that

1) For each i ∈ [h], define a demand vector di ∈ RVi

≥0

given by di(v) = d(v)+w(E(v, V \Vi)) for all v ∈ Vi.
Then, the graph G[Vi] is a (ϕ,di)-expander.

2) The total weight of inter-cluster edges is
w(E(V1, . . . , Vh)) =

∑
i w(E(Vi, V \Vi)) ≤ B ·ϕd(V )

for B = (log n)O(1/ε4).

D. The Isolating Cuts Procedure

A key tool that will be used in both our deterministic and
randomized algorithms is a simple yet powerful procedure
that can compute many minimum cuts all at once with Õ(1)
calls to a Max-Flow algorithm. More specifically, if a subset
of the nodes C ⊆ V is given, the procedure returns the
minimum isolating cut for each node v ∈ C; meaning the
minimum cut that separates v from all other nodes in C\{v}.
This is very useful when we can pick a set C that contains
only one node from each minimum p, v-cut Cv for many
nodes v; then, all of these cuts are guaranteed to be found.

This lemma was introduced by Li and Panigrahi [27]
for their deterministic global minimum cut, and was later
independently rediscovered in [5] (using a different proof
and a slightly different statement where there is a pivot) and
used in a Gomory-Hu Tree algorithm. Independently, Li and
Panighrahy [28] also used it for (an approximate) Gomory-
Hu Tree.

Lemma II.9 (The ISOLATING-CUTS Procedure ([27]. See
also [5])). Given an undirected graph G = (V,E, c) on
n nodes and m edges, a pivot node p ∈ V , and a set of
connected vertices C ⊆ V , let (Cv, V \ Cv) where v ∈
Cv, p ∈ V \ Cv be the latest minimum (p, v)-cut for each
v ∈ C. One can deterministically compute |C| disjoint sets
{C ′

v ⊂ V }v∈C such that

∀v ∈ C, if Cv ∩ C = {v} then C ′
v = Cv

in time O(MF (n,m, c(E)) · log n), that is, if the minimum
(p, v)-cut isolates v, then it is in the collection output by the
algorithm.

III. GOMORY-HU TREE IN NEAR-QUADRATIC TIME

Recall from Section II-A that an auxiliary graph G′

is obtained from a graph G = (V,E) and from a GH-
Equivalent Partition Tree T by keeping the nodes V ′ ⊆ V
from one super-node of T and contracting certain subsets
of the other nodes as prescribed by T , introducing other
nodes V (G′) \ V ′ into G′. The connectivity of any pair of
original graph nodes u, v ∈ V ′ in G and G′ is the same
(Lemma II.1). To simplify the exposition, we will use the
following definition of connectivity of an auxiliary graph;

note that the requirement is only for the original graph nodes
V ′ and not for the other nodes in G′.

Definition III.1 (Connectivity of an Auxiliary Graph). We
say that an auxiliary graph G′ has connectivity k if for
every pair of original graph nodes u, v ∈ V ′, the minimum
(u, v)-cut in G′ (and thus also in G) has value at least k.

A. Single-Source in Near-Quadratic Time

Theorem III.2. Given a simple graph G = (V,E) on N =
|V | nodes with a designated pivot p ∈ V , an auxiliary graph
G′ on the graph nodes V ′ ⊆ V (G) with n = |V (G′)|,m =
|E(G′)| and connectivity ≥

√
N , and a perturbed version

G̃ of G′ with unique minimum cuts, one can compute the
minimum (p, v)-cut in G̃ for all nodes v ∈ V ′ in total time
m1+o(1) +Nn1+o(1).

In the rest of this section we prove Theorem III.2.
Denote the value of the minimum u, v-cut in G̃ by λu,v :=
Max-FlowG̃(u, v), and fix a sufficiently large constant γ ≥ 1
(it will determine the overall success probability).

The Algorithm: First, initialize an estimate c′(v) :=
degG̃(v) for all v ∈ V ′ along with a witness cut Cv = {v}.
Now for each j = ⌊log

√
N⌋, . . . , ⌈logN⌉, let w := 2j

and execute the following process. We shall refer to this
process as stage w, and it will compute correct estimates
c′(v) = λp,v (and witness cuts) for all v ∈ V ′ such that
w ≤ λp,v < 2w.

Stage w::

1) Compute a Nagamochi-Ibaraki sparsifier Gw (by
Lemma II.6) for the perturbed auxiliary graph G̃, so
that this Gw has O(nw) edges, all cuts of value < 2w
are preserved, and all cuts of value at least 2w still have
value at least 2w.

2) Construct the set V ′
≥w := {v ∈ V ′ | degG(v) ≥ w} and

call the ISOLATING-CUTS procedure (see Lemma II.9)
on Gw, p, V

′
≥w to get a p, v-cut for all v ∈ V ′

≥w and
update the estimates c′(v) and Cv if the new cut has
smaller value (and if its value is not ≥ 2w). This step
computes correctly all cuts that contain only one node
from V ′

≥w; such cuts will be called easy below.11

3) Initialize a set C = {v ∈ V ′ | c′(v) > w}; its nodes
will be called candidates.

4) While |C| > log n do:
• Compute an expander decomposition (H1, . . . ,Hℓ)

of G′ (see Theorem II.8) with parameters ε :=

(log n)−1/9 = o(1) and ϕ := 2− log1/2 n = n−o(1),
and demand function

d(v) :=

{
w, if v ∈ C

0, otherwise.
(III.1)

11Alas, if the true minimum cut is not easy, a returned cut containing
one node from S may be incorrect, and the algorithm will not know it.



• Define the size of an expander H , denoted
sizeG(H), to be the total number of nodes from
G that appear in (the possibly contracted nodes) of
V (H) ⊆ V (G′).12

• For each expander Hi with sizeG(Hi) ≥ w/2 do:
a) Execute Procedure RIGHTY (in Algorithm 1).
b) Execute Procedure LEFTY (in Algorithm 2).
c) Remove all nodes in Hi from C.

5) Now that |C| ≤ log n,
compute λp,v for all v in C by using Max-Flow
invocations in Gw.

Algorithm 1: Procedure RIGHTY

1 repeat 2eγϕ−1 lnN times
2 S≥w ← randomly include each v ∈ V (Hi) ∩ C

independently with probability ϕ
3 call the ISOLATING-CUTS procedure

(Lemma II.9) on Gw, p, S≥w to get a p, v-cut
S′
v and a corresponding value δ(S′

v) for all
v ∈ S≥w

4 foreach v ∈ S≥w such that
δ(S′

v) < min {c′(v), 2w} do
5 c′(v)← δ(S′

v)
6 set S′

v as the witness cut for v

Algorithm 2: Procedure LEFTY

1 Initialize a heap containing the nodes of V (Hi) ∩ C
keyed by their estimate c′(v)

2 repeat α = 3ϕ−1 times
3 if heap is empty then
4 halt

5 v∗ ← node with maximum key c′(v) extracted
from the heap

6 invoke Max-Flow to obtain the minimum
p, v∗-cut in Gw, call it S∗ and its value λp,v∗

7 if c′(v∗) > λp,v∗ then
8 α++ // increment the number of

repetitions

9 foreach v ∈ S∗ such that c′(v) > λp,v∗ do
10 c′(v)← λp,v∗

11 set S∗ as the witness cut for v

12 C ← C \ {v∗}

Running-Time Analysis: We first bound the number of
repetitions in Step 4, and then bound the time required for

12For example, if H contains two nodes from V ′ ⊆ V (G) and two
contracted nodes from V (G′)\V ′ each of which obtained from ten nodes
from G, then sizeG(H) = 22.

each repetition, where the proofs are postponed to the full
version.

Claim III.3. Every repetition of Step 4 reduces |C| by at
least factor 2. Consequently, this step is repeated at most
O(log n) times (at a single stage w).

Claim III.4. Each repetition in Step 4 takes time
O(m1+ε) = m1+o(1) plus the time for O(ϕ−1N/w) =
N/w ·no(1) Max-Flow invocations in a graph with n nodes
and O(nw) edges.

Combining the above two claims we establish that the
running time of stage w of the algorithm is bounded by
O(m1+ε log n) ≤ m1+o(1) plus the time for O(ϕ−1N/w ·
log n) ≤ N/w · no(1) invocations to a Max-Flow algorithm
on n nodes and O(nw) edges. Since every stage has
w ≥ Ω(n1/2), employing the recent Õ(m+n1.5)-time Max-
Flow algorithm [38], would solve each of these Max-Flow
invocations in time Õ(nw + n1.5) ≤ Õ(nw), which adds
up over the entire stage to Õ(ϕ−1N/w · log n · nw) =
Õ(Nn · ϕ−1 log n) ≤ Nn1+o(1). The running time of all
steps other than 4 is dominated by O(logN) Max-Flow
invocations in Gw, which itself is negligible compared to
the above. We have O(logN) stages, and their overall time
bound is O(logN) · Õ(m1+ε log n + Nn · ϕ−1 log n) ≤
Õ(m1+ε +Nnϕ−1).

To conclude the running time analysis, it remains to show
Claim III.5 (proved in the full version) that was used to
bound the number of additional invocations. Recall that a
minimum (p, v)-cut Sv is called easy if Sv contains ≤ 1
nodes of degree ≥ w.

Claim III.5. Let G be a simple graph on N nodes, let G′

be an auxiliary graph of G with respect to V ′ ⊂ V (G) that
includes a pivot p, and suppose G̃ is a perturbed version of
G′ with unique minimum cuts. Then the number of different
minimum (p, v)-cuts, over all v ∈ V ′, that have value ≥ w
and are not easy, is at most O(N/w).

Correctness: We say that a node v is done if c′(v) =
λp,v , and our goal is to show that at the conclusion of the
algorithm all nodes are done. The argument is by induction
on the stages. For the base case, note that in the first stage,
where w =

√
N , all nodes v ∈ V ′ with λp,v < w are done

at the beginning of the stage. This holds trivially because, by
our assumption that the connectivity of the auxiliary graph
G′ is ≥

√
N , there cannot be any node v ∈ V ′ with λp,v <

w.
The following claim concludes the proof of correctness,

and is proved in the full version.

Claim III.6. Let w = 2j for some j ∈
{⌊log

√
N⌋, . . . , ⌈logN⌉} and consider the corresponding

stage. Suppose that all nodes v ∈ V ′ with λp,v < w are
done at the beginning of the stage. Then, with probability
at least 1 − 1/N2γ , all nodes with λp,v < 2w are done at



the end of the stage.

IV. CONCLUSION

The main result of this paper is an n2+o(1) time algorithm
for constructing the Gomory-Hu Tree of an unweighted
graph, leading to an almost-optimal algorithm for All-Pairs
Max-Flow in unweighted graphs. Even assuming an almost-
linear time Max-Flow algorithm (as in Hypothesis I.5)
the previously known algorithms [5] could not go below
n2.5. The improvement is achieved by utilizing a stronger
primitive than previous work: an expander decomposition
with vertex demands. Fitting this tool into the Gomory-Hu
framework involves several technical challenges, and a new
structural understanding of the Gomory-Hu Tree of a simple
graph. To reach the n2+o(1) bound, the algorithm exploits
the simplicity of the graph in a second way compared to
the n2.5 algorithm, and therefore it may be even harder to
adapt for weighted graphs. The main open question in the
field has become even more outstanding.

Open Question 1. Can the Gomory-Hu Tree of a weighted
graph be constructed in subcubic time?

The first step towards this question would be to achieve a
subcubic algorithm for unweighted multigraphs on O(n2)
edges; i.e. to refute Hypothesis I.6. Interestingly, due to
Theorem I.7, this is required before an m1+o(1) algorithm
can be achieved in simple graphs.

We also introduce a new derandomization technique that
replaces the randomized pivot selection of recent works
with a dynamic pivot. It gives hope that whatever bounds
are achieved with randomized algorithms, in the context of
Gomory-Hu Tree algorithms, can also be derandomized.

Finally, an interesting take-away message from this paper
is that All-Pairs Max-Flow suddenly appears to be an
easier problem than All-Pairs Shortest-Paths. At least in
unweighted graphs, and at least with current algorithms,
its upper bound is n2+o(1) compared with the nω+o(1)

for All-Pairs Shortest-Paths. The relative easiness is not
only theoretical: the methods used by our All-Pairs Max-
Flow algorithm are much less infamous than the fast matrix
multiplication that goes into the All-Pairs Shortest-Paths
algorithm. However, formally proving a separation between
the two is difficult, as it requires proving an Ω(n2+ε)
lower bound for matrix multiplication, and may not even be
possible because ω is often conjectured to be 2. Perhaps the
more promising direction is by resolving Open Question 1
with an O(n3−ε) time algorithm for All-Pairs Max-Flow in
weighted graphs. This would establish a separation, assum-
ing the popular conjecture that All-Pairs Shortest-Paths in
weighted graphs requires n3−o(1) time [39], making Open
Question 1 even more consequential.

Acknowledgements: We are grateful to Thatchaphol
Saranurak for helpful clarifications regarding the literature

on randomized versus deterministic expander decomposi-
tions.
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