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ABSTRACT
Every undirected graph 𝐺 has a (weighted) cut-equivalent tree 𝑇 ,

commonly named after Gomory and Hu who discovered it in 1961.

Both 𝑇 and 𝐺 have the same node set, and for every node pair 𝑠, 𝑡 ,

the minimum (𝑠, 𝑡)-cut in 𝑇 is also an exact minimum (𝑠, 𝑡)-cut in
𝐺 .

We give the first subcubic-time algorithm that constructs such

a tree for a simple graph 𝐺 (unweighted with no parallel edges).

Its time complexity is �̃� (𝑛2.5), for 𝑛 = |𝑉 (𝐺) |; previously, only
�̃� (𝑛3) was known, except for restricted cases like sparse graphs.

Consequently, we obtain the first algorithm for All-Pairs Max-Flow
in simple graphs that breaks the cubic-time barrier.

Gomory and Hu compute this tree using 𝑛 − 1 queries to (single-

pair)Max-Flow; the new algorithm can be viewed as a fine-grained

reduction to �̃� (
√
𝑛) Max-Flow computations on 𝑛-node graphs.
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1 INTRODUCTION
A fundamental discovery of Gomory and Hu in 1961, now a staple of

textbooks on Algorithms, says that every undirected graph can be
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compressed into a single tree while exactly preserving all pairwise

minimum cuts (and maximum flows).

Theorem 1.1 (Gomory and Hu [38]). Every undirected graph 𝐺

(even with edge weights) has an edge-weighted tree 𝑇 on the same set

of vertices 𝑉 (𝐺) such that:

• for all pairs 𝑠, 𝑡 ∈ 𝑉 (𝐺) the minimum (𝑠, 𝑡)-cut in 𝑇 is also a

minimum (𝑠, 𝑡)-cut in 𝐺 , and their values are the same.

Such a tree is called a cut-equivalent tree, aka Gomory–Hu tree.

Moreover, the tree can be constructed in the time of 𝑛 − 1 queries to a

Max-Flow algorithm,
1
where throughout 𝑛 = |𝑉 (𝐺) |.

In the interim sixty years, the Gomory–Hu tree has been inves-

tigated thoroughly from various angles (see Section 1.4). In spite of

ingenious new approaches and much progress in simpler or harder

settings, the chief open question remains elusive.

Open Question 1.2. Can one construct a Gomory–Hu tree faster

than the time of 𝑂 (𝑛) Max-Flow computations?

In themost basic setting of simple graphs (undirected, unweighted,

no parallel edges), eachMax-Flow query can be answered in �̃� (𝑛2)
time

2
using the algorithm of Karger and Levine [53], and the ques-

tion becomes whether the natural cubic barrier can be broken.

Open Question 1.3. Can one construct a Gomory–Hu tree of a

simple graph 𝐺 in 𝑜 (𝑛3) time?

Before the current work, subcubic
3
algorithms were known only

for sparse graphs [4, 15, 53], planar graphs [17], surface-embedded

graphs [16], and bounded-treewidth graphs [3, 10].

1.1 Results
We resolve Open Question 1.3 in the affirmative by giving the

first subcubic algorithm for computing a Gomory–Hu tree for un-

weighted graphs.

Theorem 1.4. There is a randomized algorithm, with success prob-

ability 1 − 1/poly(𝑛), that constructs a Gomory–Hu tree of a simple

graph 𝐺 in �̃� (𝑛2.5) time.

Like the Gomory–Hu algorithm (and others), our new algorithm

relies on queries to Max-Flow on contracted graphs. While the

number of queries is still Ω(𝑛), the gains come from reducing the

1
The notationMax-Flow refers to the maximum (𝑠, 𝑡 )-flow problem, which clearly

has the same value as minimum (𝑠, 𝑡 )-cut. In fact, we often need algorithms that find

an optimal cut (not only its value), which is clearly different (and usually harder) than

Global-Min-Cut.
2
The notation �̃� ( ·) hides a factor that is polylogarithmic in 𝑛.

3
An algorithm is called subcubic if its running time is 𝑜 (𝑛3) where 𝑛 is the number

of nodes. It is common to distinguish between mildly-subcubic 𝑂 ( 𝑛3

poly log𝑛
) and

truly-subcubic𝑂 (𝑛3−𝜀 ) . In this paper we refer to the latter.
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sizes of the contracted graphs more massively and rapidly, mak-

ing the total time proportional to only �̃� (
√
𝑛) queries. The key

ingredient is a new Expanders-Guided Querying procedure that

leads the algorithm to make Max-Flow queries on “the right” pairs,

guaranteeing that large portions of the graph get contracted. In

fact, since these Ω(𝑛) queries can be done in parallel inside each

of 𝑂 (log𝑛) levels of recursion, they can be simulated using only

�̃� (
√
𝑛) queries on graphs with 𝑛 nodes (by simply taking disjoint

unions of the smaller graphs and connecting all sources/sinks into

one source/sink, see e.g. [61]). However, due to the contractions,

these queries need to be performed on weighted graphs.

All-Pairs Max-Flow. Once a Gomory–Hu tree is computed many

problems become easy. Notably, the first algorithm for computing

the Edge-Connectivity of a graph, i.e. Global-Min-Cut, computes

the Gomory–Hu tree and returns the smallest edge [38]. Faster near-

linear time algorithms are known by now [32, 33, 35, 48, 52, 54, 55,

65], but state-of-the-art algorithms for computing the maximum-

flow value between all

(𝑛
2

)
pairs of nodes, called the All-Pairs Max-

Flow problem,
4
still rely on the reduction to a Gomory–Hu tree.

Indeed, to compute the maximum flow, simply identify the lightest

edge on the path between each pair in the tree, which takes only

�̃� (1) time per pair; the bottleneck is computing the tree.

The modern tools of fine-grained complexity have been sur-

prisingly unhelpful in establishing a conditional lower bound for

All-Pairs Max-Flow. The Strong ETH5
rules out fast algorithms in

directed graphs (where the Gomory–Hu tree does not exist [47])

[2, 6, 58], but it probably cannot give an 𝑛2+𝜀 lower bound for sim-

ple graphs [4].
6
Moreover, all natural attempts for placing it in

the All-Pairs Shortest-Path subcubic-hardness class [83] had failed,

despite the fact that Max-Flow feels harder than Shortest-Path,
e.g., single-pair in �̃� (𝑛2) time is an easy coding-interview question

for Shortest-Path but certainly not for Max-Flow. It turns out that
subcubic time is indeed possible, at least in unweighted graphs.

Corollary 1.5. There is a randomized algorithm, with success prob-

ability 1−1/poly(𝑛), that solves All-Pairs Max-Flow in simple graphs

in �̃� (𝑛2.5) time.

For both All-Pairs Max-Flow and All-Pairs Shortest-Path, cubic
time is a natural barrier — shouldn’t each answer take Ω(𝑛) time

on average? About thirty years ago, Seidel’s algorithm [79] broke

this barrier for All-Pairs Shortest-Path in unweighted graphs using

fast matrix multiplication with an 𝑂 (𝑛𝜔 ) upper bound; back then

𝜔 was 2.375477 [27] and today it is 2.37286 [8]. Our new �̃� (𝑛2.5)
algorithm forAll-PairsMax-Flow breaks the barrier using a different

set of techniques, mainly expander decompositions, randomized

hitting sets, and fastMax-Flow algorithms (that in turn rely on other

methods such as continuous optimization). Interestingly, while

designing an 𝑂 (𝑛3−𝜀 ) algorithm with “combinatorial” methods has

been elusive for All-Pairs Shortest-Path (see e.g. [1, 5, 11, 21, 22, 83,

4
Since we are in the setting of simple graphs, a possible name for the problem is

All-Pairs Edge Connectivity. However, Edge-Connectivity is often used for the size of

the global minimum cut in simple graphs, not the 𝑠𝑡 -version.
5
The Strong Exponential Time Hypothesis (SETH) of Impagliazzo and Paturi [19, 50]

states that 𝑘-SAT cannot be solved in (2 − 𝜀)𝑛 time for an 𝜀 > 0 independent of 𝑘 . It

has been a popular hardness assumption for proving polynomial lower bounds like

𝑛3−𝑜 (1)
in recent years.

6
Reducing 𝑘-SAT to All-Pairs Max-Flow would give a faster co-nondeterministic

algorithm for 𝑘-SAT and refute the so-called Nondeterministic SETH [20].

85]), it can already be accomplished for All-Pairs Max-Flow. Our
upper bound when using only combinatorial methods is �̃� (𝑛2

5

6 ).

More Bounds. Since the first version of this paper came out, a new

algorithm has been published for solving a single Max-Flow query

in weighted graphs in time �̃� (𝑚 + 𝑛1.5) [82], improving over the

previous bound �̃� (𝑚
√
𝑛) [60], where throughout𝑚 = |𝐸 (𝐺) |. This

development directly has led to the improvement of our bound for

Gomory–Hu tree from �̃� (𝑛2.75) in the previous version to �̃� (𝑛2.5)
in the current version. In fact, our previous version had already

included an �̃� (𝑛2.5)-time algorithm assuming a hypothetical �̃� (𝑚)-
time Max-Flow algorithm; it turns out that the additive term +𝑛1.5
in the new algorithm [82] is inconsequential for our result.

The running time of our new algorithm improves beyond 𝑛2.5 if

the number of edges is below 𝑛2. The precise bound is �̃� (𝑛3/2𝑚1/2).
However, for density below 𝑛1.5, a previously known (and very

different) algorithm [4] is faster; its time bound is �̃� (𝑚3/2) under
the hypothesis that Max-Flow is solved in near-linear time, and

using the new algorithm [82] instead gives a slightly worse bound.

The previous bounds and the state of the art for all density regimes

are summarized in Figure 1. It is also summarized in the following

theorem together with the best combinatorial algorithms. In each

item, the rightmost term is new, and the other terms (which are

better for sparse graphs) are by previous work [4] (when plugging

in [82]).

Theorem 1.6. There is a randomized algorithm, with success prob-

ability 1 − 1/poly(𝑛), that constructs a Gomory–Hu tree of a simple

graph with 𝑛 nodes and𝑚 edges in time:

(1) �̃�

(
min {𝑚3/2𝑛1/6,𝑚𝑛3/4, 𝑛3/2𝑚1/2}

)
using existing

Max-Flow algorithms,

(2) �̃�

(
min {𝑚3/2𝑛1/3, 𝑛11/6𝑚1/2}

)
using existing combinatorial

Max-Flow algorithms.

1.2 Previous Algorithms
Over the years, the time complexity of constructing a Gomory–Hu

tree has decreased several times due to improvements inMax-Flow
algorithms, but there have also been a few conceptually new algo-

rithms. Gusfield [40] presented a modification of the Gomory–Hu

algorithm in which all the 𝑛 − 1 queries are made on the origi-

nal graph 𝐺 (instead of on contracted graphs). Bhalgat, Hariharan,

Kavitha, and Panigrahi [15] designed an �̃� (𝑚𝑛)-time algorithm

utilizing a tree packing approach [28, 32] that has also been used

in other algorithms for cut-equivalent trees [4, 26, 41]. In partic-

ular, they designed an 𝑂 (𝑚𝑘)-time algorithm for constructing a

𝑘-partial Gomory–Hu tree, which preserves the minimum cuts if

their size is up to 𝑘 (see [73] and the full version [14]). A simple

high-degree/low-degree strategy is helpful in sparse graphs: only√
𝑚 nodes can have degree (and therefore outgoing flow) above

√
𝑚,

thus a

√
𝑚-partial tree plus

√
𝑚 Max-Flow queries are sufficient,

which takes 𝑂 (𝑚3/2) time if Max-Flow is solved in linear time.

Using the current Max-Flow algorithms, this strategy results in the

time bound �̃� (min {𝑚3/2𝑛1/6,max {𝑚𝑛3/4,𝑚3/2}}) [4]. Addition-
ally, two recent algorithms accelerate the Gomory–Hu algorithm
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Figure 1: State-of-the-art time bounds for constructing a
Gomory–Hu tree of simple graphs. The dotted line is the
best one can hope for (as no super-linear lower bound is
known). The dashed line represents the𝑚3/2+𝑜 (1) -time algo-
rithm [4] that assumes a near-linear time Max-Flow algo-
rithm.

by making multiple steps at once to achieve �̃� (𝑚) time, one re-

quires nondeterminism [4] and the other requires a (currently non-

existent) fast minimum-cut data structure [3]. The new algorithm

uses a similar approach.

In weighted graphs, the bound for Gomory–Hu tree is still 𝑛

timesMax-Flow and therefore cubic using the very recent �̃� (𝑚 +
𝑛1.5) algorithm forMax-Flow [82]. If the graph is sparse enough and

the largest weight𝑈 is small, one can use algorithms [62–64] that

run in time �̃� (min{𝑚10/7𝑈 1/7,𝑚11/8𝑈 1/4, 𝑚4/3𝑈 1/3}) that might

give a better time bound. It is likely that the new techniques will

lead to faster algorithms for this case as well, although new ideas

are required.

Further discussion of previous algorithms can be found at the

Encyclopedia of Algorithms [73].

1.3 Technical Overview
This section attempts to explain the new algorithm in its entirety

in a coherent and concise way. This is challenging because the

algorithm is complicated both conceptually, relying on several dif-

ferent tools, and technically, involving further complications in

each ingredient. The main text gives the overall algorithm while

making nonobvious simplifying assumptions, and meanwhile the

text inside the boxes discusses how these assumptions are lifted

or how to handle other technical issues that arise. The reader is

advised to skip the boxes in the first read.

Given a graph𝐺 = (𝑉 , 𝐸) the goal is to compute its cut-equivalent

tree 𝑇 . The new algorithm, like the Gomory–Hu algorithm builds

𝑇 recursively, by maintaining an intermediate (partial) tree 𝑇 ′
that

gets refined with each recursive call. The nodes of 𝑇 ′
are subsets

of 𝑉 and are called super-nodes. Each recursion step considers a

super-node of 𝑇 ′
and splits-off parts of it. In the beginning, there

is a single super-node and 𝑇 ′ = {𝑉 }. If the minimum (𝑠, 𝑡)-cut
(𝑆,𝑉 \ 𝑆) for a pair 𝑠, 𝑡 ∈ 𝑉 is found, then 𝑇 ′

is refined by splitting

𝑉 into two super-nodes 𝑆 and 𝑉 \ 𝑆 and by connecting them with

an edge of weight 𝜆𝑠,𝑡 the connectivity between 𝑠 and 𝑡 . Then, the

main observation is that when refining 𝑆 the entire super-node

𝑉 \ 𝑆 can be contracted into a single node; this does not distort the

connectivities for pairs in 𝑆 and it ensures that the refinements of

𝑆 and of 𝑉 \ 𝑆 are consistent with one another (and can therefore

be combined into the final tree 𝑇 ). More generally, consider an

intermediate tree 𝑇 ′
whose super-nodes 𝑉1, . . . ,𝑉𝑙 form a partition

𝑉 = 𝑉1 ⊔ · · · ⊔𝑉𝑙 . The algorithm then refines each super-node 𝑉𝑖
by operating on an auxiliary graph 𝐺𝑖 that is obtained from𝐺 by

contracting nodes outside 𝑉𝑖 in a manner informed by 𝑇 ′
: each

connected component of 𝑇 ′
after the removal of 𝑉𝑖 is contracted

into a single node.

Now, consider such super-node 𝑉𝑖 in an intermediate tree 𝑇 ′

along with its auxiliary graph 𝐺𝑖 ,
7
and let 𝑇𝑖 be its (unknown) cut-

equivalent tree, i.e., the subtree of 𝑇 induced on 𝑉𝑖 . The goal is to

refine 𝑉𝑖 . Gomory and Hu took an arbitrary pair 𝑠, 𝑡 ∈ 𝑉𝑖 and used

an 𝑠, 𝑡-Max-Flow query to get a cut. (For a more detailed exposition

of the Gomory–Hu algorithm, see Section 2.3 and Figure 3). Another

natural approach is to take the global minimum cut of 𝑉𝑖 . Either

way, the depth of the recursion could be 𝑛 − 1 if each refinement

only splits-off one node from𝑉𝑖 .
8
The new algorithm aims to finish

within recursion depth 𝑂 (log𝑛), and the strategy is to refine 𝑉𝑖
into multiple disjoint minimum cuts 𝑉 = 𝑉𝑖,1 ⊔ · · · ⊔𝑉𝑖,𝑘 at once,

where |𝑉𝑖, 𝑗 | ≤ |𝑉𝑖 |/2 ensuring that the depth of the recursion is

logarithmic.

The idea is to pick a pivot node 𝑝 ∈ 𝑉𝑖 (can be thought of as a root

for 𝑇𝑖 ) and to computeMax-Flow between 𝑝 and every node in 𝑉𝑖 .

That is, for each node 𝑣 ∈ 𝑉𝑖 , the algorithm computes a minimum

(𝑝, 𝑣)-cut (𝐶𝑣,𝑉𝑖 \𝐶𝑣) where 𝑣 ∈ 𝐶𝑣 and 𝑝 ∈ 𝑉 \𝐶𝑣 . While this gives

a lot of information, it is not necessarily sufficient for computing

𝑇𝑖 because these cuts may not determine an optimal cut for other

pairs in 𝑉𝑖 .
9
Still, it allows us to make progress by splitting-off

cuts 𝑉𝑖, 𝑗 from 𝑉𝑖 with |𝑉𝑖, 𝑗 | ≤ |𝑉𝑖 |/2 such that 𝑉𝑖, 𝑗 = 𝐶𝑣 for some

𝑣 ∈ 𝑉𝑖 and can therefore be safely used to refine 𝑉𝑖 . This approach

indeed works if 𝑝 happens to be a good pivot, which means that it

is centroid-like in 𝑇𝑖 in the sense that most cuts 𝐶𝑣 have less than

half the nodes. Moreover, for the correctness of the algorithm, a

good pivot must satisfy that the “depth” of 𝑇𝑖 from 𝑝 is 𝑂 (
√
𝑛). It

turns out that both requirements can be accomplished.

7
For most of this overview, it is safe to think of the very first iteration where𝑉𝑖 = 𝑉

and𝐺𝑖 = 𝐺 . Later on we will point out the complications that arise due to the existence

of contracted nodes𝑉 (𝐺𝑖 ) \𝑉𝑖 .
8
Another natural approach is to look for a balanced minimum cut. It is not clear that

such a cut exists or that it can be computed efficiently. However, it is fair to say that

part of the new algorithm uses a similar approach.

9
An extreme scenario is if for every 𝑣 ∈ 𝑉𝑖 the minimum (𝑝, 𝑣)-cut is ( {𝑝 },𝑉𝑖 \ {𝑝 }) ;
clearly, this information is not sufficient for knowing the whole tree. But this will not

happen if we choose a good pivot 𝑝 .
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Complication 1: How do we get a good pivot?
A recent nondeterministic algorithm [4] chooses a pivot by guess-

ing the centroid (there are other, more crucial uses for guessing

in that algorithm). An NC algorithm of Anari and Vazirani [9]

for planar graphs tries all nodes as pivots in parallel. Bhalgat et

al. [15] and another recent work [3] choose a pivot at random in

each iteration and argue that the recursion depth is bounded by

𝑂 (log𝑛) with high probability. The new algorithm takes a simi-

lar approach but requires more care, because now a bad pivot not

only slows down progress but it could lead to wrong cuts. For the

correctness of what follows, a good pivot must also satisfy that

a certain notion of depth of 𝑇𝑖 when rooted at 𝑝 is bounded by

𝑂 (
√
𝑛). And it must hold, with high probability, for every single

iteration. Thus, to decrease the failure probability from constant

to 1/poly(𝑛), the algorithm chooses a random set 𝑆 of �̃� (
√
𝑛)

candidate pivots, computes a refinement of 𝑇 ′
by following the

standard Gomory–Hu algorithm while only picking pairs from

𝑆 using |𝑆 | − 1 queries to Max-Flow, and then picks the pivot

𝑝 to be the node in 𝑆 whose component in the refinement is

largest. It follows that 𝑝 is both centroid-like (|𝐶𝑣 | ≤ |𝑉𝑖 |/2 for
most 𝑣 ∈ 𝑉𝑖 ) and its component (after this refinement) has a

small depth. Notably, derandomizing this part would lead to a

deterministic algorithm with 𝑛1−𝜀 queries toMax-Flow.

At this point, the algorithm has a good pivot 𝑝 for 𝐺𝑖 and the

goal is to compute the minimum (𝑝, 𝑣)-cut for all nodes 𝑣 ∈ 𝑉𝑖 . To

focus this exposition on the novel aspects of the new algorithm, let

us make a few simplifying assumptions. First, assume that there is

a unique Gomory–Hu tree 𝑇 for 𝐺 (and therefore there is a unique

𝑇𝑖 for 𝐺𝑖 ).

Complication 2: Operating as if there is a unique tree.
A standard way to make the Gomory–Hu tree unique is to per-

turb edge weights in 𝐺 by small 1/poly(𝑚) additive terms to

ensure that all minimum cuts are unique. However, this would

prevent the algorithm from using knownMax-Flow algorithm

for unweighted graphs and hurt the running time, so it cannot

be done in our real algorithm. The uniqueness of the tree is

important both for the analysis, as one can safely talk about

the minimum cut 𝐶𝑣 , and for the correctness – what guarantees

that cuts 𝐶𝑣 for different 𝑣 ∈ 𝑉𝑖 are all consistent with a single

Gomory–Hu tree? Our real algorithm escapes these issues by

working with latest minimum cuts, i.e., a minimum (𝑝, 𝑣)-cut
(𝐶𝑣,𝑉 \𝐶𝑣) that has the smallest possible |𝐶𝑣 |. A similar approach

was used by Bhalgat et al. [15] and others [13]. See Section 2.5

for more background on latest cuts.

The second simplifying assumption is that the weights in 𝑇𝑖 are

decreasing along any path from the root 𝑝 . As a result, the minimum

(𝑝, 𝑣)-cut for every node 𝑣 ∈ 𝑉𝑖 is exactly its subtree; this greatly

simplifies describing and analyzing the cuts with respect to the tree

(see Figure 2).

Complication 3: Cut-membership trees.
In general, the lightest edge on the path from a node 𝑣 ∈ 𝑉𝑖
to 𝑝 in 𝑇𝑖 is not necessarily the first edge (right “above” 𝑣). In

other words, the minimum (𝑝, 𝑣)-cut 𝐶𝑣 , whose nodes we call

cut-members of 𝑣 , could be a strict superset of 𝑣 ’s subtree in 𝑇𝑖 ,

which complicates the analysis of subsequent ingredients, as

they rely on bounding the number of cut-members of nodes. A

convenient tool for reasoning about this is the cut-membership

tree T ∗
𝑝 with respect to 𝑝 [3, Section 3]. This is a coarsening of

𝑇𝑖 where all nodes 𝐵 ⊆ 𝑉𝑖 whose minimum cut to 𝑝 is the same

are merged into one bag . Importantly, it is still a tree and it

satisfies the assumption of decreasing weights, meaning that the

minimum cuts are indeed always subtrees. All of the analysis is

carried on with T ∗
𝑝 rather than 𝑇𝑖 .

The algorithm now creates for each node 𝑣 ∈ 𝑉𝑖 an estimate

𝑐 ′(𝑣) for the connectivity 𝜆𝑝,𝑣 between 𝑝 and 𝑣 ; it is initialized to

𝑐 ′(𝑣) = deg(𝑣), which is always an upper bound. Then, the algo-

rithm repeats procedure Expanders-Guided Querying described

below 𝑂 (log𝑛) times; each iteration finds new (𝑝, 𝑣)-cuts and up-

dates these estimates by keeping for each 𝑣 the minimum value

seen so far. Since each cut is an upper bound on the connectivity,

the estimates 𝑐 ′(𝑣) never decrease below 𝜆𝑝,𝑣 , and with high proba-

bility they are eventually tight for all nodes. A node 𝑣 is called done

if 𝑐 ′(𝑣) = 𝜆𝑝,𝑣 and undone otherwise.

In the beginning a node is done if and only if it is a leaf in 𝑇𝑖 .

(Imagine a tree with green leaves and red internal nodes.) Each

iteration of the Expanders-Guided Querying procedure is makes

a node done if its subtree contains at most

√
𝑛 undone nodes, with

high probability. (At each step, a red node becomes green if its

subtree contains at most

√
𝑛 red nodes.) How many iterations until

all nodes are done (green)? Using the fact that 𝑝 is a good pivot and

the depth of𝑇𝑖 is𝑂 (
√
𝑛), it can be shown that with high probability

𝑂 (log𝑛) iterations suffice.

Procedure Expanders-Guided Querying. For each value𝑤 = 2
𝑖′

for 𝑖 ′ = 0, 1, . . . , log𝑛 there is a sub-procedure that aims to find 𝐶𝑣

for all nodes 𝑣 ∈ 𝑉𝑖 such that 𝑤 ≤ 𝜆𝑝,𝑣 < 2𝑤 . Fix such a node 𝑣

that is undone; then deg(𝑣) ≥ 𝑐 ′(𝑣) > 𝜆𝑝,𝑣 ≥ 𝑤 . Thus, only nodes

of degree > 𝑤 are targeted by the sub-procedure so we call them

relevant.

In a preprocessing phase, for each 𝑤 = 2
𝑖′
, the algorithm pre-

pares an expander decomposition𝑉 = 𝐻𝑤
1
⊔ · · · ⊔𝐻𝑤

ℎ
of the entire

graph𝐺 with expansion parameter 𝜙𝑤 = 1/
√
𝑤 . Each component

𝐻𝑤
𝑗
is a 𝜙𝑤-expander, meaning that there is no sparse cut inside it,

and the total number of edges outside the expanders is bounded

1

2

∑
𝑗 𝛿 (𝐻𝑤

𝑗
) = 𝑂 ( |𝐸 (𝐺) | · 𝜙𝑤 · log3 𝑛). Efficient and simple algo-

rithms for computing this decomposition exist, e.g. [78].
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Complication 4: Lower bounding𝑤 .
The expander decomposition algorithm requires the parameter

𝜙 to be 𝑂 (1/log𝑛), and furthermore it must be 𝑂 (1/log3 𝑛) for
the outside edges bound to be meaningful.

When 𝜙𝑤 = 1/
√
𝑤 this is only an issue for very small 𝑤 (and

can be resolved by decreasing 𝜙𝑤 by a log
3 𝑛 factor). Our com-

binatorial �̃� (𝑛2
5

6 ) time algorithm, however, uses 𝜙𝑤 = 𝑛1/3/𝑤 ,

thus𝑤 must be at least Ω(𝑛1/3 log3 𝑛). For this reason, the very
first “refinement” step of the algorithm is to compute a 𝑘-partial

tree with 𝑘 = 𝑂 (𝑛1/3 log3 𝑛) using the𝑂 (𝑛𝑘2)-time algorithm of

Bhalgat et al. [15] (based on tree packings). This gives a partial

tree 𝑇 ′
in which two nodes 𝑢, 𝑣 are in separate super-nodes if

and only if their connectivity is at most 𝑘 . Afterwards, values

𝑤 < 𝑛1/3 log3 𝑛 can be ignored as pairs in the same super-node

𝑢, 𝑣 ∈ 𝑉𝑖 are guaranteed to have 𝜆𝑢,𝑣 > 𝑘 .

Let 𝐻𝑣 be the expander containing 𝑣 ; it could be of one of three

kinds, each kind is solved by a different method (even though nei-

ther 𝑣 nor 𝐻𝑣 is known to the algorithm). Let 𝐿 = 𝐶𝑣 ∩ 𝐻𝑣 be the

piece of 𝐻𝑣 that falls inside 𝑣 ’s subtree𝐶𝑣 and let 𝑅 = (𝑉 \𝐶𝑣) ∩𝐻𝑣

be the remainder of 𝐻𝑣 ; we call them the left and right parts of 𝐻 ,

respectively, see Figure 2.

𝒑 

𝒗 

𝑝 

𝜆𝑝,𝑣 

𝑻: 

𝑣 

𝑮: 
16 

11 

9 

6 

7 

4 

𝐻7 = 𝐻𝑣 

𝐻1 

𝐻4 

𝐻8 

𝐻2 

𝐻3 

𝐻5 

𝐻6 

𝐿 

𝑅 

𝑪𝒗 

𝑽 ∖ 𝑪𝒗 

𝑪𝒗 

Figure 2: An expander decomposition of the graph 𝐺 (on
left), and the (unknown) cut-equivalent tree 𝑇 rooted at
pivot 𝑝 (on right). The uniqueminimum (𝑝, 𝑣)-cut (𝐶𝑣,𝑉 \𝐶𝑣)
for an arbitrary node 𝑣 is depicted by a red curve in both
figures. The algorithm must find 𝐶𝑣 . The edges in 𝑇 are as-
sumed to be decreasing, thus𝐶𝑣 is exactly 𝑣 ’s subtree with an
edge of weight 𝜆𝑝,𝑣 above it. The expander decomposition
of 𝐺 is {𝐻𝑖 }8𝑖=1, and the expander containing 𝑣 is 𝐻𝑣 = 𝐻7.
The sets 𝐿 and 𝑅 are depicted by dashed green lines; at least
one of them must be small. The three kinds of expanders
can be seen: small (𝐻4, 𝐻8), large lefty (𝐻7, 𝐻3, 𝐻6), and large
righty (𝐻1, 𝐻2, 𝐻5). Since 𝐻𝑣 is a large lefty expander, the cut
𝐶𝑣 should be found when handling Case 3.

(1) Small: 𝐻𝑣 contains |𝐻𝑣 | < 𝑤/8 nodes.
(2) Large righty: |𝐻𝑣 | ≥ 𝑤/8 but contains only |𝐿 | ≤ 2

√
𝑤

relevant nodes from 𝐶𝑣 .

(3) Large lefty: |𝐻𝑣 | ≥ 𝑤/8 but contains only |𝑅 | ≤ 2

√
𝑤 rele-

vant nodes from 𝑉 \𝐶𝑣 .

A key observation is that 𝐻𝑣 cannot have both |𝐿 |, |𝑅 | > 2

√
𝑤

due to the fact that 𝐻𝑣 is a 1/
√
𝑤-expander: the cut (𝐿, 𝑅) in 𝐻𝑣 has

at most 𝜆𝑝,𝑣 < 2𝑤 edges and thus its volumemin(vol(𝐿), vol(𝑅)) ≥
min( |𝐿 |𝑤, |𝑅 |𝑤) cannot be more than 2𝑤

√
𝑤 . Therefore, a large

expander must either be lefty or righty; it cannot be balanced. This

analysis assumes that all nodes in 𝐿 and 𝑅 are relevant, but in gen-

eral they could contain many low-degree nodes. Handling this gap

is perhaps the most interesting complication of this paper, distin-

guishing it from recent applications of expander-based methods for

Global-Min-Cut where low-degree nodes are not an issue: if the

global minimum cut has value𝑤 then all nodes must have degree

≥ 𝑤 .

Complication 5: Low-degree nodes in expanders.
Our use of expander-decompositions is nonstandard but is rem-

iniscent of the way they are used in two recent algorithms for

Global-Min-Cut (which is equivalent to finding the smallest edge

in the Gomory–Hu Tree). The Kawarabayashi-Thorup [55] tech-

nique (as described by Saranurak [77]) takes each expander, trims

and shaves it to make sure it is exclusively on one side of the cut,

and then contracts it. It is shown that most edges remain inside

the expanders (and are therefore contracted away) despite the

trimmings. The algorithm of Li and Panigrahy [61] maintains

a set of candidates 𝑈 containing nodes on each side of the cut

and then uses the expanders to iteratively reduce its size by half.

Some nodes of each expander are kept in 𝑈 , and it is argued

that there must be expanders that are mostly on the left and

expanders that are mostly on the right.

Unfortunately, neither of these approaches seems to work when

searching for all minimum (𝑝, 𝑣)-cuts rather than for a single

global minimum cut. At their bottom, both rely on the following

observation: if 𝐿, the left side of 𝐻 , contains ≥ ℓ nodes that are

committed to 𝐻 , i.e., most of their edges stay inside 𝐻 , then the

volume of 𝐿 is Ω(ℓ𝑤). This is because when the global minimum

cut has value 𝑤 , all nodes must have degree (or capacitated

degree in the weighted case) at least𝑤 . However in our setting,

the minimum (𝑝, 𝑣)-cut 𝐶𝑣 does not have to be minimal for any

𝑢 ∈ 𝐶𝑣 except 𝑣 , and nodes on the left could have arbitrarily

small degrees (see Section 3.3 for an extreme example).

Consequently, the arguments in this paper are a little different

and only lead to𝑂 (
√
𝑤) savings rather than Ω(𝑤). If there was a

magical way to get rid of nodes of degree < 𝑤 , then a near-linear

time algorithm could follow. The 𝑘-partial tree (from Compli-

cation 4) indeed only leaves high-degree nodes in 𝑉𝑖 but the

contracted nodes 𝑉 (𝐺𝑖 ) \ 𝑉𝑖 could have arbitrary degrees. In-

stead, the algorithm and the analysis reason about the subsets

�̂�, �̂�, 𝑅 of 𝐻, 𝐿, 𝑅 containing high degree nodes, as well as 𝐻, 𝐿, 𝑅

themselves. With some care, the arguments presented in this

section can indeed be made to work despite the gap.

To handle Case 1 the algorithm simply asks a Max-Flow query

between 𝑝 and each relevant node 𝑢 in each small expander 𝐻 ,

i.e., |𝐻 | < 𝑤/8. Clearly, if 𝑣 happens to be in a small expander it

gets queried and its optimal cut is found with probability 1. The

slightly trickier part is arguing that only 𝑡 = 𝑂 (
√
𝑛) queries are

performed: any queried node 𝑢 has degree ≥ 𝑤 (since it is relevant)
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while a small expander only has < 𝑤/8 nodes, thus overall Ω(𝑡𝑤)
edges are outside the expanders. But the expander decomposition

guarantees that only 𝑂 ( |𝐸 |/
√
𝑤) edges are outside the expanders,

and thus 𝑡 = 𝑂 ( |𝐸 |/𝑤1.5); in the hardest case where𝑤 = Ω(𝑛) this
is 𝑡 = 𝑂 (

√
𝑛). The fact that the auxiliary graph 𝐺𝑖 is a multigraph

does not matter, because the expander decomposition is for𝐺 . This

is the only case in the algorithm that requires𝐺 to be simple;
10

the

argument is similar to [55, Observation 5].

Complication 6: Saving when𝑤 = 𝑜 (𝑛) using Nagamochi–
Ibaraki sparsification.
In the hardest case where𝑤 = Ω(𝑛) the number of queries 𝑡 =

𝑂 ( |𝐸 |/𝑤1.5) in Case 1 is already 𝑂 (
√
𝑛), but to get the 𝑛2.5+𝑜 (1)

bound in general, the algorithm utilizes two sparsifications. First,

it computes the expander-decomposition for each 𝑤 = 2
𝑖
on a

sparsifier𝐺𝑤 with |𝐸𝑤 | = 𝑂 (𝑛𝑤) rather than on𝐺 . The sparsifier

of Nagamochi and Ibaraki [67] with parameter𝑘 has𝑂 (𝑛𝑘) edges
and ensures that all cuts of value up to 𝑘 are preserved. This gives

a better upper bound on the number of edges outside expanders

and leads to 𝑡 = 𝑂 ( |𝐸𝑤 |/𝑤1.5) = 𝑂 (𝑛/
√
𝑤). Second, while the

number of queries exceeds

√
𝑛 when 𝑤 = 𝑜 (𝑛), the algorithm

saves by computing each of these queries in �̃� (𝑛𝑤) time rather

than 𝑂 (𝑚) by operating on a sparsifier of the same kind, but

now for the auxiliary graph 𝐺𝑖 , not 𝐺 . This does not introduce

error as the algorithm is only interested in cuts of value ≤ 2𝑤

and the total time becomes �̃� (𝑛2
√
𝑤) = �̃� (𝑛2.5).

Handling Case 2 involves a surprising Isolating-Cuts proce-

dure that can almost compute single-source all-sinks Max-Flow
with 𝑂 (log𝑛) queries to Max-Flow. It is a tricky but lightweight

reduction that only involves contracting subsets of nodes.

Lemma 1.7 ([61], see also Lemma 3.4). 11
Given a pivot 𝑝 and a

set of terminals 𝐶 , procedure Isolating-Cuts uses 𝑂 (log𝑛) Max-
Flow queries and returns an estimate (𝑝, 𝑣)-cut 𝑆𝑣 for each terminal

𝑣 ∈ 𝐶 such that: for all 𝑣 ∈ 𝐶 , if the minimum (𝑝, 𝑣)-cut 𝐶𝑣 satisfies

𝐶𝑣 ∩𝐶 = ∅ (i.e., this cut isolates terminal 𝑣) then 𝑆𝑣 = 𝐶𝑣 .

This procedure is quite strong in the sense that it solves hard

cases with �̃� (1) Max-Flow queries when other approaches require

Ω(𝑛) queries, for instance in cases where all subtrees are small (see

Section 3). But it is also weak in the sense that there is no way to

distinguish the correct answers from fake ones. Nodes with large

subtrees may never be isolated yet the procedure returns a (fake)

small cut that, if used by the algorithm, could lead to a wrong tree.

The canonical such example is discussed in Section 3 as it motivates

the use of an expanders-based approach.

The Isolating-Cuts procedure is handy in Case 2 where the

algorithm takes each expander 𝐻 with |𝐻 | ≥ 𝑤/8 (there are only
𝑂 (𝑛/𝑤) = 𝑂 (1) such expanders) and guesses that 𝐻 = 𝐻𝑣 and

10
Besides, of course, to speed up the Max-Flow queries: since all 𝜆𝑠,𝑡 ≤ 𝑛, the time

bound of Karger and Levine [53] is �̃� (𝑛2) .
11
In the late stages of writing this paper, we have encountered the very recent work

of Li and Panigrahy (FOCS 2020) and found out that they have also discovered this

simple yet powerful procedure, naming it Isolating Cuts Lemma [61, Theorem II.2].

We have kept our proof in the full version, as it has a different flavor. The usage is

similar but different: there, it deterministically finds the global minimum cut when it

is unbalanced (has a small side), while here it finds many small subtrees at once.

that it is a large righty expander, i.e., |𝐿 | ≤ 2

√
𝑤 . In this case, if

indeed 𝑣 ∈ 𝐻 , it is possible to pick 𝑡 = �̃� (
√
𝑤) sets of terminals

𝐶1, . . . ,𝐶𝑡 such that at least one of them isolates 𝑣 : for each 𝑖 ′ ∈ [𝑡]
include each node 𝑢 ∈ 𝐻 into 𝐶𝑖′ with probability 1/

√
𝑤 . For a

set 𝐶𝑖′ to isolate 𝑣 , it must (1) pick 𝑣 and (2) not pick any other

node from 𝐿, which happens with probability Ω(1/
√
𝑤); therefore,

with high probability at least one of the sets 𝐶1, . . . ,𝐶𝑡 isolates

𝑣 . The Isolating-Cuts procedure is called for each 𝐶𝑖′ , getting

new estimates for all 𝑣 ∈ 𝑉𝑖 ; a total of �̃� (
√
𝑤) queries for all large

expanders. The intuition is that a large righty expander helps the

algorithm pick a good set of terminals that isolates 𝑣 , a highly

nontrivial task if 𝑣 ’s subtree is large, by focusing the attention on

a component that (presumably) only contains few nodes from the

subtree. Indeed, the Isolating-Cuts procedure is not as helpful

in Case 3 where 𝐻𝑣 is a large lefty expander and |𝐿 | can be up to

𝑛, since randomly chosen terminals from 𝐻 are unlikely to leave 𝑣

isolated.

To handle the final Case 3, the algorithm identifies the set

Top𝑘 (𝐻 ) of the top 𝑘 = 3

√
𝑛 + 1 nodes in terms of their 𝑐 ′(𝑢)

estimate for each large expander 𝐻 , and performs a Max-Flow
query for each one. Since there are only 𝑂 (𝑛/𝑤) = 𝑂 (1) large
expanders, only 𝑂 (

√
𝑛) queries are performed. Suppose that 𝑣 is

indeed in a large lefty expander 𝐻𝑣 with |𝑅 | ≤ 2

√
𝑤 . The argument

is that 𝑣 must be among the queried nodes unless there are >
√
𝑛

undone nodes 𝑢 ∈ 𝐶𝑣 in its subtree.
12

This is because any done

node 𝑢 ∈ 𝐶𝑣 has 𝑐 ′(𝑢) = 𝜆𝑝,𝑢 ≤ 𝜆𝑝,𝑣 , since 𝐶𝑣 is a valid (𝑝,𝑢)-
cut of value 𝜆𝑝,𝑣 , while 𝜆𝑝,𝑣 < 𝑐 ′(𝑣) (otherwise 𝑣 is already done).

Therefore, any node 𝑢 ∈ 𝐻𝑣 with 𝑐 ′(𝑢) ≥ 𝑐 ′(𝑣) can either be in

𝑅 ⊆ 𝑉 \𝐶𝑣 or it could be an undone node in 𝐿 ⊆ 𝐶𝑣 . There are at

most 2

√
𝑤 +

√
𝑛 such nodes in total; thus 𝑣 ∈ Top𝑘 (𝐻𝑣). Observe

that this argument does not work in Case 2 where 𝐻𝑣 is a large

righty expander and |𝑅 | can be up to 𝑛, since the nodes in 𝑅 might

have larger connectivity than 𝑣 .

Finally, if 𝑣 happens to be in a large lefty expander when its

subtree contains >
√
𝑛 undone nodes, then the algorithm is not

guaranteed to find 𝐶𝑣 in this iteration of procedure Expanders-

Guided Querying. (𝑣 is a red node with many red nodes in its

subtree.) Soon enough, within 𝑂 (log𝑛) iterations, the algorithm
gets to a point where most of 𝑣 ’s subtree has become done and then

𝐶𝑣 is found. (The green from the leaves quickly “infects” the entire

tree.)

1.4 Related Work
Harder settings. On the hardness side, the only related lower

bounds are for All-Pairs Max-Flow in the harder settings of directed

graphs [2, 6, 58] or undirected graphs with node weights [4], where

Gomory–Hu trees cannot even exist, because the Ω(𝑛2) minimum

cuts might all be different [47] (see therein also an interesting

exposition of certain false claims made earlier). In particular, SETH

gives an 𝑛3−𝑜 (1) lower bound for weighted sparse directed graphs

[58] and the 4-Clique conjecture gives an 𝑛𝜔+1−𝑜 (1)
lower bound

for unweighted dense directed graphs [2]. Nontrivial algorithms are

known for unweighted directed graphs, with time𝑂 (𝑚𝜔 ) [23] (fast
matrix multiplication techniques have only been helpful in directed

graphs so far), and also for special graph classes such as planar

12
Recall that a node 𝑢 is undone if 𝑐′ (𝑢) > 𝜆𝑝,𝑢 and done if 𝑐′ (𝑢) = 𝜆𝑝,𝑢 .
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[59] and bounded-treewidth [3, 10]. Moreover, algorithms exist for

the case we only care about pairs of nodes whose Max-Flow value

is bounded by small 𝑘 [2, 15, 34]. Generalizations of the Gomory–

Hu tree to other cut requirements such as multiway cuts or cuts

between groups of nodes have also been studied [24, 29, 43–46].

Approximations. Coming up with faster constructions of a

Gomory–Hu tree at the cost of approximations has also been of in-

terest, see e.g. [73], with only few successful approaches so far. One

approach is to sparsify the graph into𝑚′ = �̃� (𝜀−2𝑛) edges in ran-

domized �̃� (𝑚) time using the algorithm of Benczur and Karger [18]

(or its generalizations), and then apply an exact Gomory–Hu tree

algorithm on the sparse (but weighted) graph. Unfortunately, even

when aiming for an approximate tree, each query throughout the

Gomory–Hu (or the new) algorithm must be exact (see [3, 73]).

Therefore, with currentMax-Flow algorithms, a (1+𝜀)-approximate

Gomory–Hu tree of unweighted graphs can be constructed in

�̃� (𝜀−2𝑛2.5) time. Using a different approach that produces a flow-

equivalent tree (rather than a cut-equivalent tree, meaning that

the minimum cuts in the tree, viewed as node bipartitions, might

not correspond to minimum cuts in the graph), one can design a

(1 + 𝜀)-All-Pairs Max-Flow algorithm that runs in time �̃� (𝑛2) [3].
Finally, one can use Räcke’s approach to compute a cut-sparsifier

tree [75], which has a stronger requirement (it approximates all

cuts of𝐺) but can only give polylogarithmic approximation factors.

Its fastest version runs in almost-linear time𝑚1+𝑜 (1)
and achieves

𝑂 (log4 𝑛)-approximation [76].

Applications and experimental studies. Cut-equivalent trees have

appeared in countless application domains. One example is the

pioneering work of Wu and Leahy [84] in 1993 on image segmen-

tation using Gomory–Hu tree that has evolved into the graph cuts

paradigm in computer vision. Another example is in telecommu-

nications where Hu [49] showed that the Gomory–Hu tree is the

optimal solution to theminimum communication spanning tree prob-

lem; consequently there is interest in characterizing which graphs

have a Gomory–Hu tree that is a subgraph [57, 69]. In mathematical

optimization, a seminal paper of Padberg and Rao [72] uses the

Gomory–Hu tree to find odd cuts that are useful for the 𝑏-matching

problem (and that have been used in a breakthrough NC algorithm

for perfect matching in planar graphs [9]). The question of how

the Gomory–Hu tree changes with the graph has arisen in appli-

cations such as energy and finance and has been investigated, e.g.

[12, 42, 74], starting with Elmaghraby in 1964 [30] and up until

very recently [13]. Motivated by the need of a scalable algorithm

for Gomory–Hu Tree, Akiba et al. [7] have recently introduced

a few heuristic ideas for getting a subcubic complexity in social

networks and web graphs. Earlier, Goldberg and Tsioutsiouliklis

[37] conducted an experimental comparison of the Gomory–Hu

and Gusfield’s algorithms.

Expander Decompositions. A key ingredient of our Gomory–

Hu tree algorithm is an expander-decomposition of the graph

[25, 51, 70, 71, 78, 80]. Such decompositions have led to several

breakthroughs in algorithms for basic problems in the past decade,

e.g. [56, 68, 81]. A typical application solves the problem on each

expander and then somehow combines the answers, treating each

expander as a node. The clique-like nature of each expander and the

sparsity of the outer graph lead to gains in efficiency. This approach

does not seem helpful for Gomory–Hu tree since there may not

be any connection between the tree and the decomposition. The

application in this paper is more reminiscent of recent deterministic

Global-Min-Cut algorithms [55, 61, 77], but is also different from

those (see Complication 5 in Section 1.3).

2 PRELIMINARIES
2.1 General Notations
We will mostly work with unweighted graphs 𝐺 = (𝑉 , 𝐸), but
throughout our algorithms we might contract vertices and end up

with auxiliary graphs 𝐺 = (𝑉 , 𝐸, 𝑐) that are weighted 𝑐 : 𝐸 → [𝑈 ],
i.e. with capacities in [𝑈 ] = {1, . . . ,𝑈 } on the edges. All graphs

in this paper will be undirected. We denote by deg(𝑣) and cdeg(𝑣)
the number of edges and the total capacity on edges incident to

𝑣 ∈ 𝑉 , respectively. We treat cuts as subsets 𝑆 ⊂ 𝑉 , or partitions

(𝑆,𝑉 \ 𝑆). The value of a cut 𝑆 is defined as 𝛿 (𝑆) = |{{𝑢, 𝑣} ∈
𝐸 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 \ 𝑆}|, and if two subsets 𝑆,𝑇 ⊆ 𝑉 are given,

then 𝛿 (𝑆,𝑇 ) = |{{𝑢, 𝑣} ∈ 𝐸 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 }|. When the graph is

weighted we define the values as 𝛿 (𝑆) = ∑
{𝑢,𝑣 }∈𝐸,𝑢∈𝑆,𝑣∈𝑉 \𝑆 𝑐 (𝑢, 𝑣)

and 𝛿 (𝑆,𝑇 ) = ∑
{𝑢,𝑣 }∈𝐸,𝑢∈𝑆,𝑣∈𝑇 𝑐 (𝑢, 𝑣). For a pair 𝑢, 𝑣 ∈ 𝑉 (𝐺), we

denote by 𝜆𝑢,𝑣 orMax-Flow(𝑢, 𝑣) the value of a minimum (𝑢, 𝑣)-cut,
𝛿 (𝑆).

2.2 Max Flow Algorithms: Unweighted,
Weighted, and Combinatorial

We use as a black box known algorithms for Max-Flow to get a

minimum (𝑢, 𝑣)-cut for a given pair 𝑢, 𝑣 . Throughout the paper,

three existing algorithms are used. First, if the flow size is bounded,

the Karger-Levine algorithm [53] that runs in time �̃� (𝑚 + 𝑛𝐹 )
where 𝐹 is the size of the maximum flow is particularly fast. Second,

for larger flows we use the very recent algorithm [82] that runs

in time �̃� (𝑚 + 𝑛1.5). All tools used in this paper are considered

combinatorial with [82] being the only exception, as it uses interior-

point methods from continuous optimization. Unlike other non-

combinatorial methods such as fast matrix multiplication, these

techniques tend to be fast in practice. Still, if one is interested in

a purely combinatorial algorithm one can replace this bound for

weighted graphs with the Goldberg-Rao algorithm [36] that has

running time �̃� (𝑚𝑖𝑛(𝑛2/3,𝑚1/2)𝑚 log𝑈 ). The resulting algorithm
is slower but still subcubic.

2.3 Gomory–Hu’s Algorithm and Partial Trees
First, we give some general definitions that many algorithms that

are related to Gomory–Hu trees use.

Partition Trees. A partition tree 𝑇 of a graph 𝐺 = (𝑉 , 𝐸) is a
tree whose nodes 1, . . . , 𝑙 are super-nodes, which means that each

node 𝑖 is associated with a subset 𝑉𝑖 ⊆ 𝑉 ; and these super-nodes

form a disjoint partition 𝑉 = 𝑉1 ⊔ · · · ⊔ 𝑉𝑙 . An auxiliary graph

𝐺𝑖 is constructed from 𝐺 by merging nodes that lie in the same

connected component of 𝑇 \ {𝑖}. For example, if the current tree

is a path on super-nodes 1, . . . , 𝑙 , then 𝐺𝑖 is obtained from 𝐺 by

merging𝑉1 ∪ · · · ∪𝑉𝑖−1 into one contracted node and𝑉𝑖+1 ∪ · · · ∪𝑉𝑙
into another contracted node. We will use the notations 𝑛𝑖 := |𝑉𝑖 |,
𝑚𝑖 := |𝐸 (𝐺𝑖 ) |, and 𝑛′

𝑖
:= |𝑉 (𝐺𝑖 ) |. Note that 𝑛′𝑖 ≥ 𝑛𝑖 since 𝑉 (𝐺𝑖 )

1731



STOC ’21, June 21–25, 2021, Virtual, Italy Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi

contains 𝑉𝑖 as well as some other contracted nodes, with 𝑛′
𝑖
= 𝑛𝑖

only if the tree is a single node. The following is a brief description

of the classical Gomory–Hu algorithm [38] (see Figure 3).

The Gomory–Hu algorithm. This algorithm constructs a cut-

equivalent tree T in iterations. Initially, T is a single node as-

sociated with 𝑉 (the node set of 𝐺), and the execution maintains

the invariant that T is a partition tree of 𝑉 . At each iteration, the

algorithm picks arbitrarily two graph nodes 𝑠, 𝑡 that lie in the same

tree super-node 𝑖 , i.e., 𝑠, 𝑡 ∈ 𝑉𝑖 . The algorithm then constructs from

𝐺 the auxiliary graph 𝐺𝑖 and invokes a Max-Flow algorithm to

compute in this 𝐺𝑖 a minimum (𝑠, 𝑡)-cut, denoted 𝐶 ′
. The submod-

ularity of cuts ensures that this cut is also a minimum (𝑠, 𝑡)-cut
in the original graph 𝐺 , and it clearly induces a disjoint partition

𝑉𝑖 = 𝑆 ⊔𝑇 with 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . The algorithm then modifies T by

splitting super-node 𝑖 into two super-nodes, one associated with 𝑆

and one with 𝑇 , that are connected by an edge whose weight is the

value of the cut 𝐶 ′
, and further connecting each neighbor of 𝑖 in T

to either 𝑆 or 𝑇 (viewed as super-nodes), depending on its side in

the minimum (𝑠, 𝑡)-cut 𝐶 ′
(more precisely, neighbor 𝑗 is connected

to the side containing 𝑉𝑗 ).

The algorithm performs these iterations until all super-nodes

are singletons, which happens after 𝑛 − 1 iteration. Then, T is a

weighted tree with effectively the same node set as 𝐺 . It can be

shown [38] that for every 𝑠, 𝑡 ∈ 𝑉 , the minimum (𝑠, 𝑡)-cut in T ,

viewed as a bipartition of 𝑉 , is also a minimum (𝑠, 𝑡)-cut in 𝐺 , and

of the same cut value. We stress that this property holds regardless

of the choice made at each step of two nodes 𝑠 ≠ 𝑡 ∈ 𝑉𝑖 . A GH-
Equivalent Partition Tree is a partition tree that can be obtained by

a truncated execution of the Gomory–Hu algorithm, in the sense

that there is a sequence of choices for the pairs 𝑠 ≠ 𝑡 ∈ 𝑉𝑖 that

can lead to such a tree. The following simple lemma describes the

flexibility in designing cut-equivalent tree algorithms based on the

Gomory–Hu framework.

Lemma 2.1. Given a GH-Equivalent Partition Tree 𝑇 ′
of an input

graph 𝐺 , and a cut-equivalent tree 𝑇𝑖 of each auxiliary graph 𝐺𝑖 for

the super-nodes𝑉𝑖 of𝑇
′
, it is possible to construct a full cut-equivalent

tree 𝑇 of 𝐺 in linear time.

Proof. In a preprocessing step, for every super node 𝑉𝑖 in 𝑇 ′

and every contracted node 𝑞 ∈ 𝑉 (𝐺𝑖 ) \ 𝑉𝑖 , save a pointer to the

super node𝑉𝑗 ⊆ 𝑞 that is adjacent to𝑉𝑖 in𝑇
′
. Now, for every super-

node 𝑉𝑖 , identify each contracted node 𝑞 ∈ 𝑉 (𝐺𝑖 ) \ 𝑉𝑖 with the

super-node it contains that is adjacent to 𝑉𝑖 in 𝑇
′
, and connect the

nodes of 𝑉𝑖 to the super-nodes they are adjacent to (if any). Finally,

if a node 𝑢 ∈ 𝑉𝑖 is connected to a super-node 𝑉𝑗 , and a node 𝑣 ∈ 𝑉𝑗
is connected to 𝑉𝑖 , remove these connections and connect 𝑢 to 𝑣

directly, and call the result 𝑇 . Observe that 𝑇 must be a tree.

To see why 𝑇 is a correct cut-equivalent tree of𝐺 , observe that

there exists a simulated Gomory–Hu execution that results in 𝑇 .

Given the GH-Equivalent Partition Tree 𝑇 ′
, pick pairs of nodes

from 𝑉𝑖 and cuts according to 𝑇𝑖 . This is guaranteed to produce a

tree 𝑇𝑖 whose projection on 𝑉𝑖 is identical to 𝑇𝑖 , while the subtrees

adjacent to 𝑉𝑖 in 𝑇 are connected to the same nodes of 𝑉𝑖 as their

contracted counterparts in 𝑇𝑖 . Applying this simulated execution

to all super-nodes concludes the proof. □

Next, we discuss a few kinds of (GH-Equivalent) partition trees.

2.3.1 Partial Trees for Subsets. A partial tree for a subset𝑄 ⊆ 𝑉 (𝐺)
is a partition tree𝑇 of𝐺 such that each super-node𝑉𝑖 in𝑇 contains

exactly one node from 𝑄 , and for every two nodes 𝑎, 𝑏 ∈ 𝑄 , the

minimum cut in 𝑇 between the super-nodes containing them 𝐴, 𝐵

is a minimum (𝑎, 𝑏)-cut in 𝐺 . It is folklore that for every subset

𝑄 ⊆ 𝑉 , a partial tree for𝑄 can be computed by |𝑄 | − 1 applications

of Max-Flow.

Lemma 2.2 (see e.g. [39]). Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐) and a sub-
set 𝑄 ⊆ 𝑉 , it is possible to compute a partial tree for 𝑄 in time

𝑂 ( |𝑄 |𝑇 (𝑚)), where 𝑇 (𝑚) is the time for solving (single pair) Max-
Flow.

This lemma follows by running a Gomory–Hu execution, but

always picking pairs from 𝑄 (thus making 𝑇 a GH-Equivalent Par-
tition Tree).

2.3.2 𝑘-Partial Trees. A 𝑘-partial tree, formally defined below, can

also be thought of as the result of contracting all edges of weight

greater than 𝑘 in a cut-equivalent tree of 𝐺 . Such a tree can obvi-

ously be constructed using the Gomory–Hu algorithm, but as stated

below (in Lemma 2.4), faster algorithms were designed in [15, 41],

see also [73, Theorem 3]. It is known (see [4, Lemma 2.3]) that such

a tree is a GH-Equivalent Partition Tree.

Definition 2.3 (𝑘-Partial Tree [41]). A 𝑘-partial tree of a graph

𝐺 = (𝑉 , 𝐸) is a weighted tree on 𝑙 ≤ |𝑉 | super-nodes constituting a
partition 𝑉 = 𝑉1 ⊔ · · · ⊔ 𝑉𝑙 , with the following property: For every

two nodes 𝑠, 𝑡 ∈ 𝑉 whose minimum-cut value in𝐺 is at most 𝑘 , 𝑠 and

𝑡 lie in different super-nodes 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 , such that the minimum

(𝑆,𝑇 )-cut in the tree defines a bipartition of 𝑉 which is a minimum

(𝑠, 𝑡)-cut in 𝐺 and has the same value.

Lemma 2.4 ([15]). There is an algorithm that given an undirected

graph with 𝑛 nodes and𝑚 edges with unit edge-capacities and an

integer 𝑘 ∈ [𝑛], constructs a 𝑘-partial tree in time min{�̃� (𝑛𝑘2),
�̃� (𝑚𝑘)}.

2.3.3 A Basic Property of the Gomory–Hu Tree.

Lemma 2.5. Given a graph 𝐺 = (𝑉 , 𝐸) and a tree 𝑇 on the same

set of nodes, if for every edge 𝑢𝑣 ∈ 𝑇 the cut (𝑆𝑢 , 𝑆𝑣) resulting from
removing 𝑢𝑣 in 𝑇 is a minimum cut in 𝐺 , then 𝑇 is a cut-equivalent

tree.

Proof. The proof follows by simulating a Gomory–Hu tree exe-

cution with node pairs and minimum cuts taken according to the

edges in 𝑇 . □

2.4 Nagamochi–Ibaraki Sparsification
We use the sparsification method by Nagamochi and Ibaraki [67],

who showed that for any graph 𝐺 it is possible to find a subgraph

𝐻 with at most 𝑘 (𝑛 − 1) edges, such that 𝐻 contains all edges

crossing cuts of value 𝑘 or less. It follows that if a cut has value

at most 𝑘 − 1 in 𝐺 then it has the same value in 𝐻 , and if a cut

has value at least 𝑘 in 𝐺 then it also has value at least 𝑘 in 𝐻 . The

authors [67] gave an algorithm that performs this sparsification

in 𝑂 (𝑚) time on unweighted graphs, independent of 𝑘 . They also

gave a sparsification algorithm for weighted graphs, with an𝑂 (𝑚 +
𝑛 log𝑛) running time [66]. In weighted graphs, the sparsification is
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𝑉𝑖 

𝑡 

𝑠 𝑠 

𝑡 
Minimum-Cut  
between 𝑠 and 𝑡 

𝑆 

𝑇 

Figure 3: Illustration of the construction of T . Left: T right before the partition of the super-node 𝑉𝑖 . Middle: after the parti-
tioning of 𝑉𝑖 . Right: T as it unfolds after the Gomory–Hu algorithm finishes.

defined by equating an edge of weight𝑤 with a set of𝑤 unweighted

(parallel) edges with the same endpoints.

2.5 Latest Cuts
Introduced by Gabow [31], a latest minimum (𝑠, 𝑡)-cut (or aminimal

minimum (𝑠, 𝑡)-cut, in some literature) is a minimum (𝑠, 𝑡)-cut
(𝑆𝑠 , 𝑆𝑡 = 𝑉 \ 𝑆𝑠 ) such that no strict subset of 𝑆𝑡 is a minimum

(𝑠, 𝑡)-cut. It is known that latest minimum cuts are unique, and can

be found in the same running time of any algorithm that outputs

the maximum network flow between the pair, by finding all nodes

that can reach 𝑡 in the residual graph. In particular, all upper bound

stated in Section 2.2 above forMax-Flow also hold for finding the

latest minimum (𝑠, 𝑡)-cut.
We will use the following properties of cuts.

Fact 2.6 (Submodularity of cuts). For every two subsets of nodes

𝐴, 𝐵 ⊆ 𝑉 , it holds that 𝛿 (𝐴) + 𝛿 (𝐵) ≥ 𝛿 (𝐴 ∪ 𝐵) + 𝛿 (𝐴 ∩ 𝐵).

Fact 2.7 (Posimodularity of cuts). For every two subsets of nodes

𝐴, 𝐵 ⊆ 𝑉 , it holds that 𝛿 (𝐴) + 𝛿 (𝐵) ≥ 𝛿 (𝐴 \ 𝐵) + 𝛿 (𝐵 \𝐴).

Lemma 2.8. Let 𝐺 be any graph and 𝑝 be any node. There is a cut-

equivalent tree that contains all the latest minimum cuts with respect

to 𝑝 .

Proof. This follows because all latest minimum cuts with re-

spect to 𝑝 form a laminar family, by Fact 2.6. □

Lemma 2.9. If 𝐴, 𝐵 are minimum (𝑝, 𝑎)-cut and minimum (𝑝,𝑏)-
cut, respectively, and 𝑏 ∈ 𝐴 then 𝐴 ∪ 𝐵 is a minimum cut for 𝑎.

Proof. Considering Fact 2.6, it only remains to show that 𝛿 (𝐵)−
𝛿 (𝐴 ∩ 𝐵) ≤ 0. But this is immediate, as 𝑏 is in both sets, and 𝐵 is a

minimum cut for 𝑏. □

Lemma 2.10. If 𝐴, 𝐵 are minimum (𝑝, 𝑎)-cut and minimum (𝑝, 𝑏)-
cut, respectively, and 𝑎 ∉ 𝐵,𝑏 ∉ 𝐴 then 𝐴 \ 𝐵 is a minimum cut for

𝑎.

Proof. Considering Fact 2.7, it only remains to show that 𝛿 (𝐵)−
𝛿 (𝐵 \𝐴) ≤ 0. But this is immediate, as 𝑏 is in both sets, and 𝐵 is a

minimum cut for 𝑏. □

2.6 Expander Decomposition
We mostly follow notations and definition from [78]. Let vol𝐺 (𝐶)
=

∑
𝑣∈𝐶 cdeg𝐺 (𝑣) be the volume of 𝐶 ⊆ 𝑉 , where subscripts in-

dicate what graph we are using, and are omitted if it is clear

from the context. The conductance of a cut 𝑆 in 𝐺 is Φ𝐺 (𝑆) =
𝛿 (𝑆)

min(vol𝐺 (𝑆),vol𝐺 (𝑉 \𝑆)) . The expansion of a graph 𝐺 is Φ𝐺 =

min𝑆⊂𝑉 Φ𝐺 (𝑆). If 𝐺 is a singleton, we define Φ𝐺 = 1. Let 𝐺 [𝑆] be
the subgraph induced by 𝑆 ⊂ 𝑉 , and we denote𝐺{𝑆} as the induced
subgraph 𝐺 [𝑆] but with added self-loops 𝑒 = (𝑣, 𝑣) for each edge

𝑒 ′ = (𝑣,𝑢) where 𝑣 ∈ 𝑆,𝑢 ∉ 𝑆 (where each self-loop contributes 1

to the degree of a node), so that any node in 𝑆 has the same degree

as its degree in𝐺 . Observe that for any 𝑆 ⊂ 𝑉 , Φ𝐺 [𝑆 ] ≥ Φ𝐺 {𝑆 } , be-
cause the self-loops increase the volumes but not the values of cuts.

We say a graph𝐺 is a 𝜙 expander if Φ𝐺 ≥ 𝜙 , and we call a partition

𝐻1, . . . , 𝐻ℎ of 𝑉 a 𝜙 expander decomposition if min𝑖 Φ𝐺 [𝑉𝑖 ] ≥ 𝜙 .

Theorem 2.11 (Theorem 1.2 in [78]). Given a graph 𝐺 = (𝑉 , 𝐸) of
𝑚 edges and a parameter 𝜙 , there is a randomized algorithm that with

high probability finds a partitioning of 𝑉 into 𝑉1, . . . ,𝑉𝑘 such that

∀𝑖 : Φ𝐺 [𝑉𝑖 ] ≥ 𝜙 and

∑
𝑖 𝛿 (𝑉𝑖 ) = 𝑂 (𝜙𝑚 log

3𝑚). In fact, the algorithm
has a stronger guarantee that ∀𝑖 : Φ𝐺 {𝑉𝑖 } ≥ 𝜙 . The running time of

the algorithm is 𝑂 (𝑚 log
4𝑚/𝜙).

3 MOTIVATING EXAMPLES AND THE
ISOLATING-CUTS PROCEDURE

This section attempts to explain the thought process that has led to

the introduction of two new tools into the context of Gomory–Hu

tree algorithms: the Isolating-Cuts and the Expanders-Guided

Querying procedures, as well as to give more details about the

former while deferring the latter to the full version. Let 𝐺 be a

graph and 𝑇 be its cut-equivalent tree. As described in Section 1.3,

previous techniques (Gomory–Hu recursion, partial trees, and ran-

domized pivot selection) can reach the point that𝑇 , when rooted at

a designated pivot 𝑝 , has small sublinear depth. This suggests that

a path-like 𝑇 is not the hardest to construct since its size must be

sublinear. It is natural to wonder if the other extreme of star-like 𝑇

is also easy, or perhaps it can lead to a hardness reduction.
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The most extreme case is when 𝑇 is precisely a star with 𝑝 at

the center and all other nodes as leaves. Constructing this tree is

easy because the minimum (𝑝, 𝑣)-cut for all 𝑣 ∈ 𝑉 is the singleton

({𝑣},𝑉 \ {𝑣}) and its value is deg(𝑣). (However, verifying that the

star is the correct tree is perhaps as hard as the general problem.)

The following two examples show that by changing the star

slightly one reaches challenging scenarios that require new tools.

3.1 Many Small Subtrees
Consider a graph whose cut-equivalent tree 𝑇 is a “star of triples

graphs” as depicted in Figure 4. In this example,𝑇 is simply a star on

𝑛 nodes where each leaf is connected to additional two leaves, and

so altogether the number of nodes is 3𝑛 + 1. Call the center node 𝑝 ,

the inner nodes 𝐿1 = {𝑢1, . . . , 𝑢𝑛}, and the leaves 𝐿2. Assuming that

𝑝 and 𝐿1 are given in advance, how fast can we identify which pair

of leaves belongs to which inner node in the cut-equivalent tree

(thus constructing 𝑇 )? Note that it can be done by simply asking

aMax-Flow query between 𝑝 and each node 𝑢 ∈ 𝐿1, but can it be

done faster than Ω(𝑛) applications of Max-Flow?13

𝑝 

𝐿1 

𝐿2 

Figure 4: The cut-equivalent tree 𝑇 .

It turns out that the answer is yes! A simple but surprising algo-

rithm computes𝑇 using only �̃� (1) queries to aMax-Flow algorithm

(on a weighted graph).

The Algorithm.

(1) Add edges of very large capacity 𝑈 := |𝐸 |2 from 𝑝 to ev-

ery node in 𝐿1. Denote the new graph by 𝐺𝑚 and its cut-

equivalent tree by 𝑇𝑚 .

(2) Repeat 10 log
2 𝑛 times:

(a) In 𝐺𝑚 split 𝑝 to 𝑝1 and 𝑝2, connecting the (previously

connected to 𝑝) newly added edges to 𝑝1 or 𝑝2 with prob-

ability 1/2, and the rest of the edges arbitrarily. Then add

an edge of weight 𝑈 2
between 𝑝1 and 𝑝2. Denote the new

graph 𝐺ℎ and its cut-equivalent by 𝑇ℎ .

(b) Find the minimum (𝑝1, 𝑝2)-cut in 𝐺ℎ .

(3) Construct the new tree 𝑇 ′
as follows. For every node 𝑢 ∈ 𝐿1

connect it in𝑇 ′
to the leaves in 𝐿2 that went to the same side

as 𝑢 in all repetitions.

(4) If any node in 𝐿1 has a number of leaves that is different

than two, output “failure”, otherwise report 𝑇 ′
.

Why does it work? Consider 𝐺𝑚,𝑇𝑚,𝐺ℎ,𝐺ℎ in one iteration.

Observation 3.1. The tree𝑇𝑚 is identical to𝑇 , except for the weights

of edges adjacent to 𝑝 .

13
Readers familiar with All-Pairs Shortest-Path-hardness results may recall that trian-

gle identification is at the core of most reductions, making this example appealing.

For every edge {𝑢, 𝑣} in𝑇 , consider two cases. If 𝑢 or 𝑣 is 𝑝 , then

the new edge increases all (𝑢, 𝑣)-cuts by at least 𝑈 , and since the

old cut increases by exactly 𝑈 , it is a minimum cut in 𝑇𝑚 as well.

Otherwise, if neither of 𝑢 nor 𝑣 is 𝑝 , then the minimum (𝑢, 𝑣)-cut
is still the same because the new edges did not affect this cut, and

can only increase the weights of other cuts. Thus, the minimum

(𝑢, 𝑣)-cut in each case is the same in 𝑇 and 𝑇𝑚 .

Observation 3.2. There is an edge between 𝑝1 and 𝑝2 in 𝑇ℎ . If it is

contracted 𝑇ℎ becomes identical to 𝑇𝑚 .

This is true because 𝑝1 and 𝑝2 are on the same side of every min-

imum (𝑎, 𝑏)-cut for any pair {𝑎, 𝑏} ≠ {𝑝1, 𝑝2} because the weight
of the edge between them is larger than the sum of all others.

The following is the key claim in this section.

Claim 3.3. The minimum (𝑝1, 𝑝2)-cut in 𝐺ℎ sends each pair of

siblings in 𝐿2 to the same side as their parent in 𝐿1.

Proof. Let 𝑢1, 𝑢2 ∈ 𝐿2 be a pair of siblings whose father is

𝑢 ∈ 𝐿1. By Observations 3.1 and 3.2, 𝑢1 and 𝑢2 are 𝑢’s neighbors

in 𝑇ℎ . Consider 𝑇ℎ after the removal of the edge {𝑝1, 𝑝2}: the two
resulting subtrees are the two sides of the minimum (𝑝1, 𝑝2)-cut in
𝐺ℎ . Since 𝑢,𝑢1, 𝑢2 are connected in 𝑇ℎ , it follows that they must be

on the same side of the cut. □

Hence, every node 𝑢 ∈ 𝐿1 can know its children with high

probability by seeing which two nodes in 𝐿2 are always sent with

it to the same side of the minimum (𝑝1, 𝑝2)-cuts throughout all
iterations.

3.2 The Isolating-Cuts Procedure
The above algorithm can be generalized to obtain the Isolating-

Cuts procedure that is a key ingredient of the new algorithm.

Notably, the added weights are not necessary (can be replaced with

contractions) nor is the randomness (can be replaced with deter-

ministic separating choices). Let𝑀𝐹 (𝑁,𝑀, 𝐹 ) be an upper bound

onMax-Flow in graphs with 𝑁 nodes,𝑀 edges, and where the flow

size is bounded by 𝐹 . We will utilize the following statement that

essentially follows from the very recent work of Li and Panigrahy

[61, Theorem II.2] for Global-Min-Cut. We provide another proof

in the full version both for completeness and because it could be of

interest as it exploits the structure of the Gomory–Hu tree (as we

did above) instead of using the submodularity of cuts directly. In

particular, we use ideas similar to Lemma 2.5.

Lemma 3.4 (The Isolating-Cuts Procedure). Given an undirected

graph 𝐺 = (𝑉 , 𝐸, 𝑐) on 𝑛 nodes and 𝑚 total edges, a pivot node

𝑝 ∈ 𝑉 , and a set of connected vertices𝐶 ⊆ 𝑉 , let (𝐶𝑣,𝑉 \𝐶𝑣) where
𝑣 ∈ 𝐶𝑣, 𝑝 ∈ 𝑉 \𝐶𝑣 be the latest minimum (𝑝, 𝑣)-cut for each 𝑣 ∈ 𝐶 .

There is a deterministic 𝑂 (𝑀𝐹 (𝑛,𝑚, 𝑐 (𝐸)) · log𝑛)-time algorithm

that returns |𝐶 | disjoint sets {𝐶 ′
𝑣}𝑣∈𝐶 such that for all 𝑣 ∈ 𝐶 : if

𝐶𝑣 ∩𝐶 = {𝑣} then 𝐶 ′
𝑣 = 𝐶𝑣 .

3.3 A Single Large Subtree
To solve the previous example, we have exploited the fact that the

identity of the nodes in 𝐿1 is known to us in advance. However,

by picking each node to be “connected” (and added to the set 𝐶)

with probability 1/2 there is a 1/8 chance that a parent 𝑢 ∈ 𝐿1
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is in 𝐶 while its two children 𝑢1, 𝑢2 ∈ 𝐿2 are not. Then, applying

Lemma 3.4 𝑂 (log𝑛) times is sufficient for constructing 𝑇 . More

generally, if all nodes in 𝑇 have a subtree that is small, e.g. with 𝑛𝜀

descendants, then 𝑛𝜀 repetitions of the Isolating-Cuts procedure

with random choices for 𝐶 ought to suffice.

This leads to the second hard case where there is a single (un-

known) node with a subtree of size Ω(𝑛). Consider the example in

Figure 5 where𝑇 is composed of a left star centered at 𝑐ℓ and a right

star centered at 𝑐𝑟 , and suppose that 𝑐𝑟 is the (known) pivot 𝑝 while

the challenge is to identify 𝑐ℓ . The minimum (𝑐ℓ , 𝑐𝑟 )-cut is large
and balanced (𝐶ℓ ,𝐶𝑟 ) while nearly all other minimum (𝑢, 𝑣)-cuts
in the graph are the trivial singleton cuts. The weights on 𝑇 can

be set up so that 𝑐ℓ is almost like a needle in a haystack: asking

almost any (𝑣, 𝑐𝑟 ) Max-Flow query for any 𝑣 ≠ 𝑐ℓ may not reveal

any information about 𝑐ℓ . Suppose that 𝜆𝑐ℓ ,𝑐𝑟 is 𝑤 , about half of

the edges between 𝑐𝑟 and its children are > 𝑤 and half are < 𝑤 ,

while nearly all nodes on the left have an edge of weight < 𝑤 to

𝑐ℓ . Thus, even if a randomly chosen pair 𝑢, 𝑣 will have one node on

each side, the minimum (𝑢, 𝑣)-cut will be either ({𝑢},𝑉 \ {𝑢}) or
({𝑣},𝑉 \ {𝑣}) with high probability, which does not help discover

𝑐ℓ nor any of its cut members 𝐶ℓ .

𝑤 

𝑪𝒍 𝑪𝒓 

𝑤 < < 𝑤 

𝑐𝑙  𝑐𝑟 

Figure 5: The cut-equivalent tree 𝑇 of a hard case where 𝑐𝑟
is given but 𝑐ℓ , the only node with a non-trivial minimum
cut to 𝑐𝑟 , must be identified. The weight of the (𝐶ℓ ,𝐶𝑟 ) cut is
𝜆𝑐𝑙 ,𝑐𝑟 = 𝑤 , illustrated by the dashed edge at the center, and
the edges of weight > 𝑤 are thick, while edges of weight < 𝑤

are thin. The minimum cut between any pair of leaves 𝑢, 𝑣
is trivial unless 𝑢 is attached to one of the bold edges on the
left and 𝑣 is attached to one of the bold edges on the right.

To apply the Isolating-Cuts procedure one must find a way

to isolate 𝑐ℓ , i.e. to choose a set of connected nodes 𝐶 such that

𝑐ℓ is in 𝐶 but none of its Ω(𝑛) cut-members are in 𝐶 . This is an

impossible task unless the structure of the graph𝐺 is exploited. The

Expanders-Guided Querying procedure manages to do just that,

as overviewed in Section 1.3 and fully described in the full version,

by exploiting a decomposition of𝐺 to either reach a good 𝐶 or to

directly query the pair 𝑐ℓ , 𝑐𝑟 .

Notably, this example remains the bottleneck after the new algo-

rithm and might lead the way to the first conditional lower bound

for Gomory–Hu tree and All-Pairs Max-Flow.

4 CONCLUSION
This paper presents the first algorithm with subcubic in 𝑛 running

time for constructing a Gomory–Hu tree of a simple graph and,

consequently, for solving the All-Pairs Max-Flow problem. It is

achieved by a combination of several tools from the literature on this

problem, as well as two new ingredients: the Expanders-Guided

Querying and Isolating-Cuts procedures. The new ideas are

reminiscent of recent algorithms [55, 61, 77] for the easier problem

of Global-Min-Cut. We conclude with some remarks and open

questions.

• The assumption that the graph is unweighted is only used

in one specific case of the analysis for observing that: if a

high degree node is in a small component then most of its

edges must leave the component. A similar observation is

at the heart of the breakthrough deterministic Global-Min-
Cut algorithm of Kawarabayashi and Thorup [55] but can

now be avoided with a moderate loss in efficiency [61]. Thus

there is room for optimism that 𝑛1−𝜀 ·𝑇Max-Flow (𝑛,𝑚) time

for weighted graphs is possible with the available tools.

• The new subcubic algorithm uses randomness in multiple

places and succeeds with high probability. All of the ingre-

dients can already be derandomized (with some loss) using

existing methods, except for one: the randomized pivot selec-

tion (see Complication 1 in Section 1.3). It is likely that a fully

deterministic algorithm making 𝑛1−𝜀 queries is attainable
but there is an inherent challenge that has also prevented

the �̃� (𝑛3) time algorithm [15] from being derandomized yet.

However, matching the new �̃� (𝑛2.5) bound deterministically

seems to require more new ideas, including a deterministic

�̃� (𝑛2) algorithm for Max-Flow in simple graphs that can be

used instead of Karger-Levine [53].

• Perhaps the most interesting open question is whether �̃� (𝑚)
time can be achieved, even in simple graphs and even as-

suming a linear-timeMax-Flow algorithm. The simplest case

where breaking the 𝑛2.5 bound is still challenging has been

isolated in Section 3.3; perhaps it will lead to the first condi-

tional lower bound for computing a Gomory–Hu tree?
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