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Abstract—Motivated by practical generalizations of the clas-
sic k-median and k-means objectives, such as clustering with
size constraints, fair clustering, and Wasserstein barycenter, we
introduce a meta-theorem for designing coresets for constrained-
clustering problems. The meta-theorem reduces the task of core-
set construction to one on a bounded number of ring instances
with a much-relaxed additive error. This reduction enables us
to construct coresets using uniform sampling, in contrast to the
widely-used importance sampling, and consequently we can easily
handle constrained objectives. Notably and perhaps surprisingly,
this simpler sampling scheme can yield coresets whose size is
independent of n, the number of input points.

Our technique yields smaller coresets, and sometimes the
first coresets, for a large number of constrained clustering
problems, including capacitated clustering, fair clustering, Eu-
clidean Wasserstein barycenter, clustering in minor-excluded
graph, and polygon clustering under Fréchet and Hausdorff
distance. Finally, our technique yields also smaller coresets for
1-median in low-dimensional Euclidean spaces, specifically of size
Õ(ε−1.5) in R2 and Õ(ε−1.6) in R3.

Index Terms—coresets, clustering, Wasserstein barycenter, fair
clustering, capacitated clustering

I. INTRODUCTION

Over the last 20 years, coresets and in particular coresets
for clustering problems have received substantial attention. At
a high a level, a coreset for a data set P with respect to a set
of queries Q with query-evaluation function fP : Q → R+,
is a data set S with a corresponding fS : Q → R+

that approximates the evaluation function for every query.
Typically, S is a (small) reweighted subset of P , and the
function fS is defined similarly to fP . For many clustering
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problems, P is the input set, each query q ∈ Q is a candidate
center set and its corresponding fP (q) is the cost induced by
this center set, hence a coreset is just a smaller instance (S
instead of P ) of the same clustering problem.

The quality of a coreset S is usually measured by its size
(the number of distinct points) and by the type of query
evaluations that it approximates. For example, a natural query
for a clustering problem is the cost induced by greedily
assigning every point in P to its closest neighbor in the center
set q, aggregated over the points in P . A prime example is the
Euclidean (k, z)-clustering problem in dimension d, in which
P ⊂ Rd is the input, z > 0 is a parameter (typically fixed),
each query is a center set C ⊂ Rd of size k, and the query
evaluation is the cost function

costz(P,C) :=
∑
x∈P

(dist(x,C))z, (1)

where dist(x, y) := ∥x − y∥2 and dist(x,C) :=
minc∈C dist(x, c). The special case z = 2 is the widely
studied Euclidean k-MEANS problem. Following a long line of
research [1]–[16], it is now known that Euclidean k-MEANS
admits an ε-coreset S of size Õ(kε−2 min{k, ε−2}) [16], [17],
where an ε-coreset means that for every center set C, the cost
of P and that of S are within a (1± ε)-factor.

The most immediate approach to construct a coreset is to
sample a subset of the input (and reweight its points appropri-
ately), and the main challenge is to find a sampling distribution
that works well. A natural starting point is uniform sampling,
however without further assumptions or preprocessing steps, it
is easy to construct instances where uniform sampling requires
so many samples that it achieves no significant space savings.1

Instead, state-of-the-art algorithms for computing coresets
are typically based on non-uniform sampling. These algo-
rithms, initiated by Chen’s seminal paper [4] and codified in

1Consider a one-dimensional input P ⊂ R with n points at 0 and a single
point at 1. For k = 1, by placing a center at 0, the only point incurring a
positive cost is the point at 1. However, a uniform sample is unlikely to pick
the point at 1 unless the sample size is Ω(n).
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their modern form under the name sensitivity sampling by
Feldman and Langberg [6], draw |S| points from the same
probability distribution (px : x ∈ P ), and reweight every
sample x inverse proportionally to its sampling probability,
namely, wS(x) = 1

|S|·px
. The sampling probability px is set

proportionally to the sensitivity of x, which is the maximum
possible relative contribution of p to any query evaluation.
For example, for Euclidean k-MEANS, this is s(x) :=

sup|C|=k
(dist(x,C))2

cost(P,C) . The sensitivity sampling framework has
become an enormously successful and popular method for
many additional problems, including kernel methods [18],
[19], low-rank approximation [20], linear regression [21], [22],
and logistic regression [23], [24].

Unfortunately, not all problems are easily expressed in the
sensitivity framework. Consider, for example, clustering with
size constraints, which loosely means constraining the number
of points served by every center. For example, limiting the
centers to each serve at most T points is known as capacitated
clustering with uniform capacity T . Constrained clustering
introduces a number of technical issues that make it difficult
to generalize the analysis for coresets in the unconstrained
setting. Perhaps the most glaring obstacle is that sensitivity
sampling distorts the total weight of the points (it is preserved
only in expectation). While it is easy to preserve the total
weight by rescaling the weights in S so that

∑
x∈S wS(x) =

|P |, size constraints usually require the total weight to be
preserved for many subsets, which cannot be achieved under
the same scaling. Indeed, directly applying the sensitivity
sampling framework to capacitated clustering can result in
additive error proportional to the diameter, which is generally
unaffordable.

In contrast, uniform sampling can avoid the aforemen-
tioned issue, by running it on top of some preprocessing,
like Chen’s [4] metric decomposition, and indeed it has
been applied to obtain coresets for size-constrained clustering
problems, including capacitated and fair clustering [25], [26].
While uniform sampling only yields a coreset with additive
error for each part in the decomposition, this additive error can
essentially compensate for the weight-distortion issue. How-
ever, the framework of [4] also has a number of drawbacks
compared to the subsequent sensitivity-sampling methods.
For example, its coreset size grows (at least linearly) with
log |P |, regardless of the metric space and objective function.
In contrast, sensitivity sampling, when applicable, can yield
coreset size that depends only on k and ε. Thus, improving
our ability to apply uniform sampling in coreset constructions
has been an important open problem for more than a decade.

A. Our Results

We propose an improved coreset framework that prepro-
cesses the data so that uniform sampling is applicable. Sim-
ilarly to Chen’s method [4], the key step is a reduction to
ring instances, defined as follows. A point set R is called a
ring if all its points are at distance in the range [r, 2r] from
some center point c (for some r > 0). Our main result is

the following meta-theorem (see Theorem III.2 for a formal
statement):

Theorem I.1. Assume that for rings, uniform sampling pro-
duces a coreset of size T with additive error at most εr|R|;
then for every input P one can construct a coreset of size
O(T · k2/ε).

This result generalizes to (k, z)-CLUSTERING, as defined
in (1) and more formally in Definition II.2.

This result has a number of applications. To begin with, it
allows us to obtain the first coresets whose size is independent
of |P | for the aforementioned problems of clustering with size
constraints. This includes:

• A coreset of size poly(k/ε) for a capacitated version
of Euclidean k-MEDIAN and k-MEANS (see Section II
for the definition), which improves over the size bound
poly(k/ε · log |P |) of Cohen-Addad and Li [25]. See
Theorem IV.5 for details.

• A coreset of size poly(k/ε) for fair Euclidean k-
MEDIAN and k-MEANS (see Section II for the defini-
tion), which improves over the size bounds poly(k/ε ·
log |P |) of Bandyapadhyay, Fomin and Simonov [26],
and poly(k/εd) of Huang, Jiang and Vishnoi [27]. See
Theorem IV.7 for details.

Moreover, our framework has applications to other clus-
tering problems. On a technical level, a natural approach
to proving that a randomly chosen subset S is a coreset is
to first make sure that, with high probability, S preserves
the cost for a single arbitrary center set, and then apply a
union bound over all possible center sets. Since the number
of possible center sets can be huge, and even infinite, the
space is often discretized by a certain “net” before applying
a union bound. For instance, a recent approach established an
ε-approximate centroid set, as defined by [17]; however, only
a few techniques are known to find such an ε-approximate
centroid of small size. A popular alternative to this net
approach is to bound VC-dimension2 of the function space
{fx(C) := w(x) · dist(x,C)}x, where w(x) is related to the
probability of sampling x. In general, this w(x) is non-uniform
over all x ∈ P , and this is particularly true for coresets
constructed via sensitivity sampling. Let us refer to the special
case where w(x) is uniform (i.e., takes a single value over all
x ∈ P ) as the uniform function space. Our framework for core-
set construction is based on uniform function spaces, which
turns out to be a crucial difference with major advantages
compared to the sensitivity-sampling framework. Indeed, the
advantage of relying on uniform function spaces is two-fold.

1) For several problems, we know how to bound the VC-
dimension of the uniform function space, but not that
of the non-uniform function space. Examples include
the shortest-path metric in planar graphs [28] and the

2Strictly speaking, the correct term here is pseudo-dimension, because VC-
dimension is defined for a range space (i.e., set system), and we use here VC-
dimension as a generic term for sake of exposition. The technical sections use
the correct mathematical terminology, which is often the shattering dimension.
It is well-known that these three terms are closely related.
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Fréchet distance [29]. Our new framework leads to
new/improved coreset results for such clustering prob-
lems.

2) The uniform function space has a simpler structure and
may have a smaller VC-dimension bound. Consider for
instance the widely studied range space induced by
halfspaces in the Euclidean plane (Rd for d = 2); the
VC-dimension of its uniform range space is known to
be exactly d+1 = 3, whereas for the non-uniform range
space the known upper bound is only 3d + 1 = 7 [30,
Lemma 3.3]. This leads directly to better bounds on the
coreset size. In particular, when the VC-dimension is
low, one can plug in at a key step of the analysis, a bound
from discrepancy theory [31] about ε-approximation,
which beats the usual ε−2 factor.

These advantages lead to new coreset results in several
different metric spaces:

• A coreset of size Õ(ε−1.5) for geometric median in
dimension 2, and of size Õ(ε−1.6) for dimension 3 (see
Corollary 5.8 of the full version [32]). The previously
known coreset size for these problems was Õ(ε−2) due
to [6].

• A coreset of size Õ(ε−2dℓ) for the p-Wasserstein
barycenter (see Theorem 5.10 of the full version [32]).
This is the k-MEDIAN problem for k = 1, in a metric
space over all probability distributions that are supported
on at most ℓ points in Rd. The p-Wasserstein distance
between two distributions D1 and D2 is the p-th moment
of the minimum cost matching between the distributions
(i.e., edge weights represent Euclidean distance raised
to power p, and the total cost is raised to power 1/p).
This improves over the previous bound O(ε−2d4ℓ8), due
to [33].

• A coreset of size Õ(|H| · poly(k/ε)) for k-MEDIAN in
shortest-path graph metrics that are induced by graphs
excluding a fixed minor H (see Section 5.3 of the
full version [32]). This improves over a previous bound
Õ(f(|H|) · poly(k/ε)), due to [15], where f is not
specified but is at least doubly exponential.

• A coreset of size poly(kdℓ/ε · logm) for k-MEDIAN
under Fréchet and Hausdorff distances (see Section 5.3
of the full version [32]). In this problem, also known
as (k, ℓ)-MEDIAN, the data set comprises of polygonal
curves in Rd, each with at most m line segments, and the
center curves are restricted to at most ℓ line segments.
This is the first coreset whose size is independent of the
number of input curves, improving over [34].

These new results highlight the flexibility of our framework
and we expect that it will have additional applications.

B. Our Techniques

We outline our main technical novelty in obtaining the
meta-theorem (formalized in Theorem III.2 that reduces the
coreset-construction problem into only Õ(k2/ϵ) ring instances,
in which uniform sampling is applicable.

For sake of presentation, let us focus on z = 1 (i.e., k-
MEDIAN). The proof of the meta-theorem combines several
known geometric techniques for constructing coresets, that
originally cannot give a coreset with size bound poly(k/ϵ).
Our algorithm first finds an (O(1), O(1))-bicriteria approxi-
mation C∗ with |C∗| = O(k) centers3, then partitions the data
accordingly into O(k) clusters, and then further partitions each
cluster into rings with exponentially-increasing radii, similarly
to the steps in [4]. The issue with this partition, as noted
also in [4], is that it creates O(log n) rings, which eventually
introduces an O(log n) factor in the coreset size. To bypass
this, we identify in each cluster a set of Õ(k/ϵ) high-cost
rings (and thus Õ(k2/ϵ) rings in total), for which the points
inside contribute significantly to the objective. Call these
high cost rings marked, and the remaining rings unmarked.
Consecutive unmarked rings (i.e., between two marked rings)
are merged into in at most Õ(k/ϵ) unmarked groups. The
Õ(k2/ϵ) marked rings are handled as in [4] using uniform
sampling. The remaining issue is how to construct coresets
for the unmarked groups. An unmarked group can be a union
of multiple consecutive rings, and since points do not have
a similar distance to the cluster center, uniform sampling
is no longer applicable. However, by our construction, each
unmarked group has a small contribution to the cost and
we show that a simple two-point geometric construction can
already serve as a coreset for the entire group. Such a two-
point coreset is much more powerful than it appears to be. In
particular, it even satisfies a property that we call assignment-
preserving (see Definition III.1 and a similar formulation in
prior work [26], [27], [35]), and hence can serve as a coreset
for clustering with capacity and fairness constraints.

Let ci ∈ C∗ and let Pi denote the cluster with center
ci. Technically, the construction of the unmarked groups and
their two-point coresets is done by interpreting the entire
cluster as a one-dimensional instance (by taking dist(x, ci)
for each point x ∈ Pi), and then applying on the unmarked
rings a known greedy-bucketing construction for dimension
one [3]. To construct the two-points coreset for a group G,
let pclose, pfar ∈ G be a closest point and a furthest point,
respectively, from the center ci. Then for every point x ∈ G,
represent the distance dist(x, ci) as a convex combination of
dist(pclose, ci) and dist(pfar, ci), namely, find λx ∈ [0, 1] such
that dist(x, ci) = λx dist(p

close, ci) + (1 − λx) dist(p
far, ci).

Now let the coreset for G be S := {pclose, pfar}w with
weights w(pclose) =

∑
x∈G λx and w(pfar) =

∑
x∈G(1−λx).

Obviously, S has only two distinct points and it preserves the
total weight and the cost with respect to ci as the entire G.

It remains to analyze the error between our two-point
coreset S and the group G with respect to an arbitrary center
set, even with capacity constraints. Fix a center set C with
|C| = k and capacity constraint Γ : C → R+ that prescribes
the number of points connected to each center c ∈ C (see
Definition II.3 for formal definition). We first observe that due

3An (α, β)-bicriteria approximation for a clustering problem is a set of at
most β · k centers that has cost α ·OPTk , where OPTk is the optimal cost
of clustering using k centers.
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to the triangle inequality and our grouping method, the cost of
clustering S approximates that of G within an additive error,
namely, | cost(G,C,Γ)− cost(S,C,Γ)| ≤ Õ( ϵ

k ) · cost(Pi, ci)
(see Definition II.4 and Lemma III.5). However, as the cluster
Pi has Õ(kϵ ) unmarked groups, its cumulative error is bounded
by Õ(kϵ ) · Õ( ϵ

k ) · cost(Pi, ci) = Õ(cost(Pi, ci)), which ex-
ceeds our intended error bound Õ(ϵ) · cost(Pi, ci). To reduce
the number of groups that can suffer an additive error, we
further divide the unmarked groups into colored groups and
uncolored groups with respect to C. In particular, we call a
ring “important” if it contains any center from C. We “color”
O(log 1

ϵ ) neighboring rings of each important ring and “color”
all the groups that contain at least one colored ring. This way,
we obtain at most O(k log 1

ϵ ) colored groups. We let these
O(k log 1

ϵ ) colored groups suffer the additive error, and this
time the total error from them is bounded by Õ(ϵ)·cost(Pi, ci).

It remains to bound the error for the uncolored groups,
and crucially, in Lemma III.6 we show these groups do not
suffer an additive error but only a multiplicative error. A key
observation is that if a group G is not colored (with respect to
C), then every c ∈ C is either too far from all the points
in G or too close to the cluster center ci. Based on this
observation, we surprisingly find that when the group is not
colored, our simple two-points coresets S can already serve as
an assignment-preserving coreset without additive error. This
Lemma III.6 is one of the main technical lemmas that deal
with the assignment constraint, and its proof requires very
careful explicit constructions for the assignments of the two-
point coreset S and the group G.

C. Additional Related Work

Although the coreset paradigm is most often applied to clus-
tering problems, there are actually several other applications,
see the surveys [36], [37] for further pointers to the literature.
Restricting attention to coresets for clustering, the most com-
mon setting is that of a Euclidean space, but there are many
results also for other metric spaces. To streamline the presenta-
tion, we focus here on the results for k-MEDIAN. For general
n-point metrics, [6] gave coresets of size O(k logn

ϵ2 ), and for
general metrics with bounded doubling dimension d, [38]
designed a coreset of size O(k

3d
ϵ2 ), which was later improved

by [17] to Õ(kdϵ2 ). Another line of research addresses the
shortest-path metrics of graphs, and notably, poly(k/ϵ)-size
coresets for k-MEDIAN were obtained for graphs of bounded
treewidth, planar graphs, and more generally excluded-minor
graphs [15], [17], [39]. For an empirical evaluation of these
algorithms, we refer to [40].

Coresets for even more general clustering problems, i.e.,
beyond (k, z)-CLUSTERING, received significant attention as
well. Apart from the capacity and fairness constrained clus-
tering that are studied in this paper, coresets were designed
also for ordered weighted clustering [41], for clustering with
outliers [38], [42], for training Gaussian mixture models [43],
[44], for time-series clustering [45], and many other related
problems. Another interesting generalization is clustering of

sets of points in Rd (instead of points), including arbitrary
finite sets [46], lines [47], and axis-align affine subspaces [30].

II. PRELIMINARIES

We use R+ to denote set {x ≥ 0 | x ∈ R}. A weighted
set S is associated with a weight function wS : S → R+.
We interpret an unweighted set S as a weighted set with unit
weight, i.e., wS(·) = 1. For some weight function wS : S →
R+ and T ⊆ S, define wS(T ) :=

∑
x∈T wS(x). We assume

there is an underlying metric M(X,dist) throughout the paper.
This metric space may not be finite; for instance, it can be
Euclidean space (Rd, ℓ2). For a point x ∈ X and a point set
C ⊆ X , let dist(x,C) := minc∈C dist(x, c). For u ∈ X, 0 ≤
a < b, let ring(u, a, b) := {x ∈ X : a < dist(x, u) ≤ b} be
the set of points within distance between a and b from u.

We need the following generalized triangle inequalities
which are well-known tools for studying (k, z)-CLUSTERING.
Variants of these inequalities can be found in multiple related
papers [8], [11], [17], [48].

Lemma II.1 (Generalized triangle inequality). Let a, b, c ∈ X
and z ≥ 1. For every 0 < t ≤ 1, the following inequalities
hold.

1) (Corollary A.2 of [48])

dist(a, b)z ≤ (1+t)z−1 dist(a, c)z+
(
1+

1

t

)z−1
dist(b, c)z

2) (Claim 5 of [11])

|dist(a, c)z−dist(b, c)z| ≤ t·dist(a, c)z+(
3z

t
)z−1 dist(a, b)z.

Definition II.2 (Coresets for (k, z)-CLUSTERING). Given a
weighted data set P ⊆ X , for C ⊆ X with |C| ≤ k, define
the cost for (k, z)-CLUSTERING as

costz(P,C) :=
∑
x∈P

wP (x) · (dist(x,C))z.

For 0 < ϵ < 1, a weighted set S such that S ⊆ P is an
ϵ-coreset for (k, z)-CLUSTERING if

∀C ⊆ X, |C| ≤ k, costz(S,C) ∈ (1± ϵ) · costz(P,C),

The following definition of assignment constraints generally
captures the constraints in fair clustering and capacitated clus-
tering, and our key notion of assignment-preserving coresets
is defined with respect to it. Similar notions of assignment
constraints and assignment-preserving coresets have also been
considered in previous works which study fair clustering [26],
[27], [35].

Definition II.3 (Assignment constraints and assignment func-
tions). Given a weighted set P ⊆ X and C ⊆ X , an
assignment constraint is a function Γ : C → R+ such that∑

c∈C Γ(c) = wP (P ), and we call an assignment function
σ : P × C → R+ consistent with Γ, denoted as σ ∼ Γ, if
∀c ∈ C, σ(P, c) :=

∑
p∈P σ(p, c) = Γ(c). For P1 ⊆ P and

C1 ⊆ C, we define

costσz (P1, C1) :=
∑
x∈P1

∑
c∈C1

σ(x, c) · (dist(x, c))z
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as the connection cost between P1 and C1 under σ.

Definition II.4 ((k, z)-CLUSTERING with assignment con-
straints). Given a weighted data set P ⊆ X , a center
set C ⊆ X with |C| ≤ k, and an assignment constraint
Γ : C → R+ the objective for (k, z)-CLUSTERING with
assignment constraint Γ is defined as

costz(P,C,Γ) := min
σ:P×C→R+,σ∼Γ

costσz (P,C).

Definition II.5 (Assignment-preserving coresets for
(k, z)-CLUSTERING). Let P be a weighted dataset. A
weighted subset S ⊆ P is an assignment-preserving ϵ-coreset
for (k, z)-CLUSTERING, if wP (P ) = wS(S), and for every
C ⊆ X with |C| ≤ k and assignment constraint Γ : C → R+,

costz(P,C,Γ) ∈ (1± ϵ) · costz(S,C,Γ).

We make an observation in Fact II.6 that an assignment-
preserving coreset is as well a coreset for (unconstrained)
clustering.

Fact II.6. For P ⊆ X , if S ⊆ P is an assignment-preserving
ϵ-coreset for (k, z)-CLUSTERING on P , then S is an ϵ-coreset
for (k, z)-CLUSTERING on P .

Moreover, this definition of assignment-preserving core-
sets generally captures many capacity-constrained clustering
problems. For instance, in capacitated clustering, the goal is
to minimize the (k, z)-CLUSTERING objective subject to the
constraint that each center is assigned by at most a certain
number of data points. Coresets for capacitated clustering
have been considered in [25] and our notion of assignment-
preserving coresets captures their definition.

Fair clustering: In (α, β)-fair (k, z)-CLUSTERING ( [49],
[50]), a data set P , a collections of groups (not necessary
disjoint) P1, P2, ..., Pm ⊆ P and two constraints vectors
α, β ∈ [0, 1]m are given. The objective is to find an assignment
σ from P to C such that for every group Pi and every center
c ∈ C,

σ(Pi, c)

σ(P, c)
∈ [αi, βi].

It has been well known that the requirement of (α, β)-
fair (k, z)-CLUSTERING can be expressed as a collection of
assignment constraints [26], [27], [35], [51]. Following the
reduction in [27], an algorithm that constructs assignment-
preserving coresets for (k, z)-CLUSTERING implies coresets
algorithm for (α, β)-fair (k, z)-CLUSTERING (See Section IV
for more details).

III. NEW FRAMEWORK

Definition III.1 (Assignment-preserving coresets with additive
error). Given a data set P ⊆ X , a subset S ⊆ P is called an
assignment-preserving (ϵ, A)-coreset for (k, z)-CLUSTERING
on P , if for every C ⊆ X with |C| ≤ k and every assignment
constraint Γ : C → R+,

| costz(P,C,Γ)− costz(S,C,Γ)| ≤ ϵ · (costz(P,C,Γ) +A).

The main idea of our new framework (Theorem III.2) is to
reduce constructing coresets on general datasets, to the special
case of constructing coresets on datasets that belong to rings.
Note that for the rings, we only consider coresets with an
additional additive error (Definition III.1), which seems to
be weaker than the relative-error coresets that we aim for.
However, by a standard argument, this actually suffices to
imply a coreset for the entire dataset without the additive error
(see Appendix A of the full version [32]).

Theorem III.2. There is an algorithm that given dataset P ⊆
X , center c ∈ X , 0 < ϵ < 1, computes a 2-partition {W,Z} of
P and a weighted point set S ⊆ P of size 2O(z log z) ·Õ(kϵ−z),
such that

1) W consists of 2O(z log z) · Õ(kϵ−z) rings {Ri}i where
each Ri ⊆ ring(c, ri, 2ri) for some ri > 0, and

2) S is an assignment-preserving (ϵ, costz(P, c))-coreset
for (k, z)-CLUSTERING on Z,

running in time Õ(|P |k).

Note that the assignment-preserving coreset S for the Z
part can be constructed even in general metrics. Moreover, this
assignment-preserving coreset is very general (see Fact II.6),
and it can be used as a coreset for all clustering problems that
we consider in this paper. Hence, in order to obtain a full core-
set, it only remains to construct coresets for W , which merely
consists of 2O(z log z) · Õ(kϵ−z) rings. Therefore, this theorem
essentially reduces the coreset construction for a general data
set to ring datasets. In particular, if one can obtain a coreset
(with additive error) of size T (ϵ, k, z) for each ring, then one
can construct a coreset of size 2O(z log z) ·Õ(k2ϵ−z) ·T (ϵ, k, z)
for the entire dataset.

Improved bound for k = 1: For the special case of
(1, z)-CLUSTERING (noting that when k = 1 the assignment
constraints become trivial and it is equivalent to the un-
constrained version), we have a better argument that yields
an improved dependence in ϵ.

Theorem III.3. There is an algorithm that given dataset P ⊆
X , center c ∈ X , 0 < ϵ < 1, computes a 2-partition {W,Z}
of P and a weighted point set S ⊆ P of size 3, such that

1) W consists of O(log z
ϵ ) rings {Ri}i where each Ri ⊆

ring(c, ri, 2ri) for some ri > 0, and
2) S is an (ϵ, costz(P, c))-coreset for (1, z)-CLUSTERING

on Z,
running in time Õ(|P |k).

The power of uniform sampling: Due to the uniform
nature of the ring datasets, we can show that the very simple
uniform sampling already suffices for constructing coresets for
(k, z)-CLUSTERING on ring datasets (See Section 5 of the
full version [32]). This new construction based on uniform
sampling further reduces the construction of coresets into
bounding the uniform shattering dimension of the ball range
space induced by the metric space. The uniform shattering
dimension is both easier to analyze, and wider considered in
the literature than the much more involved weighted shattering
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dimension used in previous works, which in turn results in
several new and/or improved coreset size bounds.

A. Proof of Theorem III.2

We provide a sketch of the main algorithm in Algorithm
1 and present details of each step in the corresponding
paragraph.

Algorithm 1 Algorithm Outline for Theorem III.2

1: set t ← ⌈2 + log 24zk
ϵ ⌉, err ←

(
ϵ
6z

)z · costz(P,c)
kt , and

Z∗ ← Z ∪ {−∞}
2: decompose P into rings Pi ← P ∩ ring(c, 2i−1, 2i) (i ∈

Z∗) ▷ call Pi heavy if costz(Pi, c) ≥ err
3: mark all heavy rings
4: merge consecutive unmarked rings to obtain 2O(z log z) ·

Õ(kϵ−z) many groups such that each of the groups has
cost at most err, as in Lemma III.4

5: construct a two-points coreset for each group produced in
the last step

6: let W be the union of marked rings, let Z ← P \W , and
let S include the union of coresets obtained in the last
step

Ring decomposition: Set t := ⌈2 + log 24zk
ϵ ⌉, err :=(

ϵ
6z

)z · costz(P,c)
kt , and Z∗ ← Z ∪ {−∞}. If c ∈ P , add c into

both Z and S in advance, and let P ← P \ {c}. Decompose
P into rings {Pi | i ∈ Z∗}, where for i ∈ Z,

Pi := P ∩ ring(c, 2i−1, 2i)

and if i = −∞, Pi := P ∩ {c}.
Since at most |P | rings are non-empty, we can easily

compute the above decomposition in near-linear time.
Call a ring j heavy if costz(Pj , c) ≥ err. So the number

of heavy rings is at most costz(P,c)
err = 2O(z log z) · Õ(kϵ−z).

We mark all heavy rings. Call a ring unmarked if it is not a
marked ring.

Defining the partition: Now, we define Z as the set
of points belong to the unmarked rings, and define W
as the marked rings. Clearly, W consists of 2O(z log z) ·
Õ(kϵ−z) (marked) rings. Hence, it remains to construct an
(ϵ, costz(P, c))-coreset for Z, the unmarked rings.

Re-grouping unmarked rings: Observe that unmarked
rings can be grouped into 2O(z log z) · Õ(kϵ−z) buckets of
consecutive rings, due to the fact that there are at most
2O(z log z) · Õ(kϵ−z) heavy rings. Denote these buckets as
B1, B2, . . ., where each Bi consists of a collection of con-
secutive unmarked rings. For every bucket Bi, we apply
the following Lemma III.4 to further group Bi into Gi. Let
G :=

⋃
i Gi be the set of all groups of unmarked rings.

Lemma III.4. For every bucket Bi, rings in Bi can be grouped
into Gi where each G ∈ Gi consists of consecutive unmarked
rings, such that ∀G ∈ Gi, costz(G, c) ≤ err. Furthermore,
|
⋃

i Gi| ≤ 2O(z log z) · Õ(kϵ−z).

Proof: Fix some Bi. We start with constructing a group-
ing G′i of Bi. Initialize G′i := ∅ as the tentative result. List

points p in Bi in the increasing order of dist(p, c). Starting
from the first element in Bi, greedily pick a maximal subset
G′ (in order) such that costz(G′, c) ≤ err. Here, we allow G′

to include points fractionally. Keep on picking such G′ and
add it into G′i, until all elements in Bi are picked.

We construct Gi from G′i as follows. Observe that each G′ ∈
G′i can partially intersect at most two rings from Bi. Now,
examine each G′ ∈ G′i, for every partially intersected ring R,
designate this entire R as a new group and include it in Gi,
remove the partially intersected rings from G′, and include all
rings in the remaining G′ as a new group to Gi. Eventually,
remove the empty or duplicated groups from Gi, if any.

By construction, ∀G ∈ Gi, either G consists of a single
unmarked ring which implies costz(G, c) ≤ err, or G consists
of several consecutive unmarked rings such that costz(G, c) ≤
err.

Hence, it remains to bound |
⋃

i Gi|. Since every G′ ∈ G′i
creates at most 3 groups in Gi, we have |Gi| ≤ 3 · |G′i|.
Observe that in every G′i, there is at most one G′ such that
costz(G, c) < err and all other G′ satisfy costz(G, c) = err.
Therefore, since there are at most 2O(z log z) ·Õ(kϵ−z) buckets,
over all i, we have∣∣∣∣∣⋃

i

Gi

∣∣∣∣∣ ≤ 2O(z log z) · Õ(kϵ−z) +
cost(P, c)

err

= 2O(z log z) · Õ(kϵ−z).

This finishes the proof of Lemma III.4.
Two-points coresets construction for unmarked groups:

To construct the coreset S for the unmarked rings, we first
construct a two-points coreset for each group of rings Gi ∈ G,
and then take the union of them.

For every group Gi ∈ G, we construct a coreset of only two
points using the following steps. Let pclosei , pfari ∈ Gi be the
closest and furthest points to c (breaking ties consistently),
respectively. Then for every p ∈ Gi, distz(p, c) can be
represented by distz(p, c) = λp · distz(pclosei , c) + (1 −
λp) · distz(pfari , c), such that λp ∈ [0, 1]. Then define the
weight w(pclosei ) :=

∑
p∈Gi

λp, and similarly the weight of
w(pfari ) :=

∑
p∈Gi

(1 − λp). Note that w(pclosei ) + w(pfari ) =

wP (Gi) and costz({pclosei , pfari }w, c) = costz(Gi, c), where
{pclosei , pfari }w denotes the two-point coreset.

Size analysis: Since the unmarked rings are partitioned
into |G| ≤ 2O(z log z) · Õ(kϵ−z) groups and each of the group
creates two coreset points in S, the total number of coreset
points is bounded by |S| ≤ 2O(z log z) · Õ(kϵ−z).

Error analysis: Observe that the requirement of |Z| =
wS(S) follows immediately from the construction, hence we
focus on analyzing the coreset cost error.

In the following, we fix a center set C with |C| = k, and
an assignment constraint Γ : C → R+. We call a ring Pi

important if there exists u ∈ C, 2i−1 < dist(u, c) ≤ 2i.
Namely, Pi is important if C∩ring(c, 2i−1, 2i) ̸= ∅. We color
a ring Pj if there exists an important ring Pi such that |i−j| ≤
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t. Namely, for every important ring, we color its 2t neighbors
and itself.

We call a group Gi ∈ G colored if it contains any colored
ring. We call a group uncolored if it is not colored. Colored
and uncolored groups have totally different behaviors in pro-
ducing coreset error. We bound the coresets errors producing
by colored and uncolored groups, by using Lemma III.5 and
Lemma III.6 respectively.

Lemma III.5. Let Gi be an unmarked group. Let σ : Gi ×
C → R+ and π : Di×C → R+ both consistent with Γ. Then
we have

|costσz (Gi, C)− costπz (Di, C)|
≤ ϵ · costσz (Gi, C) +

ϵ

3kt
· costz(P, c).

Lemma III.5 can be proved by triangle inequality and due
to page limitation, we do not include the proof here but refer
to the full version [32].

Note that Lemma III.5 works for both colored and uncolored
groups. However, the number of uncolored groups can be
much larger than the number of colored groups. Thus we must
use a refined analysis Lemma III.6 to bound the error of these
uncolored groups.

Lemma III.6. Let Gi ∈ G denote an unmarked and uncolored
group. Let Di := {pclosei , pfari }w be the two-point coreset
constructed for Gi. The following holds.

1) For every σ : Gi × C → R+ consistent with Γ (see
Definition II.3 for the relevant definitions), there exists
π : Di × C → R+ consistent with Γ, such that
costπz (Di, C) ≤ (1 + ϵ) · costσz (Gi, C).

2) For π : Di × C → R+ consistent with Γ, there
exists σ : Gi × C → R+ consistent with Γ, such that
costσz (Gi, C) ≤ (1 + ϵ) costπz (Di, C).

In particular, let σ and π denote the optimal assignment
consistent with Γ from Gi and Di to C respectively, then

| costσz (Gi, C)− costπz (Di, C)| ≤ O(ϵ) · costσz (Gi, C).

Proof: Divide C into Cclose := {u ∈ C | dist(u, c) <
dist(pclosei , c)} and Cfar := C \ Cclose. Recall that Gi is
uncolored. We need the following inequalities to characterize
the distances between Gi and Cfar or Cclose.

Lemma III.7. The following inequalities hold.
1) For every u ∈ Cclose, dist(pclosei , c) > 9z

ϵ dist(u, c).
2) For every u ∈ Cfar, dist(pfari , c) < ϵ

24z · dist(u, c).
3) For every x ∈ Gi and u ∈ Cfar, dist(pfari , c) < ϵ

12z ·
dist(x, u).

4) For every x ∈ Gi and u ∈ Cfar, dist
z(x, u) ∈ (1± ϵ

6 ) ·
distz(u, c).

5) For every x ∈ Gi and u ∈ Cclose, distz(x, u) ∈ (1 ±
ϵ
6 ) · dist

z(x, c).

Proof: For item (1) and (2), assume u is in Pj , so Pj is
important. As Gi is not colored, by definition, we know that
for every Pi′ ⊆ Gi, |i′ − j| > t. So if u ∈ Cclose, we have

dist(pclosei , c) ≥ 2t−1 · dist(pfarj , c) >
9z

ϵ
· dist(u, c).

On the other hand, if u ∈ Cfar, we have

dist(pfari , c) ≤ 2−t+1 · dist(pclosej , c) ≤ ϵ

24z
· dist(u, c).

Now we prove item (3). By item (2), maxx∈Gi
dist(x, c) =

dist(pfari , c) < ϵ
24z ·dist(u, c), by triangle inequality we know

that for every x ∈ Gi,

dist(x, u) ≥ dist(u, c)− dist(x, c) >
(24z

ϵ
− 1
)
dist(pfari , c)

>
12z

ϵ
· dist(pfari , c).

So we know that for every u ∈ Cfar and x ∈ Gi,
dist(pfari , c) < ϵ

12z · dist(x, u).

Now we prove item (4). By the triangle inequality and item
(2) we know that,

|dist(x, u)− dist(u, c)| ≤ dist(x, c) ≤ dist(pfari , c)

<
ϵ

24z
· dist(u, c).

Thus dist(x, u) ∈
(
1 ± ϵ

24z

)
· dist(u, c). Thus

distz(x, u) ∈
(
1± ϵ

6

)
· distz(u, c).

Now we prove item (5). By the triangle inequality and item
(1), we know that

|dist(x, u)− dist(x, c)| ≤ dist(u, c) <
ϵ

9z
· dist(pclosei , c)

≤ ϵ

9z
· dist(x, c).

Thus dist(x, u) ∈
(
1 ± ϵ

9z ) · dist(x, c). Thus distz(x, u) ∈
(1 ± ϵ

6 ) · dist
z(x, c). This finishes the proof of Lemma III.7.

We return to the proof of Lemma III.6, we prove item (1)
and item (2) separately.

Proof of item (1): Recall that for every x ∈ Gi, there
exists a unique λx such that distz(x, c) = λx dist

z(pclosei , c)+
(1−λx) dist

z(pfari , c), and we have set w(pclosei ) =
∑

x∈Gi
λx

and w(pfari ) =
∑

x∈Gi
(1− λx).

Consider some σ : Gi × C → R+ consistent with Γ. We
define π : Di × C → R+, such that for every u ∈ C,
π(pclosei , u) =

∑
x∈Gi

λxσ(x, u) and π(pfari , u) =
∑

x∈Gi
(1−

λx)σ(x, u). We note that for every u ∈ C,

π(Di, u) = σ(Gi, u).

Hence π is consistent with Γ. It remains to prove that for every
u ∈ C,

π(pclosei , u) distz(pclosei , u) + π(pfari , u) distz(pfari , u)

≤ (1 + ϵ)
∑
x∈Gi

σ(x, u) · distz(x, u).

• If u ∈ Cfar, by item (3) of Lemma III.7, we know
that for every u ∈ Cfar and x ∈ Gi, dist(pfari , c) <
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ϵ
12z · dist(x, u). So by the generalized triangle inequality
Lemma II.1 we have

π(pclosei , u) distz(pclosei , u) + π(pfari , u) distz(pfari , u)

=
∑
x∈Gi

(
λxσ(x, u) dist

z(pclosei , u)

+ (1− λx)σ(x, u) dist
z(pfari , u)

)
=
∑
x∈Gi

σ(x, u)
(
λx dist

z(pclosei , u)

+ (1− λx) dist
z(pfari , u)

)
≤
∑
x∈Gi

σ(x, u)
(
λx

(
(1 +

ϵ

2
) distz(x, u)

+ (6z/ϵ)z−1 distz(pclosei , x)
)

+ (1− λx)
(
(1 +

ϵ

2
) distz(x, u)

+ (6z/ϵ)z−1 distz(pfari , x)
))

≤
(
1 +

ϵ

2

)(∑
x∈Gi

σ(x, u) · distz(x, u)

)

+
(6z
ϵ

)z−1 ·
∑
x∈Gi

σ(x, u) ·
(
2 dist(pfari , c)

)z
≤
(
1 +

ϵ

2

)(∑
x∈Gi

σ(x, u) · distz(x, u)

)

+
(6z
ϵ

)z−1 ·
∑
x∈Gi

σ(x, u) ·
( ϵ

6z
· dist(x, u)

)z
≤
(
1 +

ϵ

2

)(∑
x∈Gi

σ(x, u) · distz(x, u)

)
+

ϵ

2
·
∑
x∈Gi

σ(x, u) · distz(x, u)

≤ (1 + ϵ)
∑
x∈Gi

σ(x, u) · distz(x, u).

• If u ∈ Cclose, we observe that by construction,

π(pclosei , u) distz(pclosei , c) + π(pfari , u) distz(pfari , c)

=
∑
x∈Gi

(
λxσ(x, u) dist

z(pclose, c)+

(1− λx)σ(x, u) dist
z(pfar, c)

)
=
∑
x∈Gi

σ(x, u) distz(x, c).

It suffices to show that replacing c with u produces
affordable error. We refer to the full version [32] for the
details.

Proof of item (2): Consider π : Di×C → R+ consistent
with Γ. We need to construct σ : Gi × C → R+ so that
costσz (Gi, C) ≤ (1 + ϵ) costπz (Di, C). We find such σ by

considering the following linear program,

minimize
∑
x∈Gi

∑
u∈C

σ(x, u) · distz(x, u)

subject to σ(x, u) ≥ 0 ∀x ∈ Gi, u ∈ C,∑
u∈C

σ(x, u) = 1 ∀x ∈ Gi,∑
x∈Gi

σ(x, u) = Γ(u) ∀u ∈ C

The above linear programming is clearly a feasible min-
cost flow problem as there must exist σ : Gi × C → R+

consistent with Γ. Let σ denote the optimal solution of the
LP. It suffices to show costσz (Gi, C) ≤ (1 + ϵ) costπz (Di, C).
We need the following Lemma III.8.

Lemma III.8. The following inequalities for σ hold.
1) For every u ∈ Cfar,∑

x∈Gi

σ(x, u) distz(x, u)

≤
(
1 +

ϵ

2

) (
π(pclosei , u) distz(pclosei , u)

+ π(pfari , u) distz(pfari , u)
)
.

2) We have the following for Cclose,∑
x∈Gi

σ(x,Cclose) dist
z(x, c)

≤ π(pclosei , Cclose) dist
z(pclosei , c)

+ π(pfari , Cclose) dist
z(pfari , c) +

ϵ

3
· costπz (Di, C).

3) costσz (Gi, Cclose) ≤
(
1 + ϵ

2

)
costπz (Di, Cclose) + ϵ

2 ·
costπz (Di, C).

Due to page limitation, we skip the proof of Lemma III.8
but refer to the full version [32].

Now we are ready to prove Lemma III.6. Item (1)
and Item (3) of Lemma III.8 imply costσz (Gi, Cfar) ≤(
1 + ϵ

2

)
costπz (Di, Cfar) and costσz (Gi, Cclose) ≤

(
1 + ϵ

2

)
·

costπz (Di, Cclose) +
ϵ
2 · cost

π
z (Di, C). Combining with them,

we have

costσz (Gi, C) = costσz (Gi, Cclose) + costσz (Gi, Cfar)

≤
(
1 +

ϵ

2

)
· costπz (Di, Cclose) +

(
1 +

ϵ

2

)
·

costπz (Di, Cfar) +
ϵ

2
· costπz (Di, C)

= (1 + ϵ) · costπz (Di, C).

Thus we have proved Lemma III.6.
Concluding the error analysis: Now we are ready to

finish the error analysis for the coreset S on the unmarked
groups Z. It can be simply done by combing Lemma III.5
and Lemma III.6. Recall that by construction there are at most
k(2t + 1) colored rings and every colored group contains at
least one colored rings. Since groups contain disjoint rings, we
know that there are at most k(2t+1) many colored groups. Let
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σ denote the optimal assignment consistent with Γ from Z to
C. Recall that Z =

⋃
i:Gi∈G Gi. Let Γi denote the assignment

constraints such that ∀u ∈ C,Γi(u) =
∑

x∈Gi
σ(x, u). Let πi

denote the optimal assignment from Di to C consistent with
Γi. By Lemma III.5 and Lemma III.6 we have,

costz(S,C,Γ)

≤
∑

i:Gi∈G
costz(Di, C,Γi)

=
∑

i:Gi∈G
costπi

z (Di, C)

≤ (1 + ϵ) ·
∑

i:Gi∈G
costσz (Gi, C)

+ k(2t+ 1) · ϵ

3kt
· costz(P, c)

≤ (1 + ϵ) · costz(Z,C,Γ) + ϵ · costz(P, c).

Similarly, we have that

costz(Z,C,Γ) ≤ (1 + ϵ) · costz(S,C,Γ) + ϵ · costz(P, c)

and conclude that

| costz(Z,C,Γ)− costz(S,C,Γ)| ≤ O(ϵ) · costz(Z,C,Γ).

It remains to scale ϵ.

B. Proof of Theorem III.3

Theorem III.9 (Restatement of Theorem III.3). There is an
algorithm that given dataset P ⊆ X , center c ∈ X , 0 < ϵ < 1,
computes a 2-partition {W,Z} of P and a weighted point set
S ⊆ P of size 3, such that

1) W consists of O(log z
ϵ ) rings {Ri}i where each Ri ⊆

ring(c, ri, 2ri) for some ri > 0, and
2) S is an (ϵ, costz(P, c))-coreset for (1, z)-CLUSTERING

on Z,
running in time Õ(|P |k).

Ring decomposition: Let r :=
(

costz(P,c)
|P |

)1/z
denote the

average cost of P . We decompose P into 3 groups.
• Pclose = {p ∈ P | d(p, c) < ϵ

6z · r}.
• Pfar = {p ∈ P | d(p, c) > 120z

ϵ2 r}.
• Pmain = P \ (Pclose

⋃
Pfar).

Define W := Pmain, and it is clear that W can be covered by
a union of O(log z

ϵ ) rings of the form ring(c, a, 2a) for some
a ≥ 0. Define Z := P \W , then Z = Pclose∪Pfar. It remains
to define an (ϵ, costz(P, c))-coreset S for Z.

Constructing coreset S: Recall that Z = Pclose∪Pfar, so
we construct coresets for Pclose and Pfar separately, and take
the union of them.

• For Pclose, we add to S a single coreset point c with
weight w(c) := |Pclose|. Note that if one insist looking
for a subset of P as coreset, one can replace c with the
closet point cmin ∈ Pclose to c. It only remains to scale
ϵ.

• For Pfar, let pfar, pclose ∈ Pfar denote the further and
closest point to c. For every x ∈ Pfar there is a unique
λx such that distz(x, c) = λx · distz(pclose, c) + (1 −
λx) · distz(pfar, c). We add pfar and pclose to S and set
the weight as w(pclose) =

∑
x∈Pfar

λx and w(pfar) =∑
x∈Pfar

(1− λx). Note that w(pclose) +w(pfar) = |Pfar|
and costz({pclose, pfar}w, c) = costz(Pfar, c).

Clearly |S| = 3 and we argue the error bound in the following.
Error analysis: Due to page limitation, we refer to

Section 3.2 of the full version [32] for the error analysis.

IV. ASSIGNMENT-PRESERVING CORESETS FOR Rd RINGS

In this section, we show how to construct assignment-
preserving coresets for k-MEDIAN. For simplicity, throughout
this section, we use cost(·) to represent cost1(·).

Theorem IV.1. Let c ∈ Rd, r > 0, and P ⊆ ring(c, r, 2r)
be a dataset with |P | = n. Let D ⊆ P be a uniform sample
of size m = Õ( k

ϵ5 log δ
−1) and re-weight D such that ∀x ∈

D,wD(x) := n
m . Then with probability at least 1 − δ, D is

an assignment-preserving (ϵ, nr)-coreset for k-MEDIAN.

We can assume the input dimension d = Õ(ϵ−2 log k), by
applying the iterative size reduction technique introduced in
recent paper [15] which is based on a terminal version of
Johnson-Lindenstrauss Lemma [52].4 Thus it suffices to prove
Theorem IV.1 with target coreset size m = Õ(kdϵ3 ).

The following lemma shows that it suffices to bound
| cost(P,C,Γ)−cost(D,C,Γ)|, for a k-point center set C with
assignment constraint Γ such that the total mass of assignment
for the “far” portion of C is small.

Lemma IV.2. Let P and D be the dataset and coreset in
Theorem IV.1. Let C ⊆ Rd, |C| = k and Γ : C → R+ be an
assignment constraint such that

∑
u∈C Γ(u) = n. Let Cfar =

{u ∈ C | dist(u, c) > 5kr/ϵ2}. If Γ(Cfar) =
∑

u∈Cfar
Γ(u) >

ϵn/k,∣∣ cost(P,C,Γ)− cost(D,C,Γ)
∣∣ < ϵ cost(P,C,Γ).

Proof: Recall that P and D are both subsets of
ring(c, r, 2r). Thus we have

max{cost(P, c), cost(D, c)} ≤ 2nr

As Γ(Cfar) ≥ ϵn/k, at least ϵn/k points in P must have
connection cost at least 5kr/ϵ2 − 2r > 4kr/ϵ2. So we know
that cost(P,C,Γ) ≥ ϵn/k · 4kr/ϵ2 = 4nr/ϵ. So by triangle
inequality we know that∣∣ cost(P,C,Γ)− cost(D,C,Γ)

∣∣ ≤ cost(P, c) + cost(D, c)

≤ 4nr

< ϵ cost(P,C,Γ).

4Strictly speaking, the iterative size reduction technique in [15] is designed
for classical ϵ-coresets instead of our assignment-preserving (ϵ, A)-coresets
for k-MEDIAN. The algorithm in [15] iteratively construct ϵi+1-coreset on ϵi-
coreset with carefully chosen ϵi’s. Here, since we only require the argument
work for a fixed A = nr, we can apply the reduction in an identical way by
iteratively constructing (ϵi+1, A)-coreset on (ϵi, A)-coreset with the same
set of ϵi’s.
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Lemma IV.3 ( [25, Lemma 13]). Let C ⊆ Rd, |C| = k and Γ :
C → R+ be an assignment constraint such that

∑
u∈C Γ(u) =

n. Let Q be a uniform sample of P ⊆ ring(c, r, 2r) with size
m = Õ(ϵ−3 log δ−1) and re-weighted by ∀x ∈ Q,wQ(x) =
n/m. Then with probability 1− δ,

| cost(Q,C,Γ)− cost(P,C,Γ)| ≤ εnr.

Lemma IV.3 is a concentration inequality for a fixed center
set with capacity constraints, given by [25]. To show the
coreset property holds for all possible center sets, we carefully
construct a discretization F of centers and the assignment
constraints.

Definition of F: Let N denote an ϵr-net of the ball
B(c, 5kr

ϵ2 ). So |N | ≤ (kϵ )
O(d). Let t := ⌈ 5k

2

ϵ3 ⌉ and H :=
{i · nt | i = 0, 1, . . . , t} denote the set of multiples of n

t that
do not exceed n. Let N×H denote the set of weighted points
x such that x ∈ N and w(x) ∈ H . We define

F := {(C,Γ) | C ⊆ N, |C| ≤ k,Γ(C) ⊆ H,Γ(C) = n} .

Note that |F| ≤
(
k
ϵ

)O(kd) · (kϵ )
O(k) and thus log |F| =

Õ(kd log k
ϵ ).

In the following lemma, we show that the coreset property
on F implies coreset property on every k-point center set C ⊆
Rd and assignment Λ with Λ(Cfar) ≤ ϵn/k.

Lemma IV.4. Let (C,Λ) be a k-point center set in Rd with
assignment constraint Λ such that Λ(C) = n and Λ(Cfar) ≤
ϵn/k where Cfar = {u ∈ C | dist(u, c) > 5kr/ϵ2}, then
there exists a k-point center set S with assignment constraint
(S,Γ) ∈ F such that for every weighted set Q ⊆ ring(c, r, 2r)
with wQ(Q) = n,

cost(Q,C,Λ) ∈
(
1±O(ϵ)

)(
cost(Q,S,Γ)+∆(C)

)
±O(ϵnr)

where ∆(C) :=
∑

u∈Cfar
dist(u, c) · Λ(u).

Proof:
Let Cclose := C \ Cfar. For every u ∈ Cclose, let S(u) ∈

N be a net point such that dist
(
u, S(u)

)
≤ ϵr. Let u∗ ∈

Cclose denote the center with largest capacity, namely, u∗ ∈
argmaxu∈Cclose

Λ(u). Clearly Λ(u∗) ≥ Λ(Cclose)
k ≥ n

2k .
Recall that t = ⌈ 5k

2

ϵ3 ⌉. For every x ∈ Cclose \ {x∗}, we let
Γ
(
S(x)

)
:= ⌊ tΛ(x)

n ⌋ ·
n
t . We define

Γ
(
S(x∗)

)
:= n−

∑
x∈Cclose\{x∗}

Γ
(
S(x)

)
.

As all Γ
(
S(x)

)
’s are multiples of n

t and sum up to n, we
know that (S,Γ) ∈ F . We are ready to prove the lemma.

To simplify the presentation, we observe that it suffices
to assume S = Cclose. To see this, recall that ∀u ∈
Cclose,dist(u, S(u)) ≤ ϵr, thus replacing every u with S(u)
produces at most ϵnr error, which is affordable.

To prove the upper bound, cost(Q,C,Λ) ≤ (1 +
O(ϵ))

(
cost(Q,S,Γ) + ∆(C)

)
+ ϵnr, it suffices to construct

an assignment σ′ : Q× C → R+ that is consistent with Λ so
as

costσ
′
(Q,C) ≤ (1 + ϵ)

(
cost(Q,S,Γ) + ∆(C)

)
+ ϵnr.

Recall that we have assumed w.l.o.g, S = Cclose. By
construction we know that Λ(u) − Γ(u) ∈ [0, n

t ] for u ∈
Cclose \ {u∗} and Γ(u∗)− Λ(u∗) ∈ [0, 2ϵn/k].

To construct σ′, we modify the optimal assignment corre-
sponding to cost(Q,S,Γ). Specially, we arbitrarily disconnect
Γ(u∗) − Λ(u∗) mass of points from Q to u∗ in Γ(u∗) and
distribute the mass to Cclose \ {u∗} and Cfar to satisfy the
requirements Λ on them. We claim that by doing this, the
connection cost increases by at most

(1 + ϵ)∆(C) + ϵnr.

To see this, we first observe that sending the matching mass
from ring(c, r, 2r) to Cfar always costs at most (1+ ϵ)∆(C).
On the other hand, as Cclose ⊆ B(c, 5kr

ϵ2 ), and we send at most∑
u∈Cclose\{u∗}

(
Λ(u)− Γ(u)

)
≤ kn

t

additional mass to Cclose \{u∗}, the cost in this part increases
by at most kn

t ·
5kr
ϵ2 ≤ ϵnr. Thus we have proved the upper

bound.

It remains to prove the lower bound, cost(Q,C,Λ) ≥
(
1−

O(ϵ)
)(

cost(Q,S,Γ)+∆(C)
)
−O(ϵnr). Let σ denote the op-

timal assignment for cost(Q,C,Λ), namely, cost(Q,C,Λ) =
costσ(Q,C).

Let Tfar =
∑

q∈Q

∑
u∈Cfar

σ(q, u) dist(q, u) and Tclose =∑
q∈Q

∑
u∈Cclose

σ(q, u) dist(q, u). So cost(Q,C,Λ) = Tfar+
Tclose. We observe that Tfar ≥ (1−ϵ)∆(C). So we just need to
prove Tclose ≥

(
1−O(ϵ)

)
cost(Q,S,Γ)−O(ϵnr). It suffices

to construct an assignment π : Q×S → R+ that is consistent
with Γ and

costπ(Q,S) ≤
(
1 +O(ϵ)

)
Tclose +O(ϵnr).

To construct π, we modify σ. Specifically, we arbitrarily
disconnect Λ(u) − Γ(u) mass for every u ∈ Cclose \ {u∗}
and disconnect all mass connecting to Cfar, and send all those
mass to u∗. We note that we have re-allocated at most 2ϵn/k
mass.

Let y∗ ∈ Q be a point such that dist(y∗, u∗) ≤∑
q∈Q σ(q,u∗) dist(q,u∗)

Γ(u∗) . Note that such y∗ exists as there is
always some point that contributes at most the average. Thus
by triangle inequality, for every x ∈ Q,

dist(x, u∗) ≤ dist(x, c) + dist(c, y∗) + dist(y∗, u∗)

≤ 2r + 2r +

∑
q∈Q σ(q, u∗) dist(q, u∗)

Γ(u∗)

= 4r +

∑
q∈Q σ(q, u∗) dist(q, u∗)

Γ(u∗)
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Thus we know that the re-allocation of mass increases the
cost by at most(
4r+

∑
q∈Q σ(q, u∗) dist(q, u∗)

Γ(u∗)

)
·2ϵn
k
≤ O(ϵnr)+O(ϵ·Tclose)

where we have used the fact that Γ(u∗) ≥ n
2k and∑

q∈Q σ(q, u∗) dist(q, u∗) ≤ Tclose.
So we have constructed such π and thus proved the lower

bound.
Proof of Theorem IV.1: Replacing δ with δ

|F| in Lemma
IV.3. By union bound, Lemma IV.3 and the fact that the
uniform sample has size Õ(kdϵ3 · log δ

−1), we know that w.p. at
least 1− δ, the coreset property holds for all (C,Γ) ∈ F . By
Lemma IV.4, we further know that the coreset property holds
for all (C,Γ) such that Γ(Cfar) ≤ ϵn/k. By Lemma IV.2, we
know that the coreset property also holds for those (C,Γ) such
that Γ(Cfar) > ϵn/k.

A. ϵ-Coresets for Capacitated and Fair k-MEDIAN

Combing Theorem IV.1 and Theorem III.2 with a standard
argument (See Appendix A of the full version [32]), we
obtain the algorithm for constructing assignment-preserving
ϵ-coresets.

Theorem IV.5. There is a near-linear time algorithm that
takes a data set P ⊆ Rd and outputs an assignment-preserving
ϵ-coreset D ⊆ P with size |D| = Õ(k

3

ϵ6 ) for k-MEDIAN.
In particular, this implies an ϵ-coreset for Capacitated k-
MEDIAN.

Fair clustering: Suppose P ⊆ Rd is a fair k-MEDIAN
instance with groups P1, . . . , Pl ⊆ P . Let ∆ denote the
number of combinations of groups that one data point can
belong to. We note that our assignment-preserving coresets
(Definition II.5) matches the case ∆ = 1. Thanks to a
reduction of [27], we can use our assignment-preserving ϵ-
coreset to construct ϵ-coreset for fair k-MEDIAN.

Theorem IV.6 ( [27, Theorem 4.3]). Suppose there is an al-
gorithm that for any instance P ⊆ Rd with groups P1, . . . , Pl,
constructs an assignment-preserving ϵ-coreset for k-MEDIAN
with probability 1 − δ in time T (|P |, ϵ, δ). Then there is an
algorithm A that for any fair k-MEDIAN instance P such that
P can be partitioned into ∆ disjoint groups P (1), . . . , P (∆)

where each P (i) consists of points that belong to the same
combination of groups, A constructs an ϵ-coreset on P for
fair k-MEDIAN with probability 1− δ in time

Õ

(
∆∑
i=1

T
(
|P (i)|, O(ϵ), O(δ)

))
.

We thus can prove the following theorem.

Theorem IV.7. There is a linear algorithm that constructs an
ϵ-coreset for Euclidean fair k-MEDIAN with size Õ(∆ · k

3

ϵ6 ).

Extension to Euclidean k-MEANS: Our approach can
be extended to obtain an assignment-preserving ϵ-coreset for
Euclidean k-MEANS. We refer to our full version [32] for
discussion of the details.
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