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Abstract
Given the prevalence of large scale linear algebra
problems in machine learning, recently there has
been considerable effort in characterizing which
functions can be approximated efficiently of a
matrix in the data stream model. We study a
number of aspects of estimating matrix norms
– an important class of matrix functions – in
a stream that have not previously been consid-
ered: (1) multi-pass algorithms, (2) algorithms
that see the underlying matrix one row at a time,
and (3) time-efficient algorithms. Our multi-pass
and row-order algorithms use less memory than
what is provably required in the single-pass and
entrywise-update models, and thus give separa-
tions between these models (in terms of mem-
ory). Moreover, all of our algorithms are consid-
erably faster than previous ones. We also prove a
number of lower bounds, and obtain for instance,
a near-complete characterization of the memory
required of row-order algorithms for estimating
Schatten p-norms of sparse matrices. We com-
plement our results with numerical experiments.

1. Introduction
Modern datasets, from text documents and images to social
graphs, are often represented as a large matrix A ∈ Rm×n.
In many application domains, including database queries,
data mining, network transactions and sensor networks
(see e.g. (Liberty, 2013; Wei et al., 2016; Huang & Ka-
siviswanathan, 2015) for recent examples), the input matrix
A is presented to the algorithm as a data stream, i.e., a se-
quence of items/updates that can take several forms. In the
entry-wise (or insertion-only) model, each item specifies
(i, j, Aij) and provides the value of one entry, in arbitrary
order (and the unspecified entries are set to 0). The row-
order model is similar, except that the items follow the nat-
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ural order (sorted with i as the primary key, and j as the sec-
ondary one). In the turnstile model, each stream item has
the form (i, j, δ) and represents an update Aij ← Aij + δ
for δ ∈ R (after initializing A to the all-zeros matrix).
These models capture different access patterns, but all three
can represent sparse matrices quite efficiently, because zero
entries are implicit. As usual, the key parameters of an
algorithm in the data-stream model are its memory (also
referred to as storage/space requirements) and its running
time (per update and to report its output).
Many properties of a matrix are directly related to its spec-
tral characteristics, i.e., its singular values. For example,
the number of non-zero singular values is just the matrix
rank, which determines the degrees of freedom of a corre-
sponding linear system; the maximum and minimum sin-
gular values of a matrix determine its condition number,
which in turn determines the hardness of many problems,
such as optimization problems; the leading singular values
of a matrix determine how well a matrix can be represented
by the principal components; and so forth. It is generally
hard to compute directly the singular values of a matrix,
especially in the streaming model, but luckily, the Schat-
ten norms of the matrix can often be used as surrogates for
its spectrum, see e.g. (Zhang et al., 2015; Kong & Valiant,
2016; Di Napoli et al., 2016; Khetan & Oh, 2017). For-
mally, the Schatten p-norm of a matrix A ∈ Rm×n is de-
fined, for every p ≥ 1, as

‖A‖Sp :=
(∑

j≥1 σ
p
j

)1/p

,

where σ1 ≥ · · · ≥ σmin(m,n) are the singular values of
A. This definition naturally extends to all 0 < p < 1
although then it is not a norm, and also to p = 0,∞ by
taking the limit. This is a very important family of ma-
trix norms, and includes as special cases the well-known
trace/nuclear norm ||A||∗ =

∑
j≥1 σj = ‖A‖S1

, the

Frobenius norm ||A||F =
(∑

j≥1 σ
2
j

)1/2
= ‖A‖S2

, and
the spectral/operator norm ‖A‖op = σ1(A) = ||A||S∞ .
We study algorithms that approximate the Schatten p-norm
of a matrix A presented in a data stream. While this prob-
lem has attracted significant attention lately (Andoni &
Nguyên, 2013; Li et al., 2014; Li & Woodruff, 2016a;b;
2017), our results address three new aspects. First, we de-
sign faster and more space-efficient multi-pass algorithms.
Second, we consider the row-order model, which is a com-
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mon access pattern for matrix data (see, e.g. (Liberty,
2013)). Third, we design algorithms with faster update
time and/or query time. The above three aspects were
not considered previously for matrix norms, and our work
opens the door for further diversification of prevailing mod-
els (and thereby of current algorithms). In particular, our
results can be applicable to classical scenarios, e.g., where
data is stored on disk (or any media where a linear scan is
much faster than random access), and potentially lead to
performance improvements in other such domains. In the
next few subsections, we present our contributions in more
detail.

1.1. New Estimator for PSD Matrices (or Even p)
Our first results rely on a new method for estimating the
Schatten p-norm ||A||Sp of a positive semidefinite matrix
(PSD) matrix A ∈ Rn×n for integer p ≥ 2. This method
yields two new streaming algorithms in the turnstile model,
which require, respectively, one pass and dp/2e passes
over the input. Both algorithms are at least as good as
the previous ones in all three standard performance mea-
sures of storage, update time, and query time; and each
algorithm offers significant improvements in two out of
these three. Our one-pass algorithm achieves update time
O(1) compared with the previous poly(n), and query time
O(nω(1−p/2)), where ω ≤ 2.373 is the matrix multiplica-
tion exponent (Le Gall, 2014), compared with the previous
np−2. And our multi-pass algorithm requires storage that
is sublinear in n, compared with O(n) previously. We note
that if p is even, then the above results extend to arbitrary
A ∈ Rm×n (and not only PSD) by a standard argument. A
detailed comparison of the bounds is given in Table 1, and
the results themselves appear in Section 3.
Throughout the paper, a matrix is called sparse if it has at
most O(1) non-zero entries per row and per column. We
write Õ(f) as a shorthand for O(f · logO(1) f), and write
Oa(f) to indicate that the constant in O-notation depends
on some parameter a.

Techniques Our technical innovation is an unbiased esti-
mator of tr(Ap) for a symmetric (and not only PSD) matrix
A ∈ Rn×n. To see why this is useful, denote the eigen-
values of A by λ1 ≥ · · · ≥ λn, and observe that if A is
PSD (or alternatively if p is even), then tr(Ap) =

∑
i λ

p
i =∑

i σi(A)p = ||A||pSp . Our estimator has the form

X := tr(G1AG
T
2 G2AG

T
3 · · ·GpAGT1 ), (1)

where Gi ∈ Rt×n are certain random matrices. This es-
timator X can be computed from the p bilinear sketches
{GiAGTi+1}i∈[p]

by straightforward matrix multiplication,
where Gp+1 := G1 by convention. And if, say, t =
O(n1−2/p), then each bilinear sketch has dimension O(t2)
= O(n2−4/p). These determine the streaming algorithm’s
storage requirement and query time, and, if the matrices

{Gi}i∈[p] have sparse columns, the updates will be fast.
The main difficulty is to bound the estimator’s vari-
ance, which highly depends on the choice of the matrices
{Gi}i∈[p]. The basics of this technique can be seen in the
case p = 4, if the Gi’s satisfy the following definition.

Definition 1.1. A random matrix S ∈ Rt×n is called an
(ε, δ, d)-Johnson-Lindenstrauss Transformation (JLT) if for
every V ⊆ Rn of cardinality |V | ≤ d it holds that

Pr
[
∀x ∈ V, ‖Sx‖22 ∈ (1± ε)‖x‖22

]
≥ 1− δ.

An (ε, δ, d)-JLT can be constructed with t =
O(ε−2 log(d/δ)) rows, which is optimal (see (Kane
et al., 2011) or (Jayram & Woodruff, 2013)). While using
independent N(0, 1/t) Gaussians entries works, there is a
construction with only O(ε−1 log(1/δ)) non-zero entries
per column (Kane & Nelson, 2014).
The case p = 4 has a particularly short and simple analysis,
whenever G1 and G2 are independent (ε, δ, n)-JLT matri-
ces, which we can achieve with t = O(ε−2 log n). The
first idea is to “peel off” Gi from both sides, using that for
any PSD matrix M , with high probability tr(GiMGTi ) ∈
(1 ± ε) tr(M) (see Lemma 3.2 for a precise statement).
A second idea is to use the identity tr(BC) = tr(CB)
to rewrite tr(AATGT2 G2AA

T ) = tr(G2AA
TAATGT2 ).

Now using the first idea once again, we are likely to ar-
rive at an approximation to tr(AAT AAT ) = ||A||S4 . The
full details are given in Section 3.1.
The sketching method extends from p = 4 to any integer
p ≥ 2, but the simple analysis above breaks (because for
p > 4 the “inside” matrix M is no longer PSD) and thus
our analysis is much more involved. We first analyze Gi’s
with independent Gaussian entries, by a careful expansion
of the fourth moment of X , which exploits certain cancel-
lations occurring (only) for Gaussians. We then consider
Gi’s that are sampled from a particular sparse JLT due to
(Thorup & Zhang, 2004), and employ a symmetrization-
and-decoupling argument to compare the variance of X in
this case with that of Gaussian Gi’s.
We make two technical remarks. First, prov-
ing E[X] = tr(Ap) is straightforward. In-
deed, by the second idea above, we can rewrite
X = tr(G1AG

T
2 G2AG

T
3 · · ·GpAGT1 ) as X =

tr(GT1 G1AG
T
2 G2A · · · GTpGpA). Now using

E[GTi Gi] = I together with linearity of trace and of
expectation, we obtain that E[X] = tr(Ap). Second, after
setting t = O(n1−2/p) (independent of ε), our bound on
the variance is O(E[X]2), which we can decrease in a
standard way, taking O(1/ε2) repetitions. See Sections 3.2
and 3.4 for details.
The multi-pass streaming algorithm is implemented
slightly differently, in that G1 ∈ R1×n, i.e., has only one
row. The other matrices G2, . . . , Gp ∈ Rt×n are as be-
fore, although we now set t = O(n1−1/(p−1)). Our es-
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Problem: Schatten p-norm of PSD A, integer p ≥ 2 (or general A, even p)
passes space update time query time

1 ε−2n2−4/p ε−2n2−4/p ε−2np−2 (Li et al., 2014)
1 ε−2n2−4/p ε−2 ε−2n(1−2/p)ω Theorems 3.3 and 3.8
dp/2e ε−2n ε−2 ε−2n Theorem 6.1 of (Woodruff, 2014)
dp/2e ε−2n1−1/(p−1) ε−2 ε−2n(1−1/(p−1)) Theorems 3.6 and 3.8

Table 1. Streaming algorithms for (1+ε)-approximation of the Schatten p-norm ofA ∈ Rn×n. The bounds for storage/time omitOp(1)
factors, and count space in words.

timator X can be computed in dp/2e passes with space
only 2t as follows. In the first pass, compute vectors
XL ← G1AG

T
2 ∈ R1×t and XR ← GTpAG1 ∈ Rt×1,

and then on the i-th pass update XL ← XLG
T
i AGi+1 and

XR ← Gp−i+1AG
T
p−i+2XR. Notice that the computation

in each pass is linear in A. For even p, after completing
p/2 passes, compute and output X ′ = XLXR ∈ R (and
similarly for odd p). This X ′ is similar to the estimator
X described above, except for the new dimensions of the
Gi’s. See Sections 3.3 and 3.4.
This multi-pass algorithm offers a very significant space
savings over the one-pass algorithm. It is also a bit surpris-
ing because its space is getting close to the corresponding
vector norm, namely, the `p-norm on Rn, for which the op-
timal space for O(p) passes is Õ(n1−2/p) bits. In fact, for
the vector norm, O(p) passes do not significantly reduce
the storage needed compared with one pass, which stands
in sharp contrast to Schatten p-norms. As mentioned be-
fore, if p is even then the algorithms extends to arbitrary
A ∈ Rm×n by a standard argument.

1.2. Lower Bound for PSD Matrices
Recent work (Li & Woodruff, 2016a) has improved the
storage lower bound for estimating Schatten p-norms
for non-integer values of p, by showing that (1 + ε)-
approximation (in the one-pass entry-wise model) requires
storage n1−g(ε), for some function g(ε) → 0 as ε → 0,
even for a sparse matrix. This contrasts with our algorithms
for PSD matrices (from Section 1.1), where the exponent is
independent of ε and bounded away from 1. However, the
hard distribution used by (Li & Woodruff, 2016a) is not
over PSD matrices, leaving open the possibility that PSD
matrices admit algorithms that use storage O(nc) for c < 1
independent of ε.
We close this gap in Section 4, by adapting the lower
bound of (Li & Woodruff, 2016a) to PSD matrices, to show,
for every non-integer p > 0, a storage lower bound of
Ω(n1−g′(ε)) for some function g′(ε) → 0 as ε → 0 (again,
in the one-pass entry-wise model and even for a sparse ma-
trix). A key feature of our lower bounds for PSD matrices
is that they hold in the model in which each entry of the
matrix occurs exactly once in the stream. This models ap-
plications where the matrix resides in external memory and

is being streamed through main memory; in such a model
multiple updates to an entry may not appear. While it is
possible to obtain lower bounds for PSD matrices by em-
bedding the multiplayer SET-DISJOINTNESS lower bound
(Bar-Yossef et al., 2002) for vectors onto the diagonal of
a matrix, to apply such lower bounds the diagonal entries
need to be incremented repeatedly, that is, one such diag-
onal entry needs to be updated nΩ(1) times. In contrast, in
our lower bounds each matrix entry occurs exactly once in
the stream, i.e., there are no updates to entries.

1.3. Results for Row-Order Model
For sparse matrices, estimating Schatten p-norms in the
row-order model can be reduced to estimating Schatten
(p/2)-norms in the turnstile model. Consider estimating
‖A‖pSp for some sparse matrixA. The algorithm first forms
ATA =

∑
iA

T
i Ai “on the fly”, by reading each row Ai

and immediately generating a stream of updates that cor-
responds to the non-zero entries in ATi Ai, and then it can
just estimate the Schatten (p/2)-norm of that stream, be-
cause ‖ATA‖p/2Sp/2

= ‖A‖pSp . Observe that each row Ai

has only O(1) non-zero entries, hence also ATi Ai has only
O(1) non-zero entries, and the algorithm only needs O(1)
space to generate the updates to ATA. Moreover, since
A is sparse, also ATA is sparse. It was shown in (Li &
Woodruff, 2016a) how to estimate the Schatten p-norm, for
an even integer p, using Õp,ε(n1−2/p) bits of space, even
in the turnstile model. For p ∈ 4Z, the above yields an al-
gorithm in the row-order model that uses Õp,ε(n1−4/p) bits
of space for sparse matrices.
In Sections C and D, we study the problem in the row-order
model for all p > 0. When p is not an even integer, we
prove that (1 + ε)-approximating the Schatten p-norm in
the one-pass entry-wise model requires Ωε(n

1−g(ε)) bits
of space where g(ε) → 0 as ε → 0. This bound holds
even for sparse matrices, in which case it is almost tight.
When p ≥ 4 is an even integer, we prove a lower bound of
Ωp(n

1−4/p) bits of space, matching up to logarithmic fac-
tors the algorithm from above for p ∈ 4Z. For the remain-
ing case p ≡ 2 (mod 4), we present an algorithm using
Õp,ε(n

1−4/(p+2)) space, leaving a slight polynomial gap
from the lower bound of Ωp(n

1−4/p).
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Problem: Schatten p-norm of a sparse matrix in row-order stream
which p > 0 space

Algorithms: all p Õ(n) trivial (by sparsity), ε = 0

p ≡ 0 (mod 4) Õp,ε(n
1−4/p) Section 1.3

p ≡ 2 (mod 4) Õp,ε(n
1−4/(p+2)) Theorem D.1, p ≥ 6

Lower Bounds: p ∈ 2Z, p ≥ 4 Ω(n1−4/p) Theorem C.4, for ε < ε0(p), even multi-pass
p /∈ 2Z Ωt(n

1−1/t) Theorem C.3, for ε < ε0(t, p)

Table 2. Bounds for (1 + ε)-approximation of the Schatten p-norm of a sparse matrix A ∈ Rn×n in the one-pass row-order model.
Space is counted in bits.

1.4. Previous Work
The aforementioned algorithm of (Li et al., 2014) uses a
single sketching matrix G, for example, if A is PSD, then
their sketch is S = GAGT , where G ∈ Rt×n is a Gaussian
matrix. Its estimate for ||A||Sp is produced by summing
over all “cycles” Si1,i2Si2,i3 · · ·Sip,i1 , where i1, . . . , ip ∈
[t] are distinct. Our sketch improves upon theirs in both
update time and query time. The only other streaming al-
gorithm for Schatten p-norms that we are aware of is that
of (Li & Woodruff, 2016a) (Theorem 7), which uses space
O(n1− 2

p poly(1
ε , log n)) but works only for matrices that

have O(1)-entries per row and per column.
One possible approach to improve the update time would
be to replace the Gaussian matrices in (Li et al., 2014) with
a distribution over matrices that admit a fast multiplication
algorithm. The analysis done in (Li et al., 2014) relies on
the Gaussian entries (rotational invariance, in particular),
so the replacement matrix should preserve the distribution
of the sketch. Kapralov, Potluru, and Woodruff (Kapralov
et al., 2016) present just such a distribution on matrices G̃,
where the multiplication G̃A can be computed quickly and
G̃A is close to GA in total variation distance. Unfortu-
nately, under the distribution of (Kapralov et al., 2016), or
any other with a similar guarantee on total variation dis-
tance, each coordinate update to A results in a dense rank-
one update to the sketch, which means that the update time
is not improved.
Several strong lower bounds are known for approximating
Schatten p-norms and other matrix functions, both for the
dimension of a sketch and for storage requirement (bits).
Li, Nguyen and Woodruff (Li et al., 2014) prove that for
0 ≤ p < 2 every linear sketch that can approximate rank
and Schatten p-norm must have dimension Ω(

√
n) and ev-

ery bilinear sketch must have dimension Ω(n1−ε). Li and
Woodruff (Li & Woodruff, 2016b) show that every linear
sketch for Schatten p-norms, p ≥ 2, requires dimension
Ω(n2−4/p). In (Li & Woodruff, 2016a), they prove space
complexity lower bounds that hold even when the input ma-
trix is sparse. Specifically, they show that one-pass stream-
ing algorithms which (1±ε)-approximate various functions
of the singular values, including Schatten p-norms when p

is not an even integer, require Ω(n1−g(ε)) bits of space for
some function g(ε)→ 0 as ε→ 0. Additional space lower
bounds, e.g., for p ∈ [1, 2), can be deduced from a gen-
eral statement of (Andoni et al., 2015), see Table 1 of (Li
& Woodruff, 2016a).

2. Notation and Preliminaries
The space bounds of sketching algorithms in the turnstile
model are stated in terms of sketch dimension (number of
entries). The number of bits required can be larger by a
log nM factor, where M is the absolute ratio of the largest
element in the matrix to the smallest. We call a matrix
a Gaussian matrix if its entries are independent N(0, 1)
random variables. A matrix G of dimension t × n is a
column-normalized Gaussian matrix if G = G′/

√
t, where

G′ is a Gaussian matrix. Now-standard techniques such as
Nisan’s pseudorandom generator or k-wise independence
can be used to derandomize Gaussian matrices for use in
sketching algorithms. Column-normalized Gaussian matri-
ces serve as JLTs. In particular, there exists a constant c
such that if G be a t× n column-normalized Gaussian ma-
trix with t ≥ c

ε2 log d
δ , then G is a (ε, δ, d)-JLT (Indyk &

Motwani, 1998).

3. New Estimator for PSD Matrices (and
Integer p)

The main result in this section is a new one-pass streaming
algorithm for estimating the Schatten p-norm, for integer
p ≥ 2. When p is odd, it additionally requires that the
input matrix is PSD. The first version of this algorithm, de-
scribed in Section 3.2, has the same storage requirement
of Õp(n2−4/p/ε2) bits as the previous algorithm of (Li
et al., 2014) that uses cycle sums, but has a simpler anal-
ysis and faster query time1, which is roughly matrix mul-
tiplication time, nω , instead of np. Moreover, it is based
on a new method that leads to a dp/2e-pass algorithm with
storage requirement Õp(n1−1/(p−1)/ε2) bits, as described

1In (Kong & Valiant, 2016), Kong and Valiant independently
improve the algorithm in (Li et al., 2014) to the same runtime
as Theorem 3.3 in this paper by considering only “increasing cy-
cles”.
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in Section 3.3. Previously, the algorithm in Theorem 6.1
of (Woodruff, 2014) has the same number of passes but
larger storage requirement O(n/ε2).2 Finally, we improve
the update time, as described in Section 3.4, by employing
the sketching matrices Gi that are certain sparse matrices
instead of Gaussians.
We start in Section 3.1 with the case p = 4, which is based
on the same sketch but is significantly easier to analyse.

3.1. Schatten 4-Norm using JLT matrices
Theorem 3.1. Let G1, G2 ∈ Rt×n be independent
(ε, δn , 1)-JLT matrices. Then for every A ∈ Rn×m,

Pr
[

tr(G1AA
TGT2 G2AA

TGT1 ) ∈ (1±2ε)2||A||4S4

]
= 1−2δ.

Thus, one can find a (1±ε)-approximation to the Schatten-
4 norm of a general matrixA ∈ Rn×m using a linear sketch
of dimension O(ε−2n log n).

Before proving the theorem, we remark that if each col-
umn of Gi has only s non-zero entries, it is easy to see
that the update time of this linear sketch is O(s), assuming
any entry of G1 and G2 can be accessed in O(1) time (in a
streaming algorithm, the entries are usually computed from
a small random seed in polylog(n) time). The query time
is dominated by multiplying a matrix of size t×n with one
of size n× t, and thus takes O(tω ·n/t) = Õ(nω/ε2(ω−1))
time.
Now we prove Theorem 3.1, for which we need the follow-
ing lemma.

Lemma 3.2. Let G ∈ Rt×n be an (ε, δ/n, 1)-JLT matrix.
Then for every PSD matrix A ∈ Rn×n,

Pr
[

tr(GAGT ) ∈ (1± ε) tr(A)
]
≥ 1− δ.

Proof. By the Spectral Theorem, A = UΛUT , where Λ is
a diagonal matrix and U is an orthonormal matrix. Then
G′ = GU is still an (ε, δ/n, 1)-JLT. Thus

tr(GAGT ) = tr(G′ΛG′T ) = tr(
√

ΛG′TG′
√

Λ)

=

n∑
i=1

λie
T
i G
′TG′ei =

n∑
i=1

λi||G′ei||22.

By the JLT guarantee and a union bound, with probability
at least 1−δ, for all i ∈ [n] we have ||G′ei||22 ∈ [1−ε, 1+ε],
in which case tr(GAGT ) ∈ (1± ε) tr(A).

of Theorem 3.1. Apply Lemma 3.2 to the PSD matrix
AATAAT , to get that with probability at least 1 − δ (over
the choice of G2),

tr(G2AA
TAATGT2 ) ∈ (1± 2ε) tr(AATAAT )

= (1± 2ε)||A||S4
,

2We note that also in Theorem 6.1 of (Woodruff, 2014) it is
required that p is even or that the input matrix is PSD, but this is
erroneously omitted.

where the left-hand side is equal to tr(AATGT2 G2AA
T ),

by the identity tr(MMT ) = tr(MTM). Now suppose (by
conditioning) that G2 is already fixed, and apply the same
lemma to the PSD matrixAATGT2 G2AA

T , to get that with
probability at least 1− δ (over the choice of G1),

tr(G1AA
TGT2 G2AA

TGT1 ) ∈ (1±2ε) tr(AATGT2 G2AA
T ).

The proof follows by a union bound.
The linear sketch of A consists of the two matrices G1A
and G2A, which suffices to estimate ||A||4S4

as above
with δ = 1/8. This sketch is linear and its dimension
is 2tn, where we can use say Gaussians to obtain t =
O(ε−2 log n).

3.2. Schatten p-norm Using Gaussians
We now design a sketch for Schatten-p norm that uses
column-normalized Gaussian matrices. We will later ex-
tend and refine it to improve the per-update processing
time.

Theorem 3.3. For every 0 < ε < 1/2 and integer
p ≥ 2, there is an algorithm that outputs a (1 ± ε)-
approximation to the Schatten-p norm of a PSD matrix
A ∈ Rn×n using a randomized linear sketch of dimen-
sion s = Op(ε

−2n2−4/p). The update time (for each entry
in A) is O(s) and the query time (for computing the esti-
mate) is O(ε−2n(1−2/p)ω), where ω < 2.373 is the matrix
multiplication constant.
If p is even, the above algorithm extends to a general matrix
A ∈ Rn×m.

The first part of the theorem (for PSD matrices) follows
directly from Proposition 3.4 below. The proposition is ap-
plicable to all symmetric matrices, but ‖A‖pSp = tr(Ap)
only for PSD matrices or even p. The linear sketch
stores GiAGTi+1 for i = 1, . . . , p, where by convention
Gp+1 = G1, repeated independently in parallel Op(1/ε2)
times. Thus, the sketch has dimension Op(ε

−2t2). The
estimator is obtained by computing the Op(1/ε

2) inde-
pendent copies of X and reporting their average. To an-
alyze its accuracy, notice that a PSD matrix A satisfies
E[X] = tr(Ap) = ||A||pp. Then setting t = n1−2/p gives
Var(X) ≤ Op(||A||Sp)2p and averaging multiple indepen-
dent copies of X reduces the variance.
The second part (for general matrices), follows by using
the same sketch for the symmetric matrix B =

(
0 A
AT 0

)
,

because the nonzero singular values of B are those of A
repeated twice and ||B||pSp = 2||A||pSp = 2 tr(Ap), where
the last equality uses the assumption that p is even.
Because the correctness of the algorithm comes from
bounding the variance of X , it is enough that the entries
in each Gaussian matrix are four-wise independent, which
is crucial for applications with limited storage like stream-
ing.

Proposition 3.4. For integer p ≥ 2 and t ≥ 1, let
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G1, . . . , Gp be independent t × n column-normalized
Gaussian matrices. Then for every symmetric matrix
A ∈ Rn×n, the estimator X = tr

(
G1AG

T
2 G2A . . .G

T
p

GpAG
T
1

)
satisfies

E[X] = tr(Ap) and Var(X) =

Op

1+

b p2 c+1∑
z=2

(
n1− 2

p

t

)z
+

p∑
z=2

(
n1− 2

z

t

)z ||A||2pSp .
The full proof of this proposition is postponed to Section E.
We outline the general idea here. It is standard that a Gaus-
sian matrix is rotational invariant, i.e., G and GU are iden-
tically distributed for any orthogonal matrix U . Thus, by
the Spectral Theorem, instead of considering symmetric
matrix A = UΛUT , we can consider only its diagonal-
ization Λ.
The proof of this proposition proceeds first by expanding
X in terms of inner products of columns of the matrix
G, i.e., X =

∑
i1,i2,...,ip∈[n] λi1λi2 . . . λip · 〈g

(1)
i1
, g

(1)
i2
〉·

〈g(2)
i2
, g

(2)
i3
〉 . . . 〈g(p)

ip
, g

(p)
i1
〉, where λi is the i-th eigenvalue

of A and g(j)
ij

is the ij-th column of Gj . We then expand
E(X2). The non-zero terms in E(X2) are composed by
only those terms of even powers in every eigenvalue. Com-
puting the expectation of each term is straightforward be-
cause the entries of G are independent Gaussian random
variables, but the crux of the proof is in bounding the sum
of the terms. We introduce a collection of diagrams that
aid in enumerating the terms according to their structure
and computing the sum.

3.3. Multi-Pass Algorithm
The proof of Proposition 3.4 relies on the matricesGi being
Gaussians in two places. First, we assume that the matrix
A is diagonal, and in general we need to consider GiU in-
stead of Gi. Second, the columns of these matrices have
small variance/moments, as described in (7)-(8). We now
generalize the proof to relax these requirements (e.g., to
4-wise independence) and obtain a multi-pass algorithm.

Lemma 3.5. For integers p ≥ 2 and 1 ≤ t′ ≤ t, let G1 ∈
Rt′×n and G2, . . . , Gp ∈ Rt×n be independent column-
normalized Gaussian matrices with 4-wise independent en-
tries. Then for every symmetric matrix A ∈ Rn×n, the
estimator X = tr

(
G1AG

T
2 G2A . . .G

T
pGpAG

T
1

)
satisfies

E[X] = tr(Ap) and Var(X) =

Op

(
1 +

bp/2c∑
z=2

nz−1−2(z−1)/p

t′tz−1
+

p∑
z=2

nz−2

t′tz−1

)
‖A‖2pSp .

The proof of this lemma is postponed to Section F. It is a
direct corollary of the proof of Proposition 3.4, except that
t′, the size of the first sketch matrix, is emphasized.

We can now use the above sketch to approximate the Schat-
ten p-norm using Õ(n1−1/(p−1)) bits of space with dp/2e
passes over the input.

Theorem 3.6. Let p ≥ 2 be an even integer. There is
a dp/2e-pass streaming algorithm, that on input matrix
A ∈ Rn×m with n ≥ m given as a stream, outputs an
estimate X such that with probability at least 0.9, X ∈
(1± ε)||A||pSpand uses Op(n1−1/(p−1)/ε2) words of space.
The above extends to all integers p ≥ 2 if A is PSD.

The full proof is presented in Appendix A. We here sketch
the proof. We take G1 ∈ R1×n and G2, G3, . . . , Gp ∈
Rt×n as independent column normalized Gaussian ma-
trix, where t = O(n1−1/(p−1)). We then show an al-
gorithm that computes in dp/2e-pass the estimator X =
G1AG

T
2 G2 . . . GpAG

T
1 and uses space at most t. As

shown in Lemma 3.5, X = tr(X) is a unbiased estima-
tor for Schatten p-norm with constant variance. By repeat-
ing the algorithm O(1/ε2) times in parallel, we reach the
desired accuracy.

3.4. Faster Update Time
Since Gaussian matrices are dense, a change to one coor-
dinate of the input matrix A may lead to a change of every
entry in the sketch. This means long update times for a
streaming algorithm based on the sketch. In this section
we extend our result for Gaussian sketching matrices to a
distribution over {−1, 0, 1} valued matrices with only one
non-zero entry per column. The new sketch can be used
to improve the update time of algorithms in the last two
sections.

Definition 3.7 (Sparse ZD-sketch). Let Dt,n be the dis-
tribution over matrices G := ZD ∈ Rt×n, where Z =
(z1, z2, . . . , zn) ∈ Rt×n and D = diag(d1, d2, . . . , dn)
are generated as follows. Let h : [n] → [t] be a 4-wise in-
dependent hash function, and set Zi,j = 1{i=h(j)}, i.e., in
each zj only the h(j)-th coordinate is set to 1, and all other
coordinates are 0. The diagonal entries of D are four-wise
independent uniform {−1, 1} random variables, and D is
independent from Z.

Notice that each column of G has a single non-zero entry,
which is actually a random sign, and the n columns are
four-wise independent. This random matrix G is similar to
the sketching matrix used in (Thorup & Zhang, 2004) to
speed up the update time when estimating the second fre-
quency moment of a vector in Rn. Also note that the ZD-
sketch is a version of sparse JL matrices (see e.g., (Kane &
Nelson, 2014; Dasgupta et al., 2010)). In this paper we do
not aim at optimizing the sparsity as we focus on approxi-
mating Schatten norms.
It is fairly easy to show that ZD-sketch works for approx-
imating Schatten p-norm of matrices with all entries non-
negative. The proof is presented in Section G. We now
show that the conclusion of Theorem 3.3 and Theorem 3.6
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Figure 1. Accuracy of our estimator: accuracy as a function of the compression size (left) and of p (right).

still hold if we replace the Gaussian matrices in the sketch
with independent samples from the sparse ZD-sketch. A
major difficulty that arises in replacing the Gaussian ma-
trix with the sparse ZD-sketch is the latter’s lack of rota-
tional invariance. To prove Theorem 3.3 we were able to
expand X2 in terms of the eigenvalues of A and compute
the expectation term-by-term, but this is not possible for the
sparse ZD-sketch. For example, let G be a Gaussian ma-
trix. For any orthogonal matrix U , the matrix GU is again
a Gaussian matrix with an identical distribution to G. This
does not hold for sparse ZD-sketch. As a consequence, in
the expansion of E(X2) in the proof of Proposition 3.4,
the non-zero terms would also include those monomials
of odd powers of λi(A). For example, for the Schat-
ten 3-norm, one cannot bound

∑
i1,i2,...i6∈[n]

∏6
j=1 λij by

O(‖A‖6S3
). But this term appears in the expansion of

E(X2) of the Schatten 3-norm estimator if using the sparse
ZD-sketch matrices.
To resolve this problem, we use a technique similar to the
proof of the Hanson-Wright Inequality in (Rudelson & Ver-
shynin, 2013) to bound the variance of X . The proof is
composed of three major steps. The first step is to decouple
the dependent summands by injecting independence. The
second step is to replace the independent random vectors
with fully independent Gaussian vectors while preserving
the variance. We can then apply our techniques for Gaus-
sians to bound the variance of the final random variable.
The case p = 1 is useful to illustrate the technique, even
though Schatten 1-norm approximation can be easily ac-
complished in other ways. LetG ∈ Rt×n be the sparse JLT
matrix and let A ∈ Rn×n be PSD. The sketch is GAGT

and
tr(GAGT )− tr(A) =

∑
i 6=j

ai,j〈gi, gj〉. (2)

Since i 6= j, gi and gj are independent. However the
summands are subtly dependent. We first decouple the
summand by choosing δi ∼Bernoulli(1/2), and write
〈gi, gj〉 = 4E(δi(1 − δj)〈gi, gj〉). Let V = {i : δi =

1}, then
∑
i 6=j ai,j〈gi, gj〉 = 4Eδ

∑
i∈V,j∈V̄ ai,j〈gi, gj〉.

Thus conditioning on δ and {gj : j ∈ V̄ }, the set
{〈gi,

∑
j∈V̄ ai,jgj〉 : i ∈ V } is a set of independent ran-

dom variables. We can match these random variables with
Gaussian random variables of the same variance, and thus
replace gi with independent Gaussian vectors. The same
process can be repeated for gj : j ∈ V̄ , and replace ev-
ery vector gi : i ∈ [n] by independent Gaussian vectors.
This lets us apply similar techniques as used in the proof of
Proposition 3.4 to bound the variance of the resulting ran-
dom variable, and thus bound the variance of the original
random variable tr(GAGT )− tr(A).
The analogue of (2) for the case of our general estimator,
X − tr(Ap), is much more complicated than the p = 1
case. We observe that these terms can be grouped as a sum
of products of consecutive walks, i.e.,
ai1,i2ai2,i3 . . . aiz,jz+1

〈g(z+1)
jz+1

, g
(z+1)
iz+1

〉 for some z. Notice

that 〈g(z′)
j′ , g

(z′)
j′ 〉 = 1 for any j′ and z′. For each walk, we

can apply a similar idea to replace the gi vectors with in-
dependent Gaussian vectors. Again, we apply similar tech-
niques as used in the proof of Proposition 3.4 to bound the
variance of each group. As a result, when replacing the
Gaussian matrices by sparse JLT matrices, Lemma 3.5 still
holds.
Using the sparse ZD-sketch, we are able to achieve the
same space bound and query time as in Theorem 3.3 and
Theorem 3.6. But our update time is improved to O(1/ε2).
We present the full statement of our theorem below. The
full proof can be found in (Braverman et al., 2016).

Theorem 3.8. For every 0 < ε < 1/2 and integer p ≥
2, there is a randomized one-pass streaming algorithm A
with space requirement O(n2−4/p/ε2), that given as input
a PSD matrix A ∈ Rn×n, outputs with high probability a
(1 + ε)-approximation of ||A||pSp . The algorithm processes
an update in time O(1/ε2), and computes the output (after
the updates) in time O(n(1−2/p)ω)/ε2, where ω < 3 is the
matrix multiplication constant.
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There is similarly a randomized dp/2e-pass streaming
algorithm B with space requirement O(n1−1/(p−1)/ε2),
update time in a pass O(1/ε2), and output time
O(n(1−2/p)/ε2).
For even p ≥ 2, both algorithms extend to general input
A ∈ Rn×m with m ≤ n.

4. Lower Bound For PSD Matrices
In this section we show the lower bounds for sketching
Schatten-norms for PSD matrices. This lower bounds sug-
gest that our upper bound is nearly tight. The proof is pre-
sented in Section B.

Theorem 4.1. Suppose that p > 0 andX ∈ Rn×n is a PSD
matrix given in the entry-wise streaming model.

(a) When p ∈ Z, there is c = c(p) > 0 such that every
one-pass streaming algorithm that (1+c)-approximates
‖X‖Sp with probability 2/3 must use Ωp(n

1−2/p) bits
of space for even p, and Ωp(n

1−2/(p−1)) bits of space
for odd p.

(b) When p 6∈ Z, for every integer t ≥ 2, there is c =
c(p, t) > 0 such that every one-pass streaming algo-
rithm that (1 + c)-approximates ‖X‖Sp with probabil-
ity 2/3 must use Ωp,t(n

1−1/t) bits of space.

We remark that all lower bounds in Theorem 4.1 even hold
for sparse matrices, since the hard instances are sparse.
The lower bounds for non-integers p and even integers
p are strengthenings of the same lower bounds in (Li &
Woodruff, 2016a), and are almost tight and tight up to poly-
logarithmic factors, respectively.

5. Experiments
In this section we show numerical experiments that illus-
trate the performance of our Schatten-norm estimator de-
scribed in Section 3. We consider two sets of synthetic
inputs, which roughly represent the extreme cases for all
inputs. One is a matrix drawn from a standard Gaus-
sian distribution, i.e., A = GG>, where each entry of
G ∈ Rn×n is an independent N (0, 1) random variable.
The other is a matrix drawn from a Bernoulli distribution,
i.e., A = BB>, where each entry of B ∈ Rn×n is an
independent B(0.5) random variable. We chose n = 200
in both cases. We construct our estimator using the native
pseudo-random generator in matlab as our hash function.
We measure the error of our estimator when varying the
hidden constant in our choice of k (recall that our sketching
matrix is of size k × n for k = O(n1−2/p)) and varying p.
These results are presented in Figure 1. We then compared
the update time of our sparse estimator with the estimators
described in (Li & Woodruff, 2016a) and (Kong & Valiant,
2016) that are based on a dense Gaussian distribution. The
result is shown in Figure 2. Our estimators are compara-
bly or a little less accurate than theirs but are two orders of

Figure 2. Comparison with Gaussian-based estimator. Top: accu-
racy comparison. Bottom: update time comparison.

magnitude faster in terms of update time. In Figure 2, we
used our ZD sketch from Definition 3.7. Since each update
only updates a single entry to the matrix, the update time
is almost 0. On the other hand, the dense Gaussian sketch
requires at least Θ(n2−4/p) operations.
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