
Approximating Edit Distance Efficiently

Ziv Bar-Yossef∗ T. S. Jayram† Robert Krauthgamer† Ravi Kumar†

Abstract

Edit distance has been extensively studied for the past
several years. Nevertheless, no linear-time algorithm is
known to compute the edit distance between two strings,
or even to approximate it to within a modest factor. Fur-
thermore, for various natural algorithmic problems such
as low-distortion embeddings into normed spaces, approx-
imate nearest-neighbor schemes, and sketching algorithms,
known results for the edit distance are rather weak.

We develop algorithms that solve gap versions of the edit
distance problem: given two strings of lengthn with the
promise that their edit distance is either at mostk or greater
than`, decide which of the two holds.

We present two sketching algorithms for gap versions of
edit distance. Our first algorithm solves thek vs. (kn)2/3

gap problem, using a constant size sketch. A more involved
algorithm solves the strongerk vs. ` gap problem, wherè
can be as small asO(k2)—still with a constant sketch—but
works only for strings that are mildly “non-repetitive”.

Finally, we develop ann3/7-approximation quasi-linear
time algorithm for edit distance, improving the previous
best factor ofn3/4 [5]; if the input strings are assumed
to be non-repetitive, then the approximation factor can be
strengthened ton1/3.

1. Introduction

A fundamental measure of similarity between strings is
the edit distance(akaLevenshtein distance), which is the
minimum number of character insertions, deletions, and
substitutions needed to transform one string to the other.
Edit distance is an important primitive with numerous appli-
cations in areas like computational biology and genomics,
text processing, and web search; see, for instance, the books
by Gusfield [9] and Pevzner [22]. Many of these appli-
cation areas typically deal with large amounts of data—

∗Department of Electrical Engineering, Technion, Haifa 32000, Israel.
Email: zivby@ee.technion.ac.il. This work was done while the
author was at the IBM Almaden Research Center.

†IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120,
USA. Email:{jayram,robi,ravi}@almaden.ibm.com.

ranging from a moderate number of extremely long strings,
as in computational biology, to a large number of moder-
ately long strings, as in text processing and web search—
and therefore algorithms for edit distance that are efficient
in terms of time and/or space, even with modest approxi-
mation guarantees, are highly desirable. We present super-
efficient algorithms for approximating the edit distance, fo-
cusing on two powerful notions of efficiency that are appli-
cable in dealing with massive data, namely, sketching algo-
rithms and linear-time algorithms.

Edit distance has been extensively studied for the past
several years. An easy dynamic programming algorithm
computes the edit distance in quadratic time [18, 21, 24] and
the algorithm can be made to run in linear space [10]. How-
ever, the quadratic time algorithm for computing the edit
distance was improved by only a logarithmic factor in [19],
and even developing sub-quadratic time algorithms for ap-
proximating it within a modest factor has proved to be quite
challenging, see [11, Section 6] and [13, Section 8.3.2].

We design very efficient algorithms for thek vs. ` gap
version of the edit distance problem: given twon-bit in-
put strings with the promise that the edit distance is either
at mostk or more thaǹ , decide which of the two cases
holds. Such algorithms immediately yield approximation
algorithms that are as efficient, with the approximation fac-
tor directly correlated with the gap betweenk and`. Specif-
ically, we design sketching algorithms and (quasi)-linear
time algorithms for this gap problem. In addition to the in-
herent theoretical interest in these fundamental algorithmic
questions, we believe that our efficient algorithms may find
applications (as building blocks) in a multitude of scenarios
with voluminous data.

1.1. Sketching algorithms

A sketching algorithm for edit distance consists of two
compression proceduresand a reconstruction procedure,
which work in concert as follows. The compression pro-
cedures produce a fingerprint (sketch) from each of the in-
put strings, and the reconstruction procedure uses solely the
sketches to approximate the edit distance between the two
strings. The key feature is that the sketch of each string
is constructed without knowledge of the other string. The

sketches are supposed to retain the minimum amount of in-
formation about the strings that is required to subsequently
approximate the edit distance. The procedures are allowed
to share random coins, and the main measure of complexity
is the size of the sketches produced. (In actual applications
it is desirable that the procedures be efficient.)

In contrast to Hamming distance, whose sketching com-
plexity is well-understood [17, 8], essentially nothing is
known about sketching of edit distance. In part, this is
due to the fact that edit distance does not correspond to a
normed space. In fact, it is not even known whether the
edit distance metric space embeds into some normed space
with low distortion [11, 1]. We note that besides being a
very basic computational primitive for massive data sets,
sketching is also related to (i) approximate nearest neighbor
algorithms [14, 17], (ii) protocols that are secure (i.e., leak
no information), cf. [8], and (iii) the simultaneous messages
communication model with public coins [25].

Results. Our first sketching algorithm solves thek vs.
O((kn)2/3) gap problem, for anyk ≤ √

n. This algorithm
is ultra-efficient in terms of sketch size—it isconstant! This
algorithm is extremely appealing in applications where one
expects most pairs of strings to be either quite similar or
very dissimilar, e.g., duplicate elimination or a preprocess-
ing filter in text corpora or in computational biology.

Our second sketching algorithm can distinguish a
smaller gap and still produces a constant-sized sketch, but
it is guaranteed to work only if the input strings are “non-
repetitive”. Specifically, for anyk ≤ √

n andt ≥ 1, if each
of the lengthkt substrings of the inputs strings does not con-
tain identical lengtht substrings, then the algorithm solves
the k vs. O(k2t) gap problem. We note that the study of
algorithms for non-repetitive strings is quite standard (cf.
[23, 5]) and has often led to comparable algorithms that
work for arbitrary strings. Furthermore, input instances for
theUlam metric, which is equivalent to the edit distance on
strings that consist of distinct characters (e.g., permutations
of {1, . . . , n}), are non-repetitive witht = 1.

Section 2 describes the efficient compression and re-
construction procedures used in these two sketching algo-
rithms.

Techniques.The overall structure of the first sketching al-
gorithm is an embedding of the original edit distance space
into a Hamming space of low dimension. This embedding,
which may be of independent interest, is achieved in two
steps. First, we map each string to the multi-set of all its
(overlapping) substrings. Each substring is annotated with
a careful “encoding” of its position inside the input string.
The encoding is insensitive to small “shifts”, and is thus
useful in identifying substrings that are matched by an opti-
mal alignment of the two strings. In the second step, we take
the characteristic vector of the resulting set of substrings,
which lies in a Hamming space of an exponentially high di-

mension, and embed it in a Hamming space of constant di-
mension (a la [17]). The dependence onn in the gap in the
first algorithm is a consequence of the encoding method for
the position of a substring. In essence, for each substring we
produce an independent encoding of its position; while this
conveniently separates the analysis of different substrings,
the outcome is that we fail to identify many matches, even
in the presence of just one edit operation.

We overcome this handicap by resorting to a method in
which the encodings of the substring positions are corre-
lated. Scanning the input string from left to right, we iter-
atively locateanchorsubstrings—identical substrings that
occur in the two input strings at approximately the same
position. We map each string to the set of substrings corre-
sponding to the regions between successive anchors; the an-
chors are used for encoding the substring positions. As be-
fore, the resulting set of substrings is used to obtain an em-
bedding in a Hamming space of constant dimension. Ran-
dom permutations of small size are used to ensure that an-
chors are detected with high probability. This places a tech-
nical requirement that the input strings cannot have identi-
cal substrings within the window where we might be look-
ing for anchors, implying that the algorithm is applicable to
non-repetitive strings only.

1.2. Quasi-linear time algorithms

As a first step towards the important goal of approxi-
mating edit distance to within a constant factor (in near-
linear time), we propose to focus on the best approximation
achievable by linear time algorithms. We say that an algo-
rithm provides aρ-approximation if it produces a number
that is at least the edit distance but no more thanρ times the
edit distance. Throughout, our time bounds refer to a RAM
model with word sizeO(log n).

Results. We design a linear time algorithm that achieve
approximationρ = n3/7, which improves toρ = n1/3 if
the two strings are non-repetitive. The best approximation
factor that could be achieved in quasi-linear time with pre-
vious techniques isn3/4, by a straightforward application of
an algorithm by Cole and Hariharan [5] (see below). These
results are described in Section 3.

Techniques. We present a very general framework for
taking an approximation for the edit pattern matching and
boosting it to astrongerapproximation for edit distance.
Here,edit pattern matchingis the problem of finding all ap-
proximate matches of a pattern of sizem in a text of size
n, where an approximate match of the pattern is a sub-
string of the text whose edit distance to the pattern is at
mostk. We demonstrate three instances of this paradigm.
First, a simple instantiation of this framework already pro-
vides an algorithm that solves thek vs. k2 gap problem.
This implies a

√
n-approximation algorithm for edit dis-

tance, while the approximation provided directly by the edit
pattern matching primitive that we rely on is onlyn. Using a
non-trivial edit pattern matching algorithm of Cole and Har-
iharan [5], our framework yields an enhanced algorithm that
solves thek vs.k7/4 gap problem, which implies then3/7-
approximation claimed above. Under the assumption that
the input strings are non-repetitive, the third instantiation
solves thek vs.k3/2 gap, giving ann1/3-approximation.

1.3. Related work

To the best of our knowledge, sketching or quasi-linear
time algorithms for gap versions of edit distance have not
been explicitly studied before. Yet, some of the previous
work can be easily adapted to give such algorithms.

Batuet al. [4] developed a sub-linear time algorithm that
runs inO(nmax(α/2,2α−1)) time and solves theO(nα) vs.
Ω(n) edit distance gap problem. Their algorithm can be cast
as a sketching algorithm. On the one hand, their algorithm
applies also forα > 1/2, which our algorithm does not han-
dle. On the other hand, their algorithm would use a sketch
whose size is far more than constant; e.g., fork =

√
n their

sketch size would be aboutn1/4 compared with ourO(1)
sketch size (for the same gap problem). Furthermore, their
algorithm cannot solve thenδ vs. n1−δ gap problem, even
for arbitrarily small fixedδ > 0, while we accomplish this
for anyδ ≤ 1/5. We note that their algorithm runs in sub-
linear time, while ours does not.

The dynamic programming algorithm can solve thek vs.
k + 1 gap version of edit distance inO(kn) time. An al-
gorithm of Sahinalp and Vishkin [23] for the edit pattern
matching problem can be used to solve thek vs. 2k gap
problem inO(n+k8) time. A simpler algorithm of Cole and
Hariharan [5] for edit pattern matching yields anO(n+k4)
time algorithm for the same gap problem. This leads to
the aforementionedn3/4-approximation algorithm in lin-
ear time. In contrast, we have an algorithm that, for any
k ≤ n4/7, solves thek vs.k7/4 gap problem inÕ(n) time,
deriving ann3/7-approximation in quasi-linear time.

Other related work includes a near-linear time determin-
istic algorithm of Cormode and Muthukrishnan [6] for a
variant of edit distance called theblock edit distance, where
a block of characters can be moved in a single edit op-
eration. Andoniet al. [1] showed that edit distance can-
not be embedded into the Hamming space with distor-
tion better than3/2; Cormodeet al. [7, 6] and Muthukr-
ishnan and Sahinalp [20] showed that the block edit dis-
tance can be embedded into Hamming space with distortion
O(log n log∗ n). Lack of good sketching algorithms for edit
distance is also reflected in a lack of good nearest-neighbor
algorithms for edit distance, since efficient sketching primi-
tives are at the heart of many approximate nearest-neighbor
algorithms. Recently, Indyk [12] obtained an approximate

nearest-neighbor algorithm for edit distance where the data
structure size is strongly sub-exponential inn and the query
time is asymptotically smaller than the number of database
points.

1.4. Preliminaries

The goal of this paper is to design efficient algorithms
for thek vs.` gap version of edit distance.k is given as in-
put parameter to the algorithm. The smaller the difference
betweenk and` = `(n, k) , the better the approximation
achievable from these algorithms. To simplify the exposi-
tion, we make no attempt to optimize constants.

Strings, alignments, and edit distance. We deal with
strings over a finite alphabetΣ. For simplicity, most of
our results are stated for Boolean strings (i.e.,Σ = {0, 1}).
xy denotes the concatenation of two strings x and y. The
empty string is denoted byε. For integersi, j, the inter-
val [i .. j] denotes the set of integers{i, . . . , j} (which is
empty if i > j); [i] is a shorthand for the interval[1 .. i]. Let
x ∈ Σn be a string oflengthn. For i ∈ [n], x(i) is thei-th
character of x. Let x[i .. j] denote thesubstringobtained by
projecting x on the positions in the set[i .. j] ∩ [n]. If this
set is empty, then x[i .. j] = ε.

An edit operationon a string x∈ Σn is either an inser-
tion, a deletion, or a substitution of a character of x. We
associate with each edit operation a position in the string
x: a deletion and a substitution are associated with the po-
sition of the character being deleted or substituted, and an
insertion is associated with the position of the character be-
fore which the new character is inserted (if the character
is inserted after the last character of x, then we associate
with the insertion the positionn + 1). An alignmentof two
strings x, y ∈ Σn is a sequence of edit operations on x that
transform x into y (we view the operations as operating di-
rectly on x and not on the intermediate strings obtained in
the transformation). Anoptimal alignmentis one that uses
a minimum number of edit operations. Theedit distance
between x and y is the length of their optimal alignment.
We note the following properties of the edit distance:

1. Triangle inequality: for any three strings x, y, z,
ED(x, y) ≤ ED(x, z) + ED(z, y).

2. Splitting inequality: for strings x and y of lengthsn
andm, respectively, and any integersi, j, ED(x, y) ≤
ED(x[1 .. i], y[1 .. j])+ED(x[i+1 .. n], y[j +1 ..m]).

For an interval[i .. j], where1 ≤ i ≤ j ≤ n + 1, we say
that an edit operationbelongsto the interval[i .. j], if it is
associated with one of the positions in the interval. Given
an alignmentτ of x and y, for each interval[i .. j], we de-
fine insτ (i .. j), delτ (i .. j), and subτ (i .. j) to be the number
of insertions, deletions, and substitutions, respectively, that

belong to the interval[i .. j]. We define theshift at [i .. j]
to be shτ (i .. j) = insτ (i .. j) − delτ (i .. j); the shift of a
positioni ∈ [n + 1] is defined as shτ (i) = shτ (1 .. i); we
also define shτ (0) = 0. The induced alignmentof τ on
an interval[i .. j] is the subsequence of edit operations inτ
that belong to[i .. j]. We denote by edτ (i .. j) the size of
the induced alignment. We note the following property of
induced alignments:

Proposition 1.1. For any alignmentτ of x and y and for
all i ≤ j, edτ (i .. j) ≥ EDτ (x[i .. j], y[i + shτ (i − 1) .. j +
shτ (j)]).

Definition 1.2 (Non-repetitive strings). A string x ∈
{0, 1}n is called (t, `)-non-repetitive, if for any interval
[i .. j] of size`, the` substrings of x of lengtht whose left
endpoints are in this interval are distinct.

The sketching model. A sketching algorithm is best
viewed as a two-party public-coin simultaneous messages
communication complexity protocol. In this model three
players, Alice, Bob, and a referee, jointly compute a two-
argument functionf : X × Y → Z. Alice is givenx ∈ X
and Bob is giveny ∈ Y. Based on her input and based
on randomness that is shared with Bob, Alice prepares a
“sketch” sA(x) and sends it to the referee; similarly, Bob
sends a sketchsB(y) to the referee. The referee uses the
two sketches (and the shared randomness) to compute the
value of the functionf(x, y). The main measure of cost of
a sketching algorithm is the length of the sketchessA(x)
andsB(y) on the worst-case choice of inputsx, y.

Throughout, we seek algorithms whose error probability
is some small constant, say 1/3. As usual, this error can
be reduced to any value0 < δ < 1, usingO(log(1/δ))
simultaneous repetitions.

In many applications, it is desirable that the three players
are efficient (in time, space, etc.) We will say that a sketch-
ing algorithm ist(n)-efficient, if the running time of each
of the three players isO(t(n)), wheren is the size of the
player’s input (x for Alice, y for Bob, and(sA(x), sB(y))
for the referee).

2. Sketching algorithms for edit distance

Overview. In this section we describe our two sketching
algorithms for solving gap edit distance problems. The un-
derlying principle in both algorithms is the same: the two
input strings have a small edit distance if and only if they
share many sufficiently long substrings occurring at nearly
the same position in both strings, and hence, the number
of mismatching substrings provides an estimate of the edit
distance. More formally, both algorithms map the inputs x
and y into setsTx andTy, respectively; these sets consist of

pairs of the form(γ, i), whereγ is a sufficiently long sub-
string andi is a special “encoding” of the position at which
the substring begins. The encoding scheme has the property
that nearby positions are likely to share the same encoding.
A pair (γ, i) ∈ Tx ∩ Ty represents substrings of x and of
y that match, i.e., they are identical (in terms of contents)
and they occur at nearby positions in x and in y. A pair
(γ, i) ∈ (Tx \ Ty) ∪ (Ty \ Tx) represents a substring that
cannot be matched using a small number of edit operations.
This gives rise to a natural reduction from the task of esti-
mating edit distance between x and y to that of estimating
the Hamming distance between the characteristic vectors u
and v ofTx andTy, respectively. (Recall that the Hamming
distance between two strings x, y ∈ {0, 1}n is defined as

HD(x, y)
def
= |{i ∈ [n] : x(i) 6= y(i)}|.) The great advan-

tage of the Hamming distance is that it can be approximated
using constant-size sketches, as shown by Kushilevitz, Os-
trovsky and Rabani [17].

The realizations of the above idea in the two algorithms
are quite different, mainly due to the implementation of the
“position encoding”. The first algorithm works for arbitrary
input strings. In this algorithm,Tx andTy consist of all the
(overlapping) substrings of a suitable lengthB = B(n, k)
of x and y, respectively. (Recall thatn is the length of the
input strings andk is the gap parameter.) The position of
each substring is encoded by rounding the position down
to the nearest multiple of an appropriately chosen integer
D = D(n, k). A tradeoff betweenB andD implies that
the best choice of parameters isB = Θ(n2/3/k1/3) and
D = n/B, which results in an algorithm that can solve the
k vs.kB gap edit distance problem.

The second algorithm, which works for mildly non-
repetitive strings, introduces a more sophisticated “position
encoding” method, based on selecting a set of “anchors”
from x and from y in a coordinated way. Anchors are sub-
strings that are unique within a certain window and appear
in both x and y in that window. Suppose x and y have an
alignment that uses only a small number of edit operations.
Then, a sufficiently short substring chosen at random from
any sufficiently long window in x is unlikely to contain any
edit operation, and thus has to be matched with a corre-
sponding substring in y within the same window. This pair
of substrings form anchors. The key idea is that the coor-
dinated selection of anchors can be done without Alice and
Bob communicating with each other, but rather by using the
shared random coins. Once this is done, the anchors induce
a natural partitioning of x and y into disjoint substrings.Tx

andTy then consist of these substrings, with the position
of each substring being encoded by the number of anchors
that precede it. This technique solves much smaller (i.e.
stronger) gap edit distance problems, in which the gap is
independent ofn.

A technical obstacle in both algorithms is that the Ham-

ming distance instances to which the problem is reduced
are exponentially long. While this still leads to constant size
sketches, the running time needed to produce these sketches
may be prohibitive. We observe that the Hamming distance
instances produced above are always of Hamming weight
at mostn. We introduce below a sketching method that ap-
proximates the Hamming distance within the same guaran-
tees as [17], but runs in time proportional to the Hamming
weight of the strings. This scheme may be of independent
interest. Due to lack of space, the proof is defered to the full
version of the paper.

Lemma 2.1. For any ε > 0 and k = k(n), there is an
efficient sketching algorithm that solves thek vs.(1 + ε)k
gap Hamming distance problem in binary strings of length
n, with a sketch of sizeO(1/ε2). If the set of non-zero coor-
dinates of each input string can be computed in timet, then
Alice and Bob run inO(ε−3t log n) time.

Note that the running time of Alice and Bob in the KOR
algorithm [17] isO(ε−2n).

2.1. Sketching algorithm for arbitrary strings

Theorem 2.2. For any 0 ≤ k <
√

n, there exists a
quasi-linear time sketching algorithm that solves thek vs.
Ω((kn)2/3) gap edit distance problem using sketches of size
O(1).

Proof. The algorithm follows the general scheme described
in the overview above. We are thus left to formally describe
how the setsTx andTy are constructed. For simplicity
of exposition, we assumen andk are powers of2 with an
exponent that is a multiple of3. We describe now how Al-
ice creates the setTx. Bob’s algorithm is analogous. Let
B = n2/3/(2k1/3) and letD = n/B. For each position

i ∈ [n], let DIV(i)
def
= bi/Dc (which is proportional to the

largest multiple ofD that is at mosti). Tx is the set of pairs
(x[i .. i + B − 1], DIV(i)) for i = 1, . . . , n − B + 1.

The Hamming distance sketch of the vectors u and v (re-
call these are the charateristic vectors ofTx andTy, respec-
tively) is tuned to determine whetherHD(u, v) ≤ 4kB or
HD(u, v) > 8kB with (large) constant probability of er-
ror. The referee, upon receiving the sketches from Alice and
Bob, decides thatED(x, y) ≤ k if he finds thatHD(u, v) ≤
4kB. Otherwise, he decides thatED(x, y) ≥ 13(kn)2/3.

The algorithm’s correctness follows immediately from
Lemmas 2.3 and 2.4 below, using the sketching algorithm
for Hamming distance from Lemma 2.1.

Lemma 2.3. If ED(x, y) ≤ k, thenHD(u, v) ≤ 4kB.

Proof. Fix any alignmentτ of x and y of length at mostk.
For eachi = 1, . . . , n − B + 1, let αi = x[i .. i + B − 1].
We call a substringαi “bad”, if edτ (i .. i + B − 1) > 0.

(See Section 1.4 for definition.) All the substrings that are
not bad are called “good”. By Proposition 1.1, for any good
substringαi there is a “companion” substringβi = y[(i +
shτ (i − 1)) .. (i + B − 1 + shτ (i + B + 1))] in y, so that
αi = βi.

Recall that coordinates of u, v are associated with pairs
of the form (γ, j), whereγ is a bitstring of lengthB and
j is an integer between0 and n

D − 1. Let us upper bound
the number of coordinates in which we have1 in u but0 in
v. Each such coordinate(γ, j) corresponds to a uniquei ∈
[n−B +1] such thatαi = γ andDIV(i) = j. Furthermore,
it must be the case that either (1)αi is a bad substring; or
(2) αi is a good substring, but its companion stringβi =
y[i′ .. i′ + B − 1] is such thatDIV(i′) 6= j.

It therefore suffices to upper bound the number of po-
sitions i in which (1) and (2) are satisfied. Clearly, the
number of bad substringsαi is at mostkB, because ev-
ery edit operation is contained in at mostB different sub-
strings. A good substringαi can have a companionβi with
DIV(i + shτ (i − 1)) 6= DIV(i) only if i belongs to an in-
terval [tD − k .. tD + k − 1] “centered” at some multiple
tD of D, because by definition−k ≤ shτ (i − 1) ≤ k (re-
call that τ consists of at mostk edit operations). Hence,
the total number of such positionsi is at most2k · n/D.
A more careful analysis slightly improves this bound tok
per interval. Indeed, suppose (2) happens for two values
i1, i2 ∈ [tD − k .. tD + k − 1] with i1 < tD ≤ i2 (oth-
erwise we are done); theni1 + shτ (i1 − 1) ≥ tD and
i2 + shτ (i2 − 1) < tD, hence shτ (i1 − 1)− shτ (i2 − 1) >
(tD− i1)+(i2− tD) = i2− i1, and since the lefthand side
is clearly at mostk, the size of the interval[i2 .. i1] is upper
bounded byk.

We conclude that (2) is satisfied at mostk · n/D = kB
times, and therefore the number of coordinates in which u
is 1 and v is0 is at most2kB. The number of coordinates
where v is1 and u is0 is bounded similarly, which gives
HD(u, v) ≤ 4kB.

Lemma 2.4. If ED(x, y) ≥ 13(kn)2/3, thenHD(u,v) ≥
8kB.

Proof. Assume for contradiction thatHD(u,v) < 8kB.
We will show that it impliesED(x, y) < 13(kn)2/3.

For eachj = 1, . . . , n − B + 1, let αj = x[j .. j +
B − 1]. We call a substringαj “good”, if there exists a
“companion” substringβj′ = y[j′ .. j′ + B − 1] such that
αj = βj′ andDIV(j) = DIV(j′). Otherwise,αj is called
“bad”. If αj is bad, then the coordinate corresponding to
the pair(γj , DIV(j)) has value1 in u and0 in v. Since
HD(u,v) < 8kB, the number of bad strings is less than
8kB.

We use the good substrings to align x and y, by iteratively
extending an alignment of prefixes of x and y. The initial
alignment is trivial since both prefixes are the empty string.

Assume now we already aligned the firstj − 1 bits of x and
of y, and let us extend the alignment to a longer prefix. If the
substringαj is bad, we simply extend the current alignment
by one bit, paying one edit operation for the substitution
of x(j) with y(j). If αj = x[j .. j + B − 1] is good, we
extend the alignment byB bits, using its companion string
βj′ = y[j′ .. j′ + B − 1] as much as possible. Observe that
we can align x[j .. j + B − 1] with y[j .. j + B − 1] using
at most2|j − j′| edit operations. Ifj′ ≥ j, we transform
x[j .. j + B − 1] into y[j .. j + B − 1]) by inserting before
its beginning the firstj′ − j bits of y[j .. j + B − 1] and
deleting from it the lastj′ − j bits. If j′ < j, the operations
are analogous. In either case, we pay at most2|j′ − j| edit
operations. The key point is thatDIV(j) = DIV(j′) and
hence|j − j′| < D.

Finally, once we get toj ≥ n − B + 1, i.e., we aligned
more thann−B bits, we just payn−(j−1) edit operations
to substitute then − (j − 1) last characters of x with those
of y.

It remains to bound the total cost of this alignment. Since
we can encounter each bad substring at most once, we pay
a total of at most8kB edit operations for all the steps in-
volving a bad substring. Similarly, we pay at mostB edit
operations for the final stage. All the remaining operations
use good strings. Each such step pays at most2D opera-
tions each time, but alignsB bits, and hence there are at
mostn/B such steps. We conclude that

ED(x, y) ≤ 8kB + B + 2D · n

B
< 13(kn)2/3.

2.2. Sketching algorithm for non-repetitive strings

Theorem 2.5. For any 1 ≤ t < n and for any1 ≤ k <
O(

√

n/t), there exists a polynomial-time efficient sketch-
ing algorithm that solves thek vs.Ω(tk2) gap edit distance
problem for(t, tk)-non-repetitive strings using sketches of
sizeO(1).

Proof. Again, the algorithm uses the general framework de-
scribed in the overview. We are left to specify how the
setsTx andTy are constructed. Let x, y ∈ {0, 1}n be two
(t, tk)-non-repetitive input strings (see Section 1.4). Alice
creates the setTx as follows; Bob’s algorithm is similar.
First, she uses the shared randomness to compute a Karp–
Rabin fingerprint [16] of sizeO(log n) for every substring
of x of length t. This can be done inO(n) time. We let
f(·) denote the chosen fingerprint function. Letλ > 0 be a
sufficiently large constant that will be determined later.

Next, Alice selects a sequence of disjoint substrings
α1, . . . , αrx

of x, called “anchors”, iteratively as follows.

She maintains a sliding window of lengthW
def
= λtk over

her string. Letc denote the left endpoint of the sliding win-
dow; initially, c is set to1. At the i-th step, Alice considers

theW substrings of lengtht whose starting position lies in
the interval[c + W .. c + 2W − 1]. For j = 1, . . . ,W , let
si,j = x[c+ j +W −1 .. c+ j +W + t−2] be thej-th sub-
string. Using the shared randomness, Alice picks a random
permutationΠi on the space{0, 1}O(log n), and sets the an-
chorαi to be a substringsi,` whose fingerprint is minimal
according toΠi, i.e.,

Πi(f(si,`)) = min{Πi(f(si,1)), . . . ,Πi(f(si,W))}.

She then slides the window by settingc to the position im-
mediately following the anchor, i.e.,c ← c+ `+W −1+ t.
If this new value ofc is at mostn− (2W + t), Alice starts a
new iteration. Otherwise, she stops, lettingrx be the num-
ber of anchors she collected.

For i ∈ [rx], let φi be the substring starting at the po-
sition immediately after the last character of anchorαi−1

and ending at the last character ofαi. For this definition to
make sense fori = 1, defineα0 to be the empty string, and
consider it as if it is located at position0, henceφ1 starts
at position1. Finally, Tx is the set of pairs(φi, i) for all
i ∈ [rx].

Bob constructsTy analogously, by choosing anchors
β1, . . . , βry

using the same random permutationsΠi. The
Hamming distance sketch for the strings u, v (the incidence
vectors ofTx, Ty) is tuned to solve the3k vs.6k gap Ham-
ming distance problem with probability of error at most
1/12. The referee, upon receiving the two sketches, de-
cides thatED(x, y) ≤ k if he finds thatHD(u, v) ≤ 3k, and
decides thatED(x, y) > Ω(tk2) otherwise.

The algorithm’s correctness follows immediately from
Lemmas 2.6 and 2.8 below, using the sketching algorithm
for Hamming distance from Lemma 2.1.

Lemma 2.6. If ED(x, y) ≤ k, thenPr[HD(u, v) ≤ 3k] ≥
5/6.

Proof. Fix any alignmentτ of x and y that uses at mostk
edit operations. We will say that two substrings x[i .. j] and
y[(i + shτ (i − 1)) .. (j + shτ (j))] are “perfectly matched”
by the alignment, if edτ (i .. j) = 0. We slightly abused
notation here by using in this definition not only the “con-
tents” of the two substrings, but also their position in x, y.
By Proposition 1.1, perfectly matched substrings must be
identical. Note that the probability that any two of the2n
Karp–Rabin fingerprints computed by Alice and Bob col-
lide iso(1). It therefore suffices to assume that there are no
collisions and prove that the statement in the lemma holds
with probability6/7.

Lettingr = min{rx, ry}, we aim to show that with high
probability, for alli ∈ [r] the anchorsαi andβi are perfectly
matched. Fori ∈ rx, let ci be Alice’s value ofc at the end
of iteration i, and letc0 = 1 be the initial value ofc. It
follows thatαi = x[ci − t, ci − 1]. Let di be similarly for
Bob, henceβi = y[di − t, di − 1].

The key ingredient is the “inductive” step provided by
the next claim. Fori ≥ 1, let Ei be the event thatαi andβi

do not perfectly match andi ≤ r. For consistency, letE0

be the eventα0 6= β0 (which is empty by definition). Let
mi = edτ (ci .. (ci + 2W + t − 2)).

Claim 2.7. Then for everyi ≥ 0,

Pr[Ei+1|Ēi] ≤ 4tmi+1/W.

Proof. Fix i ≥ 0. We may assumei ≤ r, as otherwise
we’re done. SupposēEi holds. Ifi > 0, thenαi = x[ci−1 −
t .. ci −1] andβi = y[di − t .. di −1] are perfectly matched,
hence positionci − 1 in x is aligned with positiondi − 1 in
y, i.e.,di − 1 = ci − 1 + shτ (ci − 1).

Let A be the set of lengtht substrings of x whose first
character is in the interval[(ci +W) .. (ci +2W −1)]. Sim-
ilarly, let B be the set of lengtht substrings of y whose first
character is in the interval[(di+W) .. (di+2W−1)]. Since
x and y are non-repetitive,|A| = |B| = W .

Let A′ ⊆ A be the substrings inA that are perfectly
matched with substrings inB. Similarly, let B′ ⊆ be the
substrings inB that are perfectly matched with substrings
in A. Since perfectly matched substrings are identical,A′ =
B′ ⊆ A ∩ B. We will upper bound|A \ A′|.

First, we argue that at mosttmi substrings inA are not
perfectly matched at all (i.e., to any substring in y). Indeed,
such substrings must contain an edit operation, and belong
to the interval[(ci + W) .. (ci + 2W + t− 2)] in x, but this
interval contains onlymi edit operations, and each opera-
tion appears in at mostt substrings inA. Next, we argue
that at mostmi substrings inA are perfectly matched to a
substring in y that is not inB. Indeed, positionci − 1 in
x is aligned with positiondi − 1 in y (for i = 0 we have
insteadc0 = 1 = d0), and since there are at mostmi insert
operations in x[ci .. (ci + 2W − 1)], only themi substrings
in A with largest starting point might fall into this category.
Combining the two, we have that|A \ A′| ≤ (t + 1)mi.

Recall that Alice and Bob choose their anchors fromA
andB, respectively, using a min-wise permutation (of the
fingerprints). Since there are no collisions among the fin-
gerprints, the minimum among the fingerprints is attained
uniquely. Consider the string inA ∪ B whose fingerprint
attains the minimum according to the permutationΠi used
by Alice and Bob. Noting that|A| = |B| andA′ = B′ im-
plies |A \ A′| = |B \ B′|, we get that the probability this
minimum string does not belong toA′ = B′ is at most

|(A \ A′) ∪ (B \ B′)|
|A ∪ B| ≤ 2|A \ A′|

|A| ≤ 4tmi

W
.

The claim follows by observing that if the minimum string
belongs toA′ = B′ ⊆ A ∩ B then Alice’s and Bob’s an-
chors are equal,αi+1 = βi+1, and since the substrings inA
and the substrings inB are distinct, this means that the two
anchors are perfectly matched andEi+1 does not occur.

The anchor selection process fails, if at some iteration
i ≤ r, the anchorsαi and βi do not perfectly match.
WLOG, let i be the first such iteration. Necessarily,i > 0,
because the anchorsα0, β0 trivially match. Thus, if the pro-
cess fails, there is somei > 0 so that the eventEi ∩ Ēi−1

holds. Therefore, by the union bound, the probability of
failure is at most

Pr[∪i≥1(Ei ∩ Ēi−1)] ≤
∑

i≥1

Pr[Ei|Ēi−1] ≤
4t

W

r
∑

i=1

mi.

Any positioni ∈ [n] is contained in at most two intervals
of the form[(ci +W) .. (ci +2W + t− 2)], simply because
every iteration increasesc by at leastW + t > 1

2 (2W +
t − 1). Therefore,

∑r
i=1 mi ≤ 2k, implying that the above

probability is at most8tk/W . Choosing a constantλ ≥ 56,
this probability is at most1/7.

Assume then that all the firstr anchors are perfectly
matched. Letφ1, . . . , φrx

be the substrings used to create
Tx and letψ1, . . . , ψry

be the substrings used to createTy. It
is easy to verify that for alli ∈ [r], since the anchors before
φi andψi perfectly match and also the anchors afterφi and
ψi perfectly match, the only way forφi 6= ψi is thatφi con-
tains edit operations. Since the substringsφi are disjoint,
this can happen for at mostk stringsφi, and hence also for
at mostk stringsψi, contributing at most2k to HD(u, v). It
easy to verify that by our definition ofrx andry, if αr and
βr perfectly match, thenmax{rx, ry} ≤ r + 1. Thus, the
extra substring in x or in y can contribute an additional one
to HD(u, v). We conclude thatHD(u, v) ≤ 2k+1 < 3k.

Lemma 2.8. If HD(u, v) ≤ 6k, thenED(x, y) ≤ O(tk2).

Proof. Let φ1, . . . , φrx
be the substrings Alice used to cre-

ate u and letψ1, . . . , ψry
be similarly for v. Let r =

max{rx, ry}. For i = rx + 1, . . . , r let φi = ε be the
empty string and similarly fori = ry + 1, . . . , r let ψi = ε.
SinceHD(u, v) ≤ 6k, we know that there are at most6k
valuesi ∈ [r] for whichφi 6= ψi. For every suchi we have
ED(φi, ψi) ≤ 2W + t, since the length ofφi and ofψi

is less than2W + t. For the remainingi’s, with φi = ψi,
clearly ED(φi, ψi) = 0. Recall that the stringsφi form a
partition of x, except possibly for the last2W + t or less
characters, and similarlyψi for y. Therefore, we get as de-
sired

ED(x, y) ≤
r

∑

i=1

ED(φi, ψi) ≤ (6k+1)·(2W+t) = O(tk2)

by using the Splitting inequality (Section 1.4).

3. Algorithms for approximating the edit dis-
tance

Overview. In this section, we develop quasi-linear time al-
gorithms for edit distance gap problems. Theedit graph
GE is a well-known representation of the edit distance by
means of a directed graph (cf. [9]). In essence, a source-to-
sink shortest path inGE is equivalent to the natural dynamic
programming algorithm. We will define a graphG which
can be viewed as a lossy compression ofGE—the shortest
path inG provides an approximation to the edit distance.
Each edge inG will correspond to edit distance between
substrings, unlike inGE where each edge corresponds to
at most a single edit operation. The advantage ofG is its
structure that allows to speed up the shortest path computa-
tion by handling multiple edges simultaneously. The latter
turns out to be essentially an instance of the edit pattern
matching problem.

The graphG is defined as follows. LetB be a pa-
rameter that will determine the size of substrings used in
the algorithm; assume thatB divides n. Each vertex in
G corresponds to a pair(i, s) where i = jB, for some
j ∈ [0 .. n/B] and s ∈ [−k .. k]; this vertex is closely
related to the edit distance between the substrings x[1 .. i]
and y[1 .. i + s] (s denotes the amount by which we ex-
tend/diminishy with respect tox). There is a directed edge
e from (i′, s′) to (i, s) if and only if either (1)i′ = i and
|s′ − s| = 1, or (2) i′ = i − B and s′ = s. The edge
e has an associated weightw(e) which equals 1 ifi′ = i
and |s′ − s| = 1. For the other case wheni′ = i − B
and s′ = s, we will allow some flexibility in setting the
value of w(e). In particular, given an approximation pa-
rameterc, thenw(e) can be any value such thatw(e)/c ≤
ED(x[i′ + 1 .. i], y[i′ + 1 + s .. i + s]) ≤ w(e). We will
deal with the issue of computing such weights during the
development of our algorithms.

For any pathP in G, let the weightw(P) of the pathP
equal the sum of the weights of the edges inP . LetT equal
the weight of the shortest path from(0, 0) to (n, 0). The
following two lemmas show that the value ofT can be used
to solve thek vs. ` edit distance gap problem for a suitable
` = `(k, c).

Lemma 3.1. T ≥ ED(x, y).

Proof (Sketch).We first claim thatw(P) ≥ ED(x[1 .. i],
y[1 .. i + s]) for any pathP from (0, 0) to (i, s). In particu-
lar, we show that x[1 .. i] can be transformed to y[1 .. i + s]
by a sequence of edit operations corresponding to the se-
quence of edges inP ; the cost of each operation is at most
the weight of the corresponding edge. The details are given
in the full version of the paper.

Lemma 3.2. If ED(x, y) ≤ k, thenT ≤ (2c + 2)k.

Proof. Consider an optimal alignmentτ using at mostk
edit operations on x. This implies that|shτ (i)| ≤ k for ev-
ery i. We claim that for everyi, there is a path from(0, 0)
to (i, shτ (i)) of weight at most(2c+1) ·edτ (1 .. i). Apply-
ing this claim withi = n, we obtain a path from(0, 0) to
(n, shτ (n)) whose weight is at most(2c+1) ·edτ (1 .. n) ≤
(2c + 1)k. Extending this path to(n, 0) using an additional
weight of at mostk, it follows thatT ≤ (2c + 2)k, as re-
quired.

It remains to prove the claim, which we will prove by
induction on the legal values ofi. For i = 0, the claim is
trivial since shτ (0) = 0. Assume the claim is true fori
and let’s show it is true fori + B. To ease the presentation,
let r = shτ (i) and lets = shτ (i + B). By the induction
hypothesis, there is a pathP ′ from (0, 0) to (i, r) such that
w(P ′) ≤ (2c + 1) · edτ (1 .. i).

Now define the pathP ′′ from (i, r) to (i + B, s) by first
traversing the edgee from (i, r) to (i + B, r) and then
using the path from(i + B, r) to (i + B, s). To bound
w(P ′′) = w(e) + |r − s|, we introduce some notation. Let
α = x[i+1 .. i+B], β = y[i+1+r .. i+B+r] andγ = y[i+
1+r .. i+B+s]. By definition,w(e) ≤ c·ED(α, β). Using
the triangle inequality,ED(α, β) ≤ ED(α, γ) + ED(γ, β).
Observe thatED(α, γ) ≤ edτ (i + 1 .. i + B) via Proposi-
tion 1.1. Since one of the stringsγ, β is a prefix of the other,
we haveED(γ, β) ≤ |r − s|. Putting these observations to-
gether givesw(P ′′) ≤ c ·edτ (i+1 .. i+B)+(c+1)|r−s|.
Since|r− s| = |shτ (i)−shτ (i+B)| ≤ edτ (i+1 .. i+B),
it follows thatw(P ′′) ≤ (2c + 1) · edτ (i + 1 .. i + B).

Let P denote the concatenation ofP ′ with P ′′. By the
derivation above,w(P) = w(P ′) + w(P ′′) ≤ (2c + 1) ·
[edτ (1 .. i)+edτ (i+1 .. i+B)] = (2c+1) ·edτ (1 .. i+B),
soP satisfies the induction step fori + B. This completes
the proof of the lemma.

It remains to show how to compute the shortest path in
G from (0, 0) to (n, 0) efficiently. Fix ani and consider the
set of edges from(i, s) to (i + B, s) for all s. These repre-
sent the approximate edit distances between x[i+1 .. i+B]
and every substring of y[i + 1 − k .. i + B + k] of length
B. If we can somehow simultaneously compute all these
weights efficiently, then it is conceivable that the shortest
path algorithm can also be implemented efficiently. This is
formalized as a separate problem below:

Definition 3.3 (Edit pattern matching). Given a pattern
string P of lengthp and a text string T of lengtht ≥ p,
the c(p, t)-edit pattern matching problem, for somec =
c(p, t) ≥ 1, is to produce numbersd1, d2, . . . , dt−p+1 such
thatdi/c ≤ ED(P, T[i .. i + p − 1]) ≤ di for all i.

Theorem 3.4. Suppose there is an algorithm that can
solve thec(p, t)-edit pattern matching problem in time
TIME(p, t). Then, given two stringsx andy of lengthn, and

the corresponding graphG with parameterB, the short-
est path in the graphG can be used to solve thek versus
(2c(B,B + 2k) + 2)k edit distance gap problem in time
O((k + TIME(B,B + 2k))n/B)

Proof (Sketch).The correctness follows from Lemmas 3.1
and 3.2. Our implementation of the shortest path algorithm
proceeds in stages where thei-th stage computes the dis-
tanceT (i, s) from (0, 0) to (i, s) simultaneously for alls.
The key idea is to reduce this problem to computing single-
source shortest paths on a graph withO(k) edges. As-
sume thatT (i − B, s) has been computed for all values of
s. We will show how to computeT (i, s) for all s in time
O(k + TIME(B,B + 2k)); the claim on the overall running
time of the algorithm follows easily. Note that any short-
est path to(i, s) consists of a shortest path from(0, 0) to
(i−B, s′), for somes′, followed by the edge from(i−B, s′)
to (i, s′), and then followed by the path from(i, s′) to (i, s).
Consider the following graphH of at most2k + 2 nodes
with a start nodeu and a nodevs for everys ∈ [−k, k].
There is an edge betweenvs andvr with weight 1 if and
only if |s−r| = 1; there is an edge fromu to vs with weight
T (i − B, s) + w((i − B, s), (i, s)). This graph can be con-
structed in timeO(k+TIME(B,B+2k)). It can be verified
that the shortest path fromu to vs equalsT (i, s). This can
be implemented using Dijkstra’s shortest path algorithm in
time O(k log k). A direct implementation is also possible
by sorting the edges fromu to vs in non-decreasing order
of weight; the valuesT (i, s) can be calculated by carefully
eliminating the edges, each one inO(1) time.

As an application of the theorem, suppose we run a
pattern matching algorithm and outputdi = 0 if P =
T[i .. i + p − 1] anddi = p otherwise; thus,c(p, t) = p.
By precomputing the Karp–Rabin fingerprints of all blocks
of lengthB in x and y in timeO(n), we obtain an algorithm
for edit pattern matching that runs in timeO(k).

Theorem 3.5. There is an algorithm for thek vs. (2B +
2)k edit distance gap problem that runs in timeO(kn/B +
n). In particular, there is a quasi-linear-time algorithm to
distinguish betweenk andO(k2).

For the second application, we apply the algorithm of
Cole and Hariharan [5] for edit pattern matching. Here,
given a parameterk, the goal is to output for eachi ∈
[1 .. t−p+1] whether there is a substring T[i .. j], for some
j, such thatED(P, T[i .. j]) is at mostk. The algorithm
in [5] runs in timeO(k4 · t/p + t + p). Their algorithm can
be easily modified to obtain a quasi-linear time algorithm
for edit pattern matching whose approximation parameter
is c = p3/4. Applying Theorem 3.4 withB = k, we get:

Theorem 3.6. Thek versusk7/4 edit distance gap problem
can be solved in quasi-linear-time.

For non-repetitive strings, we can get a stronger
√

p-
approximation algorithm for the edit pattern matching prob-
lem that runs in quasi-linear-time. Details are given in the
full version of the paper. Now Theorem 3.4 (withB = k)
implies the following:

Theorem 3.7. Thek vs.k3/2 edit distance gap problem can
be solved in quasi-linear-time if at least one of the pair of
input strings is(k,O(

√
k)-non-repetitive.

It is easy to see that Theorems 3.6 and 3.7 yield approx-
imation algorithms for edit distance with factorsn3/7 and
n1/3, respectively.

4. Discussion

We turn our attention to lower bounds for edit distance
in the sketching model. Lower bounds on sketch size are
usually obtained via randomized communication complex-
ity lower bounds in the public-coin simultaneous messages
model [25]. A communication model that is closely re-
lated to the simultaneous messages model is theone-way
model. In the terminology of Section 2, the one-way model
is the same as the simultaneous one, except that Bob him-
self acts as the referee. For a Boolean functionf , let
R‖(f) (resp.,R→(f)) denote the randomized simultane-
ous (resp., one-way) communication off . By definition,
R‖(f) ≥ R→(f). In fact, most known lower bounds for
sketching algorithms (i.e., randomized simultaneous model)
hold also for the one-way model; the only known exception
is the generalized addressing function [2, 3]. There are no
general purpose lower bound techniques for the simultane-
ous messages model with public coins. For the remainder of
the section, we useEDk,` (resp.,HDk,`) to denote thek vs.
` gap version of edit (resp., Hamming) distance problem.

In the one-way model, it is straightforward to obtain
lower bounds for edit distance by exploiting its connec-
tion to the Hamming distance. In particular, we can show
that fork ≤ n1/2/2, R→(EDk,k+1) ≥ R→(HDk,k+1) =
Ω(k). Indeed, we reduce Hamming distance to edit dis-
tance; lettingσ = 0k, Alice transforms her input to
x′ = x1σx2 · · ·σxn and Bob transforms his input to y′ =
y1σy2 · · ·σyn. It is easy to see that ifHD(x, y) ≤ k then
ED(x′, y′) ≤ k, so it remains to showHD(x, y) > k im-
pliesED(x′, y′) > k. Assume for contradiction there exists
an alignment of x′, y′ with at mostk edit operations. For
each indexi with xi 6= yi, at least one ofxi, yi is not0; let’s
call it zi. SinceHD(x, y) > k, there are at leastk + 1 such
indicesi, so at least one of them must involve no edit op-
eration, i.e., match a character in the other string. But then
the positions ofzi and of its matching character must differ
by at leastk + 1, which cannot happen if the alignment has
at mostk edit operations. The lower bound follows since
R→(HDk,k+1) = Ω(k) (cf. [15]).

On the other hand, in the one-way model there is an
O(k log n) upper bound forEDk,k+1 that nearly matches
thisΩ(k) lower bound. The basic idea is to use hashing; we
omit the details in this version.

This state of affairs indicates that proving sketching
lower bounds for edit distance may be quite hard. First,
strong sketching lower bounds forEDk,k+1 require proving
lower bounds that go beyond lower bounds in the one-way
model. Second, the above approach does not go beyond the
hardness of Hamming distance. For instance, it says noth-
ing aboutEDk,2k, simply becauseHDk,2k can be solved us-
ing a constant size sketch. At the moment, we do not know
of anω(1) sketching lower bound forEDk,2k, or more gen-
erally, of any randomized (one-way or simultaneous) com-
munication lower bound for edit distance that exceeds its
Hamming distance counterpart.

Acknowledgments

We are indebted to D. Sivakumar for his critical help in early
stages of this work. We thank Tugkan Batu, Funda Ergün,
Venkatesan Guruswami, and Ronitt Rubinfeld for helpful
discussions.

References

[1] A. Andoni, M. Deza, A. Gupta, P. Indyk, and S. Raskhod-
nikova. Lower bounds for embedding edit distance into
normed spaces. InProc. 14th SODA, pages 523–526, 2003.

[2] L. Babai, P. Kimmel, and S. V. Lokam. Simultaneous mes-
sages vs. communication. InProc. 12th STACS, volume 900,
pages 361–372, 1995.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar.
Information theory methods in communication complexity.
In Proc. 17th CCC, pages 93–102, 2002.

[4] T. Batu, F. Erg̈un, J. Kilian, A. Magen, S. Raskhodnikova,
R. Rubinfeld, and R. Sami. A sublinear algorithm for weakly
approximating edit distance. InProc. 35th STOC, pages
316–324, 2003.

[5] R. Cole and R. Hariharan. Approximate string matching:
A simpler faster algorithm.SIAM Journal on Computing,
31(6):1761–1782, 2002.

[6] G. Cormode and S. Muthukrishnan. The string edit distance
matching problem with moves. InProc. 13th SODA, pages
667–676, 2002.

[7] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin.
Communication complexity of document exchange. InProc.
11th SODA, pages 197–206, 2000.

[8] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss,
and R. N. Wright. Secure multiparty computation of approx-
imations. InProc. 28th ICALP, volume 2076 ofLecture
Notes in Computer Science, pages 927–938. Springer, 2001.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1997.

[10] D. S. Hirschberg. A linear space algorithm for computing
maximal common subsequences.Communications of ACM,
18(6):341–343, 1975.

[11] P. Indyk. Algorithmic applications of low-distortion embed-
dings. InProc. 42nd FOCS, pages 10–33, 2001.

[12] P. Indyk. Approximate nearest neighbor under edit distance
via product metrics. InProc. 15th SODA, pages 646–650,
2004.

[13] P. Indyk and J. Matousek. Low-distortion embeddings of
finite metric spaces. In J. E. Goodman and J. O’Rourke, ed-
itors, Handbook of Discrete and Computational Geometry,
chapter 15, pages 177–196. CRC Press, 2nd edition, 2004.

[14] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. InProc. 30th
STOC, pages 604–613, 1998.

[15] B. Kalyanasundaram and G. Schnitger. The probabilistic
communication complexity of set intersection.SIAM Jour-
nal on Discrete Mathematics, 5(5):545–557, 1992.

[16] R. M. Karp and M. O. Rabin. Efficient randomized pattern-
matching algorithms.IBM Journal of Research and Devel-
opment, 31(2):249–260, 1987.

[17] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high dimensional
spaces.SIAM Journal on Computing, 30(2):457–474, 2000.

[18] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals.Soviet Physics Dokl.,
10:707–710, 1965.

[19] W. J. Masek and M. S. Paterson. A faster algorithm for com-
puting string edit distance.Journal of Computer and System
Sciences, 20(1):18–31, 1980.

[20] S. Muthukrishnan and S. C. Sahinalp. Approximate nearest
neighbors and sequence comparisons with block operations.
In Proc. 32nd STOC, pages 416–424, 2000.

[21] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins.Journal of Molecular Biology,
48(3):443–453, 1970.

[22] P. Pevzner.Computational Molecular Biology. Elsevier Sci-
ence Ltd., 2003.

[23] S. C. Sahinalp and U. Vishkin. Efficient approximate and
dynamic matching of patterns using a labeling paradigm. In
Proc. 37th FOCS, pages 320–328, 1996.

[24] R. A. Wagner and M. J. Fischer. The string-to-string correc-
tion problem.Journal of the ACM, 21(1), 1974.

[25] A. C.-C. Yao. Some complexity questions related to dis-
tributive computing. InProc. 11th STOC, pages 209–213,
1979.

