
The Sketching Complexity of Pattern Matching

Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA.
{ziv,jayram,robi,ravi}@almaden.ibm.com

Abstract. We address the problems of pattern matching and approxi-
mate pattern matching in the sketching model. We show that it is im-
possible to compress the text into a small sketch and use only the sketch
to decide whether a given pattern occurs in the text. We also prove a
sketch size lower bound for approximate pattern matching, and show it
is tight up to a logarithmic factor.

1 Introduction

Pattern matching is the problem of locating a given (smaller) pattern in a (larger)
text. It is one of the most fundamental problems studied in computer science,
having a wide range of uses in text processing, information retrieval, computa-
tional biology, compilers, and web search. These application areas typically deal
with large amounts of data and therefore necessitate highly efficient algorithms
in terms of time and space.

In order to save space, I/O, and bandwidth, large text files are frequently
stored in compressed form. The naive method for locating patterns in compressed
files is to first decompress the files, and then run one of the standard pattern
matching algorithms on them. Amir and Benson [2] initiated the study of pat-
tern matching in compressed files; their approach is to process the compressed
text directly, without first decompressing it. Their algorithm, as well as all the
subsequent work in this area [3, 21, 12, 24, 11, 22, 15], deal with lossless compres-
sion schemes, such as Huffman coding and the Lempel-Ziv algorithm. The main
focus of these results is the speedup gained by processing the compressed text
directly.

In this paper we investigate a closely related question: how succinctly can
one compress a text file into a small “sketch”, and yet allow locating patterns
in the text using the sketch alone? In this context we consider not only lossless
compression schemes but also lossy ones. In turn, we permit pattern matching
algorithms that are randomized and can make errors with some small constant
probability. Our main focus is not on the speed of the pattern matching al-
gorithms but rather on the succinctness of the compression. Highly succinct
compression schemes of this sort could be very appealing in domains where the
text is a massive data set or when the text needs to be sent over a network.

A fundamental and well known model that addresses problems of this kind
is the sketching model [8, 14], which is a powerful paradigm in the context of

computations over massive data sets. Given a function, the idea is to produce
a fingerprint (sketch) of the data that is succinct yet rich enough to let one
compute or approximate the function on the data. The parameters that play a
key role in the applications are the size of the sketch, the time needed to produce
the sketch and the time required to compute the function given the sketch.

Results. Our first main result is an impossibility theorem showing that in the
worst-case, no sketching algorithm can compress the text by more than a con-
stant factor and yet allow exact pattern matching. Specifically, any sketching
algorithm that compresses any text of length n into a sketch of size s and en-
ables determining from the sketch alone whether an input pattern of length
m = Ω(log n) matches the text or not with a constant probability of error re-
quires s ≥ Ω(n − m). We further show that the bound is tight, up to constant
factors.

The proof of this lower bound turns out to be more intricate than one might
expect. One of the peculiarities of the problem is that it exhibits completely
different behaviors for m ≤ (1 − o(1)) log n and m ≥ log n. In the former case,
a simple compression of the text into a sketch of size 2m is possible. We prove
a matching lower bound for this range of m as well. These results are described
in Section 3.

Our second main result is a lower bound on the size of sketches for approxi-
mate pattern matching, which is a relaxed version of pattern matching: (i) if the
pattern occurs in the text, the output should be “a match”; (ii) if every substring
of the text is at Hamming distance at least k from the pattern, the output should
be “no match”. An arbitrary answer is allowed if neither of the two holds. We
prove that any sketching algorithm for approximate pattern matching, requires
sketch size Ω(n/m), where n is the length of the text, m is the length of the pat-
tern, and the Hamming distance at question is k = εm, for a fixed 0 < ε < 1. We
further show that this bound is tight, up to a logarithmic factor. These results
are described in Section 4.

Interestingly, Batu et al. [6] showed a sampling procedure that solves (a
restricted version of) approximate pattern matching using Õ(n/m) non-adaptive
samples from the text. In particular, their algorithm yields a sketching algorithm
with sketch size Õ(n/m). This procedure was the main building block in their
sub-linear time algorithm for weakly approximating the edit distance. The fact
that our sketching lower bound nearly matches their sampling upper bound
suggests that it might be hard to improve their edit distance algorithm, even in
the sketching model.

Techniques. A sketching algorithm naturally corresponds to the communication
complexity of a one-way protocol. Alice holds the text and Bob holds the pattern.
Alice needs to send a single message to Bob (the “sketch”), and Bob needs to
use this message as well as his input to determine whether there is a match or
not.1

1 Usually, a sketching algorithm corresponds to the communication complexity of a
simultaneous messages protocol, which is equivalent to summarizing each of the text

The most classical problem which is hard for one-way communication com-
plexity is the indexing function: Alice is given a string x ∈ {0, 1}n and Bob is
given an index i ∈ {1, . . . , n}, and based on a single message from Alice, Bob has
to output xi. It is well known that in any protocol solving this problem, even
a randomized one, Alice’s message has to be of length Ω(n). Our lower bound
for approximate pattern matching is proved by a reduction from the indexing
function.

Our lower bound for exact pattern matching uses a reduction from a variant
of the indexing function. In this variant, Alice gets a string x ∈ {0, 1}n; Bob gets
an index i ∈ [n] and also the m− 1 bits preceding xi in x; the goal is to output
xi. Using tools from information theory we prove an Ω(n−m) lower bound for
this problem in the one-way communication complexity model.

Related work. Pattern matching and approximate pattern matching have a rich
history and extensive literature—see, for instance, the excellent resource page
[20]. To the best of our knowledge, pattern matching, has not been considered in
the sketching model. For approximate pattern matching, the only relevant result
appears to be the above mentioned work of Batu et al. [6].

Sketching algorithms for various problems, such as estimation of similarity
between documents [8, 7, 9], approximation of Hamming distance [19, 13] and
edit distance [4] between strings, and computation of Lp distances between vec-
tors [1, 14], have been proposed in the last few years. Sketching is also a useful
tool for approximate nearest-neighbor schemes [19, 16], and it is related to low-
dimensional embeddings and to locality-sensitive hash functions [16].

2 Preliminaries

2.1 Communication complexity

A sketching algorithm is best viewed as a public-coin one-way communication
complexity protocol. Two players, Alice and Bob, would like to jointly compute
a two-argument function f : X × Y → Z. Alice is given x ∈ X and Bob is
given y ∈ Y. Based on her input and based on randomness that is shared with
Bob, Alice prepares a “sketch” sA(x) and sends it to Bob. Bob uses the sketch,
his own input y, and the shared randomness to determine the value f(x, y).
For every input (x, y) ∈ X × Y , the protocol is required to be correct with
probability at least 1 − δ, where 0 < δ < 1 is some small constant. Typically,
the error probability δ can be reduced by repeating the procedure several times
independently (in parallel).

The main measure of cost of a sketching algorithm is the length of the sketch
sA(x) on the worst-case choice of shared randomness and of the input x. Another

and the pattern into a small sketch. However, in the context of pattern matching, it
is reasonable to have a weaker requirement, namely, that only the text needs to be
summarized.

important resource is the amount of randomness between Alice and Bob. New-
man [23] shows that the amount of shared randomness can always be reduced
to O(log n

δ′) at the cost of increasing the protocol’s error probability by δ′. In
one-way protocols, Alice can privately generate these O(log n

δ′) and send them
to Bob along with the sketch sA(x).

Some of our lower bounds use a reduction from the standard indexing prob-
lem, which we denote by INDt: Alice is given a string x ∈ {0, 1}t, Bob is
given j ∈ [t], and the goal is to output xj . This problem has a lower bound
of t(1−H2(δ)) in the one-way communication complexity model [18, 5].

2.2 Pattern matching and approximate pattern matching

For a Boolean string x ∈ {0, 1}n and integer 1 ≤ j ≤ n, let xi denote the jth
bit in x. For integers 1 ≤ i ≤ j ≤ n, [i, j] denotes the corresponding integer
interval, [n] the interval [1, n] = {1, . . . , n}, and x[i, j] denotes the substring of x
that starts at position i and ends at position j. We define the pattern matching
and approximate pattern matching problems in the communication model.

Let 0 ≤ m ≤ n. In the (n, m) pattern matching problem, denoted PMn,m,
Alice gets a string x ∈ {0, 1}n and Bob gets a string y ∈ {0, 1}m. The goal is to
determine whether there exists an index i ∈ [n−m+1] such that x[i, i+m−1] = y.
For the purpose of lower bounds, we would consider the simple Boolean function
defined above. However, some of the algorithms we present can additionally find
the position of the match i, if it exists.

We denote the Hamming distance of two strings x, y ∈ {0, 1}n by HD(x, y) def=
|{i ∈ [n] : xi 6= yi}|. A relaxed version of pattern matching is the (n, m, ε)
approximate pattern matching problem, denoted APMn,m,ε, in which Bob would
like to determine whether there exists an index i ∈ [n−m + 1] such that x[i, i +
m− 1] = y, or whether for all i ∈ [n], HD(x[i, i+m− 1], y) ≥ εm, assuming that
one of the two holds.

Notation. Throughout the paper we denote random variables in upper case. For
a Boolean string x ∈ {0, 1}n, |x| denotes the Hamming weight (i.e., the number of
1’s) of x. log denotes a logarithm to the base 2; ln denotes the natural logarithm.
H2(p) = −p log p− (1− p) log(1− p) is the binary entropy function.

3 Exact pattern matching

In this section we obtain a simple sketching algorithm for exact pattern matching
and show almost matching lower bounds. Recall that we denote by PMn,m the
problem in which Alice gets a string x ∈ {0, 1}n, Bob gets a string y ∈ {0, 1}m,
and their goal is to find whether there exists an index i ∈ [n−m + 1] such that
x[i, i + m− 1] = y.

3.1 Upper bounds

First, we show an efficient (randomized) sketching algorithm for the pattern
matching problem, based on the Karp–Rabin hash function [17]. Next, we show
a deterministic sketching algorithm for the Boolean version of the pattern match-
ing problem.

Proposition 1. For m ≤ n−log n, there is a one-sided error randomized sketch-
ing algorithm for the pattern matching problem PMn,m using a sketch of size
O(n−m).

Proof. The randomized algorithm is based on the Karp–Rabin method [17]. Let
t = n−m+1; we assume in the sequel that t ≤ n/3, as otherwise the proof follows
trivially by Alice sending x. Let x1, . . . , xt denote the sequence of t substrings
of x of length m. Alice and Bob use the shared randomness to pick a (weak) 2-
universal hash function h : {0, 1}m → [n2]. Alice sends to Bob h(x1), . . . , h(xt).
Bob outputs “match found at i”, if h(xi) = h(y). If no such i exists, Bob outputs
“no match found”.

This is a one-sided error algorithm: if there is a match, it will surely be output.
There is a possibility for a false match, though: when xi 6= y, but h(xi) = h(y).
The probability for a false match is thus at most the probability h has a collision
between y and any of {x1, . . . , xt}. A union bound shows that since the range of
h is large enough, the probability of a collision between y and any xi is at most
O(1/n).

The scheme described above uses a sketch of size O(t log n) = O((n−m) log n).
Further improvement is possible using the Karp–Rabin hash function h(b) =
(
∑m

i=1 bi · 2m−i) mod p, where p is a randomly chosen prime in the range [n3]
(here bi is the ith bit in the binary representation of b). The advantage of this
hash function is that the value of h(xi+1) can be computed from the value of h(xi)
and from the two bits xi and xi+m: h(xi+1) = ((h(xi)−xi·2m−1)·2+xi+m) mod p.
Thus, what Alice needs to send is only h(x1), the first t bits of x, and the last t
bits of x. Thus, the sketch size goes down to 2t + O(log n) = O(n−m).

Proposition 2. There is a deterministic sketching algorithm for the pattern
matching problem PMn,m using a sketch of size 2m.

Proof. In the deterministic algorithm Alice sends to Bob a characteristic vector
of length 2m specifying all the strings of length m that occur as substrings of x.
Bob outputs “match found” if and only if y is one of the substrings indicated by
the characteristic vector.

3.2 Lower bounds

We show lower bounds on the sketch size for the pattern matching problem.
The first one, Theorem 1, deals with the case m ≥ Ω(log n). The second one,
Theorem 2, considers the case m ≤ O(log n).

Theorem 1. If n ≤ m+ δ2m, then any δ-error randomized sketching algorithm
for the pattern matching problem PMn,m requires a sketch of size at least (n −
m + 1) · (1−H2(2δ)), where H2(·) is the binary entropy function.

Proof. Using Yao’s Lemma [25], it suffices to exhibit a distribution µ over in-
stances of PMn,m, and prove that any deterministic sketching algorithm that
computes PMn,m correctly with probability at least 1 − δ when running over
inputs chosen according to µ requires a sketch of size at least (n−m + 1) · (1−
H2(2δ)).

The distribution µ is defined as follows. Alice is given a uniformly chosen
bitstring X ∈ {0, 1}n. Bob is given a uniformly chosen substring of X of length
m− 1 concatenated with the bit 1.

The distributional lower bound w.r.t. µ is proven via a reduction from the
following version of the indexing function, which we denote by INDn,k: Alice is
given a string x ∈ {0, 1}n, and Bob is given an index k + 1 ≤ j ≤ n and a string
y ∈ {0, 1}k, which is promised to be equal to the substring x[j − k, j − 1]. The
goal is to compute xj .

Let ν be the following distribution over instances of INDn,k. Alice gets a
uniformly chosen bitstring X in {0, 1}n; Bob gets an index J , which is cho-
sen independently and uniformly in the interval [k + 1, n], and also the bits
XJ−k, . . . ,XJ−1.

The following lemma shows the reduction.

Lemma 1. Any deterministic sketching algorithm Π that computes PMn,m with
error probability at most δ on instances drawn according to µ yields a determin-
istic sketching algorithm Π ′ that computes INDn,m−1 with error probability at
most 2δ on instances drawn according to ν and using exactly the same sketch
size.

Proof. In the indexing algorithm Π ′, given an input x ∈ {0, 1}n, Alice sends
whatever message she would have sent on this input in the algorithm Π. Given
his input (j, y), where m ≤ j ≤ n and y ∈ {0, 1}m−1, Bob simulates the role of
Bob in the pattern matching algorithm Π on the input y ◦ 1, where ◦ denotes
the concatenation of strings. If the output in Π is “match found”, Bob outputs
“1” and otherwise he outputs “0”.

It is easy to verify that when the input given to Π ′ is distributed according
to ν, then the input given to Π in the reduction is distributed according to µ.
We can thus assume that Π errs with probability at most δ.

Fix an input (x, (j, y)) for INDn,m−1, for which the protocol Π is correct on
(x, y ◦ 1). If INDn,m−1(x, (j, y)) = 1, then the string y ◦ 1 is a substring of x (at
position j −m + 1), and thus Π ′ will output “1”, as needed. Suppose then that
INDn,m−1(x, (j, y)) = 0. Clearly, y ◦ 1 does not equal to the substring of x that
starts at position j − m + 1. Therefore, Π ′ outputs “0”, unless there is some
other substring of x that happens to equal to y◦1. We next prove that the latter
occurs with low probability.

Define E to be the set of instances (x, (j, y)), for which there exists some
i 6= j, so that the substring x[i, i + m − 1] equals y ◦ 1. The proof of Lemma 1

would follow easily once we prove that Pr(E) ≤ δ, since Π ′ errs on an input
(x, (i, y)) only if either it belongs to E or if Π errs on it.

Proposition 3. Pr(E) ≤ δ.

Proof. Pr(E) can be rewritten as Pr(∃i 6= J : X[i, i+m−1] = X[J−m+1, J−
1] ◦ 1). In order to bound Pr(E), it would suffice to show that for all choices of
m ≤ j ≤ n, Pr(∃i 6= j : X[i, i + m − 1] = X[j − m + 1, j − 1 ◦ 1]) ≤ δ. So for
the rest of the argument, fix such a j.

Define t
def= j − m + 1. We will show that for all i 6= t, Pr(X[i, i + m −

1] = X[t, j − 1] ◦ 1) ≤ 1/2m. It would then follow from the union bound that
Pr(∃i 6= j : X[i, i + m− 1] = X[j −m + 1, j − 1 ◦ 1]) ≤ (n−m)/2m ≤ δ.

Fix any i 6= t. Suppose, for example, i < t (the case i > t is dealt with
similarly). X[i, i+m−1] = X[t, j−1]◦1 if and only if X[i, i+m−2] = X[t, j−1]
and Xi+m−1 = 1. It is easy to verify that the two events are independent and that
the probability of the second is 1/2. Thus, it suffices to show Pr(X[i, i+m−2] =
X[t, j − 1]) = 1/2m−1.

We will denote Xi = X[i, i + m − 2] and Xt = X[t, j − 1]. Let p be the
length of the longest prefix of Xi that does not overlap Xt (p can be anywhere
between 1 and m− 1). Divide Xi and Xt into s

def= d(m− 1)/pe non-overlapping
blocks of size p each (except, maybe, for the last one which is shorter). Call
the corresponding substrings Xi

1, . . . ,X
i
s and Xt

1, . . . ,X
t
s, respectively. Note that

Xi
q = Xt

q−1 for q = 2, . . . , s. Xt = Xi if and only if Xt
q = Xi

q for all q = 1, . . . , s,
or equivalently, if and only if all the s blocks of Xt equal to Xi

1 (except, maybe,
the last one which needs to be a prefix of Xi

1). The latter event occurs with
probability 1/2m−1, since the Xt and Xi

1 are disjoint substrings of X, and the
bits of X are chosen independently at random.

Recall that we assumed the probability Π errs on (x, (i, y)) is at most δ. Using
Proposition 3 and applying a union bound, we get that the error probability of
Π ′ is at most 2δ, completing the proof of Lemma 1.

Next, we obtain a lower bound on the one-way communication complexity
of the modified indexing function. The proof is based on information-theoretic
arguments.

Lemma 2. Any one-way deterministic protocol that computes INDn,k with er-
ror probability at most ε on inputs chosen according to ν requires at least (n −
k)(1−H2(ε)) bits of communication.

Proof. Fix any such deterministic protocol, and let A(·) denote the function
Alice applies on her input in this protocol to determine the message she sends
to Bob. Bob outputs an answer based on the message from Alice and based
on his input. Thus, using the random variables A(X), J , and XJ−k, . . . ,XJ−1,
Bob is able to predict the random variable XJ with probability of error at most
ε. This is exactly the scenario captured by a classical result from information
theory, called Fano’s inequality (cf. [10]), which implies H2(ε) ≥ H(XJ |

A(X), J,XJ−k, . . . ,XJ−1). Here H(Z | Y) denotes the conditional Shannon en-
tropy of the random variable Z given the random variable Y (cf. [10]). By defini-
tion, the conditional entropy H(Z | Y) equals to

∑
y H(Z | Y = y) · Pr(Y = y),

where H(Z | Y = y) is the entropy of the conditional distribution of Z given the
event {Y = y}. Expanding over the random variable J , we thus have:

H2(ε) ≥
1

n− k

n∑
j=k+1

H(XJ | A(X),XJ−k, . . . ,XJ−1, J = j)

=
1

n− k

n∑
j=k+1

H(Xj | A(X),Xj−k, . . . ,Xj−1).

Conditioning one variable on another can only reduce its entropy. Therefore, we
can lower bound the j-th term on the righthand side by the conditional entropy
H(Xj | A(X),X1, . . . ,Xj−1) (we added the random variables X1, . . . ,Xj−k−1 to
the conditioning). We thus have:

H2(ε) ≥
1

n− k

n∑
j=k+1

H(Xj | A(X),X1, . . . ,Xj−1)

≥ 1
n− k

H(Xk+1, . . . ,Xn | A(X),X1, . . . ,Xk).

The last transition follows from the chain rule for entropy. Another application of
this rule implies that H(Xk+1, . . . ,Xn | A(X),X1, . . . ,Xk) = H(X1, . . . ,Xn, A(X))−
H(A(X))−H(X1, . . . ,Xk | A(X)). Since A(X) fully depends on X = (X1, . . . ,Xn),
we have

H(X1, . . . ,Xn, A(X)) = H(X).

But, H(X) = n, as X has a uniform distribution on {0, 1}n. Since conditioning
reduces entropy, H(X1, . . . ,Xk | A(X)) ≤ H(X1, . . . ,Xk) = k. To conclude:

H2(ε) ≥ 1
n− k

· (n−H(A(X))− k).

Therefore, H(A(X)) ≥ (n−k)(1−H2(ε)). Since H(A(X)) is always a lower bound
on the length of A(X), the lemma follows.

The proof of Theorem 1 now follows from Lemma 2, Lemma 1, and Yao’s lemma
[25].

For the case when m ≤ O(log n), we have the following lower bound.

Theorem 2. If n ≥ 2m/3 ·m, then any δ-error randomized sketching algorithm
for the pattern matching problem PMn,m requires a sketch of size at least 2m/3−1 ·
(1−H2(δ)).

Proof. The lower bound follows from a reduction from the indexing problem,
INDt. The reduction works as follows. Let m be such that t = 2m/3−1) and

let n ≥ 2m/3 · m. Given her input x ∈ {0, 1}t, Alice maps it first into a string
x′ ∈ {0, 1, $}n/3; $ is a special symbol, which we call a “marker”. Let i1, . . . , ik
be the positions in which x has a 1. Then x′ = i1$i2$. . . ik$$. . . $ where each
integer ij is written in binary using log t bits and the trailing $’s are used to
make sure the string is of length n/3. Bob maps his input j ∈ [t] into the string
y′ = j$ in {0, 1, $}m/3. Note that since a marker can match only a marker, xj = 1
if and only if the pattern y′ matches x′.

In order to complete the reduction, we need to describe a mapping φ from
strings over the ternary alphabet into (longer) strings over a binary alphabet,
so that a pattern y′ matches a substring of x′ over the ternary alphabet if and
only if φ(y′) matches a substring of φ(x′). φ could be, for example, the following
mapping: 0 maps to 010, 1 maps to 101, and $ maps to 111.

4 Approximate pattern matching

In this section we give a nearly-tight sketching lower bound for approximate
pattern matching. Once again we use the lower bound for the indexing function
to obtain our lower bound. Recall that we denote by APMn,m,ε the problem in
which Alice gets a string x ∈ {0, 1}n, Bob gets a string y ∈ {0, 1}m, and their goal
is to determine whether there exists an index i ∈ [n] such that x[i, i+m−1] = y,
or whether for all i ∈ [n], HD(x[i, i + m− 1], y) ≥ εm, assuming that one of the
two holds.

Theorem 3. If n ≤ 2O(m), then for any constant 0 < ε < 1/8, any randomized
sketching algorithm for APMn,m,ε requires a sketch of size Ω(n

m).

Proof. The proof works by a reduction from the indexing function INDt; we
assume, for simplicity, m divides n, and let t = n/m. We first need to fix a
collection z1, . . . , z2t of 2t binary strings in {0, 1}m with the following property:
for any m/2 ≤ s ≤ m, and for any i, j, the prefix of zi of length s and the suffix
of zj of length s have a large Hamming distance, namely, HD(zi[1, s], zj [m− s +
1,m]) ≥ m

8 . A simple probabilistic argument can show that such a collection
exists as long as t ≤ 2γm, for some constant 0 < γ < 1.2 We will call the last t
strings in the collection also o1, . . . ot.

Suppose Π is a sketching algorithm for APMn,m,ε. We use it to construct a
sketching algorithm Π ′ for INDt. Given her indexing input x ∈ {0, 1}t, Alice
maps it into a string u ∈ {0, 1}n, which is formed by concatenating t strings of
length m each. The j-th string is zj if xj = 0 and it is oj if xj = 1. Bob maps
his input i ∈ [t] into the string v = oi.

Alice and Bob now run the algorithm Π on the inputs u and v. Bob decides
that xi = 1 if and only if it is determined that v approximately matches u.

If xi = 1, then v = oi is a substring of u, and therefore the algorithm will
be correct with high probability. If xi = 0, then v is not one of the strings
2 Note that the corresponding Hamming distance is the summation of indicators for

the events (zi)` = (zj)`+m−s taken over ` = 1, . . . , s, and even if i = j, at least
s/2 ≥ m/2 of them are independent.

constituting u. We need to use now the property of the collection z1, . . . , z2t to
show that no substring of u of length m has small Hamming distance from v.

Let u1, . . . ,ut be the strings (which are taken from z1, . . . , z2t) that constitute
u. Suppose, to the contradiction, u has a substring α of length m such that
HD(α, v) ≤ εm ≤ m/8. The prefix of α overlaps some uj and its suffix overlaps
uj+1. Call the overlapping prefix α1 and the overlapping suffix α2. At least one
of α1, α2 has to be of size at least m/2. Suppose, for example, it is α1, and let
s = |α1|. Let v1 be the prefix of v of length s. Since the total Hamming distance
between α and v is at most m/8, also the Hamming distance between α1 and v1

is at most m/8. But that implies that the Hamming distance between the last s
bits of uj and the first s bits of v is at most m/8 even though uj 6= v. This is a
contradiction to the property of the collection z1, . . . , z2t. We conclude that Π ′

is correct with high probability also when xi = 0.
The lower bound now follows from the Ω(t) lower bound for indexing.

Theorem 4. For any constant ε > 0, there is a randomized sketching algorithm
for APMn,m,ε with sketch size O(n

mε−1 log n).

Proof. We may assume that the text size is at most n′ = (1+ε)m, because Alice
can divide the text x into substrings of length (1 + ε)m having an overlap of m

bits between successive substrings, and then Alice and Bob apply an O(n′

m log n)
sketch independently for of these substrings. If the pattern matches the text,
then at least one of these substrings must contain that pattern. If the text does
not contain the pattern, then it suffices to have the algorithm err with probability
at most 1/n2 on each of the n

εm substrings.
If the text size is n ≤ (1 + ε)m, Alice simply computes O(log n) random

inner products
∑

j xjrj(mod 2) à la Kushilevitz, Ostrovsky and Rabani [19], and
sends them to Bob. These inner products are tuned to determine whether the
Hamming distance is at most εm/2 or whether it is at least εm, namely, each
bit rj is chosen independently to be 1 with probability 1/(2εm) and 0 with
probability 1 − 1/(2εm). Since each inner product results in a single bit, the
sketch size is clearly O(log n).

It remains to show how Bob uses the results of these O(log n) inner products
to determine, with high probability, whether x[i, i + m− 1] = y. Notice that in
each inner product,

Pr[rj = 0 for all j < i and for all j ≥ i + m] = (1− 1/(2εm))εm = Ω(1).

That is, with probability at least some constant, any single inner product with
x is actually also a random inner product with x[i, i + m− 1], and hence can be
used by Bob to estimate whether the Hamming distance HD(x[i, i + m− 1], y) is
at most εm/2 or at least εm. The details of this estimate are exactly as in [19];
in short, in the latter case the probability that the inner product turns out to be
1 is higher additively by a constant than in the former. By a standard Chernoff
bound, with high probability (say at least 1 − 1/n3), there are some Ω(log n)
inner products that Bob can use to estimate HD(x[i, i + m − 1], y). The proof
now follows by a union bound over the n′ ≤ n possible values of i.

Remark. The above sketching algorithm is actually stronger than claimed in
the theorem, as it determines, with high probability, whether there exists an
index i ∈ [n] such that HD(x[i, i + m− 1], y) ≤ εm/2, or whether for all i ∈ [n],
HD(x[i, i + m− 1], y) ≥ εm, assuming that one of the two holds.

References

1. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147,
1999.

2. A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Pro-
ceedings of IEEE Data Compression Conference (DCC), pages 279–288, 1992.

3. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. J. of Computer and System Sciences, 52(2):299–307, 1996.

4. Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. Approximating edit
distance efficiently. Manuscript, 2004.

5. Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Information theory
methods in communication complexity. In Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, pages 93–102, 2002.

6. T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and
R. Sami. A sublinear algorithm for weakly approximating edit distance. In Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
316–324, 2003.

7. A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System Sciences, 60(3):630–659, 2000.

8. A. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of
the web. WWW6/Computer Networks, 29(8–13):1157–1166, 1997.

9. M. Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pages
380–388, 2002.

10. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., 1991.

11. E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information Systems,
18(2):113–139, 2000.

12. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

13. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright.
Secure multiparty computation of approximations. In 28th International Collo-
quium on Automata, Languages and Programming, volume 2076 of Lecture Notes
in Computer Science, pages 927–938. Springer, 2001.

14. J. Feigenbaum, S. Kannan, M. J. Strauss, and M. Viswanathan. An approximate
L1-difference algorithm for massive data streams. SIAM J. Comput., 32(1):131–
151, 2002/03.

15. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pages 390–398. IEEE Computer Society, 2000.

16. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC), pages 604–613, 1998.

17. R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

18. I. Kremer, N. Nisan, and D. Ron. On randomized one-round communication com-
plexity. Computational Complexity, 8(1):21–49, 1999.

19. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate near-
est neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–
474, 2000.

20. S. Lonardi. Pattern matching pointers. Available http: // www. cs. ucr. edu/

~stelo/ pattern. html , 2004.
21. U. Manber. A text compression scheme that allows fast searching directly in the

compressed file. ACM Transactions on Information Systems, 15(2):124–136, 1997.
22. G. Navarro and J. Tarhio. Boyer-Moore string matching over Ziv-Lempel com-

pressed text. In Proceedings of 11th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 1848 of Lecture Notes in Computer Science, pages 166–
180. Springer, 2000.

23. I. Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

24. Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-
Moore type algorithm for compressed pattern matching. In Proceedings of 11th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 1848 of
Lecture Notes in Computer Science, pages 181–194. Springer, 2000.

25. A. C.-C. Yao. Lower bounds by probabilistic arguments. In Proceedings of the
24th Annual IEEE Symposium on Foundations of Computer Science, pages 420–
428, 1983.

